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Abstract

This paper reports a numerical study of the dispersion of bacteria modelled as active Brownian ellipsoids

placed in a plane Poiseuille flow. The longitudinal (along the flow direction) and transverse (along the

direction perpendicular to the plane of flow) macroscopic dispersion coefficients are determined from the

analysis of a large number of trajectories and their scaling are studied as function of the Péclet number Pe.

Three different regimes are observed: (i) at low shear rate, rotational diffusion associated to the swimming

activity of the bacteria dominates and classical Taylor dispersion regime is observed. In this regime, the

longitudinal dispersion coefficient scales like Péclet square. (ii) an intermediate "active" regime, where

the shear induces a reorientation of the bacteria. This increases the longitudinal dispersion that scales as

Pe2+κ , with κ ranging between 1.5 and 2 for aspect ratio between 10 and 1. In this regime, the dispersion

coefficient in the direction perpendicular to the plane of the flow decreases like log(1/Pe). (iii) a final "new"

Taylor regime, where the diffusivity in the gap is set by the molecular diffusion coefficient. We also show

that the "active" regime originates from the enhancement in the time taken by particles to diffuse across

the channel gap. We further show that, decreasing the channel height delayed the transition to the "active"

regime.

∗ marco.dentz@csic.es
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I. INTRODUCTION

Dispersion of bacteria by a flow in confined environment influences many processes such as

the spreading and contamination of soils by harmful microorganisms or their ability to find and

colonise new niches in natural environments. One of the key questions is the characterisation of

the bias introduced by a flow on their swimming trajectories and its influence on the macroscopic

hydrodynamic transport. By allowing to track bacteria under various flow conditions, microflu-

idics has proven to be a remarkable tool to learn more about the coupling between bacteria and

flow [1]. Since bacteria have a tendency to accumulate on surfaces, many studies have largely

focused on the motion of swimming bacteria on surfaces [2–7]. A wide range of behaviours like

upstream motions [3, 5], transverse motion [6], or oscillations on the surface induced by the rheo-

tactic torque on the flagella [8] are observed by these studies. Away from the surfaces, bacteria

are observed to perform helicoidal trajectories [9–11] similar to the trajectories obtained analyt-

ically by Jeffery [12] for an elongated particle immersed in a sheared viscous fluid. In confined

geometry, the bacteria also have the possibility to explore the flow profile across the channel gap

and are thus exposed to a gradient of shear rates while swimming. This is particularly true in mi-

crofluidic devices, and this results in the migration of the bacteria towards high shear regions [11].

This phenomenon, known as high shear trapping increases the presence of the bacteria close to

surfaces, where shear is the highest [11, 13, 14]. The reverse has also been predicted numerically

i.e. the trapping of bacteria in low shear regions [15]. The trapping of the bacteria in flow regions

will have significant effect on their macroscopic transport. One of the key focuses of the present

work is to study the effect of trapping on the macroscopic scale viz the influence of the compe-

tition between convection by the flow along Jeffery orbits and mixing between the flow lines on

macroscopic longitudinal dispersion. To understand the physics at play, we considered a situation

where bacteria are transported in a Poiseuille flow, such as characterising flow in fractured media.

In a fluid at rest, flagellated bacteria such as Escherichia coli alternate between two phases of

motion [16] : run (motion in essentially straight paths performed at a constant swimming velocity

Vs) and tumble (random change in orientation). This behaviour leads to a 3D diffusive motion with

a diffusion coefficient D0. The same diffusive behaviour is obtained with particles that gradually

change their swimming direction by rotational diffusion with an angular diffusivity DR [17]. Such

particles diffuse with a diffusion coefficient D0 =
V 2

s
6DR

+Dm, where Dm is the molecular diffusion
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coefficient. This Dm would be the diffusion coefficient measured if the bacteria were to lose their

swimming ability. Based on this analogy, Langevin models that incorporate the convection, the

reorientation and the rotation by the flow can be derived [11, 18, 19]. In those approaches, the

bacteria are usually modelled as self-propelling elongated ellipsoid of aspect ratio q that move and

rotate according to the following equations [18]:

ẋ=Vsp+u+

√
2Dm

τ
ξx (1)

ṗ= [I−pp].[(q2−1
q2 +1

)E−W ].p−2DRp−
√

2DR

τ
p∧ξp (2)

where x and p are the particle position and orientation. In the above equations, the particle is

convected by the local flow velocity u characterized by its local strain rate tensor E = [∇u+

∇uT ]/2 and its local vorticity tensor W = [∇u−∇uT ]/2. The Gaussian white noise ξ has

zero mean and unit variance. In this work, Eq.(2) is interpreted in the Ito sense. It should be

kept in mind that the model neglects the finite size of the particles and therefore neglects the

hydrodynamic perturbation of the swimming activity on the fluid and is inaccurate very close to

the walls, where steric interaction occurs. As shown in Raible and Engel [20], this formulation

describes motion on the unit sphere, which implies that the norm of p is conserved and equal to

1. In Eq.(1), molecular diffusion coefficient Dm is included, such contribution is often assumed

negligible [11, 18] but was found to have an important effect on the asymptotic regime [13] and is

considered in our study. In the absence of coupling between the particle re-orientation and the flow

(referred as decoupled case), the particle gets convected at the local flow velocity. Its influence is

balanced by diffusion across the gap. This results in a macroscopic Fickian dispersion parallel to

the flow characterized by the equation [21, 22]:

D‖
D0

= 1+
4

210
Pe2 (3)

where Péclet number Pe =
UH
D0

represents the ratio between the diffusion time in the gap

τtaylor = H2/2D0 and the convective time 2H/U . The objective of this work is to study how

Eq.(3) is modified when the effect of shear and vorticity on the orientation of the particles is taken

into account.

Analytical solution of the set of equations (1) exists for Couette flow (i.e. constant shear rate γ̇)
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and for Dm = 0 [11]. Those studies revealed that the probability distribution of the orientation of

the particles depends on a single dimensionless number that compares the time scale of the flow

γ̇ and the time scale for bacteria to reorient due to their swimming activity DR. For small flow

Péclet number Pe f =
γ̇

DR
all orientations are equally probable but an emergence of a preferential

orientation, increasingly aligned with the flow direction, is observed with increase in Pe f [23, 24].

For Poiseuille flows, a second dimensionless number the swimming Péclet number Pes equivalent

to the Knudsen number for gas that compares the reorientation time scale of the swimmer 1/DR

and the time 2H/Vs for the bacteria to swim across the gap of size 2H was introduced [13]. For

wide channels such as Pes =Vs/2HDR� 1, bacteria are found to migrate either to the surfaces [11,

13] or towards the center of the channel [15] depending on the aspect ratio of the particles and the

flow Péclet number. At larger values of Vs/2HDR the rheotactic effects of the surface becomes

predominant and greatly affects the dispersion of particles [13, 25]. The question we address in

the present study concerns the consequence of the coupling between particle orientation and flow

on the emergence of these low and high shear trapping mechanisms as well as on the macroscopic

longitudinal (direction of flow) and transverse (perpendicular to the plane of flow) dispersion. We

also study its effect on the relaxation time scale (time scale needed to reach the asymptotic regime

across the channel gap).

We performed 3D Langevin simulations on the equations of motion (cf. Eqs.(1) and (2)) to ob-

tain the macroscopic dispersion coefficients in presence of coupling between the particle orienta-

tion and flow. The details of the simulations is presented in Sec. II. In section III, the macroscopic

longitudinal dispersion coefficient obtained, D‖, is studied as function of the Péclet number and

bacteria aspect ratio. This section allows to identify an "active" dispersion regime characterized

by a dispersion coefficient increasing as a power law of the Péclet number with an exponent larger

than 2. We will show that this new exponent mainly reflects the dependence of the relaxation time

scale with the shear rate. We will also demonstrate the distribution profile of the bacteria in the

gap in this "active" dispersion regime. Sec. III.2, we will further show that the increase of the

dispersion in the flow direction is associated with a reduction of the dispersion in the direction

perpendicular to the plane of the flow. In Sec. III.3 and III.4, the effect of the molecular diffu-

sion of the bacteria and the aperture on the domain of existence of the "active" dispersion will

be addressed. Finally, conclusions and some perspectives are provided in sections IV and V

respectively.
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II. MATERIALS AND METHODS

FIG. 1: Schematic representation of a population of swimming bacteria placed in Poiseuille flow.

x is the transverse direction, y is the direction of flow and z is the direction of height (vertical).

Individual bacteria modelled as active Brownian ellipsoid swimming with an orientation p. The

aspect ratio of the particles is q =
a
b

where a is the particle length and b the particle width.

The swimming bacteria were modelled as elongated ellipsoids of aspect ratio q located in a

Cartesian system of reference coordinates by their positions xi(t) (x,y,z) and orientation pi(t)

(px,py,pz) where i is associated to particle index. The particles were subjected to a Poiseuille flow

(See fig.1) whose velocity profile is given by:

u(z) =
3U
2

[
1−
( z

H

)2
]

(4)

where U is the average flow velocity. The local shear rate is : γ̇(z) =
du(z)

dz
= −3Uz

H2 and is

maximal on the surface i.e. for z =±H with γ̇m =
3U
H

. This characteristic value of the shear rate

is used in the definition of the flow Péclet number.

All particles in the system were assumed to be identical. They have the same aspect ratio q, the

same swimming velocity Vs, the same rotational diffusion coefficient DR and the same molecular

diffusion coefficients Dm. For q>1, the long axis of the particle and its swimming direction are

aligned. The case of q = 1 corresponds to a spherical swimmer. Finally, q < 1 corresponds to a

5



particle which swims along the direction of its minor axis. A value of q� 1 is typical of natural

microswimmers like bacteria. For instance, recent studies found that E. coli bacteria trajectories

can be well adjusted by an active rod of an aspect ratio q' 10 [11, 18]. Any other value of q could

be characteristic of an artificial microswimmer.

Their positions and orientations were tracked by integrating Eq.(1) and (2) with a time step τ

and by drawing at each time step and for each particle random numbers from a Gaussian distribu-

tion of zero mean and unit variance. The discrete version of these equations is given in appendix B.

The choice of the integration time step τ is detailed in Appendix C. The equations of motions were

simultaneously solved for 105 trajectories. The particles were initially uniformly distributed in x

and z directions and were situated at y = 0. The particles were confined in the x and z directions

between parallel surfaces located at x =−W and x =W and at z =−H and z = H respectively. W

was fixed at 3 cm and H was varied such that W/H� 1 always.

Surfaces are considered steric boundaries [26, 27], that is, when a particle arrives at a boundary

it moves along the surface until it undergoes a reorientation away from the surface and swims back

into the bulk. These conditions named SBC for Steric Boundary Conditions) allow to reproduce

the large residence times and the persistence of bacteria swimming along the surfaces as observed

experimentally [7, 28]. Some simulations were done with reflective boundary conditions (referred

to RBC) to examine the effect of swimming persistence along surfaces on the results and allow

comparison with published studies [14].

At each time step, the first moment m1k(t) and the variance σ2
k (t) of the distribution of the

population of particles were estimated in all three direction k : x,y,z as:

m1k(t) = 〈k(t)− k(0)〉, (5)

σ
2
k (t) = 〈(k(t)− k(0)−m1k(t))2〉 (6)

where 〈·〉 is the average over all particles.

The Fig. 2 (a) shows the variation of the rate of change σ2
y (t) as function of t for three flow

conditions. The following trend was observed for all the cases: a first linear regime followed by

a plateau. With this representation, the plateau regime corresponds to the diffusive regime. The

relaxation time τc to transit to the diffusive regime was observed to be affected by the flow con-
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ditions used. Increasing the flow Péclet number clearly delays the transition to diffusive regime.

Practically, the two values D‖ and τc were obtained by adjusting the data by the function :

dσ2
y (t)
dt

= 2D‖(1− e−t/τc) (7)

In Fig. 2 (b) the variation of the variance in the gap σ2
z (t) scaled with H2 is shown as function

of time for the same flow conditions as in Fig. 2(a). The variance initially increases with time

indicating that the particle explores the gap which corresponds to the linear regime observed on

Fig. 2(a). At t > τc, σ2
z (t) plateaus to a constant value indicating that the particles have explored

the entirety of the gap. This corresponds to the asymptotic diffusive regime described before.

(a) (b)

FIG. 2: (a) Rate of change of the second moment in the flow direction
dσ2

y (t)
dt plotted as function

of time for different flow Péclet Pe f . The black line corresponds to a fit performed using Eq. 7.

(b) Scaled second moment in z-direction plotted as function of time scaled with Taylor time scale

for different Pe f . F, • and � are respectively for Pe f = 10, 50 and 100 which corresponds to

Péclet numbers of respectively Pe = 125, 625 and 1250. Dashed line fit with Eq. (7) of the

Pe f = 100 case. For all three cases: q = 2, 2H = 100µm, Dm = 1µm2 s−1.

In the following sections, the variations of D‖ and τc are studied as function of the flow and bac-

teria characteristics. They are often compared with the diffusion coefficient measured in absence

of flow, D0, and the corresponding Taylor’s diffusive time scale τtaylor = H2/2D0. Practically,

simulations without coupling with the flow vorticity and shear were achieved by setting E and

W to zero. These cases are referred to as decoupled cases. Unless explicitly mentioned, all the
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simulations were done by setting DR = 1 rad2/s and Vs = 20 µm/s values typically observed for

motile bacteria [29]. The Péclet numbers range from 1 to 2500.

III. RESULTS

III.1. Effect of the particle aspect ratio on the longitudinal dispersion coefficient

In this section, we present results that focuses on the effect of shear coupling on the longitu-

dinal dispersion D‖ and relaxation time scale τc. The molecular diffusion coefficient is neglected

(Dm = 0) for these cases. For this condition, the Péclet number and the flow Péclet number

are related by the relation: Pe = 2D2
RH2

V 2
s

Pe f . We also set the distance between the two plates to

2H = 100µm. Therefore, we have Pe = 12.5Pe f .

The longitudinal dispersion coefficient D‖ obtained for different flow conditions and particle

aspect ratios are represented in Fig.3. For the decoupled case (Filled circles in Fig.3), the results

of the simulation fall onto the theoretical prediction made by Taylor [21, 22, 30], that predicts an

increase of the longitudinal dispersion coefficient like the square of the Péclet. In the other cases,

the simulations first gave D‖ values very close to the values predicted by Taylor. However, for

Pe > 100 (viz Pe f > 10), a deviation from Taylor model is observed. The difference increases with

the Péclet number and D‖ increases faster than Pe2. We recover here the "giant active Taylor–Aris

dispersion" regime reported by Dehkharghani et.al [19].

To understand the origin of the deviation, we determined separately the two terms that con-

tribute to the dispersion: the velocity variance of the particles σ2
Up

and the relaxation time scale

τc. These two terms are related to the dispersion coefficient by the relation D‖ ∼ σ2
Up

τc [31]. Prac-

tically, the variance σ2
Up

of the particle velocity is calculated from the components of the particle

velocities along the flow direction at the end of the simulation. In this way, we have t� τc and the

profiles have reached their asymptotic form. In the situation considered by Taylor, the particles

diffuse freely across the streamlines without any effect of the local fluid shear or fluid vorticity and

the particles are uniformly distributed in the gap. In this case, the relaxation time is constant with

τc ∼ τtaylor, the time to diffuse across the gap, and is independent of Péclet number. In the limit

of a negligible effect of diffusion (i.e. Pe� 1), the variance of the particle and fluid velocities are

identical. For a Poiseuille flow, we have: σ2
Up

= σ2
U = 1

5U2.
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(a) (b)

FIG. 3: (a) Longitudinal dispersion coefficient D‖ normalized by the diffusion coefficient

measured in absence of flow D0 as function of the Péclet number Pe = UH
D0

. The solid line is the

Taylor prediction 1+ 4
210Pe2 [21, 22]. (b) D‖/D0 scaled with respect to Pe2. • are for decoupled

cases (blue: SBC and maroon: RBC)

. J, �, �, I,F and N are respectively for particles of aspect ratios q = 0.5, 1, 1.5, 2, 4 and 10

respectively. Data obtained for 2H = 100µm and Dm = 0.

Figs. 4(a) and (b) shows that these predictions are well obtained in the decoupled case with

reflecting boundaries conditions (RBC): (i) σ2
Up
/U2 plateaus to a value close to 1/5 for Pe > 100

(See Fig.4(a)) and (ii) τc/τtaylor is constant at all Péclet number (See Fig.4(b)). If the bacteria have

the option of swimming along the surfaces (Blue circles in Fig.4), they will spend more time in

regions of zero fluid velocity. This condition increases the normalized variance of the velocities, as

can be seen in Fig.4(a). The blue circles plateau to a value close to 0.3. As for the relaxation time

(See Fig.4(b)), it remains constant and independent of the Péclet number, as for the case of RBC,

but with a slightly higher value. The consequence is an increase of the dispersion coefficient,

which however still varies as Péclet squared as shown in Fig. 3.

We will now look at how these two terms are modified when the particles are coupled with

shear. The Fig.4(a) shows the variation of σ2
Up

normalized by U2 to be first decreasing with in-
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(b)(a)

FIG. 4: (a) Evolution of the normalized variance of of the particle velocity σ2
Up
/U2 as function of

the Péclet number Pe = UH
D0

. (b) Log-Log representation of the normalized relaxation time

τc/τtaylor as function of Pe. J, �, �, I,F and N are for particles of aspect ratios q = 0.5, 1, 1.5,

2, 4 and 10 respectively. • shows the decoupled case (in (a) reflective BC case has also been

included). Solid line: fit by 1+βPeκ of the q = 2 case. The data were obtained with

2H = 100µm, Dm = 0.

crease in Pe. This regime is where the transport of particles is dominated by diffusion. This is

followed by a transition regime between Pe∼ 50−100 and then by a new regime for Pe > 100 (viz

Pe f > 10) where the transport of the particles is dominated by the imposed shear. In this regime,

the values of σ2
Up

normalized by U2 converge to values between 0.16 and 0.2. Now, let us take a

look at Fig 4(b), which shows the variation of the normalized relaxation time τc/τtaylor as function

of Pe. For Pe < 100 (viz Pe f < 10), we observe the relaxation time is constant. In this limit, the

reorientation by the diffusion due to swimming activity dominates and particles diffuse in the gap

as they do in absence of flow, and we have τc ∼ τtaylor. As the flow increases, shear increasingly

aligns the particles along the flow direction. This in turn reduces the diffusivity of the particles

across the gap which results in the increase in relaxation time as shown in Fig 4 (b). In this new

regime, we observe that τc varies as a power law of the Péclet number with an exponent κ . Thus,

D‖ increases as Pe2+κ for these cases.

10



(a) (b)

FIG. 5: (a) Log-Log representation of τc/τtaylor scaled with Pe2 as function of Pe for different q.

The horizontal dashed line is a guide to mark the assymptotic regime reached by small q. (b) κ as

function of Bretherton constant
q2−1
q2 +1

. J, �, �, I,F and N are for particles of aspect ratios

q = 0.5, 1, 1.5, 2, 4 and 10 respectively. The horizontal dashed line shows the value of κ obtained

from the model proposed in appendix E. The data were obtained with 2H = 100µm, Dm = 0.

Dehkharghani et al. [19] report a Pe4 variation of D‖ and this would indicate κ = 2. To check

this, we first plotted τc/τtaylor normalized by Pe2 as shown in Fig. 5(a). We observe that the

value initially decreases for small Pe, which corresponds to the diffusion dominated regime where

τc/τtaylor is constant. At high Pe and for q < 4, we observe that τc/τtaylor normalized by Pe2

to reach an asymptotic horizontal plateau (see the �, �, I and J symbols in Fig. 5(a)). This

indicates that, κ ' 2 for these aspect ratios. However, for the case of q = 4 and 10, we observe

that they are still decreasing with Pe (seeF and N symbols in in Fig. 5(b)), implying that κ < 2.

The κ estimated by fitting τc/τtaylor vs Pe data points with 1+βPeκ are shown in Fig. 5 (b). We

observe the κ values to be very close to 2 for q = 0.5, 1, 1.5 and 2. This is followed by a decrease

in κ and they are ∼ 1.7 and 1.5 respectively for q = 4 and q = 10. This double variation i.e.

change in variance of velocities as U2 (which is the case of Taylor dispersion) with a pre-factor as

function of the aspect ratio, as well as change in relaxation time as Peκ , where κ ∼ f (q) results in

a overall deviation of the macroscopic longitudinal dispersion D‖ from Taylor with D‖ ∼ Pe2+κ .

The fact that this effect is observed only in the case where the effect of local shear on the particle
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reorientation is taken into account, underlines the importance of shear alignment on the increase

of the macroscopic longitudinal dispersion of bacteria.

FIG. 6: Particle distributions in the gap for (a): (Pe f = 0.5, Pe = 6.25), (b): (Pe f = 25,

Pe = 312.5) and (c): (Pe f = 75, Pe = 937.5) and for four aspect ratios : q = 0.5, 1, 2 and 10.

Profiles obtained with RBC at q = 2 (purple curves) are also shown. The data were obtained with

2H = 100µm and Dm = 0.

To identify the consequence of shear-coupling on the localisation of particles in the gap, we

plot the particle distribution for different aspect ratios and Péclet numbers as shown in Fig. 6.

First, we will focus on the profiles far from the surfaces, i.e. at normalized distances z/H between

-0.9 and 0.9, and consider the evolution of the profiles with the Péclet number and with the aspect

ratio of the particles. At low Péclet, the particles are uniformly distributed in the gap. This regime

corresponds to the regime where the longitudinal dispersion of the particles coincides with Taylor

dispersion (D‖/D0 ∼ Pe2). When Pe increases above 100 (which corresponds to Pe f > 10), we

observe a shift in the distribution of the particles across the gap. For instance, at an intermediate

Pe = 312.5 (Fig. 6 (b)), we observe both q = 2 (yellow curve) and 10 (green curve) to exhibit high

shear trapping (bacteria accumulate in regions close to the surfaces). However, q = 10 particles

exhibit a stronger depletion at the centre compared to q = 2 particles. As we increase the Pe to

about 937.5, particles with q = 2 exhibit low shear trapping (particles tend to accumulate in the

center of the channel) whereas bacteria with q = 10 (green curve) still exhibit high shear trapping.

High shear trapping can be differentiated from low shear trapping based on the slope of the particle

distribution close to the channel surfaces [14]. The change of the sign of the slope from negative
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(a) (b)

FIG. 7: (a) Normalized number of particles on the surface as function of the Péclet number (b)

Longitudinal dispersion coefficient D‖ normalized by the diffusion coefficient measured in

absence of flow D0 as function of the Péclet number. The solid line is the Taylor prediction

1+ 4
210Pe2 [21, 22]. The data were obtained with q = 2, 2H = 100µm and Dm = 0. Blue

triangles: SBC and red triangles: RBC.

to positive when going from high shear trapping to low shear trapping allows us to establish a

phase diagram giving the type of trapping observed as a function of the flow Péclet number and

the aspect ratio of the particles. The phase diagram obtained by applying this criterion is shown

in Fig. 8. It can be compared to the diagram obtained by Vennamneni et al. [14] by solving

the 1D Fokker-Planck equation. At low Pe f , the concentration profile is constant in the aperture

and the dispersion regime is the same as the Taylor dispersion observed for passive tracers and

for which κ = 0. This regime is replaced by a high shear trapping regime when the flow Péclet

number becomes greater than 10. The value of the flow Péclet number which characterizes the

transition between uniform distribution (•) to high shear trapping (�) is not observed to depend

on the aspect ratio of the particles. However, with increase in Pe f , we observe that the high shear

trapping regime (�) evolves into a low shear trapping regime (�). The threshold separating these

two regimes increases with the aspect ratio of the particles. It occurs for Pe f between 40 and

50 for aspect ratios of 1.5 or 2 and moves to larger values of Pe f as q increases. The values for

which the transition is observed are of the order of those obtained by Vennamneni et al. [14]. For
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q=10, we note a difference between our simulations and those of Vennamneni et al. [14]. Our

model predicts a transition between the two trapping modes for a flow Péclet number of 300,

while Vennamneni et al. [14] observes a transition for a flow Péclet number between 120 and

200. This delay of the transition to larger flow Péclet numbers might come from the confinement:

the study of Vennamneni et al. [14] considered wide channels for which the swimming Péclet is

small i.e. Pes� 1 whereas our model allows to change this parameter and to explore its influence

on dispersion. In the case of Fig. 8, we have Pes = 0.2. The influence of confinement will be

addressed in Sec. III.4.

Vennamneni et al. [14] also showed that the particle depletion observed in the centre of the

flow in the low shear trapping regime, evolves and finally collapses for particles with large q. This

depletion in the particle distribution is visible in 17(c)-(e) in appendix D. However, in the range

of Pe f explored in this study, we do not observe a complete collapse of swimmer concentration

at the centreline. Accumulation in the centre of the flow is however, here, observed for particles

with aspect ratios of 0.5 (blue curves in Fig. 6) when Pe f > 10. This regime then results in the

co-existence of both low and high shear trapping. This indicates that, these type of particles,

exhibits "jumps" from the highest to lowest shear region and spend little time in the other flow

streamlines across the channel gap. The case of spherical particles (q = 1) shows no trapping and

the particles are uniformly distributed across the channel gap. This observation is in agreement

with the Langevin simulation performed by Rusconi et al. [11].

The distribution of particles near the surfaces also evolves with the flow Péclet number. At very

low flow Péclet numbers, the SBC boundary conditions give rise to a very strong accumulation on

the surface (See Fig. 6(a)). This accumulation not observed when RBC are used (Purple curve in

Fig. 6(a)). In this case, the same number of particles is observed on the surfaces vicinity and in the

fluid. When the flow Péclet number is increased, two effects are seen: (i) the number of bacteria on

the surface drops, and (ii) this is accompanied by a depletion zone of small extension that finally

joins the distribution profile in the fluid. The first effect is illustrated in Fig. 7(a) where we plot

the number of bacteria whose z-positions are -H or H. We see a continuous drop of the number of

bacteria. These two effects leads, at the highest flow Péclet number (See Fig. 6(c)), to a situation

where the maximum of the particle distribution is no longer at the surface. The depletion zone in

the surface vicinity is observed for both boundaries conditions (RBC and SBC). As we will see in
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Sec. III.4, its dimension decreases with the flow Péclet number and is independent of the channel

aperture. Its presence is thus particularly identifiable on simulations done with small H. This is

why this depletion layer is not found in Vennamneni et al. [14] study which is restricted to wide

channels.

Finally, we observe that at high Pe, the two boundaries conditions used have a weak influence

on the steady state distribution (see collapse of yellow and purple curves in Figs. 6 (b) and (c))

and thus on the macrodispersion (see Fig. 7(b)).

FIG. 8: Phase diagram depicting the different regimes in the steady state concentration profiles

across the channel gap observed for different as ratios q as function of the flow Péclet number

Pe f =
γ̇m
DR

. (i) •: Uniform distribution of particles across the channel gap with accumulation on

the surface, (ii) N: Uniform distribution across channel gap with slight depletion on the surface,

(iii) �: High shear trapping, (iv) �: Low shear trapping and (v) I: co-existence of high and low

shear trapping. Data obtained for 2H = 100µm and Dm = 0 with SBC and for Pes = 0.2. It is to

be noted that Pe defined by Vennamneni et al. [15] corresponds to Pe f /2.

III.2. Effect of the aspect ratio on the dispersion coefficient transverse to the plane of the flow

To determine the dispersion coefficient in the direction transverse to the plane of the flow, the

variation of the variance of the transverse position of the bacteria σ2
x as function of time was
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studied. The dispersion coefficient Dx was then obtained by fitting the rate of change of σ2
x using

the same method as for obtaining D‖. Fig. 9 shows Dx as function of Péclet number for swimmers

with different aspect ratios.

FIG. 9: Normalized dispersion coefficient measured in the direction transverse to the plane of

flow as function of the Péclet number. • are for the decoupled case. J �, �, I,F and N are for

particles of aspect ratios q = 0.5, 1, 1.5, 2, 4 and 10 respectively. 2H = 100µm, Dm = 0.

In the decoupled case (circles in Fig. 9), the dispersion coefficient remains very close to the

dispersion coefficient D0 as what we observe in the flow direction. When the coupling with the

flow is taken into account, we find the three regimes observed previously: (i) the flow is first not

strong enough to have a significant influence on the dispersion of the bacteria (Pe<10), (ii) we

then have a transition zone for Péclet between 10 and 100 and (iii) a domain in which the coupling

controls the dispersion. The latter domain is reached for a flow Péclet greater than 10. In contrast

to the longitudinal direction, we observe a reduction of the transverse dispersion coefficient. This

reduction is slow with Dx which varies as log(1/Pe). We also observe that the reduction is more

important for bacteria with a large aspect ratio. This is due to the fact that, as we increase the

shear, the particle displaces longer in the longitudinal direction before reorientation. Even though

there is no flow imposed in x−direction, there will be repercussions due to imposed flow on the

diffusivity because of the shear-coupling effect as well as the interdependence of the orientation
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of particles in one direction with other two directions i.e. px = f (γ̇(z), py, pz) (c.f. Eq.(B4) in

Appendix B).

III.3. Effect of molecular diffusion on the longitudinal dispersion coefficient

In the previous sections, the effect of molecular diffusion was neglected. In this section, we

study its influence on the relaxation time τc and longitudinal dispersion D‖ of the bacteria. In ab-

sence of flow, the diffusion coefficient is now given by: D0 =
V 2

s
6DR

+Dm. In addition to τtaylor, we

can define a second time scale with respect to Dm: H2/2Dm. We make use of the latter to define a

new Péclet number: Pec =
UH
Dm

. To get as close as possible to the conditions of bacteria which have

a characteristic size of the order of a micron meter, simulations were carried out with a molecular

diffusion coefficient ranging from 0.05 to 20µm2 s−1 which corresponds to characteristic sizes of

bacteria between 0.01 and 4µm.

In figures 10 and 11, the influence of Dm for a fixed aspect ratio q = 2 and a channel gap of

2H = 100µm are presented. It can be seen from Fig. 11 that there is a decrease in relaxation time

with increase in Dm. A direct correlation is seen with the longitudinal dispersion coefficient of the

particles as well in Fig 10(a). Three distinct regimes are observed. At low Pe, the longitudinal dis-

persion exhibits a Taylor behaviour where the diffusion is dominated by the effective diffusivity of

the particles D0. Then, there is an intermediate "active" regime where the longitudinal dispersion

deviates from the Taylor regime. Finally, as depicted in Fig. 10(b), the longitudinal dispersion

collapses back into a new "passive" Taylor regime where the diffusive time scale is defined by Dm

and the diffusion is controlled purely by the molecular diffusion coefficient. The transition from

the "active" intermediate regime to the final "passive" Taylor regime is a function of Dm i.e. higher

the Dm the sooner the transition occurs. If the Dm is chosen to be of same order or of higher order

than
V 2

s
6DR

the effect of activity would fully be suppressed by Dm. This result corroborates one of

the results by Vennamneni et. al. [14] where it was concluded by the author that the critical Pe

at which the transition from "active" regime to "passive" taylor regime is inversely proportional to

the magnitude of Dm. As shown by Vennamneni et al. [14], we also observe that the presence of

Dm shifts the steady state distribution of particles in the gap towards a uniform distribution from

high/low shear trapping at high shear rates. We also observe that this effect is in direct correspon-

dence to the limit of τtaylor/τc reaching a new asymptotic value corresponding to the final value
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(a) (b)

FIG. 10: (a) Longitudinal dispersion coefficient normalized by the diffusion coefficient D0

measured in absence of flow as function of the Péclet number Pe = UH
D0

. The solid line is the

Taylor prediction
D‖
D0

= 1+ 4
210Pe2 [21, 22]. (b) Longitudinal dispersion coefficient normalized

by Dm as function of the Péclet number Pec =
UH
Dm

. The solid line is the Taylor prediction
D‖
Dm

= 1+ 4
210Pe2

c . For all plots: (•: Dm = 0.05µm2 s−1, q = 2), (�: Dm = 1µm2 s−1, q = 2), (I:

Dm = 10µm2 s−1, q = 2), (.: Dm = 10µm2 s−1, q = 10), and (�: Dm = 20µm2 s−1, q = 2).

at which the longitudinal dispersion converges to the "passive" Taylor regime where the diffusion

across the gap becomes independent of the imposed shear rate.

Now, let us focus on the effect of Dm on the dispersion of bacteria of different aspect ratio. We

fix Dm = 10µm2 s−1 and we consider q = 2 and q = 10. We observe in Figures 10 and 11, that

the behaviors for the two aspect ratios are very similar. Thus, molecular diffusion suppresses the

effect of the aspect ratio on the dispersion of particles. This shows that the effect of molecular

diffusion is significant not only in the macroscopic dispersion of particles of a given aspect ratio,

but also mitigates the effect of shape on the longitudinal dispersion and relaxation time scales.
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FIG. 11: Evolution of the normalized relaxation time τtaylor/τc as function of the Péclet number

Pe for (•: Dm = 0.05µm2 s−1, q = 2), (�: Dm = 1µm2 s−1, q = 2), (I: Dm = 10µm2 s−1, q = 2),

(.: Dm = 10µm2 s−1, q = 10), and (�: Dm = 20µm2 s−1, q = 2).

III.4. Influence of gap height on the longitudinal dispersion

This section focuses on the influence of channel gap height 2H on the dispersion of the particles

of a given aspect ratio q = 2 and in absence of molecular diffusion (Dm = 0). The simulations

were performed for 4 different swimming Péclet numbers ranging between 0.04 and 0.67. The

different values of Pes were obtained by changing the channel aperture from 30 to 500µm without

changing the swimming characteristics of the bacteria. The Fig. 12 shows the change in longitudi-

nal dispersion with respect to Pe f . We observe that for Pe f > 10, the curves deviate from Taylor’s

prediction to reach the asymptotic power law regime described in Sec. III.1. The power law fit of

the data at large Pe f gives the same value for all three apertures with κ ' 1.96. We also see that

D‖ is larger for 2H = 500µm at a given Pe f than for 2H = 30µm. This is because for a given Pe f ,

the U is larger for 2H = 500µm case than for 2H = 30µm.

From Fig. 13(a) where the normalized variance of particle velocity is plotted as function of

Pe f , we observe that the normalized variance collapses to the asymptotic value in the same manner

as in Fig 4(b). This indicates that the velocity variance scales as Pe2
f . We also observe that the
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FIG. 12: Longitudinal dispersion coefficient normalized by the diffusion coefficient D0 measured

in absence of flow as function of the flow Péclet number Pe f =
γ̇m
DR

. � �, I and • are respectively

for 2H = 30, 100, 200 and 500µm. Data obtained for: q = 2 and Dm = 0. Solid lines of slope

2+κ with κ = 1.96 are also plotted to highlight the power law variation D‖ ∝ Pe2+κ

f .

Data obtained for: q = 2 and Dm = 0.

transition from the diffusive regime (at low Pe f ) to the "active" regime (at high Pe f ) occurs at

a lower Pe f for the wider channels (cf. Fig. 13 (a) and (b)). Decreasing the aperture, therefore,

delays the onset of the "active" regime. For Pe f < 10, we also observe in Fig. 13(b) that the

plateau values of τc/τtaylor decrease when 2H is increased. This is due to a decrease in the surface

accumulation with increase in channel height as shown in Fig. 14. This can be explained as fol-

lows. The swimming Péclet number, Pes =
Vs

2HDR
decreases with increase in 2H. Therefore the

frequency at which a particle encounters the surface is reduced leading to a decrease in the surface

effect. At large 2H and small Pe f � 1, τc/τtaylor plateaus to a value close to the one observed in

Fig. 4(b) for decoupled simulations performed with RBC.

Let us now return to the depletion zone appearing near the surfaces. As we have seen in Sec. III,

this depletion is present for both boundary conditions used (RBC or SBC). To confirm this a

simulation was performed in a channel with a small height under both boundary conditions. The
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(a) (b)

FIG. 13: (a) Normalized variance of particle velocity as function of flow Péclet number

Pe f =
γ̇m
DR

. Horizontal solid line: value of σ2
Up
/U2 for a parabolic profile. (b) Evolution of the

normalized relaxation time τtaylor/τc as function of the flow Péclet number Pe f =
γ̇m
DR

. � �, I

and • are respectively for 2H = 30, 100, 200 and 500µm. Data obtained for: q = 2 and Dm = 0.

(a) (b) 

FIG. 14: Concentration profiles in the channel gap for different flow Péclet number Pe f =
γ̇m
DR

.

(a)2H = 30µm (b) 2H = 500µm Data obtained for: q = 2 and Dm = 0.

concentration profiles obtained for the same flow Péclet are represented in Fig. 14(a) by the blue

and purple curves. Because of the accumulation on the surface, the purple curve is lower than the

blue curve. Apart from this difference already discussed in Sec. III, we observe the same decrease

near the surfaces, i.e. for a normalized distance z/H between -1 and -0.75 or between 0.75 and 1.

This depletion zone narrows when the flow Péclet increases. This results in a depletion zone for
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the green curve (obtained for Pe f = 50) being closer to the surfaces than the purple curve (obtained

with Pe f = 15). The size of the depletion layer extends over about 5 microns for Pe f = 15 and it

will become difficult to detect its presence when the height H increases. For instance, its presence

is hardly discernible on the profiles shown in Fig. 14(a) obtained for 2H = 500µm. We believe

that this zone results from the combined effect of the near-surface vorticity and the reflective

conditions which influence the probability density function of the particle. The extension of this

zone is proportional to the persistence length V s/Dr of the swimmer and its size decreases with the

flow Péclet number. This is because, the projection of the swimming velocity along the z direction

decreases with the shear rate.

IV. DISCUSSION AND CONCLUSIONS

Our study demonstrates that shear alignment of bacteria by flow increases the longitudinal

dispersion coefficient. The consequence of shear alignment on dispersion is observed when the

flow Péclet number Pe f is larger than 10. Below this critical value, diffusion due to the swimming

activity is strong enough to reduce the effect of shear alignment. Bacteria diffuse in the gap like

passive Brownian particles with a diffusive time scale given by the diffusion coefficient D0 asso-

ciated to the random swimming motion of the particle.

For Pe f > 10, a transition from a Taylor-like dispersion regime to an "active" regime where

the longitudinal dispersion coefficient increases such as :
D‖
D0

∝ Pe2+κ . The "active" regime is

characterised by a relaxation time scale τc/τtaylor that increases with the average flow velocity

like Uκ with 1.5 < κ < 2.1. The increase of relaxation time comes from the particles that get

aligned in the flow direction reducing in turn the diffusivity in the gap. The beginning of the

"active" regime is characterised by a depletion of the central part of the channel. Particles then

accumulate in two regions close to the surfaces where the shear is high. The existence of high

shear trapping of the bacteria and depletion at the centre of the channel at high Pe f is in tandem

with the experimental results of Rusconi et al. [11] and the numerical study of Vennamneni et al.

[14]. Like in Vennamneni et al. [14], we also observed, for bacteria with small aspect ratio, that

the high shear trapping regime is followed by a low shear trapping i.e. particles are trapped more

at the vicinity of the centre with increase in shear rate and still the depletion at the centre deepens.

Vennamneni et al. [14] also predicts a centerline collapse of the particle distribution for q > 2.
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This final regime is not observed in our study, most likely because it requires a flow Péclet number

well above 300 which is the largest value considered here. For the first time, the existence of

both high shear and low shear trapping at large Pe f for q = 0.5 was observed. In this case, the

accumulation was either at the centre of the channel, where the shear was zero or on the surface,

where the shear was maximum. This indicated that, these particles, due to their unique swimming

mechanism, tend to make big "jumps" from the highest to lowest shear regions across the flow

lines in the channel gap.

The anomalous exponent κ was found to be very close to 2 for particle with aspect ratio less

than 2. This value is consistent with the value obtained by a physical model for spherical particles.

For larger q, the exponent κ decreases. A recent preprint [32] reports an asymptotic value of

κ = 4/3 ' 1.33 for q→ ∞; this value obtained using multi-scale analysis is close to the value of

κ ' 1.5 obtained for the largest aspect ratio (q = 10) considered in our study. Finally, we observe

that reducing the aperture delays the transition to the "active" regime.

Additional diffusion term puts an end to the Pe(2+κ) behaviour. A new regime is reached when

the apparent diffusion coefficient in the gap becomes similar to the extra diffusion term. The dis-

tributions of the particles in the gap flatten again (like observed at small Pe) and the longitudinal

dispersion coefficient then scales again like Péclet to the square but with a new Péclet number

based on the diffusion coefficient, Dm, instead of the diffusion coefficient D0. We then have:
D‖
Dm

= 1+αPe2
c or equivalently

D‖
Dm

= 1+α( D0
Dm

Pe)2.

V. PERSPECTIVES

This study is the first step to a more complete description of dispersion of swimming bacteria

that would include the heterogeneous and disordered structure of the flow observed in porous

media. In the present study, we assume that the suspension is diluted in the bulk and that the

particles are small in size such as there is no particle-particle interaction and the effect of particles

on the flow field of surrounding fluid is negligible. However, we know that when the number of

bacteria increases new phenomena like collective motion emerges [33] with effect on the effective

viscosity [34, 35]. As a first step, this effect can be included in our model by introducing a local

viscosity as function of the local shear and of the local bacteria concentration. This could be the
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first step towards a comprehension of the effect of bacterial number on the macroscopic dispersion

that would include hydrodynamic interactions between swimmers.
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Appendix A: Langevin equation for particle orientation

In this appendix, we show that the Langevin equation (2) preserves the magnitude of p equal

unity. Furthermore, we show the equivalence of the Langevin model to the two-dimensional

model employed in the study by Rusconi et al. [11] by writing (2) in polar coordinates. First,

we demonstrate that the magnitude is conserved. To this end, we write the Langevin equation for

p2(t) = p(t) ·p(t). Using the Ito rule, we obtain

d p2

dt
= 2p · (I−p⊗p)

(
q2−1
q2 +1

E−W
)
p−4DR p2

−
√

2DRp ·p∧ξp +4DR p2. (A1)

As p ·p∧ξp = 0, we have

d p2

dt
= 2(p− p2p)

(
q2−1
q2 +1

E−W
)
p. (A2)

For p2(t = 0) = 1, the solution of this equation is constant p2(t) = 1. Thus, the magnitude is unity

and conserved.

In order to see the equivalence to the model by Rusconi et al. [11], we first write Eq. (2) in two

dimension,

dp
dt

= (I−p⊗p)
(

q2−1
q2 +1

E−W
)
p−DRp

−
√

2DRρ
> ·ξp, (A3)
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where ρ= (p2,−p1)
>. We now set p1 = cos(θ) and p2 = sin(θ). The Langevin equation for the

angle can be written in general as

dθ

dt
= A(θ)+

√
2B(θ)ξ . (A4)

We determine the drift and diffusion coefficients A and B by comparison with the equation for

p1 = cos(θ). We can write

d p1

dt
=−sin(θ)

dθ

dt
−B(θ)cos(θ) = F(θ)−DR cos(θ)

−
√

2DR sin(θ)ξ1, (A5)

where we defined

F(θ) = e1 ·
[
(I−p⊗p)

(
q2−1
q2 +1

E−W
)
p

]
. (A6)

with e1 the unit vector in 1-direction. We substitute (A4) into (A5) to obtain

− sin(θ)
[
A(θ)+

√
2B(θ)ξ

]
−B(θ)cos(θ) =

F(θ)−DR cos(θ)−
√

2DR sin(θ)ξ1, (A7)

By comparison, we find that B(θ) = DR and

A(θ) =− F(θ)

sin(θ)
. (A8)

Thus, the Langevin equation for the angle θ is given by

dθ

dt
=− F(θ)

sin(θ)
+
√

2Dξ . (A9)

The strain rate tensor for two-dimensional Poiseuille flow is E11 = E22 = 0 and

E21 = E12 = σ =−u0y/a2 (A10)

and local vorticity is W11 =W22 = 0 and

W21 =−W12 = σ . (A11)

Thus, we obtain for F

F =C12 p2− p2
1 p2(C12 +C21), (A12)
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where we defined C = q2−1
q2+1E−W . And for A =−F/sin(θ) =−F/p2, we obtain

A =−C12 + p2
1(C12 +C21) (A13)

Now we note that

C12 = σ

(
q2−1
q2 +1

+1
)
, C21 = σ

(
q2−1
q2 +1

−1
)

(A14)

and therefore

A =−σ

(
q2−1
q2 +1

+1
)
+2p2

1σ
q2−1
q2 +1

=
u0y
a2

[
1+

1−q2

1+q2 cos(2θ)

]
(A15)

where we used that p1 = cos(θ) and σ = u0y/a2. Thus, we obtain for the angle θ the Langevin

equation

dθ

dt
=

u0y
a2

[
1+

1−q2

1+q2 cos(2θ)

]
+
√

2DRξ , (A16)

which is equivalent to the Langevin equation considered by Rusconi et al. [11].

Appendix B: Numerical implementation

x(t) = x(t− τ)+ τVs px(t− τ)+
√

2Dmτξx (B1)

y(t) = y(t− τ)+ τVs py(t− τ)+
γ̇mHτ

2
[1− [

z(t− τ)

H
]2]+

√
2Dmτξy (B2)

z(t) = z(t− τ)+ τVs pz(t− τ)+
√

2Dmτξz (B3)

px(t) = px(t− τ)− γ̇mz(t− τ)τ

H
[Bpx(t− τ)py(t− τ)pz(t− τ)]

−2DRτ px(t− τ)−
√

2DRτ py(t− τ)ξpz +
√

2DRτ pz(t− τ)ξpy (B4)

py(t) = py(t− τ)+
γ̇mz(t− τ)τ

2H
[pz(t− τ)[B[1−2p2

y(t− τ)]+1]

−2DRτ py(t− τ)−
√

2DRτ pz(t− τ)ξpx +
√

2DRτ px(t− τ)ξpz (B5)

pz(t) = pz(t− τ)− γ̇mz(t− τ)τ

2H
[py(t− τ)[B[2p2

z (t− τ)−1]+1]]

−2DRτ pz(t− τ)−
√

2DRτ px(t− τ)ξpy +
√

2DRτ py(t− τ)ξpx (B6)
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The above equations (B1 - B6) where coded in MATLAB. The channel height varies from

z =−H to z = H and the width varies from x =−W to x =W and we have chosen W � H.

The particles are initially uniformly distributed between -W and W in x-direction, -H and H

in z-direction and all are situated at y = 0.The initial orientation angles θ and φ were uniformly

distributed between 0 to 2π and the initial orientations were given by:

px(0) = sinθcosφ ; py(0) = sinθsinφ and pz(0) = cosθ

The boundary condition is implemented as follows: if the position of particle crosses the

boundary it is restricted to stay at the boundary until it reorients itself and flows back into the

channel i.e. if x(t) >W or x(t) < −W the particle is restricted to stay at x(t) =W or −W until it

reorients and translates itself back into the channel. The same condition is used for z(t) as well.

The above equations are for determining the position and orientation for one particle at any

instant time (t) provided its position and orientation of previous time step (t− τ) is known. The

same equations are solved simultaneously for 105 particles and it is carried out for long times (in

order to obtain the steady state profile across the channel gap)

Appendix C: Convergence test

The choice of an integration time step τ is a key parameter for performing the simulations. We

chose the value of τ as function of period of rotation at a given γ̇m value. The period of rotation is

defined as:

T =
2π

γ̇m
(q+

1
q
)

It can be seen that for any given value of γ̇m, q= 1 would have the lowest T value. Therefore the

choice of τ was with respect to T (q = 1). In order determine the best choice of τ , we performed

the simulations for different τ values for a high Pe case (γ̇m = 50) and checked for the convergence

of D‖/D0 values.

In Fig. 15, the choice of τ for q = 1 and 2 were T/50, T/100, T/200, T/350 and T/500. We
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FIG. 15: Longitudinal dispersion coefficient D‖ normalized by the diffusion coefficient in

absence of flow D0 as function of the integration time τ in s. The flow rate is such that

γ̇m = 50s−1. (�) q=1, (3) q=2 and (•) q=10. The dashed line represents the asymptotic value

observe the convergence of D‖/D0 to an asymptotic value as we decrease the value of τ . We ob-

serve the convergence to happen from τ = T/350 onwards for q = 1 and from τ = T/200 onwards

for q = 2. For the case of q = 10, since the values converged at a higher τ , we stopped the test for

convergence at T/200 itself. This convergence in the values of D‖/D0 is also corroborated with a

convergence of steady steady profiles of particles in the gap obtained for different integration time

step τ as shown by Fig. 16.

Based on the results of the convergence test carried out (c.f. Figs. 15 and 16), we chose

τ = T/350 for q = 1 simulations, τ = T/200 for q = 2 simulations and τ = T/50 simulations.

Appendix D: Bacteria concentration profiles obtained for different flow Péclet

This appendix present the profiles obtained for different aspect ratio q for different flow Péclet.
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(b)(a)

(c)

FIG. 16: Bacteria concentration profiles obtained for the same γ̇m = 50s−1 but for different

integration time τ . (a) q=1, (b) q=2 and (c) q=10.

Appendix E: Proposition of a physical model for observed power law variation in D‖

We propose the following model to estimate the value of κ . We know that D∼ σ2
Up

τc and that

σ2
Up

scales with the average flow velocity like U2. The pre-factor between σ2
Up

and U2
p depends on

the asymptotic bacteria concentration profile in the gap. Our simulations validate this hypothesis.

Thus, the additional component apart from the quadratic varition in the power law obtained, comes

essentially from the relaxation time which increases with Pe.

At high Pe, the rotation period of the bacteria is set by the flow and scales like T ∼ γ̇−1
m [12].
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(f) (e) (d) 

(c) (b) (a) 

FIG. 17: Concentration profiles for decoupled case and different aspect ratios with SBC

conditions as function of Pe f . (a) Decoupled case, (b) q = 1, (c) q = 2, (d) q = 4, (e) q = 10 and

(f) q = 0.5. Data obtained for 2H = 100µm and Dm = 0.

During one period of rotation, the amplitude of the motion of the bacteria in the gap is then

l ∼VsT . Since γ̇m =
3U
H

, we have l ∼ H
Vs

U
. This means that, increasing the flow velocity reduces

the amplitude of movement across the gap. The separation between time scales characterizing

the particle orientation dynamics of characteristic time τR = 1/DR and those that characterize

the period of rotation T along its helicoidal trajectory allows us to propose a model in which the

particle diffuses by jumping between helicoidal trajectories. In this model, the diffusive time is τR,

and diffusion permits jumps of length l. The diffusion coefficient across the channel gap and the

time to diffuse in the gap are then given by, Dz =
2l2

τR
and τc =

2H2

Dz
. We thus have, τc =

H2τR

l2 .

Since l ∼ H
Vs

U
, the relaxation time is τc ∼ τR(

U
Vs
)2.

From the above expression for the relaxation time τc, we can deduce the dispersion coefficient

in the direction of the flow using the relation D‖ ∼ σ2
Up

τc. Using the observation that σ2
Up
∼U2,

we find D‖ ∼U4. This model captures well the behavior of spherical particles (q = 1), but over-
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estimates the exponent κ measured for aspect ratios different from 1. The difference between

the model and the simulation can be explained by the strong assumptions on which the model is

based. We implicitly assumed that the jumps are independent without correlation with each other

and that they follow a "not too wide" distribution. The observation of a preferential localization

of particles across the channel gap at large flow velocities suggests that the jumps between trajec-

tories probably retain some memory of previously occupied trajectories. The dependence of the

relaxation time on the flow velocity is then probably more complex than predicted by our model.
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