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A NEW CLASS OF CRITICAL SOLUTIONS FOR 1D CUBIC NLS

ANATOLE GUÉRIN

Abstract. The aim of this article is to prove the existence of a new class of solutions of
1D cubic NLS with an initial data related to a sum of Dirac masses, of critical regularity
F(L∞), and belonging to Ḣs for any s < − 1

2
. This problem is motivated by the lack

of result for critical regularity initial condition, and also by the study of the vortex
filaments dynamics approximated by the binormal flow. Our result is based on a scattering
approach, after performing a pseudo-conformal transformation, and on fine estimations
of oscillatory integrals.

1. Introduction

1.1. The cubic NLS on R.
The starting point of this article is the cubic nonlinear Schrödinger equation on R:

(NLS) i∂tu+ ∂2
xu± |u|2u = 0.

This equation has been largely studied from theoretical and applied points of view, and
appears in several areas of physics such as optics and plasma.

In the following, all the results will be valid for both focussing and defocussing cases.
For simplicity we shall consider the focussing case.

Let us first recall the local well-posedness results in Sobolev spaces. It has been proven
in [12] and [8] that the equation is well-posed in Hs for any s ≥ 0. However, it is no longer
the case when s < 0. For exemple, in [9] a norm inflation phenomena is pointed out.

Then, the critical Sobolev space associated with the scaling invariance uλ(t, x) :=

λu(λ2t, λx) is Ḣ−
1
2 . For s ≤ −1

2 , it has been proven in [7] and [18] that norm infla-
tion happens along with a loss of regularity, and in [21] that we have in fact a norm
inflating phenomena around any data. For −1

2 < s < 0, the control of Sobolev norms
of Schwartz solutions on the torus and the line is proven in [17] and [19]. More recently,
global well-posedness has been proven in [14] for any s > −1

2 .
On the other hand, the critical Fourier-Lebesgue space associated to this equation is

F(L∞), i.e. Fourier transform in L∞. The well-posedness has been proven for initial data
with Fourier transform in Lp for p < +∞ in [22],[13] and [10].

One would like to consider the initial value problem with data a sum of Dirac masses.

Unfortunately, Dirac masses are in F(L∞) and borderline in Ḣ−
1
2 , and the problem is

ill-posed for data u0 = αδ0. Indeed, in [16] the authors proved, using Galilean invariance,

Date: December 12, 2022.

1



2 A. GUÉRIN

that there is either no weak solution or more than one to that Cauchy problem. More
precisely, supposing uniqueness, the solution for t > 0 of (NLS) is:

(1) uα(t, x) = αe−iα
2 ln t ei

x2

4t

√
t
,

but does not converges towards u0 as t goes to zero.
However, this issue can be bypassed by a change of phase, which shows that

ψα(t, x) = α
ei

x2

4t

√
t

is the solution of the renormalized equation (10) with initial condition αδ0. As a mater
of fact, similar problems have also been treated using renormalisation in context of Gibbs
measures, such as in [20] or [6]. Once this obstruction has been identified, Banica and Vega
constructed in [1] and [2] solutions of (NLS) that are smoother perturbations of uα.

Now, we shall recall the results related to a sum of several Dirac masses. Let q > 1
2 , let

(αj)j∈Z ∈ l2,q(C) 1, and set:

(2) M =
∑
j∈Z
|αj |2.

It has been proven in Theorem 1.3 of [5] that there exists T > 0 and a unique solution of
(NLS) on (0, T ] of the form

(3) u{αj}(t, x) = e−2iM ln t
∑
j∈Z

Aj(t)
ei

(x−j)2

4t

√
t

,

where

Aj(t) = e−i|αj |2 ln t(αj +Rj(t)),

with (Rj)j∈Z a family of functions such that for any 0 < γ < 1:

(4) sup
0<τ<T

τ−γ‖Rj(τ)‖l2,q < C(T, ‖αj‖l2,q).

In this article, we construct much more solutions of (NLS) as large perturbations of the
particular one given by (3). The theorem involves the pseudo-conformal transformation
given by:

T (f)(t, x) =
ei

x2

4t

√
t
f

(
1

t
,
x

t

)
,

and the pseudo-conformal operator:

(5) J(f)(t, x) =
(x

2
+ it∇

)
f(t, x).

1we define the space l2,q with ‖αj‖2l2,q =
∑
j∈Z

(1 + |j|)2q|αj |2.
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Theorem 1.1. Let s ∈ N∗, (αj) ∈ l2,q with q − s > 1
2 , u+ ∈ Hs ∩ Ḣ−2 ∩W 1,s such that

(6) ∀p ∈ Z ∀k ≤ s û+(·)
·+ p/2

∈ Hk(R).

Let
u1(t, x) = u{αj} + e−2iM ln tû+

(
−x

2

)
.

Then, if ‖αj‖l2,q is small enough, there exists T1 < T and u a unique solution of (NLS)
on (0, T1], such that:

u− u{αj} − e
−2iM ln tT

(
eit∂

2
xu+(x)

)
∈ C((0, T1], L2(R)),

with:
(7)

∀k ∈ J0, sK,
∥∥∥(−i)kJk

[
u(t, x)− u{αj}(t, x)

]
− e−2iM ln tT

(
eit∂

2
x∇ku+(x)

)∥∥∥
L2

= O(t
1
2

−
).

Moreover, if ∇ku+ ∈ (x4L2) for all k ∈ J0, sK, then:

u− u1 ∈ C((0, T1], L2(R)),

with:

(8) ∀k ∈ J0, sK,
∥∥∥∥Jk [u(t, x)− u{αj}(t, x)

]
− e−2iM ln t

(x
2

)k
û+

(
−x

2

)∥∥∥∥
L2

= O(t
1
2

−
).

In particular, for k = 0 we have:

(9) ‖u− u1‖L2 = O(t
1
2

−
).

The condition (6) is not very restrictive and is only about û+ being small enough at
equidistant points. The fact that those points are in Z/2 is not surprising since bounds in
terms of 1/d(x,Z/2) already appear in proofs of [5].

The proof of Theorem 1.1 starts by performing, as in [5], a change a phase

ψ(t, x) = ei2M ln tu(t, x),

leading to the Wick renormalisation of equation (NLS):

(10) i∂tψ + ∂2
xψ + (|ψ|2 − 2M

t
)ψ = 0.

Then we perform a pseudo-conformal transformation:

(11) ψ(t, x) = T (v)(t, x) =
ei

x2

4t

√
t
v

(
1

t
,
x

t

)
.

The equation (NLS) is then equivalent to

(12) i∂tv + ∂2
xv +

1

2t
(|v|2 − 2M)v = 0,

and Theorem 1.1 rephrases for (12) as following. Denoting

(13) v1(t, x) = T (e2iM ln tu{αj}) + eit∂
2
xu+(x) = A(t, x) + eit∂

2
xu+(x),
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where

(14) A(t, x) =
∑
j∈Z

e−i|αj |2 ln t(αj +Rj(
1

t
))e−i

tj2

4
+ixj

2 ,

we want to find t0 > 0 and v solution of (12) such that v − v1 ∈ C([T1,∞), Hs(R)), with a
decay given by

(15) ∀k ∈ J0, sK, ‖∇k(v − v1)(t)‖L2 = O(t−
1
2

−
).

This v will write

v(t) =
∑
j∈Z

e−i|αj |2 ln t(αj +Rj(
1

t
))e−i

tj2

4
+ixj

2 + eit∂
2
xu+(x) + r(t, x).

for some remainder term r of decay given by (15). Note that this will prove the decay (7),
but not (8) yet. This latter estimation is obtained by using Schrödinger linear evolution
properties, as explained in section 2.5.

Although a bit computational, the proof can now be sum up as a fixed point theorem
in an appropriate Sobolev space, using the Duhamel’s formula as the functional, as in [1].
The expansion of the cubic non linearity will provide several terms that we will group in

powers of eit∂
2
xu+. The smallness hypothesis on ‖αj‖l2,s comes from the linear term. The

term that will provide the weaker time decay is the quadratic one, with conjugated phases.
Finally, we perform the reverse pseudo conformal transformation in section 2.5 to conclude
with the proof.

Concerning the tools at our disposal, we will deal with oscillatory integrals, on which we
often perform integration by parts after a Fourier transform, that gives sharper estimates
than the use of Sobolev embeddings.

1.2. Link with vortex dynamics singularities.
In addition to the study of low regularity solutions of the 1-D cubic Schrödinger equation,
this article is also motivated by the study of dynamics of vortex filaments. More precisely,
we are referring to a model derived from Euler equations by Da Rios in 1906 in [11] called
the binormal flow:

(BF) χt = χx ∧ χxx,
where χ is an arc length parameterized curve in R3 and where the vortex is supposed to
be located near χ(t). For further informations and references about this equation, see for
instance the introduction of [5].

If T represents the tangent vector of a solution χ, then T solves the Schrödinger map
with values in S2:

(16) Tt = T ∧ Txx.
Moreover, Hasimoto constructed in [15] a correspondance between solutions of (NLS) and
solutions of (BF) using the Frenet frame, considering the curvature of χ(t, x) as the modulus
of the NLS-solution and the torsion as the derivative of its phase. This transformation
stands in the spirit of the Madelung transform.
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In [5], Banica and Vega showed that the solution (3) we are proving the stability depicts,
via the Hasimoto transform, the evolution of a polygonal line through the binormal flow. In
a few words, every Dirac mass correspond to the formation of a corner in χ(t) at arclength
parameter x = j ∈ Z, as the one developed by the self-similar solution of (BF) of curvature
αj√
t
. Hence, the odds are high that the class of solutions exhibited in Theorem 1.1 could

correspond to the evolution of a curve with several corners through binormal flow. With

the convergence rate of O(t
1
2
−) in Theorem 1.1, the method should be the same as for

the case of one corner done in [3] and [4]. However, this method is quite intricate, and
adding much more complicated terms when considering several Dirac masses makes this
task dense enough to be the object of a future work.

2. Scattering in Sobolev spaces : proof of Theorem 1.1

The proof follows the same path as the proof of Theorem 1.4 in [1] and is based on
a scattering argument. To do so, we introduce an appropriate functional φ on wich we
perform a fixed point argument. The analysis will be much more delicate here, due to
the increased complexity of the function A(t, x) defined by (14), (in [1], only one term is
considered).

2.1. Fixed point functional.
To say that v solution of (12) is close to v1 at infinity tends to consider the functional:

φ : v(t, x) 7→ v1(t, x) + i

∫ ∞
t

ei(t−τ)∂2x

(
−|v|

2 − 2M

2τ
v − (i∂t + ∂xx)v1

)
dτ.

Since A solves (12), we have

(i∂t + ∂xx)v1 = (i∂t + ∂xx)A+ (i∂t + ∂xx)eit∂
2
xu+ = −|A|

2 − 2M

2t
A.

We will control the non linear term in v by comparing it to the nonlinearity of v1:

φ(v)− v1 = +i

∫ ∞
t

ei(t−τ)∂2x

(
−|v|

2 − 2M

2τ
v +
|v1|2 − 2M

2τ
v1

−|v1|2 − 2M

2τ
v1 +

|A|2 − 2M

2τ
A

)
dτ.

We then develop the v1-cubic term:

(|v1|2 −M)v1 =((A+ eit∂
2
xu+)(A+ e−it∂

2
xu+)− 2M)(A+ eit∂

2
xu+)

=(|A|2 − 2M)A+ 2|A|2eit∂2xu+ − 2Meit∂
2
xu+ +A2e−it∂

2
xu+ + 2A|eit∂2xu+|2

+A(eit∂
2
xu+)2 + |eit∂2xu+|2eit∂

2
xu+,
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so we get

φ(v)− v1 = + i

∫ ∞
t

ei(t−τ)∂2x

(
−|v|

2 − 2M

2τ
v +
|v1|2 − 2M

2τ
v1

)
dτ

+i

∫ ∞
t

ei(t−τ)∂2x((−2|A|2eiτ∂2xu+ + 2Meiτ∂
2
xu+ −A2e−iτ∂

2
xu+ − 2A|eiτ∂2xu+|2

−Ae2iτ∂2xu2
+ − |eit∂

2
xu+|2eiτ∂

2
xu+)

1

τ
)dτ.

Finally, after expending |A|2, the functional φ writes

(φ(v)− v1)(t, x)(17)

= + i

∫ ∞
t

ei(t−τ)∂2x

(
(|v|2 − 2M)v

2τ
− (|v1|2 − 2M)v1

2τ

)
dτ(18)

− 2i

∫ ∞
t

ei(t−τ)∂2x
∑
p 6=j

e−i(|αp|2−|αj |2) ln τei(p−j)
x
2αpαje

i j
2−p2

4
τeiτ∂

2
xu+

dτ

τ
(19)

− 2i

∫ ∞
t

ei(t−τ)∂2x
∑

(p,j)∈Z2

e−i(|αp|2−|αj |2) ln τ+i(p−j)x
2(20)

× (αpRj +Rpαj +RpRj)e
i j

2−p2

4
τeiτ∂

2
xu+

dτ

τ
(21)

− i
∫ ∞
t

ei(t−τ)∂2xA2e−iτ∂
2
xu+

dτ

τ
(22)

− i
∫ ∞
t

ei(t−τ)∂2x(2A|eiτ∂2xu+|2 +A(eiτ∂
2
xu+)2)

dτ

τ
(23)

− i
∫ ∞
t

ei(t−τ)∂2x |eiτ∂2xu+|2eiτ∂
2
xu+

dτ

τ
(24)

=I(v) + Ja + Jb + Jc + Jd + Je,

where I(v) is the first term and the J∗ are the following source terms. Since we will treat
each integral’s norm independently, we won’t be regarding whether its sign is positive or
negative. We won’t either keep the − in the phase as it doesn’t affect the computation.

Thanks to their behavior, the Rj terms will be very easy to treat as well as Je where we
can largely exploit dispersion of the Schrödinger operator:

(25) ‖eit∂2xu+‖L∞x ≤
1√
t
‖u+‖L1 .

Then, the fact that there is a phase depending on j or p in some of these integrals will
produce a shift after an integration by parts and requires the hypothesis on û+/(·+ Z/2).

Finally, the limiting 1/t
1
2 decay comes from using dispersion estimates for Jd.

We want to apply the fixed point theorem on φ : Xδ → Xδ, where

Xδ = {v ∈ C([t0,∞), L∞(R))/‖v − v1‖S ≤ δ} ,
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with
‖f‖S =

∑
0≤k≤s

sup
t0≤t

tµ‖∇k(f)(t)‖L2

for µ and δ strictly positives, to be chosen later.
The first step is to verify that φ(Xδ) ⊂ Xδ.

2.2. Estimates on the fixed point argument terms.
In this subsection, we give estimations for each of the terms listed above.

Lemma 2.1 (Estimation of I(v)). Let I defined by (18):

I(v) = i

∫ ∞
t

ei(t−τ)∂2x

(
(|v|2 − 2M)v

2τ
− (|v1|2 − 2M)v1

2τ

)
dτ,

then,

‖I(v)‖S . 2‖v − v1‖S

(
‖αj‖2l2,q

µ
+
C(t0, ‖αj‖l2,s)
t2γ0 (µ+ 2γ)

+
‖u+‖2L1

t0(1 + µ)
+
‖v − v1‖2S

tµ0

)
.

Note that we don’t need any smallness hypothesis on u+ if we choose t0 large and ‖αj‖l2,q
small.

Proof. The idea of the proof is to first apply Strichartz inhomogeneous inequality with the
admissible couple (∞, 2) and then use dispersion inequality (25) and also (4) after usual
upper-bounds:

sup
t0≤t

tµ
∥∥∥∥∫ ∞

t
ei(t−τ)∂2x

(
(|v|2 − 2M)v

2τ
− (|v1|2 − 2M)v1

2τ

)
dτ

∥∥∥∥
L2

. sup
t0≤t

tµ
∫ ∞
t
‖|v|2v − |v1|2v1 − 2M(v − v1)‖L2

dτ

τ

. sup
t0≤t

tµ
∫ ∞
t

(2M + ‖v1‖2L∞ + ‖v‖2L∞)‖v − v1‖L2

dτ

τ

.‖v − v1‖S sup
t0≤t

tµ
∫ ∞
t0

(2M + ‖v1‖2L∞ + ‖v‖2L∞)
dτ

τ1+µ

.‖v − v1‖S
(

2M

µ
+ sup
t0≤t

tµ
∫ ∞
t

3‖v1‖2L∞ + 2‖v − v1‖2L∞
dτ

τ1+µ

)
.‖v − v1‖S

(
2M

µ
+

6‖αj‖2l2,q
µ

+
C(t0, ‖αj‖l2,s)
t2γ0 (µ+ 2γ)

+
6

1 + µ

‖u+‖2L1

t0
+ 2 sup

t0≤t
tµ
∫ ∞
t
‖v − v1‖2L∞

dτ

τ1+µ

)
.

Since q > 1
2 , we have also controlled in the last steps the l1 norm with the l2,s norm of

(αj)j∈Z, using Cauchy-Schwarz. Finally, we apply Gagliardo-Nirenberg’s interpolation

(26) |f |2 ≤ ‖f‖L2‖f ′‖L2

2Where . means ”≤ up to a constant”.
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on the last integral:

sup
t0≤t

tµ
∫ ∞
t
‖v − v1‖2L∞

dτ

τ1+µ
≤ sup
t0≤t

tµ
∫ ∞
t
‖v − v1‖L2‖∇(v − v1)‖L2

dτ

τ1+µ

=
‖v − v1‖2S

tµ0
,

to conclude that

‖I(v)‖S . ‖v − v1‖S

(
‖αj‖2l2,q

µ
+
C(t0, ‖αj‖l2,s)
t2γ0 (µ+ 2γ)

+
‖u+‖2L1

t0(1 + µ)
+
‖v − v1‖2S

tµ0

)
.

�

We now have to control the gradient of this integral with the following lemma.

Lemma 2.2 (Estimation of ∇kI(v)). Let I defined by (18):

I(v) = i

∫ ∞
t

ei(t−τ)∂2x

(
(|v|2 − 2M)v

2τ
− (|v1|2 − 2M)v1

2τ

)
dτ,

then, for k ∈ J1, sK:

sup
t0≤t

tµ‖∇kI(t)‖L2 . ‖v−v1‖S

(‖αj‖l2,q
µ

)2

+

(
C(t0, ‖αj‖l2,s)

(µ+ γ)tγ0

)2

+

(
‖u+‖W 1,s√
t0(1

2 + µ)

)2

+

(
δ

2µtµ0

)2
 .

Proof. To obtain this, we need the following computations.Using Gagliardo–Nirenberg in-
terpolation (26), we have for k ∈ J0, s− 1K:

(27) |∇k(v − v1)(t)| ≤ C‖∇k+1(v − v1)(t)‖
1
2

L2‖∇k(v − v1)(t)‖
1
2

L2 .
δ

tµ
.

Since ∇k commute with the Schrödinger operator, we have

(28) |∇keit∂2xu+| ≤
‖∇ku+‖L1√

t
.

Thus, we can control the kth gradient v, with k ∈ J0, s− 1K, introducing v1:

|∇kv(t)| ≤ C|∇kv1(t)|+ |∇k(v − v1)(t)| .‖∇kA‖L∞ +
‖∇ku+‖L1√

t
+

δ

tµ
(29)

. ‖αj‖l2,q +
1

tγ
+
‖∇ku+‖L1√

t
+

δ

tµ
,(30)
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using that for each k, q − k > 1
2 to control ‖∇kA‖L∞ with the l2,q norm and (4). We then

do the same with the kth gradient of v2 for k ∈ J1, s− 1K using Leibniz formula:

|∇kv2| ≤
k∑
p=0

(
k

p

)
|∇pv||∇k−pv|

.
k∑
p=0

(
k

p

)(
‖∇pA‖L∞ +

‖∇pu+‖L1√
t

+
δ

tµ

)
(31)

×
(
‖∇k−pA‖L∞ +

‖∇k−pu+‖L1√
t

+
δ

tµ

)
.(32)

Now, let k ∈ J1, s− 1K, the first step is to use L∞L2 Strichartz estimates on I:

sup
t0≤t

tµ‖∇kI(t)‖L2 ≤ sup
t0≤t

tµ
∫ ∞
t
‖∇k(|v|2v − |v1|2v1)‖L2 + ‖2M∇k(v − v1)‖L2

dτ

τ
.

We compute the first term here:

∇k(|v|2v − |v1|2v1)

=
k∑
p=0

(
k

p

)
(∇pv∇k−pv2 −∇pv1∇k−pv2

1 +∇pv1∇k−pv2 −∇pv1∇k−pv2)

=
k∑
p=0

(
k

p

)
(∇p(v − v1)∇k−pv2 +∇p(v2 − v2

1)∇k−pv1)

=

k∑
p=0

(
k

p

)
(∇p(v − v1)∇k−pv2 +∇p[(v − v1)(v + v1)]∇k−pv1)

=
k∑
p=0

(
k

p

)∇p(v − v1)∇k−pv2 +

p∑
q=0

(
p

q

)
(∇q(v − v1)∇p−q(v + v1))∇k−pv1

 .

Therefore, using the preliminary computations:

sup
t0≤t

tµ‖∇kI(t)‖L2

≤2M

µ
‖v − v1‖S + sup

t0≤t
tµ
∫ ∞
t

 k∑
p=0

(
k

p

)
‖∇p(v − v1)‖L2‖∇k−pv2‖L∞

+
k∑
p=0

p∑
q=0

(
k

p

)(
p

q

)
‖∇q(v − v1)‖L2‖∇k−pv1‖L∞(‖∇p−qv‖L∞ + ‖∇p−qv1‖L∞)

 dτ

τ
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.
2M

µ
‖v − v1‖S + sup

t0≤t
tµ
∫ ∞
t

k∑
p=0

‖v − v1‖S
τ1+µ

k−p∑
j=0

(
k − p
j

)(
‖∇jA‖L∞ +

‖∇ju+‖L1√
τ

+
δ

τµ

)
(
‖∇k−p−jA‖L∞ +

‖∇k−p−ju+‖L1√
τ

+
δ

τµ

)
+ sup
t0≤t

tµ
∫ ∞
t

k∑
p=0

p∑
q=0

‖v − v1‖S
τ1+µ

(
‖∇k−pA‖L∞ +

‖∇k−pu+‖L1√
τ

)
(
‖∇p−qA‖L∞ +

‖∇p−qu+‖L1√
τ

+
δ

τµ
+ ‖∇qA‖L∞ +

‖∇qu+‖L1√
τ

)
dτ.

We are now left with integrations:

sup
t0≤t

tµ‖∇kI(t)‖L2 ≤‖v − v1‖S

2M

µ
+

(
‖αj‖2l2,q

µ
+
C(t0, ‖αj‖l2,s)

(µ+ 2γ)t2γ0
+
‖u+‖W 1,s√
t0(1

2 + µ)
+

Cδ

2µt2µ0

)2

+

(
‖αj‖l2,q

µ
+

1

(µ+ γ)tγ0
+
‖u+‖W 1,s
√
t0(1

2 + µ)
+

δ

2µt2µ0

)
(
‖αj‖l2,q

µ
+
C(t0, ‖αj‖l2,s)

(µ+ γ)tγ0
+
‖u+‖W 1,s√
t0(1

2 + µ)

))
,

wich implies the conclusion of the Lemma for k ∈ J1, s− 1K.
For k = s, we proceed similarly but instead of estimating

sup
t0≤t

tµ
∫ ∞
t
‖v − v1‖L2‖v‖L∞‖∇sv‖L∞

dτ

τ

by using Gagliardo-Nirenberg (26) on ‖∇sv‖L∞ , we rather write

sup
t0≤t

tµ
∫ ∞
t

(‖v − v1‖L∞‖v‖L∞‖∇s(v − v1)‖L2 + ‖v − v1‖L2‖v‖L∞‖∇sv1‖L∞)
dτ

τ
.

Similarly, instead of estimating

sup
t0≤t

tµ
∫ ∞
t
‖v − v1‖L∞‖v1‖L2‖∇sv‖L∞

dτ

τ
,

we rather write

sup
t0≤t

tµ
∫ ∞
t

(‖v − v1‖L∞‖v1‖L∞‖∇s(v − v1)‖L2 + ‖v − v1‖L2‖v1‖L∞‖∇sv1‖L∞)
dτ

τ
,

and obtain a similar bound. �

Lemma 2.3 (Estimation of ∇kJa). Let Ja defined by (19):

Ja(t, x) = −2i

∫ ∞
t

ei(t−τ)∂2x
∑
p 6=j

e−i(|αp|2−|αj |2) ln τei(p−j)
x
2αpαje

i j
2−p2

4
τeiτ∂

2
xu+

dτ

τ
,
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then

sup
t0<t

tµ‖∇kJa‖L2 ≤ C(‖αj‖l2,k) sup
t0≤t

tµ

t

∥∥∥∥ û+

·+ Z/2

∥∥∥∥
Hk

.

Proof. The first step is to perform a Fourier transform on the space variable and set the
domain exploit the linear phase in x:

∇kJa(t, x) =eit∂
2
x

∫ ∞
t

∫
R

(iξ)keiτξ
2
eixξ

∑
p 6=j

αpαje
−i(|αp|2−|αj |2) ln τe−iτ(ξ− j−p

2
)2

× û+(ξ − j − p
2

)ei
j2−p2

4
τdξ

dτ

τ

=eit∂
2
x

∑
p6=j

αpαj

∫
R

(iξ)keixξû+(ξ − j − p
2

)

∫ ∞
t

eiτ(j−p)( j+p
4

+ξ− j−p
4

)e−i(|αp|2−|αj |2) ln τ dτ

τ
dξ

As p 6= j, for all ξ except ξ = p
2 we now perform an integration by parts on the τ variable

to gain integrability:∫ ∞
t

eiτ(j−p)(ξ− j−p
2

+ j
2

)e−i(|αp|2−|αj |2) ln τ dτ

τ

=− eit(j−p)(ξ−
j−p
2

+ j
2

)

i(j − p)(ξ − j−p
2 + j

2)

e−i(|αp|2−|αj |2) ln t

t
+

∫ ∞
t

eiτ(j−p)(ξ− j−p
2

+ j
2

)

i(j − p)(ξ − j−p
2 + j

2)

(
e−i(|αp|2−|αj |2) ln τ

τ

)
τ

dτ.

Undoing the Fourier transform, we have:

∇kJa(t, x) =
eit∂

2
xi

t

∑
p 6=j

e−i(|αp|2−|αj |2) ln t

j − p
αpαje

i j
2−p2

4
t∇k[ei(p−j)

x
2 eit∂

2
xuj+(x)]

+
eit∂

2
x

i

∫ ∞
t

∑
p6=j

(
e−i(|αp|2−|αj |2) ln τ

τ

)
τ

αpαje
i j

2−p2

4
τ∇k[ei(p−j)

x
2 eiτ∂

2
xuj+(x)]dτ,

where

(33) ûj+(ξ) =
û+(ξ)

ξ + j
2

.

To conclude, we now take the L2 norm and use the fact that (αj) ∈ l2,k to obtain that:

sup
t0<t

tµ‖∇kJa‖L2 ≤ C(‖αj‖l2,k) sup
t0≤t

tµ

t

∥∥∥∥ û+(·)
·+ Z/2

∥∥∥∥
Hk

.

�
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Lemma 2.4 (Estimation of ∇kJb). Let Jb defined by (21):

Jb =− 2i

∫ ∞
t

ei(t−τ)∂2x
∑

(p,j)∈Z2

e−i(|αp|2−|αj |2) ln τ+i(p−j)x
2 (αpRj +Rpαj +RpRj)

× ei
j2−p2

4
τeiτ∂

2
xu+

dτ

τ
,

then

sup
t0≤t

tµ‖∇kJb(t)‖L2 ≤ C(t0, ‖αj‖l2,k) sup
t0≤t

tµ

tγ
‖u+‖Hk .

Proof. This proof is straightforward: we exploit the integrability provided by the decay (4)
of the Rj ’s:

‖∇kJb(t)‖L2
x
≤
∫ ∞
t

∑
(p,j)∈Z2

‖e−i(|αp|2−|αj |2) ln τ (αpRj +Rpαj +RpRj)

× ei
j2−p2

4
τ∇k[ei(p−j)

x
2 eiτ∂

2
x û+(x)]‖L2

x

dτ

τ

≤
∫ ∞
t

∑
(p,j)∈Z2

C(t0‖αj‖l2,k)‖u+‖Hk

dτ

τ1+γ
,

so

sup
t0≤t

tµ‖∇kJb(t)‖L2 ≤ C(t0, ‖αj‖l2,k) sup
t0≤t

tµ

tγ
‖u+‖Hk .

�

Lemma 2.5 (Estimation of ∇kJc). Let Jc defined by (22):

Jc = −i
∫ ∞
t

ei(t−τ)∂2xA2e−iτ∂
2
xu+

dτ

τ
,

then

sup
t0≤t

tµ‖∇kJc‖L2 ≤ C(t0, ‖αj‖l2,k)

(
sup
t0<t

tµ

t

∥∥∥∥ û+(·)
·+ Z/2

∥∥∥∥
Hk−1

+ sup
t0<t

tµ

tγ
‖u+‖Hk

)
.

Proof. The proof is in two steps, according to the following decomposition:

Jc =−
∫ ∞
t

ei(t−τ)∂2x
∑

(j,p)∈Z2

αpαje
−iτ p2+j2

4
+ix p+j

2 e−i(|αj |2−|αp|2) ln τe−iτ∂
2
xu+

dτ

τ

−
∫ ∞
t

ei(t−τ)∂2x
∑

(j,p)∈Z2

(
αpRj +Rpαj +RpRj

)
e−iτ

p2+j2

4
+ix p+j

2 e−i(|αj |2+|αp|2) ln τ

× e−iτ∂2xu+
dτ

τ
=− Jc1 − Jc2
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The diagonal term of Jc1 could be controlled with inhomogeneous Strichartz with the couple
(4,∞) of dual (4

3 ,∞), but we rather use IBP in Fourier space on the whole term to obtain
a better time decay:

∇kJc1 =∇k
∫ ∞
t

ei(t−τ)∂2x
∑

(j,p)∈Z2

αpαje
−iτ p2+j2

4
+ix p+j

2 e−i(|αj |2+|αp|2) ln τe−iτ∂
2
xu+

dτ

τ

=e−it∂
2
x

∫ ∞
t

∫
R

(iξ)keiτξ
2
eixξ

∑
(j,p)∈Z2

αpαje
−iτ p2+j2

4 e−i(|αj |2+|αp|2) ln τeiτ(ξ+ p+j
2

)2

× û+(ξ +
p+ j

2
)dξ

dτ

τ

=e−it∂
2
x

∑
(j,p)∈Z2

αpαj

∫
R

(iξ)keixξû+(ξ +
p+ j

2
)

×
∫ ∞
t

e−iτ
p2+j2

4
−i(|αj |2+|αp|2) ln τ+iτ

(p+j)2

4 e2iτξ2eiτξ(p+j)
dτ

τ
dξ

=e−it∂
2
x

∑
(j,p)∈Z2

αpαj

∫
R

(iξ)keixξû+(ξ +
p+ j

2
)

×
∫ ∞
t

e−i(|αj |2+|αp|2) ln τeiτ(2ξ(ξ+ p+j
2

)+ pj
2

)dτ

τ
dξ

We now perform for any ξ except the countably set of roots of the phase an IBP on the
time integral:∫ ∞

t
e−i(|αj |2+|αp|2) ln τeiτ(2ξ(ξ+ p+j

2
)+ pj

2
)dτ

τ

=− e−i(|αj |2+|αp|2) ln teit(2ξ(ξ+
p+j
2

)+ pj
2

)

(2iξ(ξ + p+j
2 ) + pj

2 )t
+

∫ ∞
t

eiτ(2ξ(ξ+ p+j
2

)+ pj
2

)

2ξ(ξ + p+j
2 ) + pj

2

(
e−i(|αj |2+|αp|2) ln τ

τ

)
τ

dτ.

Undoing the Fourier transform, we have:

∇kJc1 =
ieit∂

2
x

2t

∑
(j,p)∈Z2

αjαpe
−it p

2+j2

4 e−i(|αj |2−|αp|2) ln t∇k−1[eit
(p+j)

2
xe−it∂

2
xupj+ (x)]

+
eit∂

2
x

2i

∑
(j,p)∈Z2

∫ ∞
t

αjαpe
−iτ p2+j2

4

(
e−i(|αj |2+|αp|2) ln τ

τ

)
τ

∇k−1[eiτ
(p+j)

2
xe−iτ∂

2
xupj+ (x)].

where upj+ has been defined by (33). As for Ja, we conclude with this term by taking the

L2 norm on the space variable and use the fact that (αj) ∈ l2,q:

sup
t0<t

tµ‖∇kJc1‖L2
x
≤ C(‖αj‖l2,k) sup

t0<t

tµ

t

∥∥∥∥ û+(·)
·+ Z/2

∥∥∥∥
Hk−1

.
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Finally, as for Jb we use (4):

sup
t0<t

tµ‖∇kJc2‖L2
x
≤C(t0, ‖αj‖l2,k) sup

t0<t
tµ
∫ ∞
t

1

τγ

∥∥∥∇ku+

∥∥∥
L2

dτ

τ

≤C(t0, ‖αj‖l2,k)‖u+‖Hk sup
t0<t

tµ

tγ
,

hence:

sup
t0≤t

tµ‖∇kJc‖L2 ≤ C(t0, ‖Rj‖l2,k)

(
sup
t0<t

tµ

t

∥∥∥∥ û+(·)
·+ Z/2

∥∥∥∥
Hk−1

+ sup
t0<t

tµ

tγ
‖u+‖Hk

)
.

�

Lemma 2.6 (Estimation of ∇kJd). Let Jd defined by (23):

Jd = −i
∫ ∞
t

ei(t−τ)∂2x(2A|eiτ∂2xu+|2 +A(eiτ∂
2
xu+)2)

dτ

τ
,

then

sup
t0≤t

tµ‖∇kJd‖L2 ≤ C(t0, ‖αj‖l2,k) sup
t0≤t

tµ

t
1
2

‖u+‖L1‖u+‖Hk .

As announced, this is the limiting term for the time decay.

Proof. The proof is straightforward, we just use direct upper-bounds and dispersion esti-
mate (25) on the Schrödinger group.

sup
t0≤t

tµ‖∇kJd‖L2 ≤ sup
t0≤t

tµ
∫ ∞
t

∑
j∈Z

(|αj |+ |Rj |)‖∇k[ei
xj
2 |eiτ∂2xu+|2 + e−i

xj
2 (eiτ∂

2
xu+(x))2]‖L2

dτ

τ

≤C(t0, ‖αj‖l2,k) sup
t0≤t

tµ
∫ ∞
t
‖u+‖Hk‖eiτ∂

2
xu+‖L∞

dτ

τ

≤C(t0, ‖αj‖l2,k) sup
t0≤t

tµ
∫ ∞
t
‖u+‖Hk

‖u+‖L1√
τ

dτ

τ

≤C(t0, ‖αj‖l2,k) sup
t0≤t

tµ

t
1
2

‖u+‖L1‖u+‖Hk .

�

The last term Je is easier to control, using again Schrödinger dispersion inequality.

Lemma 2.7 (Estimation of ∇kJe). Let Je defined by (24):

Je = −i
∫ ∞
t

ei(t−τ)∂2x |eiτ∂2xu+|2eiτ∂
2
xu+

dτ

τ
,

then

sup
t0≤t

tµ‖∇kJe‖L2 . sup
t0≤t

tµ

t
‖u+‖2L1‖u+‖Hs
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Proof. It is straightforward to write that:

‖Je(t)‖Hs ≤
∫ ∞
t
‖|eiτ∂2xu+|2eiτ∂

2
xu+‖Hs

dτ

τ

.
∫ ∞
t
‖eiτ∂2xu+‖2L∞‖eiτ∂

2
xu+‖Hs

dτ

τ
.
‖u+‖2L1‖u+‖Hs

t
.

�

2.3. The stability.
Regarding the results of the previous part,

‖φ(v)− v1‖S ≤ C(t0, u+, ‖αj‖l2,q)

(
‖v − v1‖S + sup

t0<t

tµ

t
+ sup
t0<t

tµ

tγ
+ sup
t0<t

tµ

t
1
2

)
,

so we have the stability inclusion φ(Xδ) ⊂ Xδ for ‖αj‖l2,q and δ small and t0 large enough,
and choosing µ < max(1

2 , γ).

2.4. The contraction.
In order to apply the fixed point, we still have to prove that φ contracts.
Let v and ṽ in Y .
From

φ(v)− φ(ṽ) =

∫ ∞
t

ei(t−τ)∂2x

(
|v|2 − 2M

2τ
v − |ṽ|

2 − 2M

2τ
ṽ

)
dτ,

yields

sup
t0≤t

tµ‖φ(v)− φ(ṽ)‖L2

. sup
t0≤t

tµ
∫ ∞
t
‖|v|2v − |ṽ|2ṽ − 2M(v − ṽ)‖L2

dτ

τ

. sup
t0≤t

tµ
∫ ∞
t

(2M + ‖v‖2L∞ + ‖ṽ‖2L∞)‖v − ṽ‖L2

dτ

τ

.‖v − ṽ‖2
(

2M

µ
+ sup
t0≤t

tµ
∫ ∞
t

(‖v(τ)‖2L∞ + ‖ṽ(τ)‖2L∞)
dτ

τ1+µ

)
.‖v − ṽ‖2

(
2M

µ
+ sup
t0≤t

tµ
∫ ∞
t

(2‖v − v1‖2L∞ + 2‖ṽ − v1‖2L∞ + 4‖v1‖2L∞)
dτ

τ1+µ

)
.‖v − ṽ‖2

(
2M

µ
+ sup
t0≤t

tµ
∫ ∞
t

(8‖A‖2L∞ + 8
‖u+‖2L1

τ
+ 4

δ2

τ2µ
)
dτ

τ1+µ

)
.‖v − ṽ‖2

(
2M

µ
+

8‖A‖L∞
µ

+
8‖u+‖2L1

t0(1 + µ)
+

(2δ)2

t2µ0 (1 + 2µ)

)
.



16 A. GUÉRIN

Moreover, for k ∈ J1, s− 1K:

sup
t0≤t

tµ‖∇k(φ(v)− φ(ṽ))‖L2

≤2M

µ
‖v − ṽ‖S + sup

t0≤t
tµ
∫ ∞
t

 k∑
p=0

(
k

p

)
‖∇p(v − ṽ)‖L2‖∇k−pv2‖L∞

+
k∑
p=0

p∑
q=0

(
k

p

)(
p

q

)
‖∇q(v − ṽ)‖L2‖∇k−pṽ‖L∞(‖∇p−qv‖L∞ + ‖∇p−qṽ‖L∞)

 dτ

τ

.‖v − ṽ‖S

2M

µ
+

∫ ∞
t

k∑
p=0

(
k

p

) k−p∑
q=0

(
k − p
q

)(
‖∇qA‖L∞ +

‖∇qu+‖√
τ

+
δ

τµ

)
(
‖∇k−p−qA‖L∞ +

‖∇k−p−qu+‖√
τ

+
δ

τµ

)
dτ

τ1+µ

)
+ ‖v − ṽ‖S

∫ ∞
t

k∑
p=0

p∑
q=0

(
k

p

)(
p

q

)(
‖∇k−pA‖L∞ +

‖∇k−pu+‖√
τ

+
δ

τµ

)

2

(
‖∇p−qA‖L∞ +

‖∇p−qu+‖√
τ

+
δ

τµ

)
dτ

τ
.

As for Lemma 2.2, we must avoid estimating

sup
t0≤t

tµ
∫ ∞
t
‖v − ṽ‖L2‖w1‖L∞‖∇sw2‖L∞

dτ

τ
,

by using Gagliardo-Nirenberg (26) on ‖∇sv‖L∞ . Therefore we rather write

sup
t0≤t

tµ
∫ ∞
t

(‖v − ṽ‖L∞‖w1‖L∞‖∇s(w2 − v1)‖L2 + ‖v − ṽ‖L2‖w1‖L∞‖∇sv1‖L∞)
dτ

τ
,

for (w1, w2) ∈ {ṽ, v}2.
To conclude, we finally use the Gagliardo-Niremberg interpolation inequality

‖v − ṽ‖L∞ ≤ ‖v − ṽ‖
1
2

L2‖∇(v − ṽ)‖
1
2

L2 ≤
‖v − ṽ‖S

τµ

so that

sup
t0≤t

tµ
∫ ∞
t

(‖v − ṽ‖L∞‖w1‖L∞‖∇s(w2 − v1)‖L2 + ‖v − ṽ‖L2‖w1‖L∞‖∇sv1‖L∞)
dτ

τ

≤ sup
t0≤t

tµ‖v − ṽ‖S
∫ ∞
t
‖w1‖L∞

(
‖w2‖S
τµ

+ ‖∇sA‖L∞ +
∇ku+‖L1√

τ

)
dτ

τ1+µ
.

Putting it together, we have that

‖φ(v)− φ(ṽ)‖S ≤ ‖v − ṽ‖SC(t0, ‖αj‖l2,q , u+),
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therefore φ contracts for ‖αj‖l2,q and δ small and t0 large enough, and solutions exists on
[t0,∞). This ends the first part of existence of solutions of Theorem 1.1.

2.5. End of the proof: estimates (7) to (9).

Let v the solution of (12) on [t0,∞) constructed in Section 2. Note that we also dispose
of the following estimate (15) on v:

(34) ∀k ∈ J0, sK, ‖∇k(v − v1)(t)‖L2 = O(t−
1
2

−
).

First we set T1 = 1
t0

and use the pseudo conformal transformation (11) on v to obtain ψ,

a solution of (10) on (0, T1] that satisfies:

v(t, x) = T (ψ)(t, x) =
ei

x2

4t

√
t
ψ

(
1

t
,
x

t

)
.

Since v1 is defined by (13), we have that:

v1(t, x) = T (e2iM ln tu{αj}(t, x)) + eit∂
2
xu+(x),

and estimate (34) becomes:

∀k ∈ J0, sK,
∥∥∥∇k [T (ψ(t, x)− e2iM ln tu{αj}(t, x)

)
− eit∂2xu+(x)

]∥∥∥
L2

= O(t−
1
2

−
).

Then we normalize back the solutions ψ of (10) to obtain an estimate on the solutions u
of (NLS) on (0, T1]. As T preserves the L2 norm, we use the fact that, for J defined in the
introduction by (5) we have:

∇kT = T (−i)kJk,
to obtain estimate (7):

∀k ∈ J0, sK,
∥∥∥(−i)kJk [u(t, x)− u{αj}(t, x)]− e−2iM ln tT

(
eit∂

2
x∇ku+(x)

)∥∥∥
L2

= O(t
1
2

−
).

Finally, when ∇ku+ ∈ (x4L2) for all k ∈ J0, sK, the L2 estimate (8) comes from Schrödinger
evolution properties applied to the perturbation and has already been done in section 2.2
of [1]:

(35)

∥∥∥∥T (eit∂2x∇ku+(x)
)
−
(
−ix

2

)k
û+

(
−x

2

)∥∥∥∥
L2

= O(t).

The last estimate (9) is exactly estimate (8) with k = 0 and Theorem 1.1 is proven.
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