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A new class of critical solutions for 1D cubic NLS

(NLS) i∂ t u + ∂ 2 x u ± |u| 2 u = 0. This equation has been largely studied from theoretical and applied points of view, and appears in several areas of physics such as optics and plasma.

In the following, all the results will be valid for both focussing and defocussing cases. For simplicity we shall consider the focussing case.

Let us first recall the local well-posedness results in Sobolev spaces. It has been proven in [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF] and [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in Hs[END_REF] that the equation is well-posed in H s for any s ≥ 0. However, it is no longer the case when s < 0. For exemple, in [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] a norm inflation phenomena is pointed out.

Then, the critical Sobolev space associated with the scaling invariance uλ(t, x) := λu(λ 2 t, λx) is Ḣ- 1 2 . For s ≤ - 1 2 , it has been proven in [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF] and [START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de-Vries equation at the critical regularity[END_REF] that norm inflation happens along with a loss of regularity, and in [START_REF] Oh | A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces[END_REF] that we have in fact a norm inflating phenomena around any data. For - 1 2 < s < 0, the control of Sobolev norms of Schwartz solutions on the torus and the line is proven in [START_REF] Killip | Low regularity conservation laws for integrable PDE[END_REF] and [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF]. More recently, global well-posedness has been proven in [START_REF] Harrop-Griffiths | Sharp well-posedness for the cubic NLS and mKdV in H s (R)[END_REF] for any s > - 1 2 . On the other hand, the critical Fourier-Lebesgue space associated to this equation is F(L ∞ ), i.e. Fourier transform in L ∞ . The well-posedness has been proven for initial data with Fourier transform in L p for p < +∞ in [START_REF] Vargas | Global well-posedness of 1D cubic nonlinear Schrödinger equation for data with infinity L 2 norm[END_REF], [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF] and [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations[END_REF].

One would like to consider the initial value problem with data a sum of Dirac masses. Unfortunately, Dirac masses are in F(L ∞ ) and borderline in Ḣ- 1 2 , and the problem is ill-posed for data u 0 = αδ 0 . Indeed, in [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF] the authors proved, using Galilean invariance, Date: December 12, 2022.

that there is either no weak solution or more than one to that Cauchy problem. More precisely, supposing uniqueness, the solution for t > 0 of (NLS) is: [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] u α (t, x) = αe -iα 2 ln t e i x 2 4t √ t , but does not converges towards u 0 as t goes to zero. However, this issue can be bypassed by a change of phase, which shows that

ψ α (t, x) = α e i x 2 4t √ t
is the solution of the renormalized equation [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations[END_REF] with initial condition αδ 0 . As a mater of fact, similar problems have also been treated using renormalisation in context of Gibbs measures, such as in [START_REF] Lebowitz | Statistical dynamics of the nonlinear Schrödinger equation[END_REF] or [START_REF] Bourgain | Periodic nonlinear Schrödinger equation and invariant measures[END_REF]. Once this obstruction has been identified, Banica and Vega constructed in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] and [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF] solutions of (NLS) that are smoother perturbations of u α . Now, we shall recall the results related to a sum of several Dirac masses. Let q > 1 2 , let (α j ) j∈Z ∈ l 2,q (C) 1 , and set:

(2) M = j∈Z |α j | 2 .
It has been proven in Theorem 1.3 of [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] that there exists T > 0 and a unique solution of (NLS) on (0, T ] of the form

(3) u {α j } (t, x) = e -2iM ln t j∈Z A j (t) e i (x-j) 2 4t √ t ,
where A j (t) = e -i|α j | 2 ln t (α j + R j (t)), with (R j ) j∈Z a family of functions such that for any 0 < γ < 1:

(4) sup 0<τ <T τ -γ R j (τ ) l 2,q < C(T, α j l 2,q ).
In this article, we construct much more solutions of (NLS) as large perturbations of the particular one given by (3). The theorem involves the pseudo-conformal transformation given by:

T (f )(t, x) = e i x 2 4t √ t f 1 t , x t ,
and the pseudo-conformal operator:

(5)

J(f )(t, x) = x 2 + it∇ f (t, x).
1 we define the space l 2,q with αj 2

l 2,q = j∈Z (1 + |j|) 2q |αj| 2 . Theorem 1.1. Let s ∈ N * , (α j ) ∈ l 2,q with q -s > 1 2 , u + ∈ H s ∩ Ḣ-2 ∩ W 1,s such that (6) ∀p ∈ Z ∀k ≤ s u + (•) • + p/2 ∈ H k (R). Let u 1 (t, x) = u {α j } + e -2iM ln t u + - x 2 .
Then, if α j l 2,q is small enough, there exists T 1 < T and u a unique solution of (NLS) on (0, T 1 ], such that:

u -u {α j } -e -2iM ln t T e it∂ 2 x u + (x) ∈ C((0, T 1 ], L 2 (R)),
with:

∀k ∈ 0, s ,

(-i) k J k u(t, x) -u {α j } (t, x) -e -2iM ln t T e it∂ 2 x ∇ k u + (x) L 2 = O(t 1 2 - ).
Moreover, if ∇ k u + ∈ (x 4 L 2 ) for all k ∈ 0, s , then:

u -u 1 ∈ C((0, T 1 ], L 2 (R)),
with:

(8) ∀k ∈ 0, s , J k u(t, x) -u {α j } (t, x) -e -2iM ln t x 2 k u + - x 2 L 2 = O(t 1 2 - 
).

In particular, for k = 0 we have:

(9) u -u 1 L 2 = O(t 1 2 - 
).

The condition [START_REF] Bourgain | Periodic nonlinear Schrödinger equation and invariant measures[END_REF] is not very restrictive and is only about u + being small enough at equidistant points. The fact that those points are in Z/2 is not surprising since bounds in terms of 1/d(x, Z/2) already appear in proofs of [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF].

The proof of Theorem 1.1 starts by performing, as in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF], a change a phase ψ(t, x) = e i2M ln t u(t, x), leading to the Wick renormalisation of equation (NLS):

(10)

i∂ t ψ + ∂ 2 x ψ + (|ψ| 2 - 2M t )ψ = 0.
Then we perform a pseudo-conformal transformation:

(11) ψ(t, x) = T (v)(t, x) = e i x 2 4t √ t v 1 t , x t .
The equation (NLS) is then equivalent to

(12) i∂ t v + ∂ 2 x v + 1 2t (|v| 2 -2M )v = 0,
and Theorem 1.1 rephrases for [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF] as following. Denoting

(13) v 1 (t, x) = T (e 2iM ln t u {α j } ) + e it∂ 2 x u + (x) = A(t, x) + e it∂ 2 x u + (x),
where ( 14)

A(t, x) = j∈Z e -i|α j | 2 ln t (α j + R j ( 1 t ))e -i tj 2 4 +i xj 2 ,
we want to find t 0 > 0 and v solution of [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF] 

such that v -v 1 ∈ C([T 1 , ∞), H s (R))
, with a decay given by [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] ∀k ∈ 0, s ,

∇ k (v -v 1 )(t) L 2 = O(t -1 2 -
).

This v will write

v(t) = j∈Z e -i|α j | 2 ln t (α j + R j ( 1 t ))e -i tj 2 4 +i xj 2 + e it∂ 2 x u + (x) + r(t, x).
for some remainder term r of decay given by [START_REF] Hasimoto | A soliton in a vortex filament[END_REF]. Note that this will prove the decay [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF], but not (8) yet. This latter estimation is obtained by using Schrödinger linear evolution properties, as explained in section 2.5. Although a bit computational, the proof can now be sum up as a fixed point theorem in an appropriate Sobolev space, using the Duhamel's formula as the functional, as in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF]. The expansion of the cubic non linearity will provide several terms that we will group in powers of e it∂ 2

x u + . The smallness hypothesis on α j l 2,s comes from the linear term. The term that will provide the weaker time decay is the quadratic one, with conjugated phases. Finally, we perform the reverse pseudo conformal transformation in section 2.5 to conclude with the proof.

Concerning the tools at our disposal, we will deal with oscillatory integrals, on which we often perform integration by parts after a Fourier transform, that gives sharper estimates than the use of Sobolev embeddings.

Link with vortex dynamics singularities.

In addition to the study of low regularity solutions of the 1-D cubic Schrödinger equation, this article is also motivated by the study of dynamics of vortex filaments. More precisely, we are referring to a model derived from Euler equations by Da Rios in 1906 in [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF] called the binormal flow:

(BF) χ t = χ x ∧ χ xx ,
where χ is an arc length parameterized curve in R 3 and where the vortex is supposed to be located near χ(t). For further informations and references about this equation, see for instance the introduction of [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF].

If T represents the tangent vector of a solution χ, then T solves the Schrödinger map with values in S 2 : ( 16)

T t = T ∧ T xx .
Moreover, Hasimoto constructed in [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] a correspondance between solutions of (NLS) and solutions of (BF) using the Frenet frame, considering the curvature of χ(t, x) as the modulus of the NLS-solution and the torsion as the derivative of its phase. This transformation stands in the spirit of the Madelung transform.

In [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF], Banica and Vega showed that the solution (3) we are proving the stability depicts, via the Hasimoto transform, the evolution of a polygonal line through the binormal flow. In a few words, every Dirac mass correspond to the formation of a corner in χ(t) at arclength parameter x = j ∈ Z, as the one developed by the self-similar solution of (BF) of curvature α j √ t . Hence, the odds are high that the class of solutions exhibited in Theorem 1.1 could correspond to the evolution of a curve with several corners through binormal flow. With the convergence rate of O(t 1 2 -) in Theorem 1.1, the method should be the same as for the case of one corner done in [START_REF] Banica | Stability of the self-similar dynamics of a vortex filament[END_REF] and [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF]. However, this method is quite intricate, and adding much more complicated terms when considering several Dirac masses makes this task dense enough to be the object of a future work.

Scattering in Sobolev spaces : proof of Theorem 1.1

The proof follows the same path as the proof of Theorem 1.4 in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] and is based on a scattering argument. To do so, we introduce an appropriate functional φ on wich we perform a fixed point argument. The analysis will be much more delicate here, due to the increased complexity of the function A(t, x) defined by ( 14), (in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF], only one term is considered).

Fixed point functional.

To say that v solution of ( 12) is close to v 1 at infinity tends to consider the functional:

φ : v(t, x) → v 1 (t, x) + i ∞ t e i(t-τ )∂ 2 x - |v| 2 -2M 2τ v -(i∂ t + ∂ xx )v 1 dτ.
Since A solves (12), we have

(i∂ t + ∂ xx )v 1 = (i∂ t + ∂ xx )A + (i∂ t + ∂ xx )e it∂ 2 x u + = - |A| 2 -2M 2t A.
We will control the non linear term in v by comparing it to the nonlinearity of v 1 :

φ(v) -v 1 = +i ∞ t e i(t-τ )∂ 2 x - |v| 2 -2M 2τ v + |v 1 | 2 -2M 2τ v 1 - |v 1 | 2 -2M 2τ v 1 + |A| 2 -2M 2τ A dτ.
We then develop the v 1 -cubic term:

(|v 1 | 2 -M )v 1 =((A + e it∂ 2 x u + )(A + e -it∂ 2 x u + ) -2M )(A + e it∂ 2 x u + ) =(|A| 2 -2M )A + 2|A| 2 e it∂ 2 x u + -2M e it∂ 2 x u + + A 2 e -it∂ 2 x u + + 2A|e it∂ 2 x u + | 2 +A(e it∂ 2 x u + ) 2 + |e it∂ 2 x u + | 2 e it∂ 2 x u + , so we get φ(v) -v 1 = + i ∞ t e i(t-τ )∂ 2 x - |v| 2 -2M 2τ v + |v 1 | 2 -2M 2τ v 1 dτ +i ∞ t e i(t-τ )∂ 2 x ((-2|A| 2 e iτ ∂ 2 x u + + 2M e iτ ∂ 2 x u + -A 2 e -iτ ∂ 2 x u + -2A|e iτ ∂ 2 x u + | 2 -Ae 2iτ ∂ 2 x u 2 + -|e it∂ 2 x u + | 2 e iτ ∂ 2 x u + ) 1 τ )dτ.
Finally, after expending |A| 2 , the functional φ writes

(φ(v) -v 1 )(t, x) (17) = + i ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ (18) -2i ∞ t e i(t-τ )∂ 2 x p =j e -i(|αp| 2 -|α j | 2 ) ln τ e i(p-j) x 2 α p α j e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ (19) -2i ∞ t e i(t-τ )∂ 2 x (p,j)∈Z 2 e -i(|αp| 2 -|α j | 2 ) ln τ +i(p-j) x 2 (20) × (α p R j + R p α j + R p R j )e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ (21) -i ∞ t e i(t-τ )∂ 2 x A 2 e -iτ ∂ 2 x u + dτ τ (22) -i ∞ t e i(t-τ )∂ 2 x (2A|e iτ ∂ 2 x u + | 2 + A(e iτ ∂ 2 x u + ) 2 ) dτ τ (23) -i ∞ t e i(t-τ )∂ 2 x |e iτ ∂ 2 x u + | 2 e iτ ∂ 2 x u + dτ τ (24) =I(v) + J a + J b + J c + J d + J e ,
where I(v) is the first term and the J * are the following source terms. Since we will treat each integral's norm independently, we won't be regarding whether its sign is positive or negative. We won't either keep the -in the phase as it doesn't affect the computation.

Thanks to their behavior, the R j terms will be very easy to treat as well as J e where we can largely exploit dispersion of the Schrödinger operator:

(25)

e it∂ 2 x u + L ∞ x ≤ 1 √ t u + L 1 .
Then, the fact that there is a phase depending on j or p in some of these integrals will produce a shift after an integration by parts and requires the hypothesis on u + /(• + Z/2). Finally, the limiting 1/t 1 2 decay comes from using dispersion estimates for J d .

We want to apply the fixed point theorem on φ : X δ → X δ , where

X δ = {v ∈ C([t 0 , ∞), L ∞ (R))/ v -v 1 S ≤ δ} , with f S = 0≤k≤s sup t 0 ≤t t µ ∇ k (f )(t) L 2
for µ and δ strictly positives, to be chosen later. The first step is to verify that φ(X δ ) ⊂ X δ .

2.2. Estimates on the fixed point argument terms.

In this subsection, we give estimations for each of the terms listed above.

Lemma 2.1 (Estimation of I(v)). Let I defined by [START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de-Vries equation at the critical regularity[END_REF]:

I(v) = i ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ,
then,

I(v) S 2 v -v 1 S α j 2 l 2,q µ + C(t 0 , α j l 2,s ) t 2γ 0 (µ + 2γ) + u + 2 L 1 t 0 (1 + µ) + v -v 1 2 S t µ 0 .
Note that we don't need any smallness hypothesis on u + if we choose t 0 large and α j l 2,q small. Proof. The idea of the proof is to first apply Strichartz inhomogeneous inequality with the admissible couple (∞, 2) and then use dispersion inequality (25) and also (4) after usual upper-bounds:

sup t 0 ≤t t µ ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ L 2 sup t 0 ≤t t µ ∞ t |v| 2 v -|v 1 | 2 v 1 -2M (v -v 1 ) L 2 dτ τ sup t 0 ≤t t µ ∞ t (2M + v 1 2 L ∞ + v 2 L ∞ ) v -v 1 L 2 dτ τ v -v 1 S sup t 0 ≤t t µ ∞ t 0 (2M + v 1 2 L ∞ + v 2 L ∞ ) dτ τ 1+µ v -v 1 S 2M µ + sup t 0 ≤t t µ ∞ t 3 v 1 2 L ∞ + 2 v -v 1 2 L ∞ dτ τ 1+µ v -v 1 S 2M µ + 6 α j 2 l 2,q µ + C(t 0 , α j l 2,s ) t 2γ 0 (µ + 2γ) + 6 1 + µ u + 2 L 1 t 0 + 2 sup t 0 ≤t t µ ∞ t v -v 1 2 L ∞ dτ τ 1+µ .
Since q > 1 2 , we have also controlled in the last steps the l 1 norm with the l 2,s norm of (α j ) j∈Z , using Cauchy-Schwarz. Finally, we apply Gagliardo-Nirenberg's interpolation

(26) |f | 2 ≤ f L 2 f L 2 2
Where means "≤ up to a constant".

on the last integral:

sup t 0 ≤t t µ ∞ t v -v 1 2 L ∞ dτ τ 1+µ ≤ sup t 0 ≤t t µ ∞ t v -v 1 L 2 ∇(v -v 1 ) L 2 dτ τ 1+µ = v -v 1 2 S t µ 0 ,
to conclude that

I(v) S v -v 1 S α j 2 l 2,q µ + C(t 0 , α j l 2,s ) t 2γ 0 (µ + 2γ) + u + 2 L 1 t 0 (1 + µ) + v -v 1 2 S t µ 0 .
We now have to control the gradient of this integral with the following lemma.

Lemma 2.2 (Estimation of ∇ k I(v)). Let I defined by (18):

I(v) = i ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ,
then, for k ∈ 1, s :

sup t 0 ≤t t µ ∇ k I(t) L 2 v-v 1 S   α j l 2,q µ 2 + C(t 0 , α j l 2,s ) (µ + γ)t γ 0 2 + u + W 1,s √ t 0 ( 1 2 + µ) 2 + δ 2µt µ 0 2   .
Proof. To obtain this, we need the following computations.Using Gagliardo-Nirenberg interpolation (26), we have for k ∈ 0, s -1 :

(27) |∇ k (v -v 1 )(t)| ≤ C ∇ k+1 (v -v 1 )(t) 1 2 L 2 ∇ k (v -v 1 )(t) 1 2 L 2 δ t µ .
Since ∇ k commute with the Schrödinger operator, we have

(28) |∇ k e it∂ 2 x u + | ≤ ∇ k u + L 1 √ t .
Thus, we can control the k th gradient v, with k ∈ 0, s -1 , introducing v 1 :

|∇ k v(t)| ≤ C|∇ k v 1 (t)| + |∇ k (v -v 1 )(t)| ∇ k A L ∞ + ∇ k u + L 1 √ t + δ t µ (29) α j l 2,q + 1 t γ + ∇ k u + L 1 √ t + δ t µ , ( 30 
)
using that for each k, q -k > 1 2 to control ∇ k A L ∞ with the l 2,q norm and (4). We then do the same with the k th gradient of v 2 for k ∈ 1, s -1 using Leibniz formula:

|∇ k v 2 | ≤ k p=0 k p |∇ p v||∇ k-p v| k p=0 k p ∇ p A L ∞ + ∇ p u + L 1 √ t + δ t µ (31) × ∇ k-p A L ∞ + ∇ k-p u + L 1 √ t + δ t µ . (32) Now, let k ∈ 1, s -1 , the first step is to use L ∞ L 2 Strichartz estimates on I: sup t 0 ≤t t µ ∇ k I(t) L 2 ≤ sup t 0 ≤t t µ ∞ t ∇ k (|v| 2 v -|v 1 | 2 v 1 ) L 2 + 2M ∇ k (v -v 1 ) L 2 dτ τ .
We compute the first term here:

∇ k (|v| 2 v -|v 1 | 2 v 1 ) = k p=0 k p (∇ p v∇ k-p v 2 -∇ p v 1 ∇ k-p v 2 1 + ∇ p v 1 ∇ k-p v 2 -∇ p v 1 ∇ k-p v 2 ) = k p=0 k p (∇ p (v -v 1 )∇ k-p v 2 + ∇ p (v 2 -v 2 1 )∇ k-p v 1 ) = k p=0 k p (∇ p (v -v 1 )∇ k-p v 2 + ∇ p [(v -v 1 )(v + v 1 )]∇ k-p v 1 ) = k p=0 k p   ∇ p (v -v 1 )∇ k-p v 2 + p q=0 p q (∇ q (v -v 1 )∇ p-q (v + v 1 ))∇ k-p v 1   .
Therefore, using the preliminary computations:

sup t 0 ≤t t µ ∇ k I(t) L 2 ≤ 2M µ v -v 1 S + sup t 0 ≤t t µ ∞ t   k p=0 k p ∇ p (v -v 1 ) L 2 ∇ k-p v 2 L ∞ + k p=0 p q=0 k p p q ∇ q (v -v 1 ) L 2 ∇ k-p v 1 L ∞ ( ∇ p-q v L ∞ + ∇ p-q v 1 L ∞ )   dτ τ 2M µ v -v 1 S + sup t 0 ≤t t µ ∞ t k p=0 v -v 1 S τ 1+µ k-p j=0 k -p j ∇ j A L ∞ + ∇ j u + L 1 √ τ + δ τ µ ∇ k-p-j A L ∞ + ∇ k-p-j u + L 1 √ τ + δ τ µ + sup t 0 ≤t t µ ∞ t k p=0 p q=0 v -v 1 S τ 1+µ ∇ k-p A L ∞ + ∇ k-p u + L 1 √ τ ∇ p-q A L ∞ + ∇ p-q u + L 1 √ τ + δ τ µ + ∇ q A L ∞ + ∇ q u + L 1 √ τ dτ.
We are now left with integrations:

sup t 0 ≤t t µ ∇ k I(t) L 2 ≤ v -v 1 S   2M µ + α j 2 l 2,q µ + C(t 0 , α j l 2,s ) (µ + 2γ)t 2γ 0 + u + W 1,s √ t 0 ( 1 2 + µ) + Cδ 2µt 2µ 0 2 + α j l 2,q µ + 1 (µ + γ)t γ 0 + u + W 1,s √ t 0 ( 1 2 + µ) + δ 2µt 2µ 0 α j l 2,q µ + C(t 0 , α j l 2,s ) (µ + γ)t γ 0 + u + W 1,s √ t 0 ( 1 2 + µ) ,
wich implies the conclusion of the Lemma for k ∈ 1, s -1 . For k = s, we proceed similarly but instead of estimating sup

t 0 ≤t t µ ∞ t v -v 1 L 2 v L ∞ ∇ s v L ∞ dτ τ
by using Gagliardo-Nirenberg (26) on ∇ s v L ∞ , we rather write sup

t 0 ≤t t µ ∞ t ( v -v 1 L ∞ v L ∞ ∇ s (v -v 1 ) L 2 + v -v 1 L 2 v L ∞ ∇ s v 1 L ∞ ) dτ τ .
Similarly, instead of estimating sup

t 0 ≤t t µ ∞ t v -v 1 L ∞ v 1 L 2 ∇ s v L ∞ dτ τ ,
we rather write sup

t 0 ≤t t µ ∞ t ( v -v 1 L ∞ v 1 L ∞ ∇ s (v -v 1 ) L 2 + v -v 1 L 2 v 1 L ∞ ∇ s v 1 L ∞ ) dτ τ ,
and obtain a similar bound.

Lemma 2.3 (Estimation of ∇ k J a ). Let J a defined by [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF]:

J a (t, x) = -2i ∞ t e i(t-τ )∂ 2 x p =j e -i(|αp| 2 -|α j | 2 ) ln τ e i(p-j) x 2 α p α j e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ , then sup t 0 <t t µ ∇ k J a L 2 ≤ C( α j l 2,k ) sup t 0 ≤t t µ t u + • + Z/2 H k .
Proof. The first step is to perform a Fourier transform on the space variable and set the domain exploit the linear phase in x:

∇ k J a (t, x) =e it∂ 2 x ∞ t R (iξ) k e iτ ξ 2 e ixξ p =j α p α j e -i(|αp| 2 -|α j | 2 ) ln τ e -iτ (ξ-j-p 2 ) 2 × u + (ξ - j -p 2 )e i j 2 -p 2 4 τ dξ dτ τ =e it∂ 2 x p =j α p α j R (iξ) k e ixξ u + (ξ - j -p 2 )
∞ t e iτ (j-p)( j+p 4 +ξ-j-p 4 ) e -i(|αp| 2 -|α j | 2 ) ln τ dτ τ dξ

As p = j, for all ξ except ξ = p 2 we now perform an integration by parts on the τ variable to gain integrability:

∞ t e iτ (j-p)(ξ-j-p 2 + j 2 ) e -i(|αp| 2 -|α j | 2 ) ln τ dτ τ = - e it(j-p)(ξ-j-p + j 2 ) i(j -p)(ξ -j-p 2 + j 2 ) e -i(|αp| 2 -|α j | 2 ) ln t t + ∞ t e iτ (j-p)(ξ-j-p 2 + j 2 ) i(j -p)(ξ -j-p 2 + j 2 ) e -i(|αp| 2 -|α j | 2 ) ln τ τ τ dτ.
Undoing the Fourier transform, we have:

∇ k J a (t, x) = e it∂ 2 x i t p =j e -i(|αp| 2 -|α j | 2 ) ln t j -p α p α j e i j 2 -p 2 4 t ∇ k [e i(p-j) x 2 e it∂ 2 x u j + (x)] + e it∂ 2 x i ∞ t p =j e -i(|αp| 2 -|α j | 2 ) ln τ τ τ α p α j e i j 2 -p 2 4 τ ∇ k [e i(p-j) x 2 e iτ ∂ 2 x u j + (x)]dτ, where (33) 
u j + (ξ) = u + (ξ) ξ + j 2 .
To conclude, we now take the L 2 norm and use the fact that (α j ) ∈ l 2,k to obtain that:

sup t 0 <t t µ ∇ k J a L 2 ≤ C( α j l 2,k ) sup t 0 ≤t t µ t u + (•) • + Z/2 H k .
Lemma 2.4 (Estimation of ∇ k J b ). Let J b defined by [START_REF] Oh | A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces[END_REF]:

J b = -2i ∞ t e i(t-τ )∂ 2 x (p,j)∈Z 2 e -i(|αp| 2 -|α j | 2 ) ln τ +i(p-j) x 2 (α p R j + R p α j + R p R j ) × e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ , then sup t 0 ≤t t µ ∇ k J b (t) L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 ≤t t µ t γ u + H k .
Proof. This proof is straightforward: we exploit the integrability provided by the decay (4) of the R j 's:

∇ k J b (t) L 2 x ≤ ∞ t (p,j)∈Z 2 e -i(|αp| 2 -|α j | 2 ) ln τ (α p R j + R p α j + R p R j ) × e i j 2 -p 2 4 τ ∇ k [e i(p-j) x 2 e iτ ∂ 2 x u + (x)] L 2 x dτ τ ≤ ∞ t (p,j)∈Z 2 C(t 0 α j l 2,k ) u + H k dτ τ , so sup t 0 ≤t t µ ∇ k J b (t) L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 ≤t t µ t γ u + H k .
Lemma 2.5 (Estimation of ∇ k J c ). Let J c defined by [START_REF] Vargas | Global well-posedness of 1D cubic nonlinear Schrödinger equation for data with infinity L 2 norm[END_REF]:

J c = -i ∞ t e i(t-τ )∂ 2 x A 2 e -iτ ∂ 2 x u + dτ τ , then sup t 0 ≤t t µ ∇ k J c L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 <t t µ t u + (•) • + Z/2 H k-1 + sup t 0 <t t µ t γ u + H k .
Proof. The proof is in two steps, according to the following decomposition:

J c = - ∞ t e i(t-τ )∂ 2 x (j,p)∈Z 2 α p α j e -iτ p 2 +j 2 4 +ix p+j 2 e -i(|α j | 2 -|αp| 2 ) ln τ e -iτ ∂ 2 x u + dτ τ - ∞ t e i(t-τ )∂ 2 x (j,p)∈Z 2 α p R j + R p α j + R p R j e -iτ p 2 +j 2 4 +ix p+j 2 e -i(|α j | 2 +|αp| 2 ) ln τ × e -iτ ∂ 2 x u + dτ τ = -J c 1 -J c 2
The diagonal term of J c 1 could be controlled with inhomogeneous Strichartz with the couple (4, ∞) of dual ( 43 , ∞), but we rather use IBP in Fourier space on the whole term to obtain a better time decay:

∇ k J c 1 =∇ k ∞ t e i(t-τ )∂ 2 x (j,p)∈Z 2 α p α j e -iτ p 2 +j 2 4 +ix p+j 2 e -i(|α j | 2 +|αp| 2 ) ln τ e -iτ ∂ 2 x u + dτ τ =e -it∂ 2 x ∞ t R (iξ) k e iτ ξ 2 e ixξ (j,p)∈Z 2 α p α j e -iτ p 2 +j 2 4 e -i(|α j | 2 +|αp| 2 ) ln τ e iτ (ξ+ p+j 2 ) 2 × u + (ξ + p + j 2 )dξ dτ τ =e -it∂ 2 x (j,p)∈Z 2 α p α j R (iξ) k e ixξ u + (ξ + p + j 2 ) × ∞ t e -iτ p 2 +j 2 4 -i(|α j | 2 +|αp| 2 ) ln τ +iτ (p+j) 2 4 e 2iτ ξ 2 e iτ ξ(p+j) dτ τ dξ =e -it∂ 2 x (j,p)∈Z 2 α p α j R (iξ) k e ixξ u + (ξ + p + j 2 ) × ∞ t e -i(|α j | 2 +|αp| 2 ) ln τ e iτ (2ξ(ξ+ p+j 2 )+ pj 2 ) dτ τ dξ
We now perform for any ξ except the countably set of roots of the phase an IBP on the time integral:

∞ t e -i(|α j | 2 +|αp| 2 ) ln τ e iτ (2ξ(ξ+ p+j 2 )+ pj

2 ) dτ τ

= -e -i(|α j | 2 +|αp| 2 ) ln t e it(2ξ(ξ+ p+j

2 )+ pj 2 ) (2iξ(ξ + p+j 2 ) + pj 2 )t + ∞ t e iτ (2ξ(ξ+ p+j 2 )+ pj 2 ) 2ξ(ξ + p+j 2 ) + pj 2 e -i(|α j | 2 +|αp| 2 ) ln τ τ τ dτ.
Undoing the Fourier transform, we have: where u pj + has been defined by (33). As for J a , we conclude with this term by taking the L 2 norm on the space variable and use the fact that (α j ) ∈ l 2,q : sup t 0 <t t µ ∇ k J c 1 L 2

∇ k J c 1 = ie it∂ 2 x 2t (j,p)∈Z 2 α j α p e -it p 2 +j 2 4 e -i(|α j | 2 -|αp| 2 ) ln t ∇ k-1 [e it (p+j) 2 x e -it∂ 2 x u pj + (x)] + e it∂ 2
x ≤ C( α j l 2,k ) sup

t 0 <t t µ t u + (•) • + Z/2 H k-1 .
therefore φ contracts for α j l 2,q and δ small and t 0 large enough, and solutions exists on [t 0 , ∞). This ends the first part of existence of solutions of Theorem 1.1.

2.5. End of the proof: estimates (7) to [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF].

Let v the solution of ( 12) on [t 0 , ∞) constructed in Section 2. Note that we also dispose of the following estimate (15) on v:

(34) ∀k ∈ 0, s , ∇ k (v -v 1 )(t) L 2 = O(t -1 2 -
).

First we set T 1 = 1 t 0 and use the pseudo conformal transformation [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF] on v to obtain ψ, a solution of ( 10) on (0, T 1 ] that satisfies:

v(t, x) = T (ψ)(t, x) = e i x 2 4t √ t ψ 1 t , x t .
Since v 1 is defined by ( 13), we have that:

v 1 (t, x) = T (e 2iM ln t u {α j } (t, x)) + e it∂ 2 x u + (x), and estimate (34) becomes:

∀k ∈ 0, s , ∇ k T ψ(t, x) -e 2iM ln t u {α j } (t, x) -e it∂ 2 x u + (x)

L 2 = O(t -1 2 -
).

Then we normalize back the solutions ψ of ( 10) to obtain an estimate on the solutions u of (NLS) on (0, T 1 ]. As T preserves the L 2 norm, we use the fact that, for J defined in the introduction by [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] we have:

∇ k T = T (-i) k J k ,
to obtain estimate [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF]:

∀k ∈ 0, s , (-i) k J k [u(t, x) -u{α j }(t, x)] -e -2iM ln t T e it∂ 2 x ∇ k u + (x)

L 2 = O(t 1 2 - 
).

Finally, when ∇ k u + ∈ (x 4 L 2 ) for all k ∈ 0, s , the L 2 estimate (8) comes from Schrödinger evolution properties applied to the perturbation and has already been done in section 2.2 of [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF]:

(35) T e it∂ 2 x ∇ k u + (x) --i x 2 k u + - x 2 L 2 = O(t).
The last estimate ( 9) is exactly estimate [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in Hs[END_REF] with k = 0 and Theorem 1.1 is proven.
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α j α p e -iτ p 2 +j 2 4 e

 4 -i(|α j | 2 +|αp| 2 ) ln τ τ τ ∇ k-1 [e iτ (p+j) 2 x e -iτ ∂ 2 x u pj + (x)].
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Finally, as for J b we use (4):

x ≤C(t 0 , α j l 2,k ) sup

Let J d defined by (23):

As announced, this is the limiting term for the time decay.

Proof. The proof is straightforward, we just use direct upper-bounds and dispersion estimate (25) on the Schrödinger group. sup

The last term J e is easier to control, using again Schrödinger dispersion inequality.

Let J e defined by (24):

Proof. It is straightforward to write that:

The stability.

Regarding the results of the previous part,

, so we have the stability inclusion φ(X δ ) ⊂ X δ for α j l 2,q and δ small and t 0 large enough, and choosing µ < max( 1 2 , γ).

The contraction.

In order to apply the fixed point, we still have to prove that φ contracts. Let v and ṽ in Y . From

As for Lemma 2.2, we must avoid estimating sup

by using Gagliardo-Nirenberg (26) on ∇ s v L ∞ . Therefore we rather write sup

for (w 1 , w 2 ) ∈ {ṽ, v} 2 .

To conclude, we finally use the Gagliardo-Niremberg interpolation inequality

L 2 ∇(v -ṽ)

Putting it together, we have that φ(v) -φ(ṽ) S ≤ v -ṽ S C(t 0 , α j l 2,q , u + ),