
HAL Id: hal-03903981
https://hal.science/hal-03903981v1

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PointProofs, Revisited
Benoît Libert, Alain Passelègue, Mahshid Riahinia

To cite this version:
Benoît Libert, Alain Passelègue, Mahshid Riahinia. PointProofs, Revisited. Asiacrypt 2022 - Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Dec 2022,
Taipei, Taiwan. �hal-03903981�

https://hal.science/hal-03903981v1
https://hal.archives-ouvertes.fr

PointProofs, Revisited

Benôıt Libert1,2, Alain Passelègue2,3, and Mahshid Riahinia2

1 CNRS, Laboratoire LIP, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

mahshid.riahinia@ens-lyon.fr
3 Inria, France

alain.passelegue@inria.fr

Abstract. Vector commitments allow a user to commit to a vector of
length n using a constant-size commitment while being able to locally
open the commitment to individual vector coordinates. Importantly, the
size of position-wise openings should be independent of the dimension
n. Gorbunov, Reyzin, Wee, and Zhang recently proposed PointProofs
(CCS 2020), a vector commitment scheme that supports non-interactive
aggregation of proofs across multiple commitments, allowing to drasti-
cally reduce the cost of block propagation in blockchain smart contracts.
Gorbunov et al. provide a security analysis combining the algebraic group
model and the random oracle model, under the weak n-bilinear Diffie-
Hellman Exponent assumption (n-wBDHE) assumption. In this work,
we propose a novel analysis that does not rely on the algebraic group
model. We prove the security in the random oracle model under the n-
Diffie-Hellman Exponent (n-DHE) assumption, which is implied by the
n-wBDHE assumption considered by Gorbunov et al. We further note
that we do not modify their scheme (and thus preserve its efficiency) nor
introduce any additional assumption. Instead, we prove the security of
the scheme as it is via a strictly improved analysis.

Keywords. Vector commitments, aggregation, provable security.

1 Introduction

As introduced in [12, 22], vector commitments (VCs) allow a user to commit
to a vector of messages by generating a short commitment string. Later, the
committer should be able to concisely reveal individual coordinates of the mes-
sage vector. Here, “concisely” means that the partial opening information (called
“proof” hereafter) should have constant size – no matter how large the commit-
ted vector is – and still convince the verifier that the opened coordinate is correct.
As in standard commitments, a vector commitment scheme should satisfy two
security properties: (1) A binding property which asserts that no efficient adver-
sary should be able to generate a commitment of a vector that can be opened to
two different values at the same position, and (2) a hiding property which guar-
antees that revealing a subset of components should not reveal any information
about messages at non-revealed positions. Vector commitments enable signifi-
cant savings in terms of storage, by storing only a constant-size commitment

mailto:mahshid.riahinia@ens-lyon.fr
mailto:alain.passelegue@inria.fr

to a vector instead of commitments to individual coordinates, and bandwidth,
thanks to the ability to provably and succinctly open individual positions.

In 2020, Gorbunov, Reyzin, Wee, and Zhang [16] introduced a vector com-
mitment scheme, called PointProofs, which additionally supports non-interactive
aggregation of proofs across multiple commitments. Two types of aggregation
are supported:

– Same-commitment aggregation allows anyone to publicly aggregate single-
position proofs for the same vector commitment into a single proof;

– Cross-commitment aggregation allows anyone to further aggregate same-
commitment-aggregated proofs for distinct commitments (and possibly dis-
tinct subsets of positions) and fold them into a single constant-size proof.

Supporting proof aggregations is particularly useful for optimizing distributed
applications, such as blockchain propagation. In this context, a third party (the
validator) validates blocks by performing operations that depend on data owned
by several distinct users. Vector commitments that support proof aggregation
make it possible to drastically reduce storage: Instead of storing all users’ data,
each user can commit to their data individually so that a validator stores only
their respective (concise) commitments. When needed, a user can compute proofs
for opening positions relevant to the block validation, and aggregate these proofs
into a single proof using same-commitment aggregation. Cross-commitment ag-
gregation further allows a validator to aggregate all proofs from distinct users
into a single proof that can be included in a block, letting other validators verify
the block using a single proof. We also note that PointProofs supports updates
of commitments, allowing a user who has already committed to a vector to up-
date some components of this vector without having to compute a new vector
commitment from scratch.

In [16], Gorbunov et al. consider the use case of blockchain smart contracts.
They show that using their scheme instead of former state-of-the-art vector com-
mitments allows a 60%-reduction of bandwidth overheads for propagating a block
of transactions. In this work, we focus on improving the security analysis of the
scheme without modifying it. We thus refer to [16] for further applications as
well as for a detailed efficiency analysis of PointProofs in terms of space and
time.

The security requirements of vector commitments with aggregation are eas-
ily defined by extending the standard hiding and binding requirements. Specifi-
cally, the hiding property requires that (possibly aggregated) proofs for opened
positions do not reveal any information about unopened messages. The binding
property is extended as follows: For same-commitment (resp. cross-commitment)
aggregation, binding requires that no efficient adversary be able to come up with
a vector commitment C (resp. a set of vector commitments C1, . . . , C`) together
with two conflicting aggregated proofs, which open a position of an output vec-
tor commitment to two distinct values. While the PointProofs commitment is
perfectly hiding (like its underlying vector commitment scheme [22]), its compu-
tational binding property is argued in the algebraic group model, as well as in
the random oracle model (ROM), under the n-wBDHE assumption in bilinear

2

groups.
Recall that the algebraic group model (AGM) is an intermediate idealized

model, introduced in [15], that stands between the generic group model and the
standard model. As a reminder, in the generic group model, adversaries do not
have access to the bit representation of group elements: From the adversary’s
standpoint, each group element is represented by a unique uniformly random bit-
string, and group operations are performed by querying an oracle that returns
the representation of the resulting group element (to ensure uniqueness, the or-
acle keeps track of all group elements known to the adversary). In the generic
group model, computational problems and their decisional variants are equiva-
lent, and the Discrete Logarithm problem is provably intractable, as shown by
Shoup in [30]. This illustrates why proofs in the generic group model are more
often considered as sanity checks rather than proofs of security.

The algebraic group model is a security model weaker than the generic group
model, in which one only considers algebraic adversaries. Unlike the generic
group model, no restriction is made regarding access to the group elements in
the AGM: Algebraic adversaries have the same access to group elements as in the
standard model. Yet, adversaries are restricted to only handle group elements
that are computed by applying group operations to known group elements, sim-
ilarly as in the generic group model. That is, given elements g1, . . . , g` from
a multiplicative group G, an algebraic adversary can only access elements of
the form

∏`
i=1 g

λi
i for coefficients λi’s of its choice. Hence, the main difference

between the generic group model and the algebraic group model is that the lat-
ter allows using coefficients λi that depend on the actual bit representation of
elements gi’s, while the former forbids it. Despite this minor relaxation, the al-
gebraic group model is still considered as being very idealistic and to be avoided
when it is possible.

Our Contribution. In this work, we provide a different security analysis of Point-
Proofs, which relies on the Generalized Forking Lemma [1] and the Local Forking
Lemma [2]. Using these tools, we prove the scheme to be binding in the ran-
dom oracle model, under the n-Diffie-Hellman Exponent (n-DHE) assumption
in groups equipped with a bilinear map. As opposed to the original proof of
Gorbunov et al. [16], we circumvent the use of algebraic group model, and rely
on a weaker assumption; the n-DHE assumption being implied by the aforemen-
tioned n-wBDHE assumption. In the ROM, we thus prove the binding property
under the same assumption as the one used in the underlying vector commit-
ment scheme due to Libert and Yung [22].

We believe this result to be important in the context of vector commitments
as it proves the security of PointProofs as a vector commitment scheme support-
ing cross-commitment aggregation with constant-size openings under a falsifiable
assumption [26] without restricting oneself to algebraic adversaries. Moreover,
PointProofs is extremely efficient [32] and, among known candidates support-
ing cross-commitment aggregation [5, 16, 31], it is the only one that simultane-
ously provides optimal proof length and linear-size public parameters. Even if we
only consider same-commitment aggregation, it implies one of the most efficient

3

schemes with sub-vector openings among those [13, 16, 17, 32] that simultane-
ously feature linear-size public parameters and optimal-size proofs (recall that
elements of a pairing-friendly group usually have a shorter representation than
those of hidden-order groups).

We insist that we do not introduce any additional assumptions in Point-
Proofs, neither do we alter the efficiency of the scheme in the process. Our
approach thus provides a strict improvement over the prior analysis. Before out-
lining our security proof, we first briefly recall the PointProofs construction.

Construction. PointProofs builds on the vector commitment of [22] and can also
be seen as an application of the inner product functional commitment scheme
of [21], which are both inspired by the broadcast encryption scheme of Boneh,
Gentry and Waters [8]. Let n denote the dimension of committed vectors, and

consider cyclic groups G = 〈g〉 and Ĝ = 〈ĝ〉 of prime order p equipped with an

asymmetric bilinear map e : G × Ĝ → GT . Let gT = e(g, ĝ) be the generator
of GT . The scheme uses public parameters

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n], H

)
,

with gi = g(α)
i

and ĝi = ĝ(α)
i

, where α is chosen uniformly at random from Zp,
and H : {0, 1}∗ → Zp is a hash function modeled as a random oracle.

To commit to a vector m = (m1, . . . ,mn) ∈ Znp , one chooses γ ← U(Zp)
uniformly and computes a multi-base Pedersen commitment [27] of the form

C = gγ ·
n∏
j=1

g
mj

j = gγ+
∑n

j=1mi·αj

,

which can be seen as raising g to the evaluation of a polynomial defined by the
coefficients contained in m. To open a position i ∈ [n] of m to mi, the committer
reveals a proof

πi = gγn+1−i ·
n∏

j=1,j 6=i

g
mj

n+1−i+j =
(
C/gmi·αi

)αn+1−i

,

which is an element of G whose discrete logarithm is the same polynomial eval-
uation as in C, except that the coefficient mi is lacking, and the polynomial is
multiplied by αn−i+1, so that πi does not depend on the monomial αn+1. This
proof can be easily verified by checking that

e(C, ĝα
n+1−i

) = e(πi, ĝ) · gmi·αn+1

T ,

where gα
n+1

T = e(g1, ĝn) is computable from the public parameters.

In order to aggregate multiple proofs (πi)i∈S involving the same commitment
C, where S ⊆ [n], anyone can derive randomness for each proof πi from the
random oracle as ti ← H(i, C, S,m[S]), with m[S] being the sub-vector (mi)i∈S ,

and define the aggregated proof as πS =
∏
i∈S π

ti
i . Verification is achieved in

a similar way to the single position case, by additionally verifying the linear

4

combination for coefficients provided by the random oracle evaluations. That is,
the verifier checks that

e(C, ĝ
∑

i∈S α
n+1−i·ti) = e(πS , ĝ) · gα

n+1∑
i∈S mi·ti

T .

Finally, the cross-commitment aggregation of proofs (πS(j))j∈[`] (which might

result from the same-commitment-aggregation process) proceeds in a similar
way. Again, some randomness t′j ← H ′(j, {C(j), S(j),m(j)[S(j)]}j∈[d]) is first
derived from random oracle evaluations (of a second random oracle H ′), and

the cross-commitment aggregated proof is defined to be π =
∏`
j=1 (πS(j))

t′j .
Verification is performed in a similar way to the same-commitment-aggregated

case: The verifier first derives all random coefficients (the t
(j)
i for i ∈ S(j) for

each underlying same-commitment-aggregated proof, as well as the t′j) before
verifying that

∏
j∈[`]

(
e(C(j), ĝ

∑
i∈S(j) α

n+1−i·t(j)i)
)t′j

= e(π, ĝ) ·
∏
j∈[`]

(
g
αn+1·

∑
i∈S(j) m

(j)
i ·t

(j)
i

T

)t′j
.

(1)

Technical Overview. As already mentioned, our proof strategy relies on the Lo-
cal [2] and Generalized [1] Forking Lemmas. We first briefly remind the intuition
behind these lemmas. The standard Forking Lemma [29] considers the setting
in which a probabilistic polynomial time adversary A, given access to a random
oracle H, succeeds with non-negligible probability in some experiment which
consists of outputting a pair (y, aux), where y lies in the domain of H and aux is
some auxiliary information, such that the triplet (y,H(y), aux) satisfies a target
condition. Let us denote by x1, . . . , xq the q queries made by A to the random
oracle, and let us assume that y is the j-th query for some j ∈ [q]4.

The Forking Lemma states that running A again with the same coins but
replacing H with another random oracle H ′ which satisfies H ′(xi) = H(xi) for
i < j, results in A succeeding again with some non-negligible probability with
output (y,H ′(y), aux′). The important bit here is that A’s output involves the
same y, but now H ′(y) differs (with overwhelming probability) from H(y). This
new triplet (y,H ′(y), aux′) is called a fork. This lemma has notably been used in
the context of signature schemes based on applying the Fiat-Shamir paradigm
to 3-round identification protocols [14] with special-soundness, where the triplet
(y,H(y), aux) is a transcript and the target condition is for it to be valid.

On one hand, the Local Forking Lemma [2] is a refinement of the standard
Forking Lemma, which states that one is able to create a fork by replacing H
by a random oracle H ′ that only differs from H on the specific input y.

On the other hand, the Generalized Forking Lemma [1] is an extension to
the setting where multiple y’s are generated by the adversary. That is, the out-
put of A is of the form (y1, H(y1), . . . , y`, H(y`), aux) and allows to create forks

4 Typically, the target condition is sparse and the range of H is exponentially large,
therefore A must query H(x) to succeed with non-negligible probability.

5

for different yi’s, e.g., a first fork (y1, H
′(y1), . . . , y′`, H(y′`′), aux

′) and a second
fork (y1, H(y1), . . . , y`, H

′′(y`), aux
′′). Each fork is obtained by using a different

random oracle that outputs the same values as H for all the queries preceding
the forking point, and whose values are sampled uniformly at random and inde-
pendently of H as soon as the forking point is hit. In the previous example, y1
is the forking point of the first tuple and y` is that of the second one.

We start by explaining how we reduce binding in the case of same-commitment
aggregation to the hardness of the n-DHE problem. First, we recall that the n-
DHE problem asks to compute gn+1 given

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
(bor-

rowing the notation from the construction described in the previous part). Con-
sider an adversary A that manages to break the binding property with non-
negligible probability. Our n-DHE solver sets the public parameters to be the
n-DHE instance and uses A as follows.

A is able to generate a tuple (C, S0, S1,m0[S0],m1[S1], π0, π1) containing a
commitment C as well as two sets S0, S1 ⊆ [n] such that S0 ∩ S1 6= ∅ and valid

proofs π0, π1 with respect to sub-vectors m0[S0] ∈ Z|S0|
p , m1[S1] ∈ Z|S1|

p such
that m0[i∗] 6= m1[i∗] for some i∗ ∈ S0 ∩ S1. The following holds for this output:

e(C, ĝα
n+1−i

)

∑
i∈Sb

t
(b)
i

= e(πb, ĝ) · g
αn+1∑

i∈Sb
mi·t(b)i

T , (2)

where t
(b)
i = H(i, C, Sb,mb), for both b = 0 and b = 1.

Random oracle queries made by A are of the form (i, C, S,m[S]), and both
(i∗, C, S0,m0[S0]) and (i∗, C, S1,m1[S1]) must have been queried for Equation 2
to hold. One can then apply the Generalized Forking Lemma in order to create
forks. In our case, the auxiliary information aux is the pair of proofs. We aim to
obtain two forks: a first one of the form (C, S0, S

′
1,m0[S0],m′1[S′1], π′0, π

′
1), related

to a random oracle H ′ such that H(i∗, C, S0,m0[S0]) 6= H ′(i∗, C, S0,m0[S0]),
and a second one of the form (C, S′′0 , S1,m

′′
0 [S′′0],m1[S1], π′′0 , π

′′
1), related to H ′′

and such that H(i∗, C, S1,m1[S1]) 6= H ′′(i∗, C, S1,m1[S1]). In addition, we need
that for all i ∈ S0 \ {i∗}, H(i, C, S0,m0[S0]) = H ′(i, C, S0,m0[S0]) and that for
all i ∈ S1 \ {i∗}, H(i, C, S1,m1[S1]) = H ′′(i, C, S1,m1[S1]).

Such forks are obtained by applying the Generalized Forking Lemma as fol-
lows: to ensure that the mentioned conditions about the values of H,H ′, H ′′

are satisfied, we design the reduction algorithm to simulate the random oracle
such that all hash values for inputs (i, C, S0,m0[S0]) where i ∈ S0 \ {i∗} (resp.
(i∗, C, S1,m1[S1]) where i ∈ S1 \ {i∗}) are set before setting the hash values for
(i∗, C, S0,m0[S0]) (resp. (i∗, C, S1,m1[S1])). More precisely, our reduction first
makes a random guess about the value of i∗, which is a correct guess with prob-
ability 1/n. Then, on receiving a query (i, C, S,m[S]), it checks whether i∗ ∈ S.
If so, it first defines the hash values for inputs (i, C, S,m[S]) for all i 6= i∗, and
finally sets the value of H(i∗, C, S,m[S]) at the end. Doing so, the conditions
on the values of H,H ′, H ′′ are satisfied, and the Generalized Forking Lemma
guarantees that the two desired forks can be obtained.

6

To conclude the proof, one simply re-writes Equation (2) with each fork using
b = 0 and b = 1, respectively. The first fork leads to equation:

e(C, ĝα
n+1−i

)

∑
i∈S0

t′i
= e(π′0, ĝ) · g

αn+1∑
i∈S0

mi·t′i
T ,

where t′i = H ′(i, C, S0,m0). A similar equation is obtained for the second fork.
Thanks to the conditions satisfied by H,H ′, H ′′ values, it follows that for all

i 6= i∗, we have t
(0)
i = t′i and t

(1)
i = t′′i , where t′′i = H ′′(i, C, S1,m1).

Finally, combining these equations allows to recover an equation that depends
only on terms e(gn+1, ĝ), e(π1, ĝ), e(π′′1 , ĝ), e(π0, ĝ), e(π′0, ĝ). Setting aside the
term e(gn+1, ĝ) and focusing on the G-component, the reduction manages to
compute gn+1 as a combination of π1, π

′′
1 , π0, π

′
0, which is the solution to the

n-DHE problem.
In the supplementary material, we also propose a different proof which relies

on the Local Forking Lemma, and compare this approach to the above one.
These two proofs provide different bounds for the advantage and run-time of the
reduction, and we believe that, in the context of PointProofs, the proof based
on the Generalized Forking Lemma provides a tighter reduction.

The case of cross-commitment aggregation follows a similar strategy, but
this time we reduce the binding property of the cross-commitment aggrega-
tions to that of the same-commitment aggregations. This proof is also in the
random oracle model. Given an adversary A against the binding property of
the cross-commitment scheme, we construct an adversary B against the bind-
ing property of the same-commitment scheme as follows: B splits the random
oracles queries made by A into two categories: those corresponding to same com-

mitment evaluations (the t
(j)
i ’s in the above description), which are redirected

by B to the random oracle to which it has access, and those corresponding to
cross-commitment evaluations (the t′j ’s). B simulates the response to the queries
of the second category. It first runs A which outputs two tuples of the form(

π0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0]

)
,

(
π1, {C(j)

1 , S
(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1]

)
,

that breaks the binding property. In other words, there exist j0 ∈ [d0], j1 ∈ [d1]

such that C
(j0)
0 = C

(j1)
1 and m

(j0)
0 [i∗] 6= m

(j1)
1 [i∗] for some i∗ ∈ S(j0)

0 ∩ S(j1)
1 .

B then uses the Local Forking Lemma twice. In the first fork, it redefines the

hash value of the query (j0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0 }j∈[d0]). The output of A in this

fork involves the same first collection of commitments {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0]

as in the initial execution, together with a proof π′0. The equation obtained by
running the verification algorithm (Equation 1) on this collection of commit-
ments is such that the value of all t′j ’s are the same as A’s first run except if

j = j0. By forking a second time on query (j1, {C(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1 }j∈[d1]) and

repeating the same arguments, B obtains two pairs of equations, that can be
combined using a similar gymnastic as in the same-commitment proof to recover
a valid attack against the binding property of the same-commitment aggrega-
tions.

7

We emphasize that using the Generalized Forking Lemma instead of the
Local Forking Lemma does not seem to be an option in this case. Indeed, fo-
cusing on the first fork, our proof relies on the capacity to create a fork for the

query (j0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0 }j∈[d0]) without changing every other hash values

H(j, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0 }j∈[d0]), for j ∈ [d0]\{j0}. Using the Generalized Fork-

ing Lemma would require to set all the latter hash values before the value for

(j0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0 }j∈[d0]), but contrary to the previous case, one cannot

simply guess j0 as it lies in an arbitrary range. For this reason, we rely on the
Local Forking Lemma for proving the binding property in this case.

Related Work. Historically, vector commitments with logarithmic-size openings
have been known for 3 decades, with the folklore construction based on Merkle
trees [23]. In 2008, Catalano et al. [11] called for constructions with constant-size
openings with the motivation of compressing proofs in zero-knowledge databases
[24]. Vector commitments with O(1)-size openings appeared later on [12, 22],
with a first realization based on a q-type assumption put forth by Libert and
Yung [22]. Catalano and Fiore [12] obtained constructions from the standard
RSA assumption and the Computational Diffie-Hellman assumption in pairing-
friendly groups. Peikert et al. [28] recently came up with the first candidate under
standard lattice assumptions. Meanwhile, applications of vector commitments
were considered in the context of zero-knowledge databases [22], verifiable data
streaming [18], authenticated dictionaries [20, 34], de-centralized storage [10],
succinct arguments [3,19], cryptocurrencies [13,32] and blockchain transactions
[3, 16], or certificates of collective knowledge [25].

Back in 2010, Kate, Zaverucha and Goldberg [17] introduced the related no-
tion of polynomial commitments, which allows committing to a polynomial in
such a way that the committer can later prove that the committed polynomial
evaluates to specific values on certain inputs. They showed that their scheme
enables batch openings, where a constant-size proof convinces the verifier about
multiple polynomial evaluations at once. Libert, Ramanna and Yung [21] sug-
gested inner product functional commitments, which imply both vector commit-
ments and polynomial commitments.

Lai and Malavolta [19] and Boneh et al. [3] independently generalized VCs by
introducing the notion of sub-vector commitments, where the sender can gener-
ate a short proof πS that opens a sub-vector m[S] of m, for some subset S ⊆ [n].
Lai and Malavolta [19] provided instantiations in hidden order groups and also
showed that a variant of the Catalano-Fiore commitment [12] allows sub-vector
openings under a constant-size assumption (namely, the cube-CDH assumption)
in pairing-friendly groups. We remark that sub-vector commitments can also
be realized from polynomial commitments with batch openings, as shown by
Camenisch et al. [9, Section 3.1]. However, their construction intentionally pre-
vents proof aggregation.

The property of proof aggregation was considered in [3,10,16,31,34]. Boneh,
Bünz and Fisch [3] and Tomescu et al. [32] independently considered same-
commitment aggregation in hidden-order groups and under q-type assumptions

8

in pairing-friendly groups, respectively. Campanelli et al. [10] defined incremen-
tally aggregatable VCs, where different sub-vector openings can be merged into
a constant-size opening for the union of their sub-vectors. Moreover, aggregated
proofs support further aggregation. They showed how to realize incrementally
aggregatable VCs in hidden-order groups.

Gorbunov et al. [16] proposed PointProofs as the first construction enabling
cross-commitment aggregation. They also showed [16, Appendix A] that a vari-
ant of the Lai-Malavolta commitment [19] supports same-commitment aggre-
gation, but still at the cost of quadratic-size public parameters. As underlined
in [16], same-commitment aggregation implies sub-vector openings by having the
committer aggregate same-commitment proofs.

In [16, Appendix B], Gorbunov et al. also showed that the restriction to
algebraic adversaries is unnecessary if one just aims at a relaxed binding property
– which may be sufficient in certain blockchain applications – which assumes
honestly generated commitments. Here, we remove the restriction to algebraic
adversaries even when commitments are adversarially generated.

The recent Hyperproofs construction of Srinivasan et al. [31] also allows cross-
commitment aggregation and makes it possible to update all proofs in sub-
linear time when the vector changes. On the downside, it loses the conciseness of
PointProofs as its proofs have size O(log n). Besides [16, 31], we are only aware
of one alternative VC scheme supporting cross-commitment aggregation, which
was proposed by Boneh et al. [5]. However, it is only known to be secure in the
combined AGM+ROM setting.

2 Preliminaries

We use λ to denote the security parameter. For a natural integer n ∈ N, the set
{1, 2, · · · , n} is denoted by [n]. We denote by negl(λ) a negligible function in λ,
and PPT stands for probabilistic polynomial-time. For a finite set S, we write
x R← S to denote that x is sampled uniformly at random from S. We denote
vectors by bold characters e.g. m. For a vector m = (m1, . . . ,mn) and a subset
of indices S ⊆ [n], we denote by m[S] the sub-vector (mi1 , . . . ,mi|S|), where
S = {i1, . . . , i|S|} with ij < ij+1 for each j ∈ {1, . . . , |S| − 1}. For a single index
i ∈ [n], we sometimes denote mi by m[i].

2.1 Bilinear Maps and Complexity Assumptions

Let (G, Ĝ,GT) be cyclic groups of prime order p that are equipped with a bi-

linear map e : G× Ĝ→ GT . We rely on a parameterized assumption which was
introduced by Boneh, Gentry and Waters [8]. While this assumption was origi-
nally defined using symmetric pairings [4,8], we consider a natural extension to
asymmetric pairings, which were used in PointProofs.

Definition 1. Let (G, Ĝ,GT) be asymmetric bilinear groups of prime order p.
The n-Diffie-Hellman Exponent (n-DHE) problem is, given

(g, gα, g(α
2), . . . , g(α

n), g(α
n+2), . . . , g(α

2n), ĝ, ĝα, ĝ(α
2), . . . , ĝ(α

n))

9

where α R← Zp, g R← G, ĝ R← Ĝ, to compute g(α
n+1).

We note that this assumption is the same as the one underlying the binding
property of the vector commitment scheme of Libert and Yung [22]. As an artifact
of the algebraic group model, Gorbunov et al. [16] considered a stronger version

of the above assumption where g(α
2n+1), . . . , g(α

3n) are also given.

2.2 Generalized Forking Lemma

Here, we recall the Generalized Forking Lemma as stated in [1] which is later
used in one of our proofs.

f = (ρ, h1, . . . , hQ) R← F
(L, {out`}`∈L)← A(π, f)

If L = ∅ output 0.

Else, let L = (`1, . . . , `m) such that `1 ≤ · · · ≤ `m

For i = 1, . . . ,m do

Set succi ← 0, ki ← 0, kmax ← 8mQ/ε · ln(8m/ε)

While succi = 0 and ki < kmax do

f ′ R← F such that f ′|`i = f|`i

Let f ′ = (ρ, h1, . . . , h`i−1, h
′
`i
, . . . , h′Q)

(L′, {out′`}`∈L′)← A(π, f ′)

If h′`i 6= h`i and L′ 6= ∅ and `i ∈ L′ then
keep out′`i and set succi ← 1

Else
set ki ← ki + 1

If succi = 1 for all i ∈ [m], then
output (L, {out`}`∈L, {out′`}`∈L)

Else output 0

Game GA,π

Fig. 1. Game Gπ,A where an algorithm is forked in the Generalized Forking Lemma.

Let SAMP() be a probabilistic algorithm that returns a value π which we
think of as parameters. Also, consider an algorithm A that takes as input the
parameters π and uses some randomness f = (ρ, h1, . . . , hQ), where ρ is value
of the random tape of A and h1, . . . , hQ are responses received by querying a
random oracle H : {0, 1}∗ → Zp, and Q is the maximal number of the hash
queries. We denote by F the space of all such randomness. Also, for any f ∈ F
and i ∈ [Q], we denote by f|i the sub-vector (ρ, h1, . . . , hi−1). Algorithm A

10

outputs a pair (L, {out`}`∈L), where L is a subset of [Q], and each out` is a
string, for ` ∈ L. We consider L = ∅ as failure, and L 6= ∅ as success. Let ε
be the probability that the output of A(π, f) is successful. We define the game
Gπ,A as in Figure 1 parameterized by π and A, where π R← SAMP(). We now
state the lemma as proven by Bagherzandi et al. [1] and used in [7].

Lemma 1 (Generalized Forking Lemma [1]). Let SAMP, A, and H :
{0, 1}∗ → Zp be as described, where A runs in time τ and succeeds with proba-
bility ε. If p > 8mQ/ε, then the game Gπ,A runs in time at most τ · 8m2Q/ε ·
ln(8m/ε), and is successful with probability at least ε/8.

2.3 Local Forking Lemma

We also recall the Local Forking Lemma of Bellare et al. [2], which will be used
in our proof for the cross-commitment case. The difference with the classical
Forking Lemma is that the random oracle is only reprogrammed on the forking
point, instead of all points from the forking point onwards.

Let SAMP() be a probabilistic algorithm that returns a value π which we
think of as parameters. We also consider a deterministic algorithm A, that given
π R← SAMP(), and having access to a random oracle H ∈ H, outputs an integer
α ≥ 0, and a string x. We consider α = 0 as failure, and α ≥ 1 as success. If
α ≥ 1, we require x to be the α-th query that A has issued to the oracle H. We
consider the two following games parameterized by π andA, where π R← SAMP():

H R← H
(α, x)← AH(π)

If α ≥ 1
Return 1

Otherwise
Return 0

Game Gsingle
π,A

H R← H
(α, x)← AH(π)

H ′ ← H
H ′[x] R← {0, 1}∗

(α′, x′)← AH
′
(π)

If (α = α′) ∧ (α′ ≥ 1)
Return 1

Otherwise
Return 0

Game Gdouble
π,A

Fig. 2. Game Gsingle
π,A , and Game Gdouble

π,A , where the local forking happens in the latter.

We now recall the statement of the lemma.

11

Lemma 2 (Local Forking Lemma, [2]). Let SAMP and A be as described,
and let q be the number of H-queries issued by A. It holds that:

Pr[Gdouble
π,A = 1] ≥ 1/q · Pr[Gsingle

π,A = 1]2.

2.4 Vector Commitments with Aggregation

We recall the formal definition of vector commitments with aggregation intro-
duced in [16]. As in [16], we divide the definition into two parts; the case of
same-commitment aggregation, and the case of cross-commitment aggregation.

2.4.1 Same-Commitment Aggregation

Definition 2 (Vector Commitment with Same-Commitment Aggrega-
tion [16]). A vector commitment with same-commitment aggregation for mes-
sage space M consists of six algorithms Setup,Commit,UpdateCommit,Prove,
Aggregate,Verify as follows:

Setup(1λ, 1n)→ pp : On input the security parameter λ and a number n which
is the length of underlying vector of a commitment in the scheme, it outputs
public parameters pp that is used by all other algorithms.

Commitpp(m; aux)→ C : On input a message vector m = (m1, . . . ,mn) of
length n, uses some auxiliary information (i.e. randomness) aux to output a
commitment C.

UpdateCommitpp(C, S,m[S],m′[S], aux)→ C ′ : Takes as input a commitment
C, a subset S ⊆ [n], and m[S] = (mi)i∈S as the underlying message vector
of C, and uses some auxiliary information aux to change m[S] to m′[S] =
(m′i)i∈S and outputs a new commitment C ′ for this new vector of messages.

Provepp(i,mi, aux)→ πi : On input an index i ∈ [n] and a message bit mi ∈M,
uses the auxiliary information aux that was used in the algorithm Commit
to output a proof πi for this message bit.

Aggregatepp(C, S,m[S], {πi}i∈S)→ πS : Takes as input a commitment C, a
subset S ⊆ [n], a subset of message bits m[S] = (mi)i∈S , and a set of
proofs {πi}i∈S where each πi for i ∈ S is the proof generated for mi using
the algorithm Prove. It outputs an aggregated proof πS .

Verifypp(C, S,m[S], πS)→ b : On input a commitment C, a subset S ⊆ [n], a
sub-vector of messages m[S], and an aggregated proof πS , and outputs a bit
b ∈ {0, 1}.

We require a vector commitment scheme with same-commitment aggregation
to satisfy the following properties:

12

Correctness of Opening. For all λ, n, m = (m1, . . . ,mn) ∈ Mn, and
S ⊆ [n],

Pr

Verify(C, S,m[S], πS) = 1 :

pp← Setup(1λ, 1n)

C ← Commitpp(m; aux)

{πi ← Provepp(i,mi, aux)}i∈S
πS ← Aggregate(C, S,m[S], {πi}i∈S)

 = 1.

Correctness of Updates. For all parameters λ, n, message vectors m =
(m1, . . . ,mn),m′ = (m′1, . . . ,m

′
n) ∈ Mn, subset S ⊆ [n], and aux such that

mi = m′i for all i ∈ [n] \ S, we have

UpdateCommitpp(C, S,m[S],m′[S], aux) = Commitpp(m
′; aux),

where C ← Commitpp(m; aux), and pp← Setup(1λ, 1n).

Binding. For all λ, n, and any PPT adversary A, the probability of finding
a tuple (C, S0, S1,m0[S0],m1[S1], π0, π1), such that

Verify(C, S0,m0[S0], π0) = Verify(C, S1,m1[S1], π1) = 1

and m0[i] 6= m1[i] for some i ∈ S0 ∩ S1, is negligible in λ.

2.4.2 Cross-Commitment Aggregation

Definition 3 (Vector Commitment with Cross-Commitment Aggrega-
tion [16]). A vector commitment with cross-commitment aggregation for mes-
sage spaceM consists of the six algorithms Setup,Commit,UpdateCommit,Prove,
Aggregate,Verify as in the same-commitment case, and two additional algorithms
AggregateAcross, and VerifyAcross that are as follows:

AggregateAcrosspp({Cj , Sj ,mj [Sj], πj}j∈[d]) → π: Takes as input a collection
of commitments Cj together with each of their aggregated proofs πj with
respect to subset Sj and message sub-vector mj [Sj], and outputs a cross-
aggregated proof π.

VerifyAcrosspp(π, {Cj , Sj ,mj [Sj], πj}j∈[d])→ b: Given a cross-aggregated proof
π, and a collection of underlying commitments, subsets, and message sub-
vectors {Cj , Sj ,mj [Sj], πj}j∈[d], this algorithm outputs a bit b ∈ {0, 1}.

We require a vector commitment scheme with cross-commitment aggrega-
tion to satisfy the correctness of opening as in Definition 2 extended to cross-
commitment aggregations. Also, it should satisfy an extension of binding prop-
erty as follows:

13

Binding (for cross-commitments). For all λ, n, and any PPT adversary
A, the probability of finding the two following tuples with the following
described properties is negligible in λ:

(π0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[`0]), and (π1, {C(j)

1 , S
(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[`1]),

such that

VerifyAcross(π0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[`0])

= VerifyAcross(π1, {C(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[`1]) = 1

and there exist j0 ∈ [`0], and j1 ∈ [`1], for which it holds that C
(j0)
0 = C

(j1)
1 ,

and m
(j0)
0 [i] 6= m

(j1)
1 [i], for some i ∈ S(j0)

0 ∩ S(j1)
1 .

2.4.3 Statistical Hiding

As stated in [16], one can optionally require a vector commitment scheme to
generate commitments that are hiding. Intuitively, this property requires that
any commitment C that is generated in the scheme must reveal no information
about its underlying message vector m. Also, any proof πi generated with respect
to the i-th element mi of a message vector m = (m1, . . . ,mn) should not reveal
any information about any other element mj of the message, where j 6= i.

Since PointProofs were already proven to be statistically hiding in [16], we
rather focus only on the binding property and do not further detail hiding. We
refer the reader to [16] for a details regarding the hiding property.

3 The Case of Same-Commitment Aggregation

We first consider the simpler variant of PointProofs [16] which only allows ag-
gregating proofs for sub-vectors contained in the same commitment. This con-
struction implicitly uses the functional commitment scheme of [21] to aggregate
proofs using randomizers derived from a random oracle. Its description is as
follows.

Setup(1λ, 1n): To generate public parameters, do the following:

1. Choose bilinear groups (G, Ĝ,GT) of prime order p > 2λ and g R← G,

ĝ R← Ĝ.
2. Pick a random α R← Z∗p and compute g1, . . . , gn, gn+2, . . . , g2n ∈ G as

well as ĝ1, . . . , ĝn ∈ Ĝ, where gi = g(α
i) for each i ∈ [2n] \ {n + 1} and

ĝi = ĝ(α
i) for each i ∈ [n].

3. Choose a hash function H : {0, 1}∗ → Zp that will be modeled as a
random oracle in the analysis.

14

The public parameters are defined to be

pp =
(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n], H

)
and the trapdoor is tk = gn+1 = g(α

n+1).5

Commitpp(m1, . . . ,mn; aux): To commit to a vector (m1, . . . ,mn) ∈ Znp , choose

γ R← Zp and compute

C = gγ ·
n∏
j=1

g
mj

j .

The output is C and the auxiliary information is aux = (m1, . . . ,mn, γ).

UpdateCommitpp(C, S,m[S],m′[S], aux): Given C ∈ G and the state informa-

tion aux = (m1, . . . ,mn, γ), choose γ′ R← Zp and compute

C ′ = gγ
′
· C ·

∏
j∈S

g
m′[j]−m[j]
j

together with aux′ = (m̄1, . . . , m̄n, γ + γ′), where m̄i = m′i if i ∈ S and
m̄i = mi if i 6∈ S.

Provepp(mi, i, aux): Parse aux as (m1, . . . ,mn, γ) and compute

πi = gγn+1−i ·
n∏

j=1,j 6=i

g
mj

n+1−i+j . (3)

The opening of C at position i consists of πi ∈ G.

Aggregatepp(C, S,m[S], {πi}i∈S): Given a commitment C ∈ G, a sub-vector
m[S] with S ⊆ [q], and the corresponding proofs {πi}i∈S , compute

πS =
∏
i∈S

πtii

where ti = H(i, C, S,m[S]).

Verifypp(C, S,m[S], πS): Given πS ∈ G return 1 if C ∈ G and

e(C,
∏
i∈S

ĝtin+1−i) = e(πS , ĝ) · e(g1, ĝn)
∑

i∈S m[i]·ti (4)

where ti = H(i, C, S,m[S]) for each i ∈ S. Otherwise, it returns 0.

In [16], the scheme was proven binding in the algebraic group model and
in the random oracle model. We now show that, using the Forking Lemma [29]
(more precisely, its generalization used in [1,7]), we can prove its security in the
random oracle model (i.e., without using the algebraic group model) under the

5 The trapdoor is only used to prove the hiding property.

15

n-DHE assumption, which already underlies the binding property of the vector
commitment scheme in [22].

In Supplementary Material A, we provide an alternative proof using the Local
Forking Lemma [2] and give a comparison between the advantage/running-time
ratios of the two reductions.

We note that the security analysis of [16] highlighted the necessity of in-
cluding S and m[S] among the inputs of the hash function when the coefficient
{ti}i∈S are computed in the aggregation algorithm. Consistently with this ob-
servation, the proof of Theorem 1 crucially relies on the fact that (S,m[S]) are
hashed along with (i, C).

In order to rely on the General Forking Lemma, we need to answer random
oracle queries in a careful way, by adapting a technique used by Boneh et al. [7]
in the context of multi-signatures supporting key aggregation.

Theorem 1. The above commitment is binding in the random oracle model if
the n-DHE assumption holds.

Proof. Suppose that the adversary A is able to generate a commitment C as well
as two sets S0, S1 ⊂ [n] such that S0∩S1 6= ∅ and convincing proofs π0, π1 respec-

tively for sub-vectors m0[S0] ∈ Z|S0|
p , m1[S1] ∈ Z|S1|

p such that m0[i] 6= m1[i] for
some i ∈ S0 ∩ S1. Let Pr[¬Bind] be the probability of A generating such tuple.
In the random oracle model, we build an algorithm C that uses A to solve the
n-DHE problem. Let qH be the maximum number of queries that A can issue
to the random oracle H.

Consider an algorithm SAMP that generates an n-DHE instance
π =

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
, and an algorithm B that on input π and

randomness f = (ρ, h1, . . . , hQ), where Q = n · qH , does as follows.

B begins by drawing a random index i† R← U([n]). It runs A on input(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
and randomness ρ. First, B initializes a counter

` = 0, which it increments every time it sets a new hash value. When A makes a
H-query (i, C, S,m[S]), B uses the values in (h1, . . . , hQ) to respond as follows:

- If the input (i, C, S,m[S]) is such that the hash value H(i, C, S,m[S]) was
previously defined, B returns the previously-defined value.

- If (i, C, S,m[S]) is such that i† ∈ S, then B does the following: For each
index i′ ∈ S \ {i†}, it increments ` and sets H(i′, C, S,m[S]) ← h`. Finally,
it increments ` and sets H(i†, C, S,m[S])← h`. Note that B programs H on
|S| inputs at once for such hash queries and that H(i†, C, S,m[S]) is set after
all other inputs for indices i′ ∈ S \ {i†}. Then, B returns the corresponding
value of H(i, C, S,m[S]) to A.

- Else, B increments ` and returns h` as the value for H(i, C, S,m[S]).

Since A makes at most qH and B sets at most n hash values at each query, at
most Q = n · qH values are set in the process.

16

With probability ε := Pr[¬Bind], A outputs

(C, S0, S1,m0[S0],m1[S1], π0, π1)

such that

e(C,
∏
i∈S0

ĝ
t
(0)
i
n+1−i) = e(π0, ĝ) · e(g1, ĝn)

∑
i∈S0

m0[i]·t(0)i (5)

e(C,
∏
i∈S1

ĝ
t
(1)
i
n+1−i) = e(π1, ĝ) · e(g1, ĝn)

∑
i∈S1

m1[i]·t(1)i (6)

where t
(b)
i = H(i, C, Sb,mb[Sb]) for each i ∈ Sb and b ∈ {0, 1}. Then, B de-

termines the smallest i? ∈ S0 ∩ S1 such that m0[i?] 6= m1[i?]. If i? 6= i†, it
aborts and outputs (∅, ∅). Otherwise, if i? = i† (which is the case with prob-
ability 1/n since i† is drawn uniformly and independently of A’s view), let
`0 ∈ [Q] be the index of the random oracle query H(i?, C, S0,m0[S0]) and
let `1 ∈ [Q] be the index of the random oracle query H(i?, C, S1,m1[S1]). Let
h`0 , h`1 ∈ Zp be the corresponding responses. Note that, due to the way B sets
the responses to random oracle queries, any value H(i, C, Sb,mb[Sb]) for an in-
dex i ∈ Sb \ {i?} is set before H(i?, C, Sb,mb[Sb]) = h`b , for b ∈ {0, 1}. Finally,
B outputs (L = {`0, `1}, {out`0 , out`1}), where

out`0 = out`1 = (C, S0, S1,m0[S0],m1[S1], π0, π1, h`0 , h`1) (7)

Note that B outputs a-non empty subset L = {`0, `1} successfully with proba-
bility at least ε/n.

Now, we describe a reduction C that solves an n-DHE instance(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
using A. Algorithm C runs the game GB,π de-

fined in Figure 1, where π is the given n-DHE instance, and B is the algo-
rithm that uses the adversary A as described above. If the game outputs 0,
then C aborts. By Lemma 1, with probability at least (ε/n)/8, GB,π outputs
(L = {`0, `1}, {out`0 , out`1}, {out′`0 , out

′
`1
}) after having forked twice. Then, C

parses out`0 and out`1 as in (7) and obtains C and (Sb,mb[Sb], πb) for b ∈ {0, 1}
satisfying equations (5)-(6). It also parses out′`0 and out′`1 as described hereunder
and performs the following computations:

• For the first forking, it parses

out′`0 = (C, S0, S
′
1,m0[S0],m′1[S′1], π′0, π

′
1, h
′
`0 , h

′
`1),

where Verify outputs 1 on both (C, S0,m0[S0], π′0), and (C, S′1,m
′
1[S′1], π′1).

Note that (S′1,m
′
1[S′1]) may differ from their counterparts (S1,m1[S1]) of the

first execution but it does not matter. What matters is that the second run
involves the same (S0,m0[S0]) as in the first execution and the hash query

17

H(i?, C, S0,m0[S0]) is also the `0-th hash query in the second execution,
where it obtains a different response h′`0 . This holds since the forking occurs
at the `0-th oracle query and the executions are identical up to that point.
Hence, the `0-th query is indeed issued on the input (i?, C, S0,m0[S0]) during
the forking. Now, since the index i? ∈ S0 ∩ S1 determined in the first run
belongs to S0, we know that

t
(0)
i? = H(i?, C, S0,m0[S0]) = h′`0 6= h`0 ,

but other hash values of the form H(i, C, S0,m0[S0]) for i 6= i? are the same
as in the initial execution because B assigned the values ofH(i, C, S0,m0[S0])
for i 6= i? before the forking point. Let us now consider the proofs π0, π

′
0

obtained in the first run of B and the first forking, respectively. By dividing
out the equations (5) of both runs, we have

e(C, ĝ
∆t

(0)

i?

n+1−i?) = e(π0/π
′
0, ĝ) · e(g1, ĝn)m0[i

?]·∆t(0)
i? , (8)

where ∆t
(0)
i? , h`0 − h′`0 6= 0.

• For the second forking, the reduction C parses out′`1 as

out′`1 = (C, S′′0 , S1,m
′′
0 [S′′0],m1[S1], π′′0 , π

′′
1 , h
′′
`0 , h

′′
`1).

Here, (S′′0 ,m
′′
0 [S′′0]) may differ from the pair (S0,m0[S0]) extracted from

out`1 at the very first execution, but it does not matter. The forking point
being the `1-th hash query, we know that the first and third executions are
identical up to that point. Consequently, the `1-th query is issued on the
input (i?, C, S1,m1[S1]) in this forking, where it obtains a different response
h′′`1 than in the very first run. With non-negligible probability, Lemma 1
ensures that B’s output in this forking involves the same (S1,m1[S1]) as in
the first run and the hash query H(i?, C, S1,m1[S1]) is also the `1-th hash
query. Since i? ∈ S1, we can repeat the same arguments as in the first fork
and, by dividing out the verification equations (6) of the first and third runs,
B obtains

e(C, ĝ
∆t

(1)

i?

n+1−i?) = e(π1/π
′′
1 , ĝ) · e(g1, ĝn)m1[i

?]·∆t(1)
i? , (9)

where ∆t
(1)
i? , h`1 − h′′`1 6= 0.

Then, raising both members of (9) to the power ω , ∆t
(0)
i? /∆t

(1)
i? yields

e(C, ĝ
∆t

(0)

i?

n+1−i?) = e((π1/π
′′
1)ω, ĝ) · e(g1, ĝn)m1[i

?]·∆t(0)
i? . (10)

If we now use the hypothesis that m0[i?] 6= m1[i?], the combination of (10) and
(8) implies

e(π0/π
′
0, ĝ) · e(g1, ĝn)m0[i

?]·∆t(0)
i? = e((π1/π

′′
1)ω, ĝ) · e(g1, ĝn)m1[i

?]·∆t(0)
i? .

18

Now, since e(g1, ĝn) = e(gn+1, ĝ), we have:

e(gn+1, ĝ)∆t
(0)

i?
·(m0[i

?]−m1[i
?]) = e((π1/π

′′
1)ω, ĝ)/e(π0/π

′
0, ĝ),

which then allows B to compute the sought-after n-DHE solution, by looking
only at the G-components, as

gn+1 ,

(
(π1/π

′′
1)ω

π0/π′0

)1
/(

∆t
(0)

i?
·(m0[i

?]−m1[i
?])
)
. (11)

By Lemma 1, with probability at least (ε/n)/8, the reduction C succeeds in
solving the n-DHE problem. ut

4 The Case of Cross-Commitment Aggregation

LetH ′ : {0, 1}∗ → Zp be a hash function modeled as a random oracle. Algorithms
AggregateAcross and VerifyAcross are as follows:

AggregateAcrosspp({C(j), S(j),m(j)[S(j)], πj}j∈[d]): Given a collection of

({C(j), S(j),m(j)[S(j)], πj}j∈[d]), where each πj is the same-commitment-

aggregated proof of C(j) with respect to the sub-vector of message m(j)

limited to indices in S(j), compute and output

π =

d∏
j=1

(πj)
t′j ,

where t′j = H ′(j, {C(j), S(j),m(j)[S(j)]}j∈[d]).

VerifyAcross(π, {C(j), S(j),m(j)[S(j)], πj}j∈[d]): Given π ∈ G, return 1 if

C(j) ∈ G for all j ∈ [d], and

d∏
j=1

e

C(j),
∏
i∈S(j)

ĝ
tj,i
n+1−i

t′j

= e(π, ĝ) · e (g1, ĝn)

∑
j∈[d],i∈S(j)

m(j)[i]·tj,i·t′j

where

tj,i = H(i, C(j), S(j),m(j)[S(j)]), t′j = H ′(j, {C(j), S(j),m(j)[S(j)]}j∈[d]).

We now prove the cross-commitment binding property under the n-DHE
assumption in the ROM, without restricting ourselves to algebraic adversaries.

Here, we rely on the Local Forking Lemma instead of the Generalized Forking
Lemma. The reason is that the proof of Theorem 2 proceeds with a reduction
from the same-commitment case. In the process, it has to fork on the hash
function H ′. For this purpose, if we were to use the Generalized Forking Lemma
as in the proof of Theorem 1, we would have no way to guess which hash query
should be defined after other hash queries involving related inputs. Therefore
we need the Local Forking Lemma to force all but one of the cross-commitment
aggregation coefficients {t′j}j∈[d] to be identical in two adversarial runs.

19

Theorem 2. The above cross-commitment scheme is binding in the random
oracle model assuming the hardness of the n-DHE problem.

Proof. For the sake of contradiction, let us assume that an adversary A has
non-negligible probability ε of contradicting the binding property of the cross-
commitment aggregation in PointProofs. Namely, with probability ε, A can gen-
erate two tuples(

π0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0]

)
,

(
π1, {C(j)

1 , S
(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1]

)
,

such that VerifyAcross accepts (πb, {C(j)
b , S

(j)
b ,m

(j)
b [S

(j)
b]}j∈[db]) for each value of

b ∈ {0, 1}, and there exist indices j0 ∈ [d0] and j1 ∈ [d1] for which C
(j0)
0 = C

(j1)
1

and m
(j0)
0 [i] 6= m

(j1)
1 [i], for some i ∈ S(j0)

0 ∩ S(j1)
1 . In the random oracle model,

we give a reduction B that uses A to break the binding property of the same-
commitment aggregation of PointProofs.

B receives public parameters pp =
(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
from its

own challenger in the same-commitment aggregation game and runs A on pp.
Note that B, which is attacking the binding property of the same-commitment
aggregation of PointProofs, has oracle access to H, but A has also oracle access
to H ′. Algorithm B responds to A’s oracle queries to H by redirecting the query
to H (so, it does not simulate H itself for A). It responds to A’s queries to the
second random oracle H ′ in the following way. In a first execution, it answers
H ′-queries with values h1, h2, . . . , hQ ∈ Zp, where Q denotes the total number of
queries made by A to H ′. We assume w.l.o.g. that all these queries are distinct.
With probability ε, A outputs(

π0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0]

)
,

(
π1, {C(j)

1 , S
(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1]

)
,

such that the aggregated verification algorithm returns 1 running on both tuples.
Namely,

d0∏
j=1

e

C(j)
0 ,

∏
i∈S(j)

0

ĝ
t
(0)
j,i

n+1−i

t
′(0)
j

= e(π0, ĝ) · e (g1, ĝn)

∑
j∈[d0],i∈S(j)

0

m
(j)
0 [i]·t(0)j,i ·t

′(0)
j

(12)

d1∏
j=1

e

C(j)
1 ,

∏
i∈S(j)

1

ĝ
t
(1)
j,i

n+1−i

t
′(1)
j

= e(π1, ĝ) · e (g1, ĝn)

∑
j∈[d1],i∈S(j)

1

m
(j)
1 [i]·t(1)j,i ·t

′(1)
j

(13)

where t
(b)
j,i = H(i, C

(j)
b , S

(j)
b ,m

(j)
b [S

(j)
b]), for each j ∈ [db], i ∈ S(j)

b , and b ∈ {0, 1},
and t

′(b)

j = H ′(j, {C(j)
b , S

(j)
b ,m

(j)
b [S

(j)
b]}j∈[db]), for each j ∈ [db] and b ∈ {0, 1}.

20

Then, B determines the two indices j0 ∈ [d0], j1 ∈ [d1], for which the binding

property is contradicted, i.e., C
(j0)
0 = C

(j1)
1 , and m

(j0)
0 [i] 6= m

(j1)
1 [i], for some

i ∈ S(j0)
0 ∩ S(j1)

1 . Let `b ∈ [Q] be the index of the query

H ′(jb, {C(j)
b , S

(j)
b ,m

(j)
b [S

(j)
b]}j∈[db]),

for b ∈ {0, 1}. Let h`0 , h`1 ∈ Zp be the corresponding responses.

The reduction B then locally forks the adversary twice. It first runs A a
second time with the same random tape and answers all random oracle queries
using the outputs h1, . . . , h`0−1, h

′
`0
, h`0+1, . . . , hQ ∈ Zp, where h′`0

R← Zp is
chosen afresh and all other outputs h` for ` 6= `0 are identical to those of the first
execution. The Local Forking Lemma (Lemma 2) ensures that with probability
at least equal to 1/Q · ε2, A’s second run outputs

(
π′0, {C

(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0], π

′
1, {C ′1

(j)
, S′1

(j)
,m′1

(j)
[S′1

(j)
]}j∈[d′1]

)
.

Note that the second collection {C ′1
(j)
, S′1

(j)
,m′1

(j)
[S′1

(j)
]}j∈[d′1] might be dif-

ferent from its counterpart {C(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1] of the first run, but what

matters is that this run involves the same collection {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0]

as the first execution ofA and the hash queryH ′(j0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0])

is also the `0-th query issued by A where it receives a different response h′`0 . Since
j0 ∈ d0, we know that

t
′(0)

j0 = H ′(j0, {C(j)
0 , S

(j)
0 ,m

(j)
0 [S

(j)
0]}j∈[d0]) = h`0 6= h′`0 ,

but other hash values t
′(0)

j for j ∈ [d0] \ {j0} are the same as in the initial
execution because of the local forking. If we now consider the two proofs π0, π′0
obtained in the two runs, by dividing out the equations (12) of both runs, we
have

e

C(j0)
0 ,

∏
i∈S(j0)

0

ĝ
t
(0)
j0,i

n+1−i?

∆t
′(0)
j0

= e(π0/π
′
0, ĝ) · e(g1, ĝn)

∑
i∈S(j0)

0

m
(j0)
0 [i]·t(0)j0,i·∆t

′(0)
j0

(14)

where ∆t
′(0)

j0
= h`0 − h′`0 6= 0. Raising both sides of equation (14) to the power

ω0 , 1/(∆t
′(0)

j0
) yields

e

C(j0)
0 ,

∏
i∈S(j0)

0

ĝ
t
(0)
j0,i

n+1−i?

 = e((π0/π
′
0)ω0 , ĝ) · e(g1, ĝn)

∑
i∈S(j0)

0

m
(j0)
0 [i]·t(0)j0,i

(15)

21

Then, B locally forks A a second time on the hash query

H ′(j1, {C(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1]), which was the `1-th H ′-query in the first

execution. Namely, it runs A a second time with the same random tape as in the
first run and now answers A’s random oracle queries to H ′ using the outputs
h1, . . . , h`1−1, h

′′
`1
, h`1+1, . . . , hQ ∈ Zp, where h′′`1

R← Zp is freshly sampled and
all other outputs h` for ` 6= `1 are the same as in the first execution. By the
Local Forking Lemma, with probability at least equal to 1/Q · ε2, A’s third run
outputs(

π′′0 , {C ′′0
(j)
, S′′0

(j)
,m′′0

(j)
[S′′0

(j)
]}j∈[d′′0], π

′′
1 , {C

(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1]

)
.

Again, the collection {C ′′0
(j)
, S′′0

(j)
,m′′0

(j)
[S′′0

(j)
]}j∈[d′′0] might differ from its coun-

terpart {C0
(j), S0

(j),m0
(j)[S0

(j)]}j∈[d0] of the first execution of A, yet, this run

involves the same collection {C(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1] as in the first run and

the hash query H ′(j1, {C(j)
1 , S

(j)
1 ,m

(j)
1 [S

(j)
1]}j∈[d1]) is also the `1-th query to H ′

where A receives a different response h′′`1 . Since j1 ∈ d1, we can repeat the same
arguments as in the first fork and, by dividing out the verification equations (13),
B obtains

e

C(j1)
1 ,

∏
i∈S(j1)

1

ĝ
t
(1)
j1,i

n+1−i?

∆t
′(1)
j1

= e(π1/π
′′
1 , ĝ) · e(g1, ĝn)

∑
i∈S(j1)

1

m
(j1)
1 [i]·t(0)j1,i·∆t

′(1)
j1

(16)

where ∆t
′(1)

j1
= h`1 − h′′`1 6= 0. Again, by raising both members of equation (14)

to the power ω1 , 1/(∆t
′(1)

j1
) we have

e

C(j1)
1 ,

∏
i∈S(j1)

1

ĝ
t
(1)
j1,i

n+1−i?

 = e((π1/π
′′
1)ω1 , ĝ) · e(g1, ĝn)

∑
i∈S(j1)

1

m
(j1)
1 [i]·t(0)j1,i

(17)

Finally, B outputs the tuple(
C, S

(j0)
0 , S

(j1)
1 ,m

(j0)
0 [S

(j0)
0],m

(j1)
1 [S

(j1)
1], (π0/π

′
0)ω0 , (π1/π

′′
1)ω1

)
,

where C = C
(j0)
0 = C

(j1)
1 . Regarding equations (15) and (17), Verify accepts both(

(π0/π
′
0)ω0 , C, S

(j0)
0 ,m

(j0)
0 [S

(j0)
0]

)
,

(
(π1/π

′′
1)ω1 , C, S

(j1)
1 ,m

(j1)
1 [S

(j1)
1]

)
,

and there exists an index i ∈ S(j0)
0 ∩ S(j1)

1 for which m
(j0)
0 [i] 6= m

(j1)
1 [i]. With

non-negligible probability (1/Q · ε2)2, B thus breaks the binding property of the

22

same-commitment aggregation construction from Section 3, which contradicts
the statement of Theorem 1. ut

Acknowledgements. The second and third authors were supported by the
French ANR RAGE project (ANR-20-CE48-0011) and the PEPR Cyber France
2030 programme (ANR-22-PECY-0003).

References

1. A. Bagherzandi, J.-H. Cheon, S. Jarecki. Multisignatures Secure under the Discrete
Logarithm Assumption and a Generalized Forking Lemma. In ACM-CCS, 2008.

2. M. Bellare, W. Dai, L. Li. The Local Forking Lemma and its Application to
Deterministic Encryption. In Asiacrypt 2019.

3. D. Boneh, B. Bünz, B. Fisch. Batching Techniques for Accumulators with Appli-
cations to IOPs and Stateless Blockchains. In Crypto, 2019.

4. D. Boneh, X. Boyen, E.-J. Goh. Hierarchical Identity-Based encryption with Con-
stant Size Ciphertext. In Eurocrypt’05, LNCS 3494, pp. 440–456, 2005.

5. D. Boneh, J. Drake, B. Fisch, A. Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive Report
2020/81.

6. D. Boneh, J. Drake, B. Fisch, A. Gabizon. Halo Infinite: Proof-Carrying Data from
Additive Polynomial Commitments. In CRYPTO’21, LNCS 12825, pp. 649–680,
2021.

7. D. Boneh, M. Drijvers, G. Neven. Compact Multi-Signatures for Smaller
Blockchains. In Asiacrypt, 2018.

8. D. Boneh, C. Gentry, B. Waters. Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In Crypto’05, LNCS 3621, pp. 258–275, 2005.

9. J. Camenisch, M. Dubovitskaya, K. Haralambiev, M. Kohlweiss. Composable &
Modular Anonymous Credentials: Definitions and Practical Constructions. In Asi-
acrypt, 2015.

10. M. Campanelli, D. Fiore, N. Greco, D. Kolonelos, L. Nizzardo. Incrementally
Aggregatable Vector Commitments and Applications to Verifiable Decentralized
Storage. In Asiacrypt, 2020.

11. D. Catalano, D. Fiore, M. Messina. Zero-Knowledge Sets with Short Proofs. In
Eurocrypt, 2008.

12. D. Catalano, D. Fiore. Vector commitments and their applications. In PKC, 2013.
13. A. Chepurnoy, C. Papamanthou, S. Srinivasan, Y. Zhang. Edrax: A Cryptocur-

rency with Stateless Transaction Validation. Cryptology ePrint Archive Report
2018/968.

14. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Crypto, 1086.

15. G. Fuchsbauer, E. Kiltz, J. Loss. The Algebraic Group Model and its Applications.
In Crypto, 2018.

16. S. Gorbunov, L. Reyzin, H. Wee, Z. Zhang. PointProofs: Aggregating Proofs for
Multiple Vector Commitments In ACM-CCS 2020.

17. A. Kate, G. Zaverucha, I. Goldberg. Constant-Size Commitments to Polynomials
and Applications. In Asiacrypt, 2010.

18. J. Krupp, D. Schröder, M. Simkin, D. Fiore, G. Ateniese, S. Nürnberger. Nearly
Optimal Verifiable Data Streaming. In PKC, 2016.

23

19. R.-F. Lai, G. Malavolta. Subvector Commitments with Application to Succinct
Arguments. In Crypto 2019.

20. D. Leung, Y. Gilad, S. Gorbunov, L. Reyzin, N. Zeldovich. Aardvark: A Concurrent
Authenticated Dictionary with Short Proofs. Cryptology ePrint Archive Report
2020/975, 2020.

21. B. Libert, S. Ramanna, M. Yung. Functional Commitment Schemes: From Poly-
nomial Commitments to Pairing-Based Accumulators from Simple Assumptions. .
In ICALP 2016.

22. B. Libert, M. Yung. Concise Mercurial Vector Commitments and Independent
Zero-Knowledge Sets with Short Proofs. In TCC 2010.

23. R. Merkle. A Certified Digital Signature. In Crypto’89, 1989.
24. S. Micali, M.-O. Rabin, J. Kilian. Zero-Knowledge Sets. In FOCS, 2003.
25. S. Micali, L. Reyzin, G. Vlachos, R. Wahby, N. Zeldovich. Compact Certificates

of Collective Knowledge. In IEEE S & P, 2021.
26. M. Naor. On Cryptographic Assumptions and Challenges. In Crypto, 2003.
27. T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret

Sharing. In Crypto, 1991.
28. C. Peikert, Z. Pepin, C. Sharp. Vector and Functional Commitments from Lattices.

In TCC, 2021.
29. D. Pointcheval, J. Stern. Security Arguments for Signature Schemes. In J. of

Cryptology, 2000.
30. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In

Eurocrypt, 1997.
31. S. Srinivasan, A. Chepurnoy, C. Papamanthou, A. Tomescu, Y. Zhang. Hyper-

proofs: Aggregating and Maintaining Proofs in Vector Commitments. In USENIX
Security, 2022.

32. A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, D. Khovratovich. Aggre-
gatable Subvector Commitments for Stateless Cryptocurrencies. In SCN, 2020.

33. A. Tomescu. How to compute all Pointproofs. Cryptology ePrint Archive Report
2020/1516.

34. A. Tomescu, Y. Xia, Z. Newman. Authenticated Dictionaries with Cross-
Incremental Proof (Dis)aggregation. Cryptology ePrint Archive Report 2020/1239.

24

Supplementary Material

A Proof via Local Forking Lemma

In this section, in order to compare with the reduction obtained from the Gen-
eralized Forking Lemma, we prove the binding property of same-commitment
aggregation of PointProofs [16] in the random oracle model via Local Forking
Lemma [2].

A.1 The Case of Same-Commitment Aggregation

Theorem 3. The vector commitment scheme described in Description 3 is bind-
ing in the random oracle model if the n-DHE assumption holds.

Proof. Suppose there exists an adversary A, that with a non-negligible proba-
bility ε generates a commitment C as well as two sets S0, S1 ⊂ [n], such that

S0∩S1 6= ∅, together with convincing proofs π0, π1 for sub-vectors m0[S0] ∈ Z|S0|
p ,

m1[S1] ∈ Z|S1|
p such that m0[i] 6= m1[i] for some i ∈ S0 ∩ S1. We build an algo-

rithm B in the random oracle model that uses A to solve the n-DHE problem.
B first runs A on input of an n-DHE instance

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
set as the public parameters pp of the vector commitment scheme. In a first ex-
ecution, it answers random oracle queries with values h1, . . . , hQ ∈ Zp, where Q
denotes the total number of H-queries made by A. We assume w.l.o.g. that all
random oracle queries are distinct. With probability ε, A outputs a tuple

(C, S0, S1,m0[S0],m1[S1], π0, π1)

such that

e(C,
∏
i∈S0

ĝ
t
(0)
i
n+1−i) = e(π0, ĝ) · e(g1, ĝn)

∑
i∈S0

m0[i]·t(0)i (18)

e(C,
∏
i∈S1

ĝ
t
(1)
i
n+1−i) = e(π1, ĝ) · e(g1, ĝn)

∑
i∈S1

m1[i]·t(1)i (19)

where t
(b)
i = H(i, C, Sb,mb[Sb]) for each i ∈ Sb and b ∈ {0, 1}. Then, algorithm

B determines the smallest i? ∈ S0 ∩ S1 such that m0[i?] 6= m1[i?]. Let `0 ∈ [Q]
be the index of the random oracle query H(i?, C, S0,m0[S0]) and let `1 ∈ [Q] be
the index of the random oracle query H(i?, C, S1,m1[S1]). Let h`0 , h`1 ∈ Zp be
the corresponding responses.

The reduction then locally forks the adversary twice. It first runs A a second
time with the same random tape and answers all random oracle queries using the
outputs h1, . . . , h`0−1, h

′
`0
, h`0+1, . . . , hQ ∈ Zp, where h′`0

R← Zp is chosen afresh
and all other outputs h` for ` 6= `0 are identical to those of the first execution. The

25

Local Forking Lemma (Lemma 2) ensures that with probability at least equal
to 1/Q · ε2, A’s second run outputs (C, S0, S

′
1,m0[S0],m′1[S′1], π′0, π

′
1). Note that

(S′1,m
′
1[S′1]) may differ from their counterparts (S1,m1[S1]) of the first execution

but this run involves the same (S0,m0[S0]) as in the first execution and the hash
query H(i?, C, S0,m0[S0]) is also the `0-th hash query in this execution, where
A receives a different response h′`0 . Since i? ∈ S0, we know that

t
(0)
i? = H(i?, C, S0,m0[S0]) = h`0 6= h′`0

with overwhelming probability 1−1/p, but other hash values t
(0)
i for i ∈ S0\{i?}

are the same as in the initial execution because of the local forking. If we now
consider the two proofs π0, π

′
0 obtained in the two runs, by dividing out the

equations (18) of both runs, we have

e(C, ĝ
∆t

(0)

i?

n+1−i?) = e(π0/π
′
0, ĝ) · e(g1, ĝn)m0[i

?]·∆t(0)
i? , (20)

where ∆t
(0)
i? , h`0 − h′`0 6= 0 except with probability 1/p.

Then, B locally forks A a second time on the hash query H(i?, C, S1,m1[S1]),
which was the `1-th hash query in the first execution. Namely, it runs A a sec-
ond time with the same random tape as in the first run and now answers all
random oracle queries using the outputs h1, . . . , h`1−1, h

′′
`1
, h`1+1, . . . , hQ ∈ Zp,

where h′′`1
R← Zp is freshly sampled and all other outputs h` for ` 6= `1 are

the same as in the first execution. Here again, regarding the Local Forking
Lemma, with probability at least equal to 1/Q · ε2, A’s third run outputs
(C, S′′0 , S1,m

′′
0 [S′′0],m1[S1], π′′0 , π

′′
1). Note that (S′′0 ,m

′′
0 [S′′0]) may differ from the

pair (S0,m0[S0]) of the first execution but this run involves the same (S1,m1[S1])
as in the first execution of A and the hash query H(i?, C, S1,m1[S1]) is also the
`1-th query in the this run, where A receives a different response h′′`1 . Since
i? ∈ S1, we can repeat the same arguments as in the first fork and, by dividing
out the verification equations (19) of the first and third runs, B obtains

e(C, ĝ
∆t

(1)

i?

n+1−i?) = e(π1/π
′′
1 , ĝ) · e(g1, ĝn)m1[i

?]·∆t(1)
i? , (21)

where ∆t
(1)
i? , h`1 − h′′`1 6= 0 except with probability 1/p. Then, raising both

sides of (21) to the power ω , ∆t
(0)
i? /∆t

(1)
i? yields

e(C, ĝ
∆t

(0)

i?

n+1−i?) = e((π1/π
′′
1)ω, ĝ) · e(g1, ĝn)m1[i

?]·∆t(0)
i? . (22)

If we now use the hypothesis that mi? 6= m′i? , the combination of (22) and (8)
implies

e(π0/π
′
0, ĝ) · e(g1, ĝn)m0[i

?]·∆t(0)
i? = e((π1/π

′′
1)ω, ĝ) · e(g1, ĝn)m1[i

?]·∆t(0)
i? ,

which allows B to compute and output

gn+1 ,

(
(π1/π

′′
1)ω

π0/π′0

)1
/(

∆t
(0)

i?
· (m0[i

?]−m1[i
?])
)
. (23)

26

Thus, with probability at least equal to
(
(1/Q) · ε2

)2
, the reduction B succeeds

in solving the n-DHE problem. ut

A.2 Local vs Generalized Forking Lemma

We provided two proofs for the binding property of same-commitment aggrega-
tion of the vector commitment scheme proposed in [16] as PointProofs. In one
technique, we used the Generalized Forking Lemma (Lemma 1) to prove the
binding property (Theorem 1), and in the other technique, we used the Local
Forking Lemma (Lemma 2) to prove the same (Theorem 3). Here, we compare
the two techniques in terms of the advantage/run-time ratio of the reduction in
each case.

Let ε, t be respectively the winning probability and run-time of A which is the
adversary of PointProofs’ binding property. Furthermore, let q be the number of
oracle queries that A issues to H. We denote by m the number of forkings (i.e.
the number of times an n-DHE adversary re-runs A) which is equal to 2 in both
of our proofs. The advantage/run-time ratio in each case is as follows:

• Using Local Forking Lemma

Adv

t
=

(1/q · ε2)m

t
=

ε4

t · q2

• Using Generalized Forking Lemma

Adv

t
=

ε/8

t · 8 ·m2 · q · 1/ε · ln(8m/ε)
=

ε2

t · 256 · q · ln(16/ε)
,

Since we can consider ε ≥ 1/2, we have ln(16/ε) = ln(16)− ln(ε) ≤ ln(16)−
ln(1/2) ≈ 3.4. So, for the Generalized Forking Lemma case, we have

Adv

t
≥ ε2

t · 256 · q · 3.4
≥ ε2

870 · t · q

Since q, the number of oracle queries, can be potentially very large, using
Generalized Forking Lemma seems to give a tighter reduction in the case of
PointProofs.

27

	PointProofs, Revisited

