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We consider a one-dimensional stationary time series of fixed duration T . We investigate the
time tm at which the process reaches the global maximum within the time interval [0, T ]. By using
a path-decomposition technique, we compute the probability density function P (tm|T ) of tm for
several processes, that are either at equilibrium (such as the Ornstein-Uhlenbeck process) or out
of equilibrium (such as Brownian motion with stochastic resetting). We show that for equilibrium
processes the distribution of P (tm|T ) is always symmetric around the midpoint tm = T/2, as a
consequence of the time-reversal symmetry. This property can be used to detect nonequilibrium
fluctuations in stationary time series. Moreover, for a diffusive particle in a confining potential, we
show that the scaled distribution P (tm|T ) becomes universal, i.e., independent of the details of the
potential, at late times. This distribution P (tm|T ) becomes uniform in the “bulk” 1� tm � T and
has a nontrivial universal shape in the “edge regimes” tm → 0 and tm → T . Some of these results
have been announced in a recent Letter [Europhys. Lett. 135, 30003 (2021)].
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I. INTRODUCTION

Understanding the statistical properties of the extremes of stochastic processes is a task of paramount importance in
a wide range of contexts, including the physics of disordered systems [1, 2], computer science [3–5], and evolutionary
biology [6, 7]. During the last century, these properties have been investigated systematically within the field of
Extreme Value Statistics (EVS) – for a recent review, see [8]. Given a one-dimensional time series x(τ), where
0 ≤ τ ≤ T indicates time, one of the central quantities in EVS is the global maximum M of the process up to time
T , defined as

M = max
0≤τ≤T

x(τ) . (1)

A schematic representation of a stochastic process x(τ) is shown in Fig. 1, where the global maximum M is highlighted.
Even though computing the distribution of M is generally quite nontrivial, a few exactly solvable cases exist. In

particular, one of the fundamental results in EVS deals with the case where the positions of the process at different
times are independent and identically distributed (i.i.d.) random variables (meaning that x(τ) and x(τ ′) are i.i.d.
if τ 6= τ ′). In this i.i.d. case, one can show that for large T the distribution of M always belongs to one of three
universality classes, independently of the specific distribution of the random variables x(τ) [9]. This universal result
can also be extended to the case where the process x(τ) is weakly correlated, meaning that the autocorrelation function
of x(τ) decays exponentially in time as

〈x(τ)x(τ ′)〉 − 〈x(τ)〉〈x(τ ′)〉 ∼ f
(
|τ − τ ′|

ξ

)
, (2)

where ξ is the correlation time of the process and f(z) decays faster than any power law for large z. Indeed, using a
“block renormalization” argument, one can still apply the same universal result as for i.i.d. variables when T � ξ [8].

Even though in many cases one is interested in the magnitude M of the maximum, an equally important observable
is the time tm at which the maximum is attained (see Fig. 1). Indeed, determining the time at which a time series will
reach its global maximum is relevant in many different situations, from finance [10–13] to sports [14]. For instance,
the time tm at which a stock price in the financial market reaches its global maximum within a fixed time window
T (e.g., a trading day) is a quantity of clear practical importance. The distribution P (tm|T ) of the time tm of the
maximum has been investigated for a wide range of processes. For instance, when the variables x(τ) for 0 ≤ τ ≤ T
are i.i.d. it is easy to show that the distribution of tm is uniformly distributed in the interval [0, T ], i.e., that

P (tm|T ) =
1

T
, (3)

for 0 ≤ tm ≤ T .
When correlations are present the probability density function (PDF) P (tm|T ) is usually more complicated. For

instance, in the paradigmatic case of an overdamped Brownian motion (BM) in one dimension the distribution of tm
was first computed by Lévy, who showed that [15–17]

P (tm|T ) =
1

π
√
tm(T − tm)

. (4)

Since the corresponding cumulative distribution reads

P (tm ≤ t|T ) =

∫ t

0

dtmP (tm|T ) =
2

π
sin−1

(√
π

T

)
, (5)

this distribution is known as Lévy’s arcsine law. More recently, the distribution P (tm|T ) has been studied for several
generalizations of BM, including constrained BM [13, 18–25], BM with stochastic resetting starting from the origin
[26, 27], BM with drift [13, 18, 19], fractional BM [28, 29], Bessel process [22], Lévy flights [17, 30], random acceleration
process [31], and heterogeneous diffusion [32]. The distribution of tm has also been studied in the case of run-and-
tumble particles (RTP) [25, 33, 34] and for N vicious walkers [35]. Moreover, the distribution of the time of the
maximum plays a central role for computing the mean area of the convex hull of a two-dimensional process [27, 36–
40] and for determining the hitting probability for anomalous diffusion processes [31]. However, to the best of our
knowledge, before our recent Letter [41], the time of the maximum was never systematically investigated in the case
of stationary stochastic processes.

Stationary processes, i.e., stochastic processes that are invariant under a time shift, can be observed at very different
scales in nature, from Brownian motors inside the cell [42] to climate systems [43]. A fundamental step in characterizing
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FIG. 1: Schematic representation of a stochastic process x(τ) as a function of τ , for 0 ≤ τ ≤ T . The global maximum
M = x(tm) is reached at time tm.

a stationary system is to determine whether it is at equilibrium or out of equilibrium. In addition to being stationary,
equilibrium processes satisfy a stronger condition, namely detailed balance, which requires all probability currents in
phase space to vanish. As a consequence of the detailed balance condition, equilibrium processes are also invariant
under time-reversal symmetry and their physical properties are generally well-understood within the framework of
statistical physics. On the other hand, nonequilibrium processes are characterized by probability currents in the steady
state. Moreover, even though in recent years several general results have been derived concerning the fluctuations in
out-of-equilibrium systems [44–49], it still remains challenging to characterize precisely the statistical properties of
these fluctuations. For this reason, several techniques for detecting nonequilibrium fluctuations in steady states have
been developed – for a review see [50].

Notably, the case in which the autocorrelation function of the process decays over a typical timescale ξ (as in
Eq. (2)) has been recently investigated in the context of EVS [8, 27, 51, 52]. In particular, both for the Ornstein-
Uhlenbeck process [8] and BM with resetting [8, 27, 51], it has been shown that the distribution of the maximum
M , when properly rescaled, converges to the universal Gumbel form for T � ξ, where the correlation timescale ξ
depends on the details of the process. A similar late-time universality has also been observed for the record statistics
of random walks with resetting [52]. The reason for these universal results is that, when T � ξ, one can apply a block
renormalization argument which reduces the system to a collection of i.i.d. variables (for the details of this argument,
see [8]). On the other hand, when T � ξ the process is strongly correlated and one cannot apply the universal results,
valid for i.i.d. variables. Therefore changing the observation time T , the process interpolates between a strongly
correlated state (for T � ξ) and an independent state (for T � ξ), as summarized in Fig. 2. For this reason,
stationary processes provide a natural laboratory to investigate the role of correlations in EVS.

Since the time tm is one of the central quantities in EVS, it is natural to ask whether the universality at late
times also applies to the distribution P (tm|T ). Note that, even for short times, one could naively argue that for a
stationary process the distribution P (tm|T ) should be given by the uniform measure in Eq. (3), as a consequence of
the time-translational invariance. Interestingly, this is not the case due to the time-correlations of the process, as
shown in [41]. Nevertheless, one expects the time-correlations of the process to become negligible for T � ξ, leading
to the uniform distribution in Eq. (3). In our recent Letter [41], using a path-decomposition technique, we have shown
that this is the case only in the “bulk” of the distribution P (tm|T ), i.e., for ξ � tm � (T − ξ). In the “edge regimes”
for tm → 0 and tm → T the distribution P (tm|T ) strongly deviates from the uniform distribution. Moreover, we have
also shown that for a large class of equilibrium processes the full distribution P (tm|T ), including the edge regimes,
becomes universal at late times. These results were recently announced, albeit without any further details, in [41].
The present paper provides a detailed description of these derivations, which we believe could be useful to investigate
other problems in EVS.

In this paper we study the distribution of P (tm|T ) for several processes, both in and out of equilibrium. It turns
out that computing P (tm|T ) analytically is very hard, except for a handful of processes. In this paper, we present
analytical solutions of P (tm|T ) for two equilibrium processes corresponding to an overdamped BM in a confining
potential, respectively, of the form (i) V (x) = α|x| and (ii) V (x) = αx2 (the latter is the standard Ornstein-Uhlenbeck
process). Similarly, we also obtain analytical solutions of P (tm|T ) for two very different out-of-equilibrium processes:
(iii) a resetting Brownian motion (RBM) in one dimension and (iv) an RTP moving in the presence of a confining
potential V (x) = µ|x|. In the case of RBM, previous results for P (tm|T ) were known only for the case when the
particle starts initially at a fixed position x0 = 0, namely at the origin [26, 27]. In contrast, we show in this paper
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FIG. 2: The behavior of stationary stochastic processes of total duration T and correlation time ξ is controlled by the
dimensionless parameter T/ξ. When T � ξ the process is strongly correlated, while one can map the process into a collection
of i.i.d. variables for T � ξ.

that when the initial position x0 is sampled from the stationary distribution, P (tm|T ) is considerably different and is
harder to compute. In addition to these four cases, we also study several other examples using numerical simulations
and we highlight some universal properties of P (tm|T ), in particular at the edges when tm → 0 or tm → T . We then
provide a block renormalization group argument to compute some of these universal edge scaling functions. Finally,
we also provide a rather general sufficiency test to decide whether a given stationary process is out of equilibrium
without having any a priori knowledge of its underlying dynamics. This test turns out to be incredibly simple: if
P (tm|T ) turns out to be asymmetric around T/2 (either from simulations or analytical computations), the underlying
process is surely out of equilibrium. If P (tm|T ) turns out to be symmetric around T/2, the test is inconclusive.

The rest of the paper is organized as follows. In Section II, we provide a summary of our main results. In Section III,
we investigate the time tm of the maximum in the case of equilibrium processes. We consider the paradigmatic model
of an overdamped Brownian particle in one dimension subject to an external potential V (x) such that V (x) ≈ α|x|p
for large |x|. Using a path-decomposition technique, we derive an exact result in the cases V (x) = α|x| (subsection
III A) and V (x) = αx2 – corresponding to the Ornstein-Uhlenbeck process (subsection III B). Moreover, in subsection
III C we show that for p > 0 the distribution of tm becomes universal at late times. In Section IV, we investigate the
distribution of tm for nonequilibrium processes, including RBM (subsection IV A) and a confined RTP (subsection
IV B). In addition, in subsection IV C, we formulate a simple criterion, based on the estimation of the distribution
P (tm|T ), to detect nonequilibrium fluctuations in steady states. Finally, in Section V, we conclude with a summary
and we discuss possible perspectives. Some details of the computations are presented in the appendices.

II. MODELS AND SUMMARY OF THE MAIN RESULTS

Since the paper is rather long, we provide a concise description of the models and a summary of our main results, so
that the main mathematical formulae can be easily retrieved without a detailed search in the main body of the paper.
We consider a one-dimensional stationary process x(τ) for 0 ≤ τ ≤ T . We assume that at time τ = 0, the process has
already reached a steady state. This is equivalent to assuming that the system is initialized at some arbitrary state
at time τ = −∞ and that we start to observe it at time τ = 0. Our goal is to compute analytically the distribution
P (tm|T ) of the time tm at which the process reaches its global maximum up to time T . Note that the domain of tm
is the time interval [0, T ]. We consider different stochastic models, both at equilibrium and out-of-equilibrium.

A. Equilibrium processes

We consider a class of equilibrium processes corresponding to an overdamped Brownian particle in a confining
potential V (x), such that V (x) ≈ α|x|p, with α > 0 and p > 0. The position x(τ) of the process evolves according to
the Langevin equation

dx(τ)

dτ
= −V ′(x) +

√
2Dη(τ) , (6)

where η(τ) is a Gaussian white noise with zero mean and correlator 〈η(τ)η(τ ′)〉 = 2Dδ(τ − τ ′), D > 0 is the diffusion
constant, and V ′(x) = dV (x)/dx. The equilibrium stationary state of this process is given by the Boltzmann weight
Pst(x0) ∝ e−V (x)/D. Computing the full distribution P (tm|T ) for any p > 0 is challenging. Nevertheless, we are able
to calculate this quantity in two exactly solvable cases.
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1. The case p = 1

In the case V (x) = α|x|, we show that

P (tm|T ) =
α2

4D
F1

(
α2

4D
tm,

α2

4D
(T − tm)

)
, (7)

where the double Laplace transform of F1(T1, T2) is given by∫ ∞
0

dT1e
−s1T1

∫ ∞
0

dT2e
−s2T2F1(T1, T2) (8)

=
1

2(1 +
√

1 + s1)(1 +
√

1 + s2)

[
1 +

∫ ∞
0

dz e−z

(√
1 + s1 + 1− e−

√
1+s1z

)(√
1 + s2 + 1− e−

√
1+s2z

)
(√

1 + s1 − 1 + e−
√

1+s1z
) (√

1 + s2 − 1 + e−
√

1+s2z
) ] .

Inverting this double Laplace transform is highly nontrivial. Nevertheless, from this expression it is easy to check
that P (tm|T ) is symmetric around the midpoint tm = T/2, i.e., that P (tm|T ) = P (T − tm|T ). This implies that
the first moment of tm is simply given by 〈tm〉 = T/2. Interestingly, this property, which is a consequence of the
time-reversal symmetry, is valid for any equilibrium process and is confirmed by numerical simulations (see Fig. 4a).
This observation will lead us to formulate the criterion discussed below to decide whether or not a stationary time
series is at equilibrium.

In addition, from the expression in Eq. (8), it is possible to extract the asymptotic behavior of P (tm|T ) for small
and large T . When T � ξ, where ξ = (4D)/α2 is the correlation time of the process, we find

P (tm|T ) ≈ 1

π
√
tm(T − tm)

, (9)

which corresponds to the arcsine law, valid for free BM (see Eq. (4)). Thus, for short times the process is strongly
correlated and behaves as a BM. On the other hand, in the late-time regime T � ξ, we find

P (tm|T ) ≈



1
TG

(
α2

4D tm

)
for tm . 4D/α2 ,

1
T for 4D/α2 � tm � T − 4D/α2 ,

1
TG

[
α2

4D (T − tm)
]

for tm & T − 4D/α2 ,

(10)

where

G(z) =
1

2

[
1 + erf(

√
z) +

1√
πz
e−z
]
, (11)

and erf(z) = (2/
√
π)
∫ z

0
du e−u

2

. This function G(z) has asymptotic behaviors

G(z) ≈


1/(2
√
πz) for z → 0 ,

1 + e−z/(4
√
πz3/2) for z →∞ .

(12)

Thus, the PDF P (tm|T ) becomes constant in the bulk regime where 4D/α2 � tm � T − 4D/α2. The edge regimes
tm → 0 and tm → T are instead described by the function G(z) in Eq. (11). In particular, P (tm|T ) diverges as
∼ 1/

√
tm for tm → 0 and by symmetry as ∼ 1/

√
T − tm for tm → T . The width of the edge regime is in this case

O(1).

2. The case p = 2

In the case V (x) = αx2, corresponding to the Ornstein-Uhlenbeck process, we obtain

P (tm|T ) = αFOU(αtm, α(T − tm)) . (13)



6

0 T/2 T
tm

1/T

P
(t
m
|T
)

left edge

bulk

right edge

FIG. 3: Schematic representation of the late-time distribution P (tm|T ) as a function of tm for Brownian motion in a potential
V (x) = α|x|p with diffusion constant D. The blue curve represents the universal result in Eq. (16). The distribution is flat
in the bulk regime λ(T ) � tm � (T − λ(T )), while it diverges in the edge regimes tm → 0 and tm → T . The width of the
edge regimes is λ(T ), given in Eq. (17). Since the process is at equilibrium, the distribution is symmetric around the midpoint
tm = T/2, i.e., P (tm|T ) = P (T − tm|T ).

where ∫ ∞
0

dT1

∫ ∞
0

dT2 e
−s1T1−s2T2FOU(T1, T2) =

1√
8π

∫ ∞
−∞

dz e−z
2/2D−1−s1/2 (−z)

D−s1/2 (−z)
D−1−s2/2(−z)
D−s2/2(−z)

. (14)

Here, Dp(z) is the parabolic cylinder function [53]. From this expression, we find that the distribution P (tm|T )
is symmetric around tm = T/2, implying 〈tm〉 = T/2. This is in agreement with the fact that the process is at
equilibrium.

The asymptotic behaviors of P (tm|T ) for short and late times are qualitatively similar to the ones we obtained for
p = 1 (see Eq. (10)). In particular, in the short-time regime T � ξ, where ξ = 1/α for this model, we find that the
distribution P (tm|T ) approaches the arcsine law in Eq. (4). Thus, for short times the process is strongly correlated
and we find that the distribution of tm approaches that of a BM. On the other hand, in the late-time regime T � ξ,
we obtain

P (tm|T ) ≈



1
TG (α ln(T ) tm) for tm . 1/(α ln(T )) ,

1
T for 1/(α ln(T ))� tm � T − 1/(α ln(T )) ,

1
TG (α ln(T ) (T − tm)) for tm . 1/(α ln(T )) ,

(15)

where the function G(z) is given again in Eq. (11). Interestingly, we find that the late-time behavior of P (tm|T ) is
the same for p = 1 and p = 2. The only difference is the width of the edge regimes, which is O(1) for p = 1 and
O(1/ ln(T )) for p = 2. This result is quite unexpected and led us to ask whether this universality extends to any
p > 0.
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FIG. 4: a) Probability density function P (tm|T ) as a function of the time tm of the maximum for the Ornstein-Uhlenbeck
process of duration T = 1, with α = D = 1. The curve is symmetric around the midpoint tm = T/2 (vertical dashed line).
b) Probability density function P (tm|T ) versus tm for Brownian motion with stochastic resetting, obtained from numerical
simulations with D = T = 1 and r = 10. The curve is not symmetric around the midpoint tm = T/2 (see also Fig. 15).

3. Universality at late times

Using a “block renormalization” argument, we indeed show that the late time behavior of P (tm|T ) is universal for
any p > 0. In particular, for T � ξ, we find that

P (tm|T ) ≈



1
TG

(
tm
λ(T )

)
for tm . λ(T )

1
T for λ(T )� tm � T − λ(T )

1
TG

(
T−tm
λ(t)

)
for tm & T − λ(T ) ,

(16)

where G(z) is given in Eq. (11) and

λ(T ) =
4D

α2p2

(
D

α
ln(T )

)−2(p−1)/p

. (17)

Interestingly, at late times the distribution P (tm|T ), once appropriately scaled, becomes completely universal, i.e.,
independent of the specific details of the model. Note that the model parameters α and p appear in the expression of
P (tm|T ) only through the width λ(T ) of the edge regime. This quantity is constant with increasing T (for large T )
for p = 1, it shrinks as ln(T )−2(p−1)/p for p > 1, while it grows as ln(T )2(1−p)/p for 0 < p < 1. Setting p = 1 or p = 2
in Eq. (16), we recover the results in Eqs. (12) and (15).

B. Out-of-equilibrium processes

We also investigate the distribution of the time of the maximum in the case of out-of-equilibrium stationary
processes. In this case, the system does not satisfy the time-reversal symmetry. Consequently, the distribution
P (tm|T ) is generally not symmetric around the midpoint tm = T/2. The two exactly solvable processes that we
consider are a single RBM and a confined RTP.
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1. Resetting Brownian motion

We consider a Brownian particle with diffusion coefficient D. The particle is reset to the origin x = 0 at a constant
rate r. In other words, in a small time interval dt, the position x(τ) of the particle evolves according to [51, 54]

x(t+ dt) =


x(t) +

√
2Dη(t)dt with probabilty 1− rdt ,

0 with probabilty rdt .

(18)

The resetting process admits the following nonequilibrium steady state [51]

Pst(x0) =
1

2

√
r

D
exp

(
−
√

r

D
|x0|
)
. (19)

Note that the detailed balance is manifestly violated by the resetting move in Eq. (18) that induces a nonzero current
to the resetting point x = 0, even in the stationary state. Consequently, the RBM is a nonequilibrium process.

Using a path-decomposition technique, we show that P (tm|T ) has the scaling form

P (tm|T ) = rFR(rtm, r(T − tm)) , (20)

where ∫ ∞
0

dT1 e
−s1T1

∫ ∞
0

dT2 e
−s2T2 FR(T1, T2) =

1

2

1

(1 +
√

1 + s1)
√

1 + s2

+
1

2

√
1 + s2√

1 + s1 − 1

∫ ∞
0

dz e−(1+
√

1+s1)z ez
√

1+s1s1 −
√

1 + s1 + 1(
s1 + e−z

√
1+s1

) (
s2 + e−z

√
1+s2

) . (21)

Interestingly, in this case we find that P (tm|T ) 6= P (T − tm|T ), as a consequence of the nonequilibrium nature of the
process. This is confirmed by numerical simulations (see Fig. 4b). Thus, the first moment of tm deviates from the
equilibrium value T/2. In particular, we find

〈tm〉 = Tf(rT ) , (22)

where f(t) is given in Eq. (197) and is shown in Fig. 15. We observe that f(t) > 1/2 for any t > 0. This function
is nonmonotonous and has a maximum at t∗ ≈ 2.218 with f(t∗) ≈ 0.519. Note that this is different from the case
where the RBM starts from a fixed position x0 in space, as investigated in [26, 27]. In contrast, in our case the initial
position x0 is sampled from the nonequilibrium steady state in Eq. (19).

From Eq. (21) one can also extract the asymptotic behaviors of P (tm|T ). In the short-time regime T � ξ, where
ξ = 1/r in this case, we obtain once again that the distribution P (tm|T ) approaches the arcsine law in Eq. (4). This
is because for T � 1/r the system typically does not reset and the process therefore reduces to a standard BM. On
the other hand, for T � ξ, we get

P (tm|T ) ≈



1
TG(rtm) for tm � 1/r

1
T for 1/r � tm � (T − 1/r)

1
T [2G(r(T − tm))− 1] for tm � 1/r ,

(23)

where G(z) is given in Eq. (11) (see Fig. 4b). Interestingly, the late time behavior of P (tm|T ) is qualitatively similar
to the one of the equilibrium processes described above. Note however that in this case the distribution P (tm|T )
is not symmetric around tm = T/2. Indeed, for tm → 0 the PDF diverges as 1/(2T

√
πtm) while it diverges as

1/(T
√
π(T − tm)) for tm → T .

2. Run-and-tumble particle in a potential V (x) = µ|x|

We consider a single RTP moving in a one-dimensional potential V (x) = µ|x|. The state (x(τ), σ(τ)) of the system
at time τ is specified by the position x(τ) of the particle and its direction σ(τ) = ±1. The position of the particle
evolves according to the differential equation

dx(τ)

dτ
= −V ′(x) + v0σ(t) = −µ sign(x) + v0σ(t) , (24)
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where sign(x) denotes the sign of x and v0 > µ is the speed of the particle. The direction σ(t) of the particle is flipped
at a constant rate γ. As explained in Section IV, the persistent motion of the particle breaks the detailed balance
condition and thus the system is out-of-equilibrium. In the steady state, the probability of finding the particle at x0

with a positive (negative) velocity is given by [55]

P±st (x0) =
1

2

(
1± µ

v0
sign(x)

)
γ µ

v2
0 − µ2

exp

(
− 2γµ

v2
0 − µ2

|x0|
)
. (25)

We assume that at the initial time τ = 0 the position x0 (with a positive/negative velocity) is drawn from this
distribution in Eq. (25). Our goal is to compute the distribution of the time tm at which the position of the particle
becomes maximal.

We show that the distribution of tm can be written as

P (tm|T ) = P0(T )δ(tm) + Pbulk(tm|T ) + P1(T )δ(tm − T ) , (26)

where P0(T ), Pbulk(tm|T ) and P1(T ) are given in Eqs. (247), (248), and (246). Interestingly, the events “tm = 0” and
“tm = T” occur with finite probability, as highlighted by the two δ functions in the expression above. The function
Pbulk(tm|T ) has support in 0 < tm < T .

Interestingly, even though the system is nonequilibrium, the bulk of the distribution is still symmetric around the
midpoint tm = T/2, i.e., Pbulk(tm|T ) = Pbulk(T − tm|T ). Nevertheless, the amplitudes P0(T ) and P1(T ) of the δ
functions are different, meaning that the distribution P (tm|T ) is overall not symmetric around tm = T/2.

3. Criterion to detect nonequilibrium dynamics

From the exact computations performed for different models of stationary processes, we have observed that, when
the system is at equilibrium, the distribution of tm is symmetric around the midpoint tm = T/2, i.e., P (tm|T ) =
P (T − tm|T ). On the contrary the PDF P (tm|T ) does not satisfy this symmetry for the nonequilibrium processes
described above. This observation turns out to be quite general. Indeed, we show that if the process is at equilibrium
then necessarily the distribution of tm is symmetric around tm = T/2. This property is a consequence of the time-
reversal symmetry of equilibrium processes. On the other hand, for nonequilibrium processes, P (tm|T ) is typically
not symmetric. Note, however, that there exist nonequilibrium systems for which P (tm|T ) is symmetric.

This result leads to a simple criterion to detect nonequilibrium fluctuations in stationary time series. Imagine
that one has access to a long stationary time series x(τ) (for instance, this could result from some experimental
measurement). Without knowing the specific details of the dynamics of the process, how can one determine whether
or not the underlying system is nonequilibrium?

Building on the observation that if the distribution of tm is not symmetric then the process is necessarily nonequi-
librium, we propose the following simple method. First, divide the time series into N blocks each of duration T
(assuming that the total duration of the time series is much larger than T ) and measure the time tim at which the
maximum is reached within the i-th block. From this N values t1m , . . . , tNm one can build the empirical PDF P (tm|T ),
with 0 ≤ tm ≤ T . If this distribution is not symmetric around the midpoint tm = T/2 (as in Fig. 4b), then one can
conclude that the system is nonequilibrium. However, if P (tm|T ) turns out to be symmetric (as in Fig. 4a) our test
is inconclusive. This test can also be applied to systems composed of many interacting degrees of freedom. Indeed,
finding that the distribution of tm for one of the variables describing the system is not symmetric is sufficient to
conclude that the full system is out of equilibrium.

III. EQUILIBRIUM PROCESSES

In this section, we investigate the distribution P (tm|T ) of the time tm at which an equilibrium process reaches the
global maximum. We focus on the paradigmatic case of an overdamped Brownian particle in a confining potential
V (x). The Langevin equation that describes the evolution of the position x(τ) of the particle reads

dx(τ)

dτ
= −V ′(x) +

√
2Dη(τ) , (27)

where V ′(x) = dV (x)/dx and η(τ) is a Gaussian zero-mean white noise with correlator 〈η(τ)η(τ ′)〉 = δ(τ − τ ′) and
D > 0 is the diffusion constant. If the potential V (x) grows sufficiently fast with |x|, the process admits the Boltzmann
equilibrium state

Pst(x) =
1

Z
e−V (x)/D , (28)
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x0

M

x
(
)

I II

FIG. 5: Stationary process x(τ) during the time interval [0, T ]. The value of the global maximum is M − ε, with ε > 0, and
the time of the maximum is tm. The time interval [0, T ] is divided into the two subintervals [0, tm] (I) and [tm, T ] (II).

where Z is the normalization constant. Here we assume that V (x) is sufficiently confining such that Pst(x) is normal-
izable. In particular, we focus on the class of potentials V (x) such that V (x) ≈ α|x|p for large |x|, where α > 0 and
p > 0 are fixed constants. We investigate the distribution of the time tm at which the position x(τ) of the particle
reaches its maximal value before time T . We assume that at the initial time τ = 0 the process has already reached
the equilibrium state, meaning that the initial position x0 = x(0) is drawn from the PDF Pst(x) in Eq. (28). We will
first identify two cases (p = 1 and p = 2) in which the distribution of tm can be exactly computed. Then, we will
show that this distribution P (tm|T ) becomes universal for any p > 0 at late times.

We use a path-decomposition technique to compute analytically the distribution of the time tm of the maximum.
Doing so, we first obtain the joint distribution P (tm,M |T ) of tm and of the maximum M = x(tm). Then, integrating
over M , we find P (tm|T ). This path-decomposition approach is similar to the one adopted in Refs. [21, 24, 56] and
can be described as follows. Using the Markov property of the process, we can write the joint probability of tm and
M as the product of the probabilities of two independent segments: (I) [0, tm] and (II) [tm, T ] (see Fig. 5). In the
first interval (I), the process starts from position x0 = x(0), which is random and distributed according to the steady
state in Eq. (28), and it reaches the global maximum M at time tm. In the second interval (II), the walker starts
from position M at time tm and has to remain below this position M up to time T .

To compute the probability weight of the first interval, one has to solve the Fokker-Planck equation of this process
with absorbing boundary condition at x = M (see details below). Moreover, one must also impose that the particle
arrives exactly at M at time tm. However, due to the continuous-time nature of the process, one cannot constrain
the trajectory to arrive at the absorbing boundary at a given time. Indeed, if the process arrives exactly at M at
time tm, it will go above position x = M infinitely many times in any time interval [tm − δ, tm] with δ > 0 [16]. In
other words, one cannot satisfy x(τ) < M for τ < tm while imposing x(tm) = M . A possible solution to this issue is
to introduce a cutoff ε > 0 and to impose that at time tm the process reaches position x(tm) = M − ε (see Fig. 5).
In this way, one can compute P (tm|T ) for fixed ε and then take the limit ε→ 0 at the very end of the computation.
This approach was, for instance, used in Refs. [21, 35].

Let us first consider the interval [0, tm]. It is useful to define the constrained propagator GM (x, t|x0) as the
probability that the process goes from position x0 at time τ = 0 to position x at time t, while always remaining below
position M . The probability weight PI of the first interval (I) is GM (M − ε, tm|x0). The constrained propagator
satisfies the Fokker-Plank equation [16]

∂tG
M (x, t|x0) = D∂2

xG
M (x, t|x0) + ∂x

[
V ′(x) GM (x, t|x0)

]
, (29)

valid for x ∈ (−∞,M ] with initial condition

GM (x, t = 0|x0) = δ(x− x0) . (30)

The first boundary condition is

GM (M, t|x0) = 0 , (31)
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corresponding to an absorbing wall at x = M . This boundary condition selects only those trajectories that remain
below position M . The second boundary condition is

lim
x→−∞

GM (x, t|x0) = 0 , (32)

since the probability to find the particle infinitely far from its starting position after a finite amount of time vanishes.
In the second interval [tm, T ], the process starts from position M − ε and remains below position M up to time

T . The corresponding probability weight can be expressed in terms of the survival probability QM (x, t), i.e, the
probability that the process starts from x and remains below position M up to time t. The weight PII of the second
interval can be written as QM (M − ε, T − tm). The survival probability satisfies the backward Fokker-Planck equation
[16]

∂tQ
M (x, t) = D∂2

xQ
M (x, t)− V ′(x)∂xQ

M (x, t) , (33)

with initial condition (for x < M)

QM (x, t = 0) = 1 . (34)

The boundary conditions are

QM (M, t) = 0 , (35)

meaning that the particle at x = M is immediately absorbed and

lim
x→−∞

QM (x, t) = 1 , (36)

since a particle starting infinitely far away from the absorbing wall will never be absorbed in a finite time.
Then, the joint distribution of M and tm can be obtained as the product of the probability weights of the first

([0, tm])) and of the second ([tm, T ]) intervals. Since the starting position x0 is also random, one has also to integrate
over x0 with the correct probability weight given in Eq. (28). Therefore, for a fixed value of ε, we get

P (tm,M |T, ε) = N (ε)

∫ M

−∞
dx0 Pst(x0)GM (M − ε, tm|x0)QM (M − ε, T − tm) , (37)

where N (ε) is a normalization constant, i.e., N (ε) is chosen to satisfy∫ T

0

dtm

∫ ∞
−∞

dM P (tm,M |T, ε) = 1 . (38)

This constant N (ε) could, in principle, depend on the total time T , but we will show a posteriori that it does not.
Integrating over M , one finds

P (tm|T, ε) = N (ε)

∫ ∞
−∞

dM

∫ M

−∞
dx0 Pst(x0)GM (M − ε, tm|x0)QM (M − ε, T − tm) . (39)

Finally, taking the limit ε→ 0, we obtain

P (tm|T ) = lim
ε→0

[
N (ε)

∫ ∞
−∞

dM

∫ M

−∞
dx0 Pst(x0)GM (M − ε, tm|x0)QM (M − ε, T − tm)

]
. (40)

For a given potential V (x), one needs first to compute the constrained propagator GM (x, t|x0) and the survival
probability QM (x, t). Then, the distribution of tm can be obtained using the formula (40). As shown in the next
sections, this can be done in the cases V (x) = α|x| (corresponding to p = 1) and V (x) = αx2 (corresponding to
p = 2).

In general, it is easier to compute the propagator GM (x, t|x0) and the survival probability QM (x, t) in Laplace
space (with respect to the time t). Therefore, it is useful to express the relation in Eq. (40) in terms of the Laplace
transforms of these quantities. To do this, we introduce the variables t1 = tm, corresponding to the time of the
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maximum, and t2 = T − tm, corresponding to the time after the maximum. Considering the double Laplace transform
of Eq. (40) with Laplace variables s1 and s2, corresponding to t1 and t2 respectively, we obtain∫ ∞

0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2P (tm = t1|T = t1 + t2) (41)

= lim
ε→0

[
N (ε)

∫ ∞
−∞

dM

∫ M

−∞
dx0 Pst(x0)G̃M (M − ε, s1|x0)Q̃M (M − ε, s2)

]
,

where we have defined

G̃M (x, s|x0) =

∫ ∞
0

dt e−stGM (x, t|x0) , (42)

and

Q̃M (x, s) =

∫ ∞
0

dt e−stQM (x, t) . (43)

In the next sections, we derive an exact expression for P (tm|T ) in the cases p = 1 and p = 2.

A. The case p = 1

We first consider the case p = 1, corresponding to the potential V (x) = α|x|. The associated equilibrium steady
state is

Pst(x) =
D

2α
e−α|x|/D . (44)

We first compute the forward propagator for this process. Setting V (x) = α|x| in Eq. (29), we obtain

∂tG
M (x, t|x0) = D∂2

xG
M (x, t|x0) + 2αδ(x) GM (x, t|x0) + α sign(x) ∂xG

M (x, t|x0) , (45)

Taking a Laplace transform of this equation with respect to t and using the initial condition in Eq. (30), we find that

G̃M (x, s|x0) satisfies the equation

sG̃M (x, s|x0)− δ(x− x0) = D∂2
xG̃

M (x, s|x0) + 2αδ(x) G̃M (x, s|x0) + α sign(x) ∂xG̃
M (x, s|x0) , (46)

The boundary conditions in Eq. (31) and (32) become

G̃M (M, s|x0) = 0 , (47)

and

lim
x→−∞

G̃M (x, s|x0) = 0 . (48)

Solving the differential equation (46) (see Appendix A), we obtain to leading order for small ε

G̃M (M − ε, s|x0) ≈



ε

D
e(α−k)(M−x0)/(2D) if x0 < M < 0 ,

ε

D

(k − α)ekx0/D + α

(k − α)ekM/D + α
e(−α+k)(M−x0)/(2D) if 0 < x0 < M ,

kε

D

e(k−α)x0/(2D)e(−k−α)M/(2D)

k − α+ αe−kM/D
if x0 < 0 and M > 0 ,

(49)

where k =
√
α2 + 4sD.

We next focus on the survival probability QM (x, t). For the potential V (x) = α|x|, the differential equation (33)
becomes

∂tQ
M (x, t) = ∂2

xQ
M (x, t)− α sign(x)∂xQ

M (x, t) . (50)
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Taking a Laplace transform with respect to t on both sides and using the initial condition in Eq. (34), we obtain that

Q̃M (x, s) satisfies the equation

sQ̃M (x, s)− 1 = ∂2
xQ̃

M (x, s)− α sign(x)∂xQ̃
M (x, s) , (51)

with boundary conditions (see Eqs. (35) and (36))

Q̃M (M, s) = 0 , (52)

and

lim
x→−∞

Q̃M (x, s) =
1

s
. (53)

Solving Eq. (51), we find that to leading order in ε (see Appendix A)

Q̃M (M − ε, s) ≈


ε

s

k − α
2D

(k + α)ekM/D − α
(k − α)ekM/D + α

if M > 0 ,

ε

s

k − α
2D

if M < 0 .

(54)

We now have all the ingredients to compute the distribution of tm. Substituting the expressions of Pst(x0), G̃M (M−
ε, s|x0), and Q̃M (M − ε, s), respectively given in Eq. (44), (49), and (54), into Eq. (40), we obtain∫ ∞

0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] k2 − α
4Dαs2

{∫ 0

−∞
dM

∫ M

−∞
dx0 e

αx0/D

× e(α−k1)(M−x0)/(2D) +

∫ ∞
0

dM

∫ M

0

dx0 e
−αx0/D

(k1 − α)ek1x0/D + α

(k1 − α)ek1M/D + α
e(−α+k1)(M−x0)/(2D) (k2 + α)ek2M/D − α

(k2 − α)ek2M/D + α

+

∫ ∞
0

dM

∫ 0

−∞
dx0 e

αx0/Dk1
e(k1−α)x0/(2D)e(−k1−α)M/(2D)

k1 − α+ αe−k1M/D

(k2 + α)ek2M/D − α
(k2 − α)ek2M/D + α

}
, (55)

where we have defined k1 =
√
α2 + 4Ds1 and k2 =

√
α2 + 4Ds2.

The normalization constant N (ε) can then be computed by setting s1 = s2 = s on both sides of Eq. (55). Indeed,
the left-hand side becomes∫ ∞

0

dt1

∫ ∞
0

dt2 e
−s(t1+t2) P (tm = t1|T = t1 + t2) =

∫ ∞
0

dT e−sT
∫ T

0

dtm P (tm|T ) =

∫ ∞
0

dT e−sT =
1

s
, (56)

where we have used the fact that P (tm|T ) is normalized to unity for 0 ≤ tm ≤ T . Setting s1 = s2 = s on the
right-hand side of Eq. (55) and computing the integrals over x0 and M with Mathematica, we find

lim
ε→0

[
N (ε)ε2

] D

α2s
=

1

s
. (57)

Thus, we get

lim
ε→0

[
N (ε)ε2

]
=
α2

D
. (58)

Substituting this expression for the normalization constant in Eq. (55) and computing the integrals over x0, we obtain∫ ∞
0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2)

=
2α

(k1 + α)(k2 + α)

[
D

α
+

∫ ∞
0

dM e−αM/D (k1 + α− αe−k1M/D)(k2 + α− αe−k2M/D)

(k1 − α+ αe−k1M/D)(k1 − α+ αe−k2M/D)

]
, (59)

where we recall that k1 =
√
α2 + 4Ds1 and k2 =

√
α2 + 4Ds2. Notably, from Eq. (59) we can already observe that the

distribution P (tm|T ) is symmetric around tm = T/2, i.e., P (tm|T ) = P (T − tm|T ). Indeed, it is clear from Eq. (59)
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that the Laplace transform of P (tm = t1|T = t1 + t2) is symmetric under the exchange of s1 and s2. This symmetry
is a signature of the equilibrium nature of the process.

Interestingly, the PDF P (tm|T ) can be rewritten in the scaling form

P (tm|T ) =
α2

4D
F1

(
α2

4D
tm,

α2

4D
(T − tm)

)
, (60)

where F1(T1, T2) is the scaling function and ξ = 4D/α2 is the natural timescale of the process. Plugging this expression
into Eq. (59), we find that the double Laplace transform of F1(T1, T2) is given by (see also Eq. (8))

F̃1(s1, s2) =
1

2(1 +
√

1 + s1)(1 +
√

1 + s2)

×

[
1 +

∫ ∞
0

dz e−z

(√
1 + s1 + 1− e−

√
1+s1z

)(√
1 + s2 + 1− e−

√
1+s2z

)
(√

1 + s1 − 1 + e−
√

1+s1z
) (√

1 + s2 − 1 + e−
√

1+s2z
) ] , (61)

where we have defined

F̃1(s1, s2) =

∫ ∞
0

dT1e
−s1T1

∫ ∞
0

dT2e
−s2T2F1(T1, T2) . (62)

This scaling function manifestly satisfies the symmetry F1(T1, T2) = F1(T2, T1), corresponding to P (tm|T ) = P (T −
tm|T ). As a consequence of this symmetry, the first moment of tm is given by

〈tm〉 =
T

2
. (63)

1. Asymptotic behaviors

Even though it is challenging to invert the double Laplace transform in Eq. (61) exactly, this expression in Eq. (61)
can be used to extract the asymptotic behaviors of P (tm|T ) in the limits of short times (T � ξ) and late times
(T � ξ). Here ξ = α2/(4D) is the autocorrelation time of the process.

The short-time limit (T � ξ) corresponds in Laplace space to the limit s1, s2 →∞. Taking this limit in Eq. (61),
we obtain to leading order

F̃1(s1, s2) ≈ 1

2
√
s1s2

(
1 +

∫ ∞
0

dz e−z
)

=
1

√
s1s2

. (64)

This Laplace transform can now be inverted using the inversion formula

L−1
s→t

[
1

sν

]
=

1

Γ(ν) t1−ν
, (65)

where Γ(ν) is the Gamma function. Using this formula with ν = 1/2, we find that for small T1 and T2

F1(T1, T2) ≈ 1

π
√
T1T2

. (66)

Using Eq. (60), we find that this corresponds to

P (tm|T ) ≈ 1

π
√
tm(T − tm)

, (67)

which is valid for T � 4D/α2. This expression coincides with the well-known arcsine law of Lévy [15], describing the
distribution of the time of the maximum for a free Brownian motion. Indeed, for T � 4D/α2, the process does not
have enough time to feel the confining potential.

We next focus on the late time limit T � 4D/α2. In this limit, three different regimes of distribution P (tm|T )
can be investigated: the central “bulk” regime, corresponding to tm, T →∞ with tm/T fixed, the left “edge” regime,
corresponding to T →∞ with tm ∼ O(1), and the right edge regime, where T →∞ with T − tm ∼ O(1). Note that,
thanks to the symmetry P (tm|T ) = P (T − tm|T ), it is sufficient to study the right edge regime.
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To investigate the right-edge regime (tm → T ), we expand Eq. (61) to leading order for small s1 while keeping
s2 ∼ O(1), yielding

F̃1(s1, s2) ≈ 1

2(1 +
√

1 + s2)

∫ ∞
0

dz e−z
2− e−z

s1 + 2e−z

[√
1 + s2 + 1− e−

√
1+s2z

]
[√

1 + s2 − 1 + e−
√

1+s2z
] . (68)

Identifying the pole s1 = −2e−z and inverting the Laplace transform with respect to T1, one finds

∫ ∞
0

dT2 F1(T1, T2)e−s2T2 ≈ 1

2(1 +
√

1 + s2)

∫ ∞
0

dz exp
[
−2T1e

−z] e−z(2− e−z)
[√

1 + s2 + 1− e−
√

1+s2z
]

[√
1 + s2 − 1 + e−

√
1+s2z

] . (69)

For large T1, the integral on the right-hand side is dominated by large values of z and can thus be approximated as∫ ∞
0

dT2 F1(T1, T2)e−s2T2 ≈ 1√
1 + s2 − 1

∫ ∞
0

dz e−z−2T1 e
−z
. (70)

Performing the change of variable z → u = 2T1e
−z, we obtain∫ ∞

0

dT2 F1(T1, T2)e−s2T2 ≈ 1

2

1 +
√

1 + s2

s2

1

T1

∫ 2T1

0

du e−u , (71)

where we have used the relation (1 +
√

1 + s)(1 −
√

1 + s) = s. When T1 is large, we can replace the upper limit of
integration with infinity, yielding ∫ ∞

0

dT2 F1(T1, T2)e−s2T2 ≈ 1

2

1 +
√

1 + s2

s2

1

T
, (72)

where we have approximated T1 ≈ T . The Laplace transform can be inverted by using the relation (see Appendix B)

L−1
s→t

[
1 +
√

1 + s

s

]
= 1 + erf(

√
t) +

1√
πt
e−t , (73)

where erf(z) = (2/
√
π)
∫ z

0
du e−u

2

. Therefore, we find that in the limit T1 →∞ with T2 ∼ O(1),

F (T1, T2) ≈ 1

T
G(T2) , (74)

where

G(z) =
1

2

[
1 + erf(

√
z) +

1√
πz
e−z
]
. (75)

This function G(z) is shown in Fig. 6 and has asymptotic behaviors

G(z) ≈


1/(2
√
πz) for z → 0 ,

1 + e−z/(4
√
πz3/2) for z →∞ .

(76)

Thus, for tm → T , we find that P (tm|T ) diverges as 1/
√
T − tm. On the other hand, for T − tm � 4D/α2 we find

P (tm|T ) ≈ 1/T , smoothly connecting to the bulk regime. Similarly, using the symmetry of F1(T1, T2) we also find
that when T2 →∞ with T1 ∼ O(1)

F (T1, T2) ≈ 1

T
G(T1) . (77)

In Laplace space the bulk regime is obtained in the limit s1, s2 →∞, with s1/s2 fixed. Taking this limit in Eq. (61),
we find

F̃1(s1, s2) ≈ 1

2

∫ ∞
0

dz e−z
(2− e−z)2

(s1 + 2e−z) (s2 + 2e−z)
. (78)
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FIG. 6: Log-log plot of the function G(z), given in Eq. (75). For z � 1, the function diverges as G(z) ≈ 1/(2
√
πz) while G(z)

tends to the limit value 1 as G(z) ≈ 1 + e−z/(4
√
πz3/2) for large z.

Inverting the double Laplace transform, we get

F1(T1, T2) ≈ 1

2

∫ ∞
0

dz e−z
(
2− e−z

)2
exp[−2(T1 + T2)e−z] . (79)

Finally, performing the change of variables z → u = 2(T1 + T2)e−z, we obtain

F1(T1, T2) ≈ 1

4(T1 + T2)

∫ 2(T1+T2)

0

du

(
2− u

2(T1 + T2)

)2

e−u =
1

T1 + T2
+O

(
1

(T1 + T2)2

)
. (80)

Thus, in the bulk regime the distribution P (tm|T ) can be approximated by the flat measure

P (tm|T ) ≈ 1

T
. (81)

This uniform PDF for tm is the distribution that one would obtain when the positions of the process at different times
are independent random variables. Indeed, since the observation time T is much larger than the correlation time
ξ = 4D/α2, these variables are approximately independent (this argument is precisely explained in Section III C).
However, note that this result in Eq. (81) does not apply in the edge regimes for tm → 0 and tm → T .

To summarize, we have shown that in the late-time limit, the distribution of tm approaches the form

P (tm|T ) ≈



1
TG

(
α2

4D tm

)
for tm . 4D/α2 ,

1
T for 4D/α2 � tm � T − 4D/α2 ,

1
TG

[
α2

4D (T − tm)
]

for tm & T − 4D/α2 .

(82)

Note that this expression in Eq. (82) is asymptotically normalized to one for large T .

B. The case p = 2: the Ornstein-Uhlenbeck process

This section focuses on BM in a harmonic potential V (x) = αx2, corresponding to the Ornstein-Uhlenbeck process.
The equilibrium state for this process reads

Pst(x0) =

√
α

πD
exp

(
− α
D
x2

0

)
. (83)
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As before, we first need to compute the constrained propagator and the survival probability. The propagator satisfies
the forward Fokker-Plank equation (29), which in this case reads

∂tG
M (x, t|x0) = D∂2

xG
M (x, t|x0) + 2αGM (x, t|x0) + 2αx∂xG

M (x, t|x0) , (84)

Taking a Laplace transform with respect to t and using the initial condition in Eq. (30), we obtain

D∂2
xG̃

M (x, s|x0) + 2αx∂xG̃
M (x, s|x0) + (2α− s)G̃M (x, s|x0) + δ(x− x0) = 0 . (85)

Eq. (85) can be exactly solved (see Appendix C) and one obtains to leading order in ε

G̃M (M − ε, s|x0) ≈ ε

D
e−(M2−x2

0)α/(2D)
D−s/(2α)

(
−
√

2α/D x0

)
D−s/(2α)

(
−
√

2α/D M
) , (86)

where Dp(z) is the parabolic cylinder function.
The backward Fokker-Plank equation for the survival probability, given in Eq. (33) for a generic potential, in this

case reads

∂tQ
M (x, t) = D∂2

xQ
M (x, t)− 2αx∂xQ

M (x, t) . (87)

Taking a Laplace transform and using the initial condition in Eq. (34), we find

sQ̃M (x, s)− 1 = D∂2
xQ̃

M (x, s)− 2αx∂xQ̃
M (x, s) , (88)

with the boundary conditions in Eq. (52) and (53). Solving this equation and imposing the boundary conditions (see
Appendix C), we find, to leading order in ε,

Q̃M (M − ε, s) ≈ ε

s

M2α

D
+

√
2α

D

D1−s/(2α)

(
−
√

2α
D M

)
D−s/(2α)

(
−
√

2α
D M

)
 . (89)

Substituting the expressions for Pst(x0), G̃M (M − ε, s|x0), and Q̃M (M − ε, s), respectively given in Eqs. (83), (86),
and (89), into the formula for P (tm|T ) in Eq. (41), we get∫ ∞

0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

]√ 2

π

1

s2

α

D2

∫ ∞
−∞

dM

∫ M

−∞
dx0 e

−αx2
0/(2D)

× e−M
2α/(2D)

D−s1/(2α)

(
−
√

2α/Dx0

)
D−s1/(2α)

(
−
√

2α/DM
)
√2α

D
M +

D1−s2/(2α)

(
−
√

2α
DM

)
D−s2/(2α)

(
−
√

2α
DM

)
 . (90)

To simplify this expression we first perform the change of variables (x0,M) → (z = M
√

2α/D,w = x0

√
2α/D),

yielding ∫ ∞
0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] 1√
2πs2D

×
∫ ∞
−∞

dz e−z
2/4

[
z +

D1−s2/(2α) (−z)
D−s2/(2α) (−z)

] ∫ z

−∞
dw e−w

2/4D−s1/(2α) (−w)

D−s1/(2α) (−z)
. (91)

Moreover, the integral over w can be computed using the following identity (see Appendix D)∫ z

−∞
dw e−w

2/4D−s(−w) =
1

s
e−z

2/4 [zD−s(−z) +D1−s(−z)] , (92)

which yields ∫ ∞
0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] √
2α√

πDs1s2

×
∫ ∞
−∞

dz e−z
2/2

[
z +

D1−s1/(2α) (−z)
D−s1/(2α) (−z)

] [
z +

D1−s2/(2α)(−z)
D−s2/(2α)(−z)

]
. (93)
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This expression can be rewritten in a more compact form by using the identity [57]

z +
D1−s(−z)
D−s(−z)

= s
D−s−1(−z)
D−s(−z)

, (94)

yielding ∫ ∞
0

dt1

∫ ∞
0

dt2 e
−s1t1−s2t2 P (tm = t1|T = t1 + t2)

=
limε→0

[
N (ε)ε2

]
√

8πDα

∫ ∞
−∞

dz e−z
2/2D−1−s1/(2α) (−z)

D−s1/(2α) (−z)
D−1−s2/(2α)(−z)
D−s2/(2α)(−z)

. (95)

Finally, to fix the constant N (ε) we impose that P (tm|T ) must be normalized to unity. To do so, we set s1 = s2 = s
on both sides of equation (95). As before (see Eq. (56)) the left-hand side is simply equal to 1/s, yielding

1

s
=

A√
8πα

∫ ∞
−∞

dz e−z
2/2

[
D−1−s/(2α) (−z)
D−s/(2α) (−z)

]2

, (96)

where A = limε→0

[
N (ε)ε2

]
/D needs to be determined. Introducing the dimensionless variable q = s/(2α), we find

that A satisfies

1

q
=

A√
2π

∫ ∞
−∞

dz e−z
2/2

[
D−1−q (−z)
D−q (−z)

]2

. (97)

Even though the integral on the right-hand side is hard to compute analytically, we verified numerically that

1√
2π

∫ ∞
−∞

dz e−z
2/2

[
D−1−q(−z)
D−q(−z)

]2

=
1

q
, (98)

implying A = 1 and thus

lim
ε→0

[N (ε)ε2] = D . (99)

Plugging the expression in Eq. (99) into Eq. (95), we find that the double Laplace transform of P (tm|T ) reads∫ ∞
0

dt1

∫ ∞
0

dt2 e
−s1t1−s2t2 P (tm = t1|T = t1 + t2) =

1√
8πα

∫ ∞
−∞

dz e−z
2/2D−1−s1/(2α) (−z)

D−s1/(2α) (−z)
D−1−s2/(2α)(−z)
D−s2/(2α)(−z)

.

(100)
Note that even if we have verified the validity of Eq. (98) numerically, the mathematical proof of this relation has
eluded us so far and it remains an interesting exercise to prove this identity. Interestingly, the PDF P (tm|T ) of the
time tm of the maximum can be rewritten in the scaling form

P (tm|T ) = αFOU(αtm, α(T − tm)) , (101)

where FOU(T1, T2) is the scaling function and ξ = 1/α the natural timescale of the process. Plugging this expression
into Eq. (100), we find that the scaling function FOU(T1, T2) is given by∫ ∞

0

dT1

∫ ∞
0

dT2 e
−s1T1−s2T2FOU(T1, T2) =

1√
8π

∫ ∞
−∞

dz e−z
2/2D−1−s1/2 (−z)

D−s1/2 (−z)
D−1−s2/2(−z)
D−s2/2(−z)

. (102)

From this expression, we immediately find that the PDF P (tm|T ) is symmetric around the midpoint tm = T/2. This
is a signature of the time-reversal symmetry of equilibrium processes. Consequently, the first moment of tm is simply
given by 〈tm〉 = T/2. Moreover, it is interesting to notice that in this case the distribution of tm is completely
independent of the diffusion coefficient D.

1. Asymptotic behaviors

We next focus on the asymptotic behaviors of P (tm|T ) in the limit of small and large T . We expect these behaviors
to be qualitatively similar to the ones derived for p = 1 in Section III A. The double Laplace transform in Eq. (102)
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can be inverted in the short-time and late-time limits, corresponding to T � ξ and T � ξ. Here the correlation time
ξ is given by ξ = 1/α.

We first focus on the small T behavior. This corresponds to the limit s1, s2 → ∞ in Eq. (102). We start by

performing the change of variable z → u = z
√

2/s1 in Eq. (102), yielding

∫ ∞
0

dT1

∫ ∞
0

dT2 e
−s1T1−s2T2FOU(T1, T2) =

√
s1

4
√
π

∫ ∞
−∞

du e−s1u
2/4

D−1−s1/2

(
−u
√
s1/2

)
D−s1/2

(
−u
√
s1/2

) D−1−s2/2(−u
√
s1/2)

D−s2/2(−u
√
s1/2)

.

(103)
When s1 and s2 are both large, we use the approximation (see Appendix D)

D−(s+1)(−
√
su)

D−s(−
√
su)

≈ 1√
s

u+
√
u2 + 4

2
, (104)

valid for large s and fixed u. We obtain∫ ∞
0

dT1

∫ ∞
0

dT2 e
−s1T1−s2T2FOU(T1, T2) ≈ 1

8
√
πs2

∫ ∞
−∞

du e−s1u
2/4(u+

√
u2 + 4)(

√
s1/s2u+

√
(s1/s2)u2 + 4) .

(105)
To leading order, this integral becomes∫ ∞

0

dT1

∫ ∞
0

dT2 e
−s1T1−s2T2FOU(T1, T2) ≈ 1

2
√
πs2

∫ ∞
−∞

du e−s1u
2/4 =

1
√
s1s2

. (106)

This Laplace transform can now be inverted using Eq. (65), and we obtain, for T1, T2 � 1,

FOU(T1, T2) ≈ 1

π
√
T1T2

, (107)

corresponding to

P (tm|T ) ≈ 1

π
√
tm(T − tm)

. (108)

This is precisely the same result as for the case p = 1 and corresponds to the arcsine law of Lévy [15], which describes
the PDF of tm for a free BM of duration T . As before, this result is coherent with the fact that for very short times
(T � 1/α), the effect of the external potential is negligible and the process is simply diffusive.

We next focus on the limit of large T . As for the case p = 1, there are three different regimes to be investigated: the
left edge regime (tm small and T → ∞), the central bulk regime (1 � tm � T ), and the right edge regime (tm ∼ T
and T → ∞). We now focus on the right-edge behavior (tm → T ). Formally inverting the Laplace transform in
Eq. (102) with respect to T1 gives∫ ∞

0

F (T1, T2) e−s2 T2dT2 =
1√
8π

∫ ∞
−∞

dz e−z
2/2

[∫
Γ1

ds1

2πi
es1 T1

D−1−s1/2(−z)
D−s1/2(−z)

] [
D−1−s2/2(−z)
D−s2/2(−z)

]
, (109)

where Γ1 denotes a Bromwich contour in the complex s1 plane. We first consider the Bromwich integral over s1 in
(109). We are interested in the large T1 limit. To evaluate this integral for large T1 we should look for the pole of the
integrand at some small negative s1. Since s1 is small, we can replace the numerator, to leading order, by its value at
s1 = 0

D−1−s1/2(−z) ≈ D−1(−z) =

√
π

2
ez

2/4 erfc

(
− z√

2

)
, (110)

where erfc(z) = (2/
√
π)
∫∞
z
du e−u

2

. Furthermore, the denominator for small s1 can be approximated as (simply by

expanding in Taylor series and using D0(z) = e−z
2/4)

D−s1/2(−z) ≈ e−z
2/4

[
1 + s1

√
π/2

1

z
ez

2/2

]
=

√
2π

z
ez

2/4

[
s1

2
+

z√
2π

e−z
2/2

]
. (111)
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Using (110) and (111) we then obtain the following approximation for the Bromwich integral for large T1∫
Γ

ds1

2πi
es1 T1

D−1−s1/2(−z)
D−s1/2(−z)

≈
∫

Γ

ds1

2πi
es1 T1

z erfc(−z/
√

2)

s1 +
√

2z√
π
e−z2/2

. (112)

Clearly the pole occurs at s1 = −
√

2/πz e−z
2/2. Since s1 is small, the variable z is necessarily large and positive.

In particular, since for large T1 we expect that s1 scales as 1/T1, we can anticipate that z ∼
√

lnT1. Evaluating the
residue and using erfc(−∞) = 2, we get∫

Γ

ds1

2πi
es1 T1

D−1−s1/2(−z)
D−s1/2(−z)

≈ 2z exp

[
−
√

2z√
π
e−z

2/2 T1

]
. (113)

Substituting this result back in (109) gives∫ ∞
0

F (T1, T2) e−s2 T2dT2 ≈
1√
2π

∫ ∞
−∞

dz z e−z
2/2 exp

[
−
√

2z√
π
e−z

2/2 T1

]
D−1−s2/2(−z)
D−s2/2(−z)

. (114)

To make further progress, we perform the change of variable z → y = (z − aT1
)/bT1

, where aT1
and bT1

are positive
constants that depend on T1 and will be chosen appropriately, yielding∫ ∞

0

F (T1, T2) e−s2 T2dT2 ≈
bT1√
2π

∫ ∞
−∞

dy (aT1
+ bT1

y) e−(aT1+bT1y)2/2

× exp

{
− exp

[
ln

(√
2

π

)
+ ln(aT1

+ bT1
y)− (aT1

+ bT1
y)2/2 + lnT1

]}
D−1−s2/2(−(aT1 + bT1y))

D−s2/2(−(aT1
+ bT1

y))
. (115)

To get rid of the dependence on T1 in the exponent, we choose aT1
such that

ln

(√
2

π

)
+ ln(aT1 + bT1y)− a2

T1
/2 + lnT1 = 0 , (116)

meaning that to leading order

aT1
≈
√

2 lnT1 . (117)

Similarly, we choose bT1
= 1/aT1

≈ 1/
√

2 ln(T1). Plugging these expressions into Eq. (115), we find that to leading
order in T1 ∫ ∞

0

F (T1, T2) e−s2 T2dT2 ≈
1

2T1aT1

∫ ∞
−∞

dy e−y−e
−yD−1−s2/2(−(aT1

+ bT1
y))

D−s2/2(−(aT1 + bT1y))
. (118)

Moreover, since aT1 � bT1 , we obtain∫ ∞
0

F (T1, T2) e−s2 T2dT2 ≈
1

2T1aT1

D−1−s2/2(−aT1
)

D−s2/2(−aT1)
, (119)

where aT1
≈
√

2 ln(T1) and we have used ∫ ∞
−∞

dy e−y−e
−y

= 1 . (120)

Note that the result in (119) is valid for large T1, but for arbitrary s2. We then need to invert this Laplace transform
with respect to s2 in order to derive the dependence on T2.

To make further progress, let us see what we anticipate and then work backwards. We anticipate a scaling form for
the edge behavior, F (T1, T2) ∼ (1/T1)G (a (2 lnT1)T2) for large T1, where a is some constant scale factor. This would
mean that the width of the right edge would shrink very slowly with increasing T1. Hence, if T1 is large, we should
scale T2 as T2 ∼ t/(2 lnT1) where t ∼ O(1). This would mean that in the conjugate Laplace space s2 should scale as
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s2 ∼ (2 lnT1). Since aT1
≈
√

2 lnT1, this means that s2 ∼ (aT1
)2 for large aT1

. Hence, driven by this observation, in
order to derive a nontrivial scaling function at the right edge, we should analyse (119) in the scaling limit by setting

aT1
=

√
s2

2
u (121)

where u ∼ O(1), while both s2 and aT1
are large. With this setting, i.e., replacing aT1

by
√
s2/2u in (119) we get∫ ∞

0

F (T1, T2) e−s2 T2dT2 ≈
1

2T1

√
2

√
s2 u

D−1−s2/2(−
√
s2/2u)

D−s2/2(−
√
s2/2u)

. (122)

This leads us to analyse the asymptotic behavior of D−p(−
√
p u) in the limit of large p (somewhat akin to the

Plancheral-Rotah type asymptotic limits for Hermite polynomials). To do this, we use the expansion in Eq. (104),
which gives the limiting large s2 behavior∫ ∞

0

F (T1, T2) e−s2 T2dT2 ≈
1

2T1

1

s2

[
1 +

√
1 +

4

u2

]
=

1

2T1

1

s2

[
1 +

√
1 +

2s2

a2
T1

]
, (123)

where we used u =
√

2aT1/
√
s2 from (121). Inverting formally the Laplace transform with respect to s2 gives

F (T1, T2) ≈
∫

Γ2

ds2

2πi
es2 T2

1

2T1

1

s2

[
1 +

√
1 +

2s2

a2
T1

]
, (124)

where Γ2 denotes a Bromwich contour in the complex s2 plane. Rescaling s2 = s a2
T1
/2 gives

F (T1, T2) ≈
∫

Γ2

ds

2πi
es a

2
T1
T2/2 1

T1

1

2s

[
1 +
√

1 + s
]
, (125)

Using the Laplace-inversion formula in Eq. (73), we get our main scaling result at the right edge

F (T1, T2) ≈ 1

T1
G

(
a2
T1

2
T2

)
(126)

where the scaling function G(t) is given exactly in (75). Note that aT1 =
√

2 lnT1 from (117). The result in (126) is
valid in the scaling limit when T1 is large and T2 ∼ 1/lnT1 is small. In this limit, we can replace T1 ≈ T = T1 + T2

and hence (126) reads

F (T1, T2) ≈ 1

T
G ((lnT )T2) . (127)

Using the scaling relation in Eq. (101), we obtain

P (tm|T ) ≈ 1

T
G (α(lnT )(T − tm)) , (128)

valid for large T and (T − tm) ∼ 1/ ln(T ). Using the tm → T − tm symmetry of the process, we obtain the left edge
regime

P (tm|T ) ≈ 1

T
G (α(lnT )tm) , (129)

valid for large T and tm ∼ 1/ ln(T ).
Finally, to compute the bulk regime (tm, T → ∞ with tm/T fixed), we first formally invert the double Laplace

transform in Eq. (102) to obtain

FOU(T1, T2) =
1√
8π

∫ ∞
−∞

dz e−z
2/2

[∫
Γ1

ds1

2πi
es1T1

D−1−s1/2 (−z)
D−s1/2 (−z)

] [∫
Γ2

ds2

2πi
es2T2

D−1−s2/2(−z)
D−s2/2(−z)

]
, (130)
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FIG. 7: Semi-logarithmic plot of the correlation function 〈x(t)x(0)〉 as a function of
√
t for Brownian motion with diffusion

constant D = 1 in the potential V (x) =
√
|x|. The initial position x(0) is drawn from the equilibrium state of the system. The

continuous red line shows a stretched-exponential decay of the type 〈x(t)x(0)〉 ∼ e−
√
t/ξ.

where Γ1 and Γ2 denote Bromwich contours in the complex s1 and s2 planes. The bulk regime corresponds to the
limit s1 , s2 → 0. Thus, using the small-s expansion in Eq. (113), we find

FOU(T1, T2) ≈
√

2

π

∫ ∞
−∞

dz e−z
2/2z2 exp

[
−
√

2z√
π
e−z

2/2(T1 + T2)

]
. (131)

We next perform the change of variable z → u =
√

2z√
π
e−z

2/2(T1 + T2) with Jacobian

|du/dz| =
√

2z√
π
e−z

2/2(T1 + T2)|1− z2| . (132)

Using the fact that when (T1 + T2) is large the integral is dominated by large values of z, we can approximate

|du/dz| ≈
√

2z√
π
e−z

2/2(T1 + T2)z2 . (133)

Thus, we finally obtain

FOU(T1, T2) ≈ 1

T1 + T2

∫ ∞
0

du e−u =
1

T1 + T2
. (134)

Therefore, in the bulk regime where 1� tm � T , we obtain

P (tm|T ) ≈ 1

T
. (135)

Once again, we find that the distribution of tm becomes flat in the bulk regime for late times. This is because the
random variables describing the positions of the process at different times become approximately independent when
T � ξ (where ξ is the correlation time).

To summarize, for T � ξ = 1/α, the distribution P (tm|T ) of the time tm of the maximum behaves as

P (tm|T ) ≈



1
TG (α ln(T ) tm) for tm . 1/(α ln(T )) ,

1
T for 1/(α ln(T ))� tm � T − 1/(α ln(T )) ,

1
TG (α ln(T ) (T − tm)) for tm . 1/(α ln(T )) .

(136)

Remarkably, the late-time shape of P (tm|T ), obtained for the harmonic potential (p = 2) is the same as the one
obtained for the potential V (x) = α|x| (p = 1, see Eq. (82)). The only difference is the scale of the edge regime,
which is ∼ 4D/α2 for p = 1 and ∼ 2/(α ln(T )) for p = 2. The shape of the edge regime is described by the function
G(z) = [1 + erf(

√
z) + e−z/

√
πz] /2, which is the same for both p = 1 and p = 2. This universality is unexpected and

lead us to two natural questions: (i) What is the origin of this function G(z)? and (ii) Is the universality of the edge
behavior valid for any p > 0?
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FIG. 8: Typical trajectory of a stationary process of duration T. The time interval [0, T ] is divided into the N subintervals of
duration ξ, where ξ is the correlation time of the process. The maximum of the process during the i-th time window is denoted
by Mi. The variables M1 , . . . ,MN are approximately independent.

C. Universality at late times

In this section, we show that the late-time universality of the distribution of tm that we have observed for p = 1 and
p = 2 is actually valid for any p > 0. This is based on a real-space “blocking argument”, which we describe below.
For p ≥ 1, i.e., if the potential V (x) grows faster than |x| for large |x|, one can show that the correlation function
decays exponentially in time as [58]

〈x(τ)x(τ ′)〉 − 〈x(τ)〉〈x(τ ′)〉 ∼ e−|τ−τ
′|/ξ , (137)

where ξ is the correlation time. For 0 < p < 1, we have verified numerically that the autocorrelation function has a
stretched-exponential decay in time. For instance, for p = 1/2, we verified numerically that (see Fig. 7)

〈x(t)x(t′)〉 ∼ e−
√
|t−t′|/ξ , (138)

for some timescale ξ > 0. Thus, also for 0 < p < 1 one has a typical timescale over which correlations decay and one
can still apply the blocking argument. Note that in our recent Letter [41], we used an heuristic argument to show
that the distribution of tm becomes universal at late times for p ≥ 1. Here, we present a more precise version of this
argument and we show that this universality is actually valid for p > 0.

For large T we can thus divide the time interval [0, T ] into N blocks of duration ξ = T/N (see Fig. 8). Let Mi be
the maximal position reached in the i-th block. It is clear that the variables M1 , . . . ,MN are identically distributed,
since the process is in the steady state. Moreover, since we assume that ξ is of the order of the correlation time, they
can also be considered independent. Thus the maximum will be reached in a given box with probability 1/N = ξ/T
and the late-time probability distribution of the tm is approximately given by the uniform measure

P (tm|T ) ≈ 1

N

1

ξ
=

1

T
. (139)

Note, however, that this argument is only valid when ξ � tm � T − ξ, i.e., in the bulk of the distribution P (tm|T ).
As observed in the exactly solvable cases p = 1 and p = 2, in the edge regions 0 < tm < ξ and (T − ξ) < tm < T , a
more precise analysis is required.

To proceed, let us analyze the behavior of the global maximum M in the limit of large T . The global maximum M
of the process can be written as the maximum of the local i.i.d. variables M1 , . . . ,MN

M = max
1≤i≤N

(Mi) . (140)
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FIG. 9: Schematic representation of a stochastic process where the global maximum M − ε is reached within the right edge,
i.e., at time tm with T − tm � T .

Even though we do not know the PDF P (Mi) of the local maximum Mi, we can guess that it will have the same
large-Mi tail as the equilibrium distribution in Eq. (28), i.e., that for large Mi one has

P (Mi) ∼ exp
(
− α
D

Mp
i

)
. (141)

Thus, one can apply the standard extreme value theory for i.i.d. random variables (see, e.g., [8]). In particular, to
find the leading-order behavior of the global maximum M , we need to solve the equation∫ ∞

M

dM ′ P (M ′) =
1

N
. (142)

Indeed, we expect the probability of observing a value larger than the global maximum to be 1/N , since M1 , . . . ,MN

are i.i.d. variables (this argument can be made more precise, see [8]). Plugging the expression for P (M), given in
Eq. (141), into Eq. (142) and integrating by parts, we find that to leading order

M ≈
(
D

α
ln(N)

)1/p

. (143)

Moreover, since N = T/ξ, we obtain

M ≈
(
D

α
ln(T )

)1/p

. (144)

Interestingly, one can also show that the global maximum concentrates around this deterministic value in Eq. (144)
for large T [8], meaning that the fluctuations around this value are subleading in T . Indeed, one can show that the
global maximum M of N i.i.d. variables, each drawn from the PDF in Eq. (141), grows as

M ≈
(
D

α
lnN

)1/p

+
D

αp

(
D

α
lnN

)(1−p)/p

z , (145)

where z is Gumbel distributed. Note that the relative ratio of the fluctuations and the mean decays as 1/ lnN .
Therefore, we can consider the value of the global maximum to be fixed and given by Eq. (144).

Then, we can apply the path-decomposition technique derived at the beginning of this section (see Eq. (40)), with
the only difference that M is now fixed. Thus, Eq. (40) gets modified as follows

P (tm|T ) = lim
ε→0

[
N (ε)

∫ M

−∞
dx0 Pst(x0)GM (M − ε, tm|x0)QM (M − ε, T − tm)

]
, (146)

where now M depends on T and is given in Eq. (144). We recall that Pst(x0), GM (x, t|x0), and QM (x, t) respectively
indicate the equilibrium distribution, the constrained propagator, and the survival probability of the process. We
focus on the right-edge regime, corresponding to configurations in which the global maximum is reached at the end
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FIG. 10: The scaled probability density function TP (tm|T ) as a function of the scaled time of the maximum tm/λ(T ). The
symbols correspond to numerical simulations of Brownian motion in a potential V (x) = |x|p, for different values of p and T
large (T = 6400 for p = 1 and T = 800 for p = 2 and p = 3). The continuous blue curve corresponds to the exact scaling
function G(z), given in Eq. (11) and valid for large T . For further evidence of the convergence to this scaling function, see
Fig. 11.

of the time interval [0, T ], i.e., for T − tm � T (see Fig. 9). In this region we can approximate tm ≈ T and therefore
Eq. (146) becomes

P (tm|T ) ≈ lim
ε→0

[
N (ε)

∫ M

−∞
dx0 Pst(x0)GM (M − ε, T |x0)QM (M − ε, T − tm)

]
. (147)

Absorbing the constant terms, i.e., the terms that are independent of tm, into N (ε), we obtain

P (tm|T ) ≈ lim
ε→0

[
N ′(ε)QM (M − ε, T − tm)

]
, (148)

where the constant N ′(ε) can be determined by matching this edge expression in Eq. (148) with the bulk result
P (tm|T ) ≈ 1/T .

Thus, we need to compute the survival probability QM (M − ε, T − tm), defined as the probability that the process
remains below position M for a time T − tm, having started from position M − ε. As previously explained, this is, in
general, hard (the only two solvable models are p = 1 and p = 2). Nevertheless, since the time interval [T − tm, T ]
is short, we expect the position of the particle within this time interval to remain close to the global maximum M .
Thus, we linearize the potential V (x) around x = M and we obtain

V (x) ≈ V (M) + (x−M)V ′(M) . (149)

As a consequence, to leading order, the effective Langevin equation of the process (see Eq. (27)) becomes

dx(τ)

dτ
= −V ′(M) + η(τ) , (150)

meaning that the particle is subject, in first approximation, to a constant negative drift µ = −V ′(M). Using
V ′(x) = αpxp−1 for x > 0 and the expression for M in Eq. (144), we find that the constant drift µ is given by

µ = −V ′(M) ≈ −α p
(
D

α
ln(T )

)(p−1)/p

. (151)

Here we use the definition that the drift µ is positive when it is pointing towards increasing values of x and negative
otherwise (in our case the drift is negative). Crucially, the survival probability of a BM subject to a constant drift µ
can be computed exactly (see Appendix E) and reads

QM (x0, t) =
1

2

[
erfc

(
−M − x0 − µt√

4Dt

)
− eµ(M−x0)/D erfc

(
M − x0 + µt√

4Dt

)]
, (152)
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FIG. 11: The scaled probability density function TP (tm|T ) of the time tm of the maximum for Brownian motion in a confining
potential V (x) = α|x|p as a function of the scaled time of the maximum tm/λ(T ) for p = 1 (a), p = 2 (b), and p = 3 (c). The
timescale λ(T ), given in Eq. (155), is a function of α and p. The continuous blue curve corresponds to the theoretical scaling
function G(z), given in Eq. (11) and valid for large T . This universal curve is valid for any value of α > 0 and p ≥ 1. As T
increases, the numerical scaling functions for different values of p, shown by symbols, approaches the same theoretical scaling
function, shown by a solid line.

for x < M , where erfc(z) = (2/
√
π)
∫∞
z
du e−u

2

. We recall that the survival probability QM (x, t) is defined as the
probability that the process remains below position M for a total time t, having started from position x. Evaluating
this expression for x = M − ε and expanding to leading order in ε, we find

QM (M − ε, t) ≈ ε|µ|
D

G

(
µ2t

4D

)
, (153)

where G(z) = [1 + erf(
√
z) + e−z/

√
πz] /2. Plugging the expression for QM (M − ε, t) in Eq. (153) into Eq. (146) and

using the expression for µ in Eq. (151), we obtain

P (tm|T ) ≈ lim
ε→0

[
N ′(ε)ε|µ|

D
G

(
T − tm
λ(T )

)]
, (154)

where

λ(T ) =
4D

µ2
=

4D

α2p2

(
D

α
ln(T )

)−2(p−1)/p

, (155)

where we have used the expression for µ in Eq. (151). To determine the constantN ′(ε) we impose that this edge-regime
expression matches the bulk expression in Eq. (139), i.e., that

lim
ε→0

[
N ′(ε)ε|µ|

D
G

(
T − tm
λ(T )

)]
≈ 1

T
, (156)

for T − tm � λ(T ). Using the fact that G(z) ≈ 1 for large z, we obtain

lim
ε→0

(N ′(ε)ε) =
D

|µ|T
. (157)

Finally, we get

P (tm|T ) ≈ 1

T
G

(
T − tm
λ(T )

)
, (158)

for T − tm . λ(T ).
Even if the width λ(T ) of the edge region depends on the details of the potential, the shape of P (tm|T ), encoded

in the scaling function G(z), becomes completely universal, i.e. independent of V (x), for large T . Note that in the
special case p = 1, i.e. when V (x) = α |x|, one finds that λ(T ) = 4D/α2, coinciding with the results of Section III A.
Thus, for p = 1 the width of the edge region is independent of T . On the other hand, for p > 1 we observe that λ(T )
decreases very slowly with T and thus for T → ∞ the edge region slowly disappears. In particular, for p = 2, we
find λ(T ) = 1/(α ln(T )), in agreement with Eq. (136). The universal scaling function G(z) has asymptotic behaviors
given in Eq. (76) and is plotted in Fig. 6.
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FIG. 12: Left edge of the scaled distribution TP (tm|T ) as a function of the scaled time of the maximum tm/λ(T ) for p = 1/2.
Note that here the width λ(T ) = (16D/α2)(D ln(T )/α)2 is increasing with T . The continuous blue line corresponds to the
universal result in Eq. (159). The symbols are the results of numerical simulations of Brownian motion in the potential

V (x) = 4x2 for |x| < 1 and V (x) = 4
√
|x| for |x| > 1 with different total times T . We choose the quadratic part for small x

to avoid the divergence in the first derivative V ′(x). We observe that already at T = 5 the numerical results are in excellent
agreement the analytical prediction.

Since the process is at equilibrium, the PDF of tm satisfies the symmetry P (tm|T ) = P (T − tm|T ) (see Subsection
IV C). Therefore, in the left-edge regime, i.e., for tm . λ(T ), we have

P (tm|T ) ≈ 1

T
G

(
tm
λ(T )

)
. (159)

Thus, the late-time behavior of the distribution of tm can be summarized as

P (tm|T ) ≈



1
TG

(
tm
λ(T )

)
for tm . λ(T )

1
T for λ(T )� tm � T − λ(T )

1
TG

(
T−tm
λ(t)

)
for tm & T − λ(T ) .

(160)

Remarkably, the shape of the distribution P (tm|T ) is completely independent of the details of the potential and valid
for any V (x) such that V (x) ≈ α|x|p for large |x|, with α > 0 and p ≥ 1. The details of the potential, i.e., the
parameters α and p, only appear in P (tm|T ) through the width λ(T ) of the edge region, which slowly shrinks as
ln(T )−2(p−1)/p for p > 1, is of order one for p = 1 and expands as ln(T )2(1−p)/p for 0 < p < 1. In Figs. 10, 11, and
12), we compare this universal result in Eq. (160) with numerical simulations performed for different values of p. We
observe that for large T the results of numerical simulations performed with different values of p and appropriately
rescaled with the corresponding value of λ(T ) collapse into the same universal function G(z), given in Eq. (75).

IV. OUT-OF-EQUILIBRIUM PROCESSES

We next focus on the case of nonequilibrium steady states (NESS). This class of stochastic processes is characterized
by the violation of the detailed balance condition and by the presence of steady-state probability currents. In the
last decades, there has been a surge of interest in characterizing the properties of NESS, especially in the context
of living systems. As a consequence of the violation of the detailed balance condition, NESS do not satisfy time-
reversal symmetry. To better understand the properties of tm for nonequilibrium processes, we first investigate two
canonical models for which P (tm|T ) can be computed exactly: resetting Brownian motion (RBM) and a confined
run-and-tumble particle (RTP).
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FIG. 13: Typical trajectory x(τ) of a Brownian motion with stochastic resetting as a function of time τ in the interval [0, T ].
The red segments indicate the resetting events. The particle starts from position x0, drawn from the steady state (162) and
reaches the global maximum M at time tm.

A. Resetting Brownian motion

A nonequilibrium version of BM which has been widely investigated recently is BM with stochastic resetting
[51, 54]. Stochastic resetting describes dynamical processes that are restarted from some fixed state at random
times. Processes with stochastic restarts appear in different disciplines, from computer science [59] to chemistry [60].
The restarting dynamics drives the system to a nonequilibrium steady state [51, 54] and induces many interesting
phenomena, including dynamical phase transitions [61–65]. Besides Brownian motion, resetting has been investigated
for several other random processes, including Lévy flights [66–68], active particles [69, 70], fluctuating interfaces [71],
and the Ising model [72]. Moreover, many theoretical predictions for stochastic resetting have been recently verified
in experiments [62–65, 73].

In this section, we investigate the time tm of the maximum for a Brownian particle x(τ), evolving with diffusion
coefficient D up to time T . In addition to the usual diffusive motion, we assume that the particle undergoes stochastic
resetting to the origin with constant rate r. In a small time interval dt, the position of the particle evolves according
to

x(t+ dt) =


x(t) +

√
2Dη(t)dt with probabilty 1− rdt ,

0 with probabilty rdt ,

(161)

where η(t) is a Gaussian white noise. A typical trajectory is shown in Fig. 13. The resetting dynamics drives the
system to the stationary state [51]

Pst(x0) =
1

2

√
r

D
exp

(
−
√

r

D
|x0|
)
. (162)

Interestingly, the resetting events produce a net probability current towards the resetting location x = 0, driving the
system out of equilibrium.

Note that the distribution of the time tm of the maximum for RBM has been also investigated in [26], where the
authors considered the case where the initial position of the particle is fixed to x0 = 0. Here, we assume instead that
at the initial time the particle has already reached the steady state, meaning that x0 = x(0) is drawn from Pst(x0)
given in Eq. (162). To compute the distribution of tm, we will use the path-decomposition technique described in
Section III. Indeed, it is easy to show that the result in Eq. (41) remains valid in the case of RBM. Note that also in
this case one has to consider a cutoff ε, as explained at the beginning of Section III. In the case of RBM, the result
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in Eq. (41) becomes ∫ ∞
0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2)

= lim
ε→0

[
N (ε)

∫ ∞
−∞

dM

∫ M

−∞
dx0 Pst(x0)G̃Mr (M − ε, s1|x0)Q̃Mr (M − ε, s2)

]
, (163)

where we now use the subscript r in G̃Mr (x, s|x0) and Q̃Mr (x, s) to stress the dependence on the resetting rate r. We

recall that G̃Mr (x, s|x0) is the Laplace transform with respect to t of the constrained propagator GMr (x, t|x0), defined
as the probability that the process arrives at position x at time t, while always remaining below position M . Similarly,
Q̃Mr (x, s) is the Laplace transform with respect to t of the survival probability QMr (x, t), defined as the probability
that the process remains below position M for a total time t, having started from position x. Note that the constant
N (ε) has to be fixed using the normalization condition of P (tm|T ). To exploit this relation in Eq. (163), we first have

to derive the constrained propagator G̃Mr (M − ε, s1|x0) and the survival probability Q̃Mr (M − ε, s2).
We start by computing the survival probability QMr (x, t). It is useful to consider the cases M < 0 and M > 0

separately. If the global maximum is negative, then no resetting event has occurred. Indeed, a resetting event would
bring the particle to the origin, implying M ≥ 0. As a consequence, for M < 0, the survival probability is simply
given by

QMr (x, t) = e−rtQM0 (x, t) , (164)

where the term e−rt is the probability that no resetting event occurs up to time t and the term QM0 (x, t) is the survival
probability of BM without resetting. The latter quantity can be easily computed by solving the diffusion equation
[74–76] and is given by

QM0 (x, t) = erf

(
M − x√

4Dt

)
θ(M − x) , (165)

where θ(z) is the Heaviside theta function, i.e., θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0. Considering the Laplace
transform of this quantity, we obtain

Q̃M0 (x, s) =
1

s

[
1− e−

√
s/D(M−x)

]
θ(M − x) . (166)

Setting x = M − ε and expanding for small ε > 0, we get

Q̃M0 (M − ε, s) ≈ ε√
Ds

. (167)

Taking a Laplace transform of the relation in Eq. (164) and using this expansion in Eq. (167), we obtain

Q̃Mr (M − ε, s) = Q̃M0 (M − ε, s+ r) ≈ ε√
D(s+ r)

, (168)

valid for M < 0.
When M > 0, resetting events are possible. Thus, the survival probability QMr (x, t) can be computed by using the

following renewal equation

QMr (x, t) = e−rtQM0 (x, t) + r

∫ t

0

dτ e−rτQM0 (x, τ)QMr (0, t− τ) . (169)

The first term on the right-hand side of Eq. (169) corresponds to the survival of the process with no resetting up to
time t. The second term describes the case where the first resetting occurs at time 0 < τ < t. The factor QM0 (x, τ) is
the survival probability in the interval [0, τ ], while the factor QMr (0, t− τ) is the survival probability in the remaining
interval [τ, t]. Taking a Laplace transform of Eq. (169) and using the convolution theorem, we get

Q̃Mr (x, s) = Q̃M0 (x, r + s) + rQ̃M0 (x, r + s)Q̃Mr (0, s) . (170)

Setting x = 0, we find

Q̃Mr (0, s) =
Q̃M0 (0, r + s)

1− r Q̃M0 (0, r + s)
. (171)
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Substituting this last expression back into Eq. (170), we get

Q̃Mr (x, s) =
Q̃M0 (x, s+ r)

1− rQ̃M0 (0, s+ r)
, (172)

which is valid for M > 0. Using the expression for Q̃M0 (x, s+ r), given in Eq. (166), we have

Q̃Mr (x, s) =
1− e−

√
(s+r)/D(M−x)

s+ re−
√

(s+r)/DM
θ(M − x) . (173)

Setting x = M − ε, we obtain

Q̃Mr (M − ε, s) ≈ ε√
D

√
s+ r

s+ re−
√

(s+r)/DM
. (174)

To summarize, so far we have shown that to leading order in ε

Q̃Mr (M − ε, s) ≈


ε√
D

√
s+ r

s+ re−
√

(s+r)/DM
for M > 0 ,

ε√
D(s+ r)

for M < 0 .

(175)

We next focus on the constrained propagator GMr (x, t|x0). As before, it is useful to consider the cases M < 0 and
M > 0 separately. For M < 0, no resetting can occur and the constrained propagator is simply given by

GMr (x, t|x0) = e−rtGM0 (x, t|x0) , (176)

where e−rt is the probability that no resetting occurs up to time t and GM0 (x, t|x0) is the constrained propagator of
BM without resetting. The latter quantity can be computed using the method of images [74] and reads

GM0 (x, t|x0) =
1√

2πDt

(
e−(x−x0)2/(4Dt) − e−(2M−x+x0)2/(4Dt)

)
θ(M − x) . (177)

Setting x = M − ε and expanding to leading order for small ε, we find

GM0 (M − ε, t|x0) ' (M − x0)ε

Dt
√

4πDt
e−(M−x0)2/(4Dt) . (178)

Taking a Laplace transform with respect to t gives, to leading order in ε > 0

G̃M0 (M − ε, s|x0) ' ε

D
e−
√
s/D(M−x0) . (179)

Considering the Laplace transform of Eq. (176) and using the expansion in Eq. (179), we obtain

G̃Mr (M − ε, s|x0) ' ε

D
e−
√

(s+r)/D(M−x0) , (180)

valid for M < 0.
On the other hand, in the case M > 0, resetting events can occur and the propagator satisfies the renewal equation

GMr (x, t|x0) = e−rtGM0 (x, t|x0) + r

∫ t

0

dτ e−rτQMr (x0, t− τ)GM0 (x, τ |0) . (181)

The first term on the right-hand side corresponds to the case where no resetting occurs. The second term corresponds
to the case where the last resetting event occurs at time t− τ and the factor QMr (x0, t− τ) is the probability that the
particle remains below position M up to time t− τ . Taking a Laplace transform with respect to t yields

G̃Mr (x, s|x0) = G̃M0 (x, s+ r|x0) + rQ̃Mr (x0, s)G̃
M
0 (x, s+ r|0) . (182)
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Finally, setting x = M − ε, using Eq. (173), and expanding to leading order in ε, we find

G̃r(M − ε, s|x0) ' ε

D

[
r + s e

√
(s+r)/Dx0

]
[
r + s e

√
(s+r)/DM

] , (183)

which is valid for M > 0. To summarize, we have shown that to leading order in ε

G̃r(M − ε, s|x0) ≈


ε

D

[
r + s e

√
(s+r)/Dx0

]
[
r + s e

√
(s+r)/DM

] for M > 0 ,

ε

D
e−
√

(s+r)/D(M−x0) for M < 0 .

(184)

We now have all the ingredients to compute the PDF P (tm|T ). Substituting the expressions for Pst(x0), Q̃Mr (M −
ε, s), and G̃Mr (M − ε, s|x0), respectively given in Eqs. (162), (175), and (184), into Eq. (163) we obtain∫ ∞

0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] 1

2

√
r

D2

{∫ 0

−∞
dM

∫ M

−∞
dx0 e

√
r/Dx0

× e−
√

(s1+r)/D(M−x0)

√
s2 + r

+

∫ ∞
0

dM

∫ M

−∞
dx0 e

−
√
r/D|x0|

[
r + s1 e

√
(s1+r)/Dx0

]
[
r + s1 e

√
(s1+r)/DM

] √
s2 + r[

s2 + re−
√

(s2+r)/DM
]
 , (185)

where we recall that we integrate the initial position x0 over the interval (−∞,M) because by definition the variable
M is the global maximum and hence M > x0. This expression can be simplified by performing the change of variables
(x0,M)→ (w = x0

√
r/D, z = M

√
r/D), which gives∫ ∞

0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] 1

2

1

D
√
r

{∫ 0

−∞
dz

∫ z

−∞
dw ew

× e−(z−w)
√

1+s1/r

√
s2 + r

+

∫ ∞
0

dz

∫ z

−∞
dw e−|w|

[
r + s1 e

w
√

1+s1/r
]

[
r + s1 e

z
√

1+s1/r
] √

s2 + r[
s2 + re−z

√
1+s2/r

]
 . (186)

Computing the integrals over w, we get∫ ∞
0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tm = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] 1

2

1

Dr

{
1

(1 +
√

1 + s1/r)
√

1 + s2/r

+

√
1 + s2/r√

1 + s1/r − 1

∫ ∞
0

dz e−(1+
√

1+s1/r)z
ez
√

1+s1/rs1/r −
√

1 + s1/r + 1(
s1/r + e−z

√
1+s1/r

)(
s2/r + e−z

√
1+s2/r

)} . (187)

In order to fix the normalization constant N (ε), we set s1 = s2 = s on both sides of Eq. (187). The left-hand side
can be evaluated by using the fact that the PDF P (tm|T ) is normalized to unity over tm (see Eq. (56)) and is equal
to 1/s. Evaluating the integrals on the right-hand side with Mathematica, we find

1

s
= lim
ε→0

[
N (ε)ε2

] 1

Ds
, (188)

and hence

lim
ε→0

[
N (ε)ε2

]
= D . (189)

Using this expression, we can finally write the PDF P (tm|T ) in the scaling form

P (tm|T ) = rFR(rtm, r(T − tm)) , (190)
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FIG. 14: Probability density function P (tm|T ) as a function of the time tm of the maximum, obtained from numerical
simulations of resetting Brownian motion with D = T = 1 and r = 10. The vertical dashed line indicates the midpoint
tm = T/2. As a consequence of the nonequilibrium nature of the process, the distribution P (tm|T ) is not symmetric around
tm = T/2.

where∫ ∞
0

dT1 e
−s1T1

∫ ∞
0

dT2 e
−s2T2 FR(T1, T2) =

1

2

1

(1 +
√

1 + s1)
√

1 + s2
(191)

+
1

2

√
1 + s2√

1 + s1 − 1

∫ ∞
0

dz e−(1+
√

1+s1)z ez
√

1+s1s1 −
√

1 + s1 + 1(
s1 + e−z

√
1+s1

) (
s2 + e−z

√
1+s2

) .
Interestingly, this expression is not invariant under exchange of s1 and s2. As a consequence P (T1, T2) 6= P (T2, T1) and
thus the PDF P (tm|T ) is not symmetric around the midpoint tm = T/2. This is confirmed by numerical simulations
(see Fig. 14).

1. Expected time of the maximum

As a consequence of the asymmetry of the time tm of the maximum, the average value 〈tm〉 is different from T/2.
Therefore, it is interesting to investigate the behavior of 〈tm〉 as a function of the total time T . The deviations of this
quantity 〈tm〉 from the equilibrium value T/2 quantify the degree of asymmetry of the distribution and consequently
the nonequilibrium nature of the process.

To study this average value, we differentiate both sides of Eq. (192) with respect to s1 and then we set s1 = s2 = s,
yielding ∫ ∞

0

dT1 T1e
−sT1

∫ ∞
0

dT2 e
−sT2 FR(T1, T2) =

1

4(1 + s)(1 +
√

1 + s)2

+
1

4
√

1 + s(
√

1 + s− 1)2

∫ 1

0

du u1/
√

1+s s
[
3 + s/u− 2

√
1 + s+ (

√
1 + s− 1) ln(u)

]
− 2(
√

1 + s− 1)

(s+ u)3
, (192)

where we have performed the change of variable z → u = − ln(z)/
√

1 + s. Let us first consider the left-hand side of
Eq. (192), which can be rewritten as∫ ∞

0

dT1 T1e
−sT1

∫ ∞
0

dT2 e
−sT2 FR(T1, T2) =

∫ ∞
0

dT̃ e−sT̃
∫ T̃

0

dT1 T1 FR(T1, T2) =

∫ ∞
0

dT̃ e−sT̃ 〈T1(T̃ )〉 (193)
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FIG. 15: The scaled average 〈tm〉/T as a function of rT for Brownian motion with resetting rate r. The symbols depict
the results of numerical simulations (performed with r = 1) while the continuous line corresponds to the analytical results in
Eqs. (196-199). In the case of an equilibrium process, one expects 〈tm〉/T = 1/2 for any T .

where we have made the change of variable (T1, T2)→ (T1, T̃ = T1 + T2) and we have defined

〈T1(T̃ )〉 =

∫ T̃

0

dT1 T1 FR(T1, T̃ − T1) . (194)

Note that T1 and T̃ = T1 +T2 respectively correspond to the rescaled time of the maximum T1 = rtm and the rescaled
total time T̃ = rT (see Eq. (190)).

The Laplace transform in Eq. (192) can be inverted (see Appendix F), yielding

〈T1(T̃ )〉 = T̃ f(T̃ ) . (195)

Reintroducing dimensions, this corresponds to

〈tm(T )〉 = Tf(rT ) . (196)

where the scaling function f(t) is given by

f(t) =
1

96

[
−4(2t2 + 3t− 18) +

2√
π

1√
t
(3 + 16t+ 4t2)e−t + (−3− 30t+ 36t2 + 8t3)

1

t
erf(
√
t)

]
+

1

2t

[
e−t − 2√

π
Γ

(
3

2
, t

)]
+
∞∑
k=1

1

t
gk(t) , (197)

and Γ(a, t) =
∫∞
t
xa−1e−x is the upper incomplete Gamma function. The function gk(t) reads

gk(t) = (−1)k
1

2
(k + 1)(k + 2)

∫ t

0

dτ hk(t− τ)τk+1

(
1

(k + 1)!
+

τ

(k + 2)!

)
, (198)

where

hk(t) =
1

k2

{
−e−t+t/k

2

k(1− k)2 + e−t
k
[
k(1 + k)3 − 2k3t

]
√
πt(1 + k)3

}
+

1

k2

[
erf

(√
t

k

)
e−t+t/k

2

(1− k)2

]
× 1

(1 + k)4
e−t+t/(1+k)2

[
(1 + k)2(k2 − 2) + 2kt

] [
1− erf

( √
t

(k + 1)

)]
. (199)

The exact result in Eqs. (196) and (197) is shown in Fig. 15 and is in perfect agreement with numerical simulations.
We observe that the ratio 〈tm〉/T is manifestly different from the constant value 1/2, signaling that the process violates
detailed balance. Note also that the function f(t) has a maximum at t∗ ≈ 2.218 with f(t∗) ≈ 0.519. Thus, keeping
T fixed, there exists a value of the resetting rate r that maximizes the deviation from the equilibrium result.
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2. Time asymptotics

Although it is quite challenging to invert exactly the double Laplace transform in Eq. (192), this expression can
be used to extract the asymptotic behavior of the distribution P (tm|T ) in the limit of short times (T � ξ) and late
times (T � ξ). Here, the correlation time ξ of the process is ξ = 1/r, where r is the resetting rate. This quantity ξ
represents the typical time between two consecutive resetting events. When T � 1/r, hardly any resetting event has
occurred and we expect to recover the results obtained for Brownian motion without resetting. On the other hand, for
T � 1/r, the positions of the process at different times become uncorrelated and we expect the distribution P (tm|T )
to become uniform in the interval [0, T ], with corrections for tm → 0 and tm → T .

To investigate the short time regime T � 1/r, we take the limit s1, s2 →∞ on the right-hand side of Eq. (192)∫ ∞
0

dT1 e
−s1T1

∫ ∞
0

dT2 e
−s2T2 FR(T1, T2) ≈ 1

2

1
√
s1
√
s2

+
1

2

1
√
s1
√
s2

∫ ∞
0

dz e−z , (200)

and hence ∫ ∞
0

dT1 e
−s1T1

∫ ∞
0

dT2 e
−s2T2 FR(T1, T2) ≈ 1

√
s1
√
s2
. (201)

Using the Laplace inversion in Eq. (65), we get

FR(T1, T2) ≈ 1

π
√
T1T2

. (202)

Hence, for T � 1/r, we obtain

P (tm|T ) ≈ 1

π
√
tm(T − tm)

, (203)

which is once again Lévy arcsine law [15], i.e., the distribution of the time of the maximum for a free BM, as expected.
It turns out that the late time regime T � 1/r is somewhat similar to the one described in Section III for

equilibrium processes. Indeed, there are three distinct regimes, depending on tm: the left edge regime, where tm ∼ 1/r,
the bulk regime, where 1/r � tm � (T − 1/r), and the right edge, where T − tm ∼ 1/r. We first focus on
the left edge, corresponding to T1 = rtm ∼ O(1) and T2 = r(T − tm) → ∞. Performing the change of variable
z → u = exp(−

√
1 + s2z) in Eq. (192), we obtain

F̃R(s1, s2) ≡
∫ ∞

0

dT1

∫ ∞
0

dT2 e
−s1 T1−s2 T2FR(T1, T2) =

1

2

1
√

1 + s2

(√
1 +
√

1 + s1

) (204)

+
1

2

1√
s1 + 1− 1

∫ 1

0

du
u(1+

√
1+s1)/

√
1+s2−1

(
s1u
−
√

(1+s1)/(1+s2) −
√
s1 + 1 + 1

)
(
s1 + u

√
(1+s1)/(1+s2)

)
(s2 + u)

.

To investigate the limit of large T2, we expand the right-hand side of Eq. (204) for small s2 and we obtain

F̃R(s1, s2) ≈ 1

2

1√
s1 + 1− 1

∫ 1

0

du
s1 + (1−

√
s1 + 1)u

√
1+s1(

s1 + u
√

1+s1
)

(s2 + u)
. (205)

We observe that the expression on the right-hand side of Eq. (205) has a pole at s2 = −u, thus the integral over u

will be dominated by small values of u. Thus, we neglect the term u
√

1+s1 and we obtain

F̃R(s1, s2) =
1

2

1√
s1 + 1− 1

∫ 1

0

du
1

s2 + u
. (206)

Using the Laplace-inversion formula in Eq. (73) to invert the double Laplace transform, we obtain

FR(T1, T2) ' G(T1)

∫ 1

0

du e−uT2 , (207)
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where

G(z) =
1

2

[
1 + erf

(√
z
)

+
1√
πz

e−z
]
. (208)

Finally, computing the integral over u, we find that, for T1 ∼ O(1) and T2 →∞,

FR(T1, T2) ' 1

T
G(T1) . (209)

Interestingly, we find that the same scaling function G(z), that describes the left-edge behavior for equilibrium
processes in Section III (see Eq. (160)), also describes the left-edge behavior for this out-of-equilibrium Brownian
resetting process.

Let us now consider the right edge, i.e., the limit T1 → ∞ with T2 = T − T1 ∼ O(1). Performing the change of
variable z → u = exp(−

√
1 + s1z) in Eq. (192), we obtain

F̃R(s1, s2) =
1

2

1
√

1 + s2

(√
1 +
√

1 + s1

) +
1

2

1√
s1 + 1− 1

√
1 + s2

1 + s1

∫ 1

0

du
u1/
√

1+s1
(
s1
u −
√

1 + s1 + 1
)

(s1 + u)
(
s2 + u

√
(1+s2)/(1+s1)

) . (210)

For small values of s1 the integral on the right-hand side of Eq. (210) is dominated by small values of u. Thus,
expanding for small s1 and small u, we get

F̃R(s1, s2) ≈
√
s2 + 1

s2

∫ 1

0

du
1

s1 + u
. (211)

Inverting the double Laplace transform with Eq. (73), we find that when T1 →∞ with T2 ∼ O(1)

FR(T1, T2) ≈ 1

T
(2G(T2)− 1) , (212)

where G(T2) is given in Eq. (208).
The bulk regime corresponds instead to the limit s1, s2 → 0 in Eq. (192), yielding

F̃R(s1, s2) ≈
∫ ∞

0

dz e−z
1

(s1 + e−z)(s2 + e−z)
. (213)

Inverting the double Laplace transform, we obtain

FR(T1, T2) ≈
∫ ∞

0

dz e−ze(T1+T2)e−z =
1

T1 + T2
, (214)

corresponding to the flat distribution

P (tm|T ) ≈ 1

T
. (215)

To summarize, we have shown that for T � 1/r

P (tm|T ) ≈



1
TG(rtm) for tm � 1/r

1
T for 1/r � tm � (T − 1/r)

1
T [2G(r(T − tm))− 1] for tm � 1/r ,

(216)

where the function G(z) is given in Eq. (208). The late-time shape of the distribution P (tm|T ) is remarkably similar
to the one of confined Brownian motion (see Eq. (160)). However, due to the nonequilibrium nature of the process,
this distribution in not symmetric around the midpoint tm = T/2. In particular, using the asymptotics of the function
G(z), given in Eq. (76), we find that for tm → 0 and T � 1/r

P (tm|T ) ≈ 1

T
√

2πrtm
. (217)

On the other hand, for tm → T and T � 1/r we find

P (tm|T ) ≈
√

2

T
√
πrtm

. (218)
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FIG. 16: Left panel: Typical trajectory of the position x(τ) of an RTP in a confining potential V (x) = µ|x| as a function
of time τ . The position of the particle reaches the maximal value M at time tm. Right panel: Realization of the telegraphic
noise σ(τ), switching sign with rate γ.

B. Run-and-tumble particle in a confining potential

In this section, we investigate the time tm of the maximum for the RTP process. This model was first known in
the literature of stochastic processes as “persistent random walk” [77–80]. More recently, this process was exploited
to describe the persistent motion of a class of bacteria, including E. coli [81], which move along a fixed direction
(they “run”), randomizing their orientation (they “tumble”) at random times. Quite remarkably, such a simple model
displays several nontrivial features, including clustering at the boundaries in a confining domain [82], non-Boltzmann
steady-state distributions [83, 84], and jamming [85, 86].

The distribution of the time of the maximum for a free RTP has been investigated in [25, 33, 34]. Here we focus
instead on the case of a RTP in a one-dimensional potential V (x), since we want to study a stationary version of this
active process. Here we consider a single RTP moving on a line and subject to a confining potential V (x) = µ|x|.
The evolution of the position x of the particle can be described by the following Langevin equation

dx

dt
= f(x) + v0 σ(t) , (219)

where v0 > 0 is the velocity of the particle, f(x) = −V ′(x) is the external force. The term σ(t) = ±1 is a telegraphic
noise, describing the direction of the particle. We assume that σ(t) flips its sign with constant rate γ. A typical
realization of this process is shown in Fig. 16. The persistent nature of the motion of the particle drives the system
out of equilibrium. Indeed, in a small time interval dt, the system can go from the state (x,+1), i.e., position x and
positive direction, to the state (x + dt(f(x) + v0),+1). However, the inverse transition from (x + dt(f(x) + v0),+1)
to (x,+1) is not possible, inducing probability currents in phase space.

Computing analytically the distribution of tm for arbitrary V (x) appears to be challenging. For this reason, we
focus on the case V (x) = µ|x|, which can be solved exactly. As we will show, even though it is possible to compute
exactly the double Laplace transform of P (tm|T ) with respect to tm and T − tm, the resulting expression is quite
cumbersome, and even extracting asymptotics is quite hard. Nevertheless, from this exact computation one can easily
check whether or not the distribution of tm satisfies the symmetry P (tm|T ) = P (T − tm|T ). This is precisely the goal
of this section. As we have observed that this symmetry is always present in the case of equilibrium processes while
it is not satisfied by RBM, it is natural to ask whether or not this property is present in the case of nonequilibrium
active particles.

We also assume that v0 > µ, since in the opposite case v0 ≤ µ no steady state exists [55]. For v0 > µ, the stationary
distribution of the position is given by [55]

Pst(x0) =
γ µ

v2
0 − µ2

exp

(
− 2γµ

v2
0 − µ2

|x0|
)
. (220)

It is useful to define also the joint stationary distribution Pσst(x0) of the position x0 and of the direction σ = ± of the
particle, which is given by [55]

P±st (x0) =
1

2

(
1± µ

v0
sign(x)

)
γ µ

v2
0 − µ2

exp

(
− 2γµ

v2
0 − µ2

|x0|
)
. (221)
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We assume that the particle starts at the initial time from position x0 with a positive (negative) direction σ is
drawn from the distribution in Eq. (221) with a positive (negative) sign, and that it evolves according to Eq. (219)
up to time T . We are interested in the distribution P (tm|T ) of the time tm at which the maximum of the position
is reached. To compute this quantity, we will exploit a path-decomposition technique similar to the one described
in the previous sections. Note that the events tm = 0 and tm = T happen with a finite probability and have to be
considered separately.

Let us first consider the case 0 < tm < T . As a consequence of the persistent motion of the particle, the time of
the maximum coincides with a tumbling event if 0 < tm < T (see Fig. 16). Thus, we can divide the time interval
[0, T ] into the three subintervals [0, tm] (I), [tm, tm + δ] (II), where δ is assumed to be small, and [tm + δ, T ] (III). In
the interval (I), the particle starts from position x0 with direction σ, it stays below the maximal value M and reaches
M for the first time at time tm. Note that, since we are constraining the particle to remain below position M , it
can only arrive at position M with positive velocity. Thus, the probability weight of the first interval can be written
as G+

M (M, tm|x0, σ), where the constrained propagator G±M (x, t|x0, σ) is defined as the probability that the particle
reaches position x with direction ± at time t while always remaining below position M , having started from position
x0 with direction σ. In the short time interval (II), the particle has to tumble, i.e., to change its direction from
positive to negative. Since we assume that the tumbling events happen with a constant rate γ and that δ is small, the
probability weight of this interval is γδ. Finally, in the interval [tm + δ, T ] the particle starts from position M with
negative velocity and remains below position M up to time T . Thus, the weight of this last interval is Q−M (M,T −tm),
where the survival probability QσM (x, t) is defined as the probability that the particle remains below position M up to
time t, starting from position x with direction σ. Since the joint process (x, σ) is Markov, the distribution of tm can
be written as the product of the three probability weights corresponding to the three time intervals. Thus, integrating
over the initial position x0, the maximal value M > x0 and summing over the initial direction σ, we obtain

P (tm|T ) = A γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G+
M (M, tm|x0, σ) Q−M (M,T − tm) , (222)

where A is a normalization constant. Note that the small time interval δ is included in the normalization constant A.
As anticipated, the events tm = 0 and tm = T happen with non-zero probability. In particular, the event tm = 0

will happen when the particle starts from position x0 with a negative velocity and remains below its starting position
x0 up to time T . Thus, since the starting position and direction are drawn from the stationary distribution Pσst(x0),
integrating over x0 we obtain

Prob.(tm = 0|T ) =

∫ ∞
−∞

dx0 P
−
st (x0)Q−x0

(x0, T ) . (223)

On the other hand, the event “tm = T” happens when the particle reaches the maximum M at the final time T . Since
the particle is constrained to stay below position M , the particle can only reach the maximum coming from below,
with a positive direction. Thus, summing over the initial position x0 and direction σ, we find

Prob.(tm = T |T ) =
∑
σ=±

∫ ∞
−∞

dx0

∫ ∞
x0

dM P σst(x0) G+
M (M,T |x0, σ) . (224)

Thus, using the Eqs. (222), (223), and (224), we find that for 0 ≤ tm ≤ T

P (tm|T ) = A γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G+
M (M, tm|x0, σ) Q−M (M,T − tm)

+ δ (tm)

∫ ∞
−∞

dx0 P
−
st (x0)Q−x0

(x0, T ) + δ (tm − T )
∑
σ=±

∫ ∞
−∞

dx0

∫ ∞
x0

dM P σst(x0) G+
M (M,T |x0, σ) , (225)

where the constant A can be computed from the normalization condition∫ T

0

dtm P (tm|T ) = 1 . (226)

We now need to compute the constrained propagator G±M (x, t|x0, σ) and the survival probability Q±M (x, t). These
quantities can be obtained by solving the Fokker-Planck equation associated with the system.
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We first consider the constrained propagator G±M (x, t|x0, σ). It is possible to show that G+
M (x, t|x0, σ) and

G−M (x, t|x0, σ) evolve according to the following coupled forward Fokker-Planck equations [55]
∂tG

+
M (x, t|x0, σ) = −∂x

[
(−µ sign(x) + v0)G+

M (x, t|x0, σ)
]
− γ G+

M (x, t|x0, σ) + γ G−M (x, t|x0, σ)

∂tG
−
M (x, t|x0, σ) = −∂x

[
(−µ sign(x)− v0)G−M (x, t|x0, σ)

]
− γ G−M (x, t|x0, σ) + γ G+

M (x, t|x0, σ)

(227)

with initial condition

G±M (x, t = 0|x0, σ) = δ (x− x0) δσ,± , (228)

and boundary conditions 
G±M (−∞, t|x0, σ) = 0

G−M (M, t|x0, σ) = 0 .

(229)

The boundary condition on the second line of Eq. (229) can be understood as follows. If a particle arrives at position
M with a negative velocity, it must have already visited the region x > M . However, we are constraining the particle
to remain below the position M . Thus, G−M (M, t|x0, σ) has to be zero. Note that G+

M (M, t|x0, σ) remains instead
unspecified.

We limit our discussion to the case σ = +, i.e., we assume that the particle starts with a positive velocity. The
complementary case σ = − can be treated similarly. Taking a Laplace transform with respect to t on both sides of
the Eqs. (227) and using the initial condition in Eq. (228), we obtain
sG̃+

M (x, s|x0,+)− δ(x− x0) = −∂x
[
(−µ sign(x) + v0) G̃+

M (x, s|x0,+)
]
− γ G̃+

M (x, s|x0,+) + γ G̃−M (x, s|x0,+)

sG̃−M (x, s|x0,+) = −∂x
[
(−µ sign(x)− v0) G̃−M (x, s|x0,+)

]
− γ G̃−M (x, s|x0,+) + γ G̃+

M (x, s|x0,+)

,

(230)
where we have defined the Laplace transform

G̃±M (x, s|x0, σ) =

∫ ∞
0

dt e−stG±M (x, t|x0, σ) . (231)

The boundary conditions of the differential equations (230) can be obtained from Eq. (232) and are given by
G̃±M (−∞, s|x0, σ) = 0 ,

G̃−M (M, t|x0, σ) = 0 .

(232)

The solution of the coupled ordinary differential equations (230) is presented in Appendix G, where we show that

G̃+
M (M, s|x0,+) =



1

v0 + µ
e−(k−(s+γ)µ)(M−x0)/(v20−µ

2) for x0 < 0 ,M < 0 ,

k
e−(µ(s+γ)+k)M/(v20−µ

2) e(−µ(s+γ)+k)x0/(v
2
0−µ

2)

v0(k − µ(γ + s)) + µ(v0(γ + s)− k)e−2kM/(v20−µ2)
for x0 < 0 ,M > 0 ,

1

v0 − µ
(k − v0(s+ γ))µ+ e2kx0/(v

2
0−µ

2)v0((s+ γ)µ− k)

(k − v0(s+ γ))µ+ e2kM/(v20−µ2)v0((s+ γ)µ− k)
×e(k−µ(s+γ))(M−x0)/(v20−µ

2) for x0 > 0 ,M > 0 ,

(233)

where we have defined

k =
√
s2v2

0 + 2sv2
0γ + γ2µ2 . (234)



39

Following the same steps in the case σ = −, we obtain

G̃+
M (M, s|x0,−) =



v0(γ + s)− k
γ(v2

0 − µ2)
e−(k−(s+γ)µ)(M−x0)/(v20−µ

2) for x0 < 0 ,M < 0 ,

k(v0(γ + s)− k)

γ(v0 − µ)

e−(µ(s+γ)+k)M/(v20−µ
2) e(−µ(s+γ)+k)x0/(v

2
0−µ

2)

v0(k − µ(γ + s)) + µ(v0(γ + s)− k)e−2kM/(v20−µ2)
for x0 < 0 ,M > 0 ,

v0(s+ γ)− k
γ(v2

0 − µ2)

(k − v0(s+ γ))µ+ e2kx0/(v
2
0−µ

2)v0((s+ γ)µ− k)

(k − v0(s+ γ))µ+ e2kM/(v20−µ2)v0((s+ γ)µ− k)
×e(k−µ(s+γ))(M−x0)/(v20−µ

2) for x0 > 0 ,M > 0 ,

(235)
We now want to compute the survival probability Q±M (x, t), defined as the probability to remain below position

M up to time t, starting from position x with initial direction ±. It is possible to show that Q+
M (x, t) and Q−M (x, t)

satisfy the following backward Fokker-Planck equations [55]
∂t Q

+
M (x, t) = (−µ sign(x) + v0) ∂xQ

+
M (x, t) + γ Q+

M (x, t)− γ Q−M (x, t) ,

∂t Q
−
M (x, t) = (−µ sign(x)− v0) ∂xQ

−
M (x, t) + γ Q−M (x, t)− γ Q+

M (x, t)

(236)

with initial condition

Q±M (x, t = 0) = 1 , (237)

for any x < M . The boundary conditions in this case are given by{
Q±M (−∞, t) = 1 ,

Q+
M (M, t) = 0 .

(238)

The first boundary condition means that if the particle starts infinitely far from the absorbing barrier at x = M , it
will never go above position M in a finite time. The second boundary condition encodes that if the particle starts
at M with a positive velocity, it will immediately go above M . Note that in this case the boundary condition for
Q−M (M, t) remains unspecified.

It is useful to perform a Laplace transform with respect to t of the equations (236). Using the initial condition in
Eq. (237), we obtain

sQ̃+
M (x, s)− 1 = (−µ sign(x) + v0) ∂xQ̃

+
M (x, s) + γ Q̃−M (x, s)− γ Q̃+

M (x, s) ,

s Q̃−M (x, s)− 1 = (−µ sign(x)− v0) ∂xQ̃
−
M (x, s) + γ Q̃+

M (x, s)− γ Q̃−M (x, s) ,

(239)

where we have defined

Q̃±M (x, s) =

∫ ∞
0

dt e−stQ±M (x, t) . (240)

In Laplace space, the boundary conditions in Eq. (238) become{
Q̃±M (−∞, s) = 1/s ,

Q̃+
M (M, s) = 0 .

(241)

The solution of Eq. (239) is presented in Appendix (H), where we show that

Q̃−M (M, s) =



1

s

k + v0s− γµ
k + v0(s+ γ)

for M < 0 ,

1

s

1

k + v0(s+ γ)

[
k + v0s+ µγ − 2kγµ(v0 − µ)

(v0(s+ γ)− k)µ+ v0(k − (s+ γ)µ)e2kM/(v20−µ2)

]
for M > 0 .

(242)
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FIG. 17: Probability density function Pbulk(tm|T ) as a function of the time tm of the maximum for a run-and-tumble particle
in a confining potential V (x) = |x|, for 0 < tm < T . Note that since the events “tm = 0” and “tm = T” occur with finite
probability, the distribution is not normalized to unity for 0 < tm < T . The curve is obtained by numerical simulations with
γ = 1, T = 5, and v0 = 2. The distribution Pbulk(tm|T ) appears to be symmetric around the midpoint tm = T/2. We find
numerically that P0(T ) = Prob.(tm = 0) ≈ 0.087 and P1(T ) = Prob.(tm = T ) ≈ 0.165. The inset shows the full distribution
P (tm|T ), including the two asymmetric δ-functions in tm = 0 and tm = T .

Note that we will not need the expression of Q̃+
M to compute P (tm|T ).

We can now use the formula in Eq. (225) to compute P (tm|T ). To proceed, we need to write this relation in
Eq. (225) in Laplace space. Thus, we consider the double Laplace transform of Eq. (225) with respect to T1 = tm and
T2 = T − tm, yielding∫ ∞

0

dT1

∫ ∞
0

dt2 e
−s1T1−s2T2P (tm = T1|T = T1 + T2) =

∫ ∞
−∞

dx0 P
−
st (x0)Q̃−x0

(x0, s2)

+Aγ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dMG̃+
M (M, s1|x0, σ) Q̃−M (M, s2)

+
∑
σ=±

∫ ∞
−∞

dx0

∫ ∞
x0

dM P σst(x0) G̃+
M (M, s1|x0, σ) . (243)

In order to determine the constant A, we impose that the PDF P (tm|T ) is correctly normalized to unity. To do
this, we set s1 = s2 = s on both sides of Eq. (243), yielding

1

s
=

∫ ∞
−∞

dx0 P
−
st (x0)Q̃−x0

(x0, s) +A γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G̃+
M (M, s|x0, σ) Q̃−M (M, s)

+
∑
σ=±

∫ ∞
−∞

dx0

∫ ∞
x0

dM P σst(x0) G̃+
M (M, s|x0, σ) , (244)

where we have simplified the left-hand side using Eq. (56). Computing the integrals on the right-hand side turns out

to be rather nontrivial even after setting s1 = s2 = s. Nevertheless, using the expressions obtained above for Pσst, G̃
+
M ,

and Q̃−M and evaluating these integrals numerically with Mathematica we have verified that the correct normalization
constant is A = 1.

We then rewrite P (tm|T ) as

P (tm|T ) = P0(T )δ(tm) + Pbulk(tm|T ) + P1(T )δ(tm − T ) , (245)
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where∫ ∞
0

dt1

∫ ∞
0

dt2 e
−s1t1−s2t2Pbulk(tm = t1|T = t1+t2) = γ

∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G̃+
M (M, s1|x0, σ) Q̃−M (M, s2) ,

(246)∫ ∞
0

dT e−sTP0(T ) =

∫ ∞
−∞

dx0 P
−
st (x0)Q̃−x0

(x0, s) , (247)

and ∫ ∞
0

dT e−sTP1(T ) =
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G̃+
M (M, s|x0, σ) . (248)

Exactly inverting these Laplace transforms turns out to be quite nontrivial. Nevertheless, it is possible to check,
for instance using Mathematica, that the Laplace transform of Pbulk(tm|T ) in Eq. (246) is invariant under exchange
of s1 and s2. This implies that Pbulk(tm|T ) = Pbulk(T − tm|T ), i.e., that the central part of the distribution of tm is
symmetric around the midpoint tm = T/2. This is confirmed by numerical simulations (see Fig. 17). However, it is
easy to show that the amplitudes P0(T ) and P1(T ) of the delta functions in tm = 0 and tm = T are in general different.
Thus, the full distribution P (tm|T ), for 0 ≤ tm ≤ T is not symmetric around tm = T/2. This is a consequence of the
nonequilibrium nature of the process.

C. Criterion to detect nonequilibrium dynamics

From the exact results of the previous sections, we have observed that for equilibrium systems corresponding
to an overdamped Brownian particle in a confining potential V (x) the probability distribution of the time tm of the
maximum is symmetric around the midpoint tm = T/2. Let us stress that this property is not related to the symmetry
V (x) = V (−x) of the potentials that we have investigated in Section III (see Fig. 18, where we show that this property
is valid even when V (x) 6= V (−x)). On the other hand, for the nonequilibrium processes we have considered, this
symmetry is not present and P (tm|T ) 6= P (T − tm|T ). In this Section, we show that this symmetry is quite general
and can be used to develop a technique to detect nonequilibrium fluctuations in steady states. In particular, we show
that one has the property P (tm|T ) = P (T − tm|T ) for any equilibrium process. Note that the inverse implication is
not true as there are nonequilibrium processes with this symmetry.

We consider a time series of duration T . For simplicity, we focus on a discrete-time process xi with 1 ≤ i ≤ T – where
i and T are positive integers. This derivation immediately generalizes to the continuous-time case. We assume that
this time series is generated from an equilibrium Markov process. We denote by P ({xi}) the probability of observing
a given trajectory {xi} = {x1 , x2 , . . . , xT } and by {x̄i} = {xT , . . . , xi} the time-reversed trajectory associated with
{xi}. Note that if the system is at equilibrium it is easy to show that P ({xi}) = P ({x̄i}) (time-reversal symmetry).

The distribution of the time tm of the maximum can be written as

P (tm|T ) =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxT Θtm({xi})P ({xi}) , (249)

where

Θk ({xi}) =
∏
i 6=k

θ (xk − xi) . (250)

Here θ(z) is the Heaviside step function, i.e., θ(z) = 1 for z > 0 and θ(z) = 0 otherwise. The function Θk ({xi}) is one
if the maximum of the trajectory {xi} is attained at step k and is zero otherwise. Performing the change of variables
xi → x̄i = xT−i in Eq. (249), we get

P (tm|T ) =

∫ ∞
−∞

dx̄1 . . .

∫ ∞
−∞

dx̄T Θtm({x̄T−k})P ({x̄k}) , (251)

where we have used the relation P ({xi}) = P ({x̄i}). It is easy to show that Θtm({x̄T−i}) = ΘT−tm({x̄i}), meaning
that if the maximum of the forward trajectory is reached at time tm then the maximum of the backward trajectory
is reached at time T − tm. Using this relation, we find

P (tm|T ) =

∫ ∞
−∞

dx̄1 . . .

∫ ∞
−∞

dx̄T ΘT−tm({x̄i})P ({x̄i}) . (252)
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FIG. 18: Probability density function P (tm|T ) as a function of tm, obtained from numerical simulations of Brownian motion
in an asymmetric potential V (x), with V (x) = x2 for x > 0 and V (x) = −x for x < 0, T = 1, and D = 1. The distribution
appears to be symmetric around the midpoint tm = T/2 (vertical dashed line).

We now recognize the expression of the right-hand side to be P (T − tm|T ) (see Eq. (249)). Therefore, we obtain
P (tm|T ) = P (T−tm|T ). To summarize we have shown that if a process is at equilibrium then P (tm|T ) = P (T−tm|T ).
As anticipated, this symmetry can be used to determine whether or not a stationary system is nonequilibrium.

Imagine that one has access to a long time series x(τ), for instance, obtained from some experiments, and one does
not know the specific details of the underlying system. For example, this time series could represent the position of a
molecular motor along a microtubule or a Brownian particle in an optical trap. This setup has become increasingly
relevant due to recent developments in single-particle tracking [87]. Then, one of the most fundamental questions that
one can ask about the system is whether or not it is at equilibrium. In particular, in the context of biological systems,
these questions are relevant since nonequilibrium fluctuations typically signal the active consumption of energy.

Throughout the last decades, several methods to determine the nonequilibrium nature of a system have been
developed – for a recent review, see [50]. Many of these techniques also quantify how much the system is out of
equilibrium, usually as a bound on the entropy production [88–92]. A popular technique is based on the verification
of the fluctuation-dissipation relation, which relates correlation and response for equilibrium systems [93–96]. If a
violation of this relation is observed, one can immediately conclude that the system is nonequilibrium. Note that the
main drawback of this method is that it requires perturbing the system to measure the response function. Many other
techniques have been proposed, including the detection of violations of the detailed balance condition[97–99] or the
analysis of waiting-time distributions [100, 101].

Using the fact that P (tm|T ) is symmetric for equilibrium systems, we introduce a new method based on two steps.
First, divide the time series x(τ) into N blocks of duration T (assuming that the time series is long enough such
that N � 1). Compute the time tim at which the maximum is reached within each block (where the index i refers to
the i-th block). From these N values, build the empirical distribution P (tm|T ). If this distribution is not symmetric
around tm = T/2, the process is necessarily nonequilibrium. On the other hand, if P (tm|T ) = P (T − tm|T ) our test
is inconclusive. Note that for a multidimensional system, one can apply the criterion to any of its components.

As anticipated, there exist nonequilibrium processes for which the distribution of tm is symmetric. As an example, we
can consider a single one-dimensional active Ornstein-Uhlenbeck process (AOUP) in a harmonic potential V (x) = αx2

[102]. The system is described by the position x(τ) and the speed v(τ) of the particle. The system evolves according
to

dx(t)

dt
= −αx(t) + v(t) +

√
2Dξ(t) , (253)

where ξ(t) is a Gaussian white noise with zero mean and correlator 〈ξ(t)ξ(t′)〉 = δ(t− t′) and v(t) evolves as

dv(t)

dt
= − v

τa
+

√
2Da

τa
ζ(t) , (254)

where Da > 0, τa > 0, and ζ(t) is a Gaussian white noise. We also assume that ξ(t) and ζ(t) are uncorrelated. Note
that since the equations of motion are linear, the process is Gaussian.
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Even though x(t) depends on the evolution of v(t), there is no feedback from v(t) to x(t). This creates probability
currents in the phase space (x, v) and hence the system is out of equilibrium. Nevertheless, it can be shown analytically
that the one-dimensional process describing the position of the particle x(t) satisfies time reversal symmetry [103].
Thus, even though the process is nonequilibrium, the distribution P (tm|T ) of the time tm at which the position x(τ)
is maximal is symmetric around tm = T/2. Interestingly, this is a consequence of the fact that this is a Gaussian
stationary process. Indeed, as shown below, for any one-dimensional Gaussian stationary process the distribution of
tm is always symmetric around tm = T/2.

Let us consider a one-dimensional discrete-time Gaussian stationary process xk with 1 ≤ k ≤ T (it is easy to
generalize the following argument to continuous-time processes). Without loss of generality, we assume that the mean
value of xk vanishes. The probability of a trajectory {xk} = {x1 , . . . , xT } is

P ({xk}) = N exp

−1

2

∑
i,j

xiΣ
−1
i,j xj

 , (255)

where Σi,j = 〈xixj〉 is the covariance matrix and N is a normalization constant. Since the process is stationary, the
covariance Σi,j only depends on |i− j|, yielding

P ({xk}) = N exp

−1

2

∑
i,j

xiΣ
−1(|i− j|)xj

 . (256)

The probability of the time-reversed trajectory {x̄k} = {xT−k} is given by

P ({x̄k}) = N exp

−1

2

∑
i,j

xT−iΣ
−1(|i− j|)xT−j

 . (257)

Performing the change of variable (i, j)→ (i′ = T − i, j′ = T − j), we obtain

P ({x̄k}) = N exp

−1

2

∑
i′,j′

xi′Σ
−1(|i′ − j′|)xj′

 . (258)

Using Eq. (256), we get

P ({x̄k}) = P ({xk}) , (259)

meaning that the process is symmetric under time reversal. As shown above, this implies that the distribution of tm
is symmetric around tm = T/2.

V. CONCLUSIONS

In summary, we have investigated the distribution of the time tm at which a stationary stochastic process reaches its
global maximum within a time window [0, T ]. Using a path decomposition technique, we have computed analytically
the distribution P (tm|T ) of the time tm of the maximum for several processes, both at equilibrium and out of
equilibrium.

The class of equilibrium processes that we have considered corresponds to an overdamped Brownian particle moving
in a one-dimensional potential V (x) such that V (x) ≈ α|x|p for large |x|, with α > 0 and p > 0. We have computed
the distribution P (tm|T ) exactly in the cases V (x) = α|x| (corresponding to p = 1) and V (x) = αx2 (corresponding to
the Ornstein-Uhlenbeck process with p = 2). From these exact computations, we have observed that the distribution
of tm is symmetric around tm = T/2, i.e., P (tm|T ) = P (T − tm|T ), for any equilibrium process. This property is a
consequence of the time-reversal symmetry of equilibrium systems. Moreover, we have shown that the distribution
of P (tm|T ), once appropriately scaled, becomes completely universal for any α > 0 and p > 0 in the late-time limit
T � 1.

We have also considered two models of nonequilibrium stationary processes for which we could compute exactly the
distribution of tm: a Brownian particle with stochastic resetting and a single RTP in a confining potential V (x) = µ|x|.
In both cases, we have shown that the distribution of tm is not symmetric around tm = T/2. From this observation, we
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have presented a sufficiency test, based on the measurement of tm, which allows detecting nonequilibrium fluctuations
in stationary systems.

For future studies, it would be interesting to investigate the joint distribution of the time tm of the maximum and
the time tmin of the minimum for a stationary process of duration T . For short times (T � 1), we expect these
two times to be strongly correlated, while we expect tm and tmin to become independent at late times. From the
joint distribution of tm and tmin one can also obtain several relevant quantities, including the distribution of the time
τ = tmin − tm between the global maximum and the global minimum [24, 56].

Another relevant direction would be to investigate the distribution of the time tm of the maximum for an overdamped
Brownian particle in a potential that grows as V (x) ≈ α ln(|x|) for large |x|, with α > D where D is the diffusion
constant (for α < D the process does not reach a steady state). The distribution of the global maximum for this
model was investigated in Refs. [104, 105], where it was shown that that the average maximum grows for late times
as 〈M〉 ≈ T 1/(1+α/D). Although it appears quite challenging to exactly compute the distribution of tm for this model,
it would be relevant to investigate whether the universality of the distribution P (tm|T ), presented in Subsection III C
remains valid in this case.

Appendix A: Computation of G̃M (x, s|x0) and Q̃M (x, s) for p = 1

In this appendix, we compute the constrained propagator G̃M (x, s|x0) and the survival probability Q̃M (x, s) for
an overdamped Brownian particle in a potential V (x) = α|x|. To determine the constrained propagator, we need to
solve the Fokker-Planck equation (46). It is helpful to consider three cases depending on the signs of x0 and M .
The case where M < 0 and x0 < 0. When M and x0 are both negative, we can solve Eq. (46) in the two regions
−∞ ≤ x ≤ x0 and x0 ≤ x ≤M separately. In each of these regions the delta function in Eq. (46) disappears and we
obtain

D∂2
xG̃

M (x, s|x0)− α∂xG̃M (x, s|x0)− sG̃M (x, s|x0) = 0 . (A1)

Solving this differential equation yields

G̃M (x, s|x0) =

{
A+e

(α+k)(x−x0)/(2D) +A−e
(α−k)(x−x0)/(2D) if x < x0 ,

B+e
(α+k)(x−x0)/(2D) +B−e

(α−k)(x−x0)/(2D) if x0 < x < M ,
(A2)

where A+, A−, B+, and B− are arbitrary constants and k =
√
α2 + 4sD. To fix these constants, we use the boundary

conditions in Eqs. (47) and (48) and the following matching conditions

G̃M (x+
0 , s|x0) = G̃M (x−0 , s|x0) , (A3)

and

− 1 = D∂xG̃
M (x+

0 , s|x0)−D∂xG̃M (x−0 , s|x0) . (A4)

The condition in Eq. (A3) imposes the continuity of the propagator G̃M (x, s|x0) at x = x0, while the condition in
Eq. (A4) can be obtained by integrating both sides of Eq. (46) over a small interval [x0 − δ, x0 + δ] and then taking
the limit δ → 0.

From these conditions, we find that for x0 ≤ x ≤M

G̃M (x, s|x0) =
1

k
eα(x−x0)/(2D)

[
e−k(x−x0)/(2D) − e−k(2M−x−x0)/(2D)

]
. (A5)

Finally, for x = M − ε we obtain, expanding to leading order in ε,

G̃M (M − ε, s|x0) ≈ ε

D
e(α−k)(M−x0)/(2D) , (A6)

where we recall that k =
√
α2 + 4sD.

The case where M > 0 and x0 > 0. In this case, solving Eq. (46) in the three regions −∞ < x ≤ 0, 0 ≤ x ≤ x0, and
x0 ≤ x ≤M , we obtain

G̃M (x, s|x0) =


A+e

(α+k)x/(2D) +A−e
(α−k)x/(2D) if x < 0 ,

B+e
(−α+k)(x−x0)/(2D) +B−e

(−α−k)(x−x0)/(2D) if 0 < x < x0 ,

C+e
(−α+k)(x−x0)/(2D) + C−e

(−α−k)(x−x0)/(2D) if x0 < x < M ,

(A7)
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where A+, A−, B+, B−, C+, and C− are arbitrary constants. Note that, even though we use the same notation for
A+, A−, B+, B−, these constants are different from the ones in Eq. (A2). To fix these constants we impose the
boundary conditions in Eqs. (47) and (48) and the matching conditions at x = x0 given in Eqs. (A3) and (A4).
Moreover, in this case one also needs to impose the matching conditions at x = 0, which are given by

G̃M (0+, s|x0) = G̃M (0−, s|x0) , (A8)

D∂xG̃
M (0+, s|x0)−D∂xG̃M (0−, s|x0) + 2αG̃M (0, s|x0) = 0 . (A9)

The condition in Eq. (A8) imposes the continuity of G̃M (x, s|x0) at x = 0, while the condition in Eq. (A9) can be
obtained by integrating Eq. (46) over a small interval [−δ, δ] and then taking the limit δ → 0. Solving these conditions
we obtain, to leading order in ε,

G̃M (M − ε, s|x0) ≈ ε

D

(k − α)ekx0/D + α

(k − α)ekM/D + α
e(−α+k)(M−x0)/(2D) , (A10)

where k =
√
α2 + 4sD

The case where M > 0 and x0 < 0. This case is analogous to the previous one. We find that, to leading order in ε,
the constrained propagator is given by

G̃M (M − ε, s|x0) ≈ kε

D

e(k−α)x0/(2D)e(−k−α)M/(2D)

k − α+ αe−kM/D
. (A11)

We next focus on the survival probability Q̃M (x, s), which can be computed by solving the backward Fokker-Planck
(51). It is useful to distinguish two cases depending on the sign of M .
The case where M > 0.

In this case, we solve Eq. (51) separately for x > 0 and x < 0. When x > 0, Eq. (51) becomes

sQ̃M (x, s)− 1 = D∂2
xQ̃

M (x, s)− α∂xQ̃M (x, s) . (A12)

The most general solution of this equation is

Q̃M (x, s) =
1

s
+A+e

(α+k)/(2D)x +A−e
(α−k)/(2D)x , (A13)

where we recall that k =
√
α2 + 4sD. Similarly, when x < 0, we obtain

Q̃M (x, s) =
1

s
+B+e

(−α+k)/(2D)x +B−e
(−α−k)/(2D)x . (A14)

To fix the four constants A−, A+, B− and B+, we need to impose the boundary conditions in Eqs. (52) and (53),

and the continuity of Q̃M (x, s) and ∂xQ̃
M (x, s) at the origin. Imposing these conditions one obtains

A+ = −k − α
s

e−
αM
2D

(k − α)e
kM
2D + αe−

−kM
2D

, (A15)

A− =
α

k − α
A+ . (A16)

Then, the probability weight of the second segment is thus given by, expanding for small values of ε,

Q̃M (M − ε, s) ≈ ε

s

k − α
2D

(k + α)ekM/D − α
(k − α)ekM/D + α

. (A17)

The case where M < 0.
In this case one has to consider just the region x < M . Solving Eq. (50) in this region, we find

Q̃M (x, s) =
1

s
+A+e

(−α+k)/(2D)x +A−e
(−α−k)/(2D)x . (A18)

Using the boundary conditions in Eqs. (52) and (53) one can fix the values of A+ and A−. Expanding to leading
order in ε, we obtain

Q̃M (M − ε, s) ≈ ε

s

k − α
2D

. (A19)
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•
−1

Re(s)

Im(s)

FIG. 19: Integration contour used in Eq. (B4). The black wiggled line corresponds to the branch cut of the integrand, while
the blue dot corresponds to the pole s = 0.

Appendix B: Laplace inversion of Eq. (73)

In this appendix, we derive the Laplace inversion

L−1
s→t

[
1 +
√

1 + s

s

]
= 1 + erf(

√
t) +

1√
πt
e−t . (B1)

Inverting the Laplace transform formally, we find

L−1
s→t

[
1 +
√

1 + s

s

]
=

1

2πi

∫
Γ

ds
1 +
√

1 + s

s
, (B2)

where Γ is the imaginary-axis Bromwich contour in the complex s plane. Using the relation (1+
√

1 + s)(1−
√

1− s) =
s, we can rewrite the integrand as

L−1
s→t

[
1 +
√

1 + s

s

]
=

1

2πi

∫
Γ

ds
1

1−
√

1 + s
. (B3)

The integrand has a single pole at s = 0 and a branch cut in the real-s axis for s < −1. Evaluating the residue at
s = 0 and using the parametrization s = −1 + re±iπ to evaluate the integral around the branch cut (see Fig. 19), we
find

L−1
s→t

[
1 +
√

1 + s

s

]
= 2 +

1

2πi
e−t

∫ ∞
0

dr e−rt
1

1− i
√
r
− 1

2πi
e−t

∫ ∞
0

dr e−rt
1

1 + i
√
r
. (B4)

Regrouping the terms on the right-hand side, we obtain

L−1
s→t

[
1 +
√

1 + s

s

]
= 2 +

1

π
e−t

∫ ∞
0

dr e−rt
√
r

1 + r
. (B5)

Computing the integral over r with Mathematica, we obtain the result in Eq. (B1).
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Appendix C: Computation of G̃M (x, s|x0) and Q̃M (x, s) for p = 2

In this Appendix, we compute the constrained propagator G̃M (x, s|x0) and the survival probability Q̃M (x, s) in the
case of a Brownian particle in a harmonic potential V (x) = αx2.

To compute the constrained propagator, we need to solve the Fokker-Planck equation (85). The most general
solution of the differential equation (85) reads, for x 6= x0

G̃M (x, s|x0) =


A+e

−2αx2/(4D)D−s/(2α)

(√
2α

D
x

)
+A−e

−2αx2/(4D)D−s/(2α)

(√
2α

D
x

)
if x < x0 ,

B+e
−2αx2/(4D)D−s/(2α)

(√
2α

D
x

)
+B−e

−2αx2/(4D)D−s/(2α)

(√
2α

D
x

)
if x0 < x < M ,

(C1)

where Dp(z) is the parabolic cylinder function. In order to fix the arbitrary constants A+, A−, B+, and B−, we use
the boundary conditions in Eqs. (47) and (48) as well as the matching conditions

G̃M (x+
0 , s|x0) = G̃M (x−0 , s|x0) , (C2)

− 1 = D∂xG̃
M (x+

0 , s|x0)−D∂xG̃M (x−0 , s|x0) . (C3)

These condition in Eq. (C2) imposes the continuity at x = x0, while Eq. (C3) can be obtained from Eq. (85) by
integrating over a small interval [x0 − δ, x0 + δ] and then taking the limit δ → 0. From this conditions we find

A+ = 0 , (C4)

A− =

1−
D−s/(2α)

(
−
√

2α/DM
)

D−s/(2α)

(√
2α/DM

) D−s/(2α)

(√
2α/Dx0

)
D−s/(2α)

(
−
√

2α/Dx0

)
B− , (C5)

B− = −
D−s/(2α)

(√
2α/DM

)
D−s/(2α)

(
−
√

2α/DM
) (C6)

×
1√

2αD
e2αx2

0/(4D)D−s/(2α)

(
−
√

2α/Dx0

)
D1−s/(2α)

(√
2α/Dx0

)
D−s/(2α)

(
−
√

2α/Dx0

)
+D1−s/(2α)

(
−
√

2α/Dx0

)
D−s/(2α)

(√
2α/Dx0

) ,(C7)

B+ =

1√
2αD

e2αx2
0/(4D)D−s/(2α)

(
−
√

2α/Dx0

)
D1−s/(2α)

(√
2α/Dx0

)
D−s/(2α)

(
−
√

2α/Dx0

)
+D1−s/(2α)

(
−
√

2α/Dx0

)
D−s/(2α)

(√
2α/Dx0

) . (C8)

Plugging the expressions for B− and B+, given in Eqs. (C6) and (C8) into Eq. (C1) we obtain, to leading order in ε

G̃M (M − ε, s|x0) ≈ ε

D
e−(M2−x2

0)2α/(4D)
D−s/(2α)

(
−
√

2α/Dx0

)
D−s/(2α)

(
−
√

2α/DM
) (C9)

×
D1−s/(2α)

(√
2α/DM

)
D−s/(2α)

(
−
√

2α/DM
)

+D1−s/(2α)

(
−
√

2α/DM
)
D−s/(2α)

(√
2α/DM

)
D1−s/(2α)

(√
2α/Dx0

)
D−s/(2α)

(
−
√

2α/Dx0

)
+D1−s/(2α)

(
−
√

2α/Dx0

)
D−s/(2α)

(√
2α/Dx0

) .
Using the relation (see Appendix C)

D1−p(y)D−p(−y) +D1−p(−y)D−p(y) =

√
2π

Γ(p)
, (C10)
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the expression in Eq. (C9) simplifies to

G̃M (M − ε, s|x0) ≈ ε

D
e−(M2−x2

0)2α/(4D)
D−s/(2α)

(
−
√

2α/Dx0

)
D−s/(2α)

(
−
√

2α/DM
) . (C11)

We now focus on the survival probability, which can be obtained by solving the backward Fokker-Planck equation
(88). The most general solution of Eq. (88) is given by

Q̃M (x, s) =
1

s
+ e2αx2/(4D)

[
A+D−s/(2α)

(√
2α

D
x

)
+A−D−s/(2α)

(
−
√

2α

D
x

)]
. (C12)

Imposing the boundary conditions in Eqs. (52) and (53), we obtain

A− = 0 , (C13)

A+ = −1

s

e−2αM2

D−s/(2α)

(
−
√

2α
DM

) . (C14)

Finally, using Eqs. (C12)-(C14) and expanding for small ε, we obtain

Q̃M (M − ε, s) ≈ ε

s

M2α

D
+

√
2α

D

D1−s/(2α)

(
−
√

2α
DM

)
D−s/(2α)

(
−
√

2α
DM

)
 . (C15)

Appendix D: Derivation of Eqs. (C10), (92), and (104)

Derivation of Eq. (C10)
Let us define the function

W (y) = D1+p(y)Dp(−y) +D1+p(−y)Dp(y) , (D1)

We will first show that W (y) is constant with respect to y and then we will evaluate it in the special case y = 0. First
of all, we notice that using the following recursive equation [57]

dDp(z)

dz
=
z

2
Dp(z)−Dp+1(z) , (D2)

the function W (y) can be rewritten as the Wronskian

W (y) = f(y)g′(y)− g(y)f ′(y) , (D3)

where

f(y) = Dp(y) (D4)

and

g(y) = Dp(−y) (D5)

are two independent solutions of the differential equation [57]

u′′(y) + (p+
1

2
− y2

4
)u(y) = 0 . (D6)

Thus, differentiating both sides of Eq. (D3) with respect to y and using Eq. (D6), we get

W ′(y) = 0 . (D7)
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In the special case y = 0, we obtain

W (0) = 2D1+p(0)Dp(0) . (D8)

Using the relation [57]

Dp(0) =
2p/2
√
π

Γ
(

1−p
2

) , (D9)

we obtain

W (0) = 2π
2p+1/2

Γ
(
−p2
)

Γ
(

1−p
2

) =

√
2π

Γ(−p)
. (D10)

Thus, we have shown that for any y

D1+p(y)Dp(−y) +D1+p(−y)Dp(y) =

√
2π

Γ(−p)
. (D11)

Finally, with the change of variable p→ −p we recover Eq. (C10).
Derivation of Eq. (92)

We want to derive the following relation∫ z

−∞
dw e−w

2/4D−p(−w) = −1

p
e−z

2/4 [zD−p(−z) +D1−p(−z)] . (D12)

First, we define

u(w) = e−w
2/4D−p(−w) . (D13)

It can be shown that the function u(w) satisfies the following differential equation [57]

u′′(w) + wu′(w) + (1− p)u(w) = 0 , (D14)

from which we obtain

u(w) = − 1

1− p
(u′′(w) + wu′(w)) . (D15)

Integrating Eq. (D15) over w ∈ (−∞, z), we obtain∫ z

−∞
dw u(w) = − 1

1− p

(
u′(z) +

∫ z

−∞
dwwu′(w)

)
, (D16)

Integrating by parts, we find ∫ z

−∞
dw u(w) = − 1

1− p

(
u′(z) + zu(z)−

∫ z

−∞
dw u(w)

)
, (D17)

from which we obtain ∫ z

−∞
dw u(w) =

1

p
(u′(z) + zu(z)) . (D18)

Finally, using the definition of u(z), we obtain after few steps of algebra, Eq. (92).
Derivation of Eq. (104)

In order to derive the asymptotic behavior in Eq. (104), we use the integral representation of D−p(−z) [57]

D−p(−z) =
e−z

2/4

Γ(p)

∫ ∞
0

dx e−
x2

2 +z x xp−1 . (D19)
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Hence the ratio is given by

D−(p+1)(−z)
D−p(−z)

=
1

p

∫∞
0
dx e−

x2

2 +z x xp∫∞
0
dx e−

x2

2 +z x xp−1
=

1

p

Ip(z)

Ip−1(z)
, (D20)

where we used Γ(p+ 1) = pΓ(p) and defined

Ip(z) =

∫ ∞
0

dx e−
x2

2 +z x+p ln x . (D21)

Setting z =
√
p u in (D21) gives

Ip(
√
p u) =

∫ ∞
0

dx e−
x2

2 +u
√
p x+p ln x . (D22)

We first rescale x =
√
p y and re-write (D22) as

Ip(
√
p u) =

√
p e

1
2 p ln p

∫ ∞
0

dy e
p
[
u y− y

2

2 +ln y
]
. (D23)

Repeating the same exercise for Ip−1(
√
p u) gives

Ip−1(
√
p u) =

√
p e

1
2 (p−1) ln p

∫ ∞
0

dy

y
e
p
[
u y− y

2

2 +ln y
]
. (D24)

Taking the ratio and substituting in (D20) we get an exact relation (note that we still haven’t made the large p
aproximation)

D−(p+1)(−
√
p u)

D−p(−
√
p u)

=
1
√
p

∫∞
0
dy e

p
[
u y− y

2

2 +ln y
]

∫∞
0

dy
y e

p
[
u y− y22 +ln y

] . (D25)

We now take the large p limit keeping u fixed. In this limit, we can evaluate the integrals in the numerator and the
denominator of (D25) by the saddle point method. For example, in the numerator, the saddle point y∗ occurs at

u− y∗ +
1

y∗
= 0 , implying y∗ =

u±
√
u2 + 4

2
. (D26)

We need to choose the + sign (since the integral is over y ≥ 0) and get

y∗ =
u+
√
u2 + 4

2
. (D27)

Actually, from (D25) we see that for the ratio, we do not even need to compute the saddle point actions explicitly (as
they cancel out between the numerator and the denominator), leading to the leading term for large p

D−(p+1)(−
√
p u)

D−p(−
√
p u)

≈ y∗
√
p

=
1
√
p

u+
√
u2 + 4

2
. (D28)

Appendix E: Survival probability of Brownian motion with drift

In this appendix, we compute the survival probability QM (x, t) of a Brownian particle in the presence of a constant
drift, defined as the probability that the process remains below position M up to time t, having started from position
x at the initial time. A derivation of this quantity QM (x, t) can be found in Ref. [74]. For completeness, we present
an alternative computation based on a path-integral technique.

The Langevin equation of the process reads

dx(τ)

dτ
= µ+ η(τ) , (E1)
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where µ is the constant (positive or negative) drift. It is useful to consider the process y(τ) = M − x(τ), which
satisfies the Langevin equation

dy(τ)

dτ
= −µ+ η(τ) . (E2)

Then the survival probability QM (x, t) is just the probability that y(τ) is always positive for τ ∈ [0, t], with y(0) =
M − x0. Then, the survival probability can be written as

QM (x0, t) =

∫ ∞
0

dy

∫ y(t)=y

y(0)=M−x0

Dy(τ) exp

[
− 1

4D

∫ t

0

dτ (ẏ + µ)
2

] t∏
τ=0

θ [y(τ)] , (E3)

where
∫ y(t)=y

y(0)=M−x0
Dy(τ) indicates the integral over all trajectories from y(0) = M − x0 to y(t) = y and θ(z) is the

Heaviside theta function. The product of theta function selects only those trajectories that remain above the origin
up to time t. This expression can be rewritten as

QM (x0, t) = e−µ
2t/(4D)

∫ ∞
0

dy e−µ(y−M+x0)/(2D)

{∫ y(t)=y

y(0)=M−x0

Dy(τ) exp

[
− 1

4D

∫ t

0

dτ (ẏ)
2

] t∏
τ=0

θ [y(τ)]

}
. (E4)

The expression inside curly brackets is simply the constrained propagator of Brownian motion without drift, i.e., the
probability that the process goes from M − x0 to y in time t, while always remaining above the origin. This quantity
is easy to compute and reads [74]

QM (x0, t) = e−µ
2t/(4D)

∫ ∞
0

dy e−µ(y−M+x0)/(2D)

{
1√

4πDt

[
e−(y−M+x0)2/(4Dt) − e−(y+M−x0)2/(4Dt)

]}
. (E5)

Computing the integral over y, we finally obtain

QM (x0, t) =
1

2

[
erfc

(
−M − x0 − µt√

4Dt

)
− eµ(M−x0)/D erfc

(
M − x0 + µt√

4Dt

)]
. (E6)

Appendix F: Laplace inversion of Eq. (192)

Using the relation

(a+ b)α =

∞∑
k=0

(
α

k

)
akbα−k , (F1)

where (
α

k

)
=

(α)(α− 1) . . . (α− k + 1)

k!
, (F2)

we rewrite Eq. (192)∫ ∞
0

dT̃ e−sT̃ 〈T1(T̃ )〉 =
1

4(1 + s)(1 +
√

1 + s)2
+

1

4
√

1 + s(
√

1 + s− 1)2
(F3)

×
∞∑
k=0

(
−3

k

)∫ 1

0

du u1/
√

1+s
[
s
(
3 + s/u− 2

√
1 + s+ (

√
1 + s− 1) ln(u)

)
− 2(
√

1 + s− 1)
]
uks−3−k .

Computing the integral over u yields∫ ∞
0

dT̃ e−sT̃ 〈T1(T̃ )〉 =
1

4(1 + s)(1 +
√

1 + s)2
+

(1 + s)(s− 2 + 2
√

1 + s)

4s2
+

1 + s

4

∞∑
k=1

(
−3

k

)
1

s3+k
Gk(1 + s) , (F4)

where

Gk(p) =
3 + (4 + 3k)

√
p+ (1 + k)2p

4(1 + k
√
p)(1 + (1 + k)

√
p)2

. (F5)
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Moreover, for α = −3 we find(
−3

k

)
=

(−3)(−4) . . . (−2− k)

k!
= (−1)k

1

2
(k + 1)(k + 2) . (F6)

We next invert the Laplace transform in Eq. (F4) term by term. The first term on the right-hand side of Eq. (F4)
can be written as

L−1
s→t

[
1

4(1 + s)(1 +
√

1 + s)2

]
= L−1

s→t

[
2− 2

√
1 + s+ s

4(1 + s)s2

]
=

1

4

[
2t(1− erf(

√
t)) + e−t − 2√

π
Γ

(
3

2
, t

)]
, (F7)

where we performed the last Laplace inversion using Mathematica and Γ(a, t) =
∫∞
t
xa−1 e−x dx is the upper incom-

plete Gamma function. Similarly, the second term in Eq. (F4) can be inverted as

L−1
s→t

[
(1 + s)(s− 2 + 2

√
1 + s)

4s2

]
(F8)

=
1

96

[
−4t(2t2 + 3t− 18) +

2√
π

√
t(3 + 16t+ 4t2)e−t + (−3− 30t+ 36t2 + 8t3) erf(

√
t)

]
.

It is more challenging to invert the terms with k ≥ 1 in Eq. (F4). We start by computing the inverse Laplace
transform with respect to p of Gk(p). Multiplying and dividing the right-hand side of Eq. (F5) by the factor (−1 +
k
√
p)(−1 + (1 + k)

√
p)2 we rewrite Gk(p) as

Gk(p) =
−3 + 2(1 + 3k)

√
p+ (4 + 4k − k2)p+ (−2− 9k − 10k2 − 3k3)p3/2 + (−1− 2k − k2)p2 + k(1 + k)4p5/2

4k2(k + 1)4(p− 1/k2)(p− 1/(k + 1)2)2
.

(F9)
This quantity can now be inverted with Mathematica yielding

hk(t) ≡ L−1
s→t [Gk(s+ 1)] = e−tL−1

p→t [Gk(p)] =
1

k2

{
−e−t+t/k

2

k(1− k)2 + e−t
k
[
k(1 + k)3 − 2k3t

]
√
πt(1 + k)3

}
(F10)

+
1

k2

[
erf

(√
t

k

)
e−t+t/k

2

(1− k)2

]
1

(1 + k)4
e−t+t/(1+k)2

[
(1 + k)2(k2 − 2) + 2kt

] [
1− erf

( √
t

(k + 1)

)]
.

Thus, the terms with k ≥ 1 in Eq. (F4) can be inverted by combining the Laplace inversion formulae in Eqs. (65) and
(F11) with convolution theorem, yielding

gk(t) ≡ (−1)k
1

2
(k + 1)(k + 2)L−1

s→t

[
1 + s

s3+k
Gk(1 + s)

]
(F11)

= (−1)k
1

2
(k + 1)(k + 2)

∫ t

0

dτ hk(t− τ)τk+1

(
1

(k + 1)!
+

τ

(k + 2)!

)
. (F12)

Finally, plugging the results in Eqs. (F7), (F9), and (F12) into Eq. (F4), we obtain

〈T1(T̃ )〉 = T̃ f(T̃ ) , (F13)

where the scaling function f(t) is given by

f(t) =
1

96

[
−4(2t2 + 3t− 18) +

2√
π

1√
t
(3 + 16t+ 4t2)e−t + (−3− 30t+ 36t2 + 8t3)

1

t
erf(
√
t)

]
+

1

2t

[
e−t − 2√

π
Γ

(
3

2
, t

)]
+

∞∑
k=1

1

t
gk(t) , (F14)

where gk(t) is given in Eq. (F12).
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Appendix G: Computation of the constrained propagator for a single RTP in a potential V (x) = µ|x|

In this appendix we compute the constrained propagator G±M (x, t|x0,+), defined as the probability that a single
RTP in a potential V (x) = µ|x| starting from position x0 and positive direction arrives at position x with velocity

±v0 at time t. The Laplace transform G̃±M (x, s|x0,+) with respect to t of this quantity satisfies the following system
of ordinary differential equations (see Eq. (230))
sG̃+

M (x, s|x0,+)− δ(x− x0) = −∂x
[
(−µ sign(x) + v0) G̃+

M (x, s|x0,+)
]
− γ G̃+

M (x, s|x0,+) + γ G̃−M (x, s|x0,+)

sG̃−M (x, s|x0,+) = −∂x
[
(−µ sign(x)− v0) G̃−M (x, s|x0,+)

]
− γ G̃−M (x, s|x0,+) + γ G̃+

M (x, s|x0,+)

,

(G1)
with boundary conditions 

G̃±M (−∞, s|x0,+) = 0

G̃−M (M, s|x0,+) = 0 .

(G2)

It is useful to distinguish three cases, depending on the sign of the starting point x0 and of the maximum M :

• the case where x0 > 0 and M > 0,

• the case where x0 < 0 and M > 0,

• the case where x0 < 0 and M < 0.

Note that the case where x0 > 0 and M < 0 is not considered because by definition M > x0. Below, we will present
the details of the solution of Eq. (G1) only in the first case, i.e., where x0 > 0 and M > 0. It is easy to extend our
derivation to the other cases.

In the case where M > x0 > 0, we distinguish three different regions: −∞ < x < 0 (I), 0 < x < x0 (II) and
x0 < x < M (III). Our goal is to exactly solve Eq. (G1) separately in the three regions and then to properly match
the obtained solutions. In the first region (x < 0), Eq. (G1) reads

[γ + s+ (v0 + µ)∂x] G̃+
M (x, s|x0,+) = γ G̃−M (x, s|x0,+) ,

[γ + s− (v0 − µ)∂x] G̃−M (x, s|x0,+) = γ G̃+
M (x, s|x0,+) .

(G3)

Applying the operator [γ + s+ (v0 + µ)∂x] to the second equation in (G3) and then using the first equation, we find

[γ + s+ (v0 + µ)∂x] [γ + s− (v0 − µ)∂x] G̃−M (x, s|x0,+) = γ2 G̃−M (x, s|x0,+) , (G4)

which depends only on the function G̃−M (x, s|x0,+). We use the exponential ansatz G̃−M (x, s|x0,+) ∼ eλx, yielding
the condition

[γ + s+ (v0 + µ)λ] [γ + s− (v0 − µ)λ] = γ2 . (G5)

Hence, we obtain

λ± =
µ(γ + s)± k
v2

0 − µ2
, (G6)

where

k =
√
s2v2

0 + 2sv2
0γ + γ2µ2 . (G7)

Thus, for x < 0, we find

G̃−M (x, s|x0,+) = A e(µ(γ+s)+k)x/(v20−µ
2) +B e(µ(γ+s)−k)x/(v20−µ

2) , (G8)
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where A and B are two constants to be determined. Using the second equation in (G3), we obtain

G̃+
M (x, s|x0,+) = A

v0(γ + s)− k
γ(v0 + µ)

e(µ(γ+s)+k)x/(v20−µ
2) +B

v0(γ + s) + k

γ(v0 + µ)
e(µ(γ+s)−k)x/(v20−µ

2) . (G9)

Applying the same technique, it is easy to solve Eq. (G1) in the regions II (where 0 < x < x0) and III (where
x0 < x < M), yielding

G̃−M (x, s|x0,+) =



A e(µ(γ+s)+k)x/(v20−µ
2) +B e(µ(γ+s)−k)x/(v20−µ

2) for x < 0 ,

C e(−µ(γ+s)+k)x/(v20−µ
2) +D e(−µ(γ+s)−k)x/(v20−µ

2) for 0 < x < x0 ,

E e(−µ(γ+s)+k)x/(v20−µ
2) + F e(−µ(γ+s)−k)x/(v20−µ

2) for x0 < x < M ,

(G10)

and

G̃+
M (x, s|x0,+) =



A v0(γ+s)−k
γ(v0+µ) e(µ(γ+s)+k)x/(v20−µ

2) +B v0(γ+s)−k
γ(v0+µ) e(µ(γ+s)−k)x/(v20−µ

2) for x < 0 ,

C v0(γ+s)−k
γ(v0−µ) e(−µ(γ+s)+k)x/(v20−µ

2) +D v0(γ+s)−k
γ(v0−µ) e(−µ(γ+s)−k)x/(v20−µ

2) for 0 < x < x0 ,

E v0(γ+s)−k
γ(v0−µ) e(−µ(γ+s)+k)x/(v20−µ

2) + F v0(γ+s)−k
γ(v0−µ) e(−µ(γ+s)−k)x/(v20−µ

2) for x0 < x < M ,

(G11)
where A, B, C, D, E , and F are constants to be determined.

To fix these six constants, we need to impose as many conditions. First of all, from Eq. (G3) we know that

G̃−M (x, t|x0,+) is continuous at x = x0 and thus

G̃−M (x+
0 , t|x0+) = G̃−M (x−0 , t|x0,+) . (G12)

Moreover, integrating the first equation in (G1) over the interval x ∈ (x0− ε, x0 + ε) and then taking the limit ε→ 0,

we obtain the following condition for G̃+
M (x, t|x0+)

(µ− v0)
[
G̃+
M (x+

0 , t|x0+)− G̃+
M (x−0 , t|x0,+)

]
= −1 . (G13)

Similarly, integrating both equations in (G1) in a small interval around x = 0, we obtain

(−µ+ v0)G̃+
M (x+

0 , t|x0+)− (µ+ v0)G̃+
M (x−0 , t|x0,+) = 0 . (G14)

and

(−µ− v0)G̃−M (x+
0 , t|x0+)− (µ− v0)G̃−M (x−0 , t|x0,+) = 0 . (G15)

Finally, also imposing the two boundary conditions in Eq. (G2), the six constants can be exactly determined, leading
to the result in Eq. (233).

Appendix H: Computation of the survival probability for a single RTP in a potential V (x) = µ|x|

In this appendix, we compute the survival probability Q±M (x, t) for a single RTP in a potential V (x) = µ|x|. This

quantity Q±M (x, t) is defined as the probability that the particle remains below position M up to time t, having
started from position x and with direction ±. The Laplace transform of this probability satisfies the following coupled
differential equations (see Eq. (239))

sQ̃+
M (x, s)− 1 = (−µ sign(x) + v0) ∂xQ̃

+
M (x, s) + γ Q̃−M (x, s)− γ Q̃+

M (x, s) ,

s Q̃−M (x, s)− 1 = (−µ sign(x)− v0) ∂xQ̃
−
M (x, s) + γ Q̃+

M (x, s)− γ Q̃−M (x, s) ,

(H1)
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with boundary conditions {
Q̃±M (−∞, s) = 1/s

Q̃+
M (M, s) = 0 .

(H2)

To proceed, we distinguish two cases, depending on the sign of M . If M < 0, we just need to consider the region
x < M , where Eq. (H1) reads 

[s+ γ − (v0 + µ)∂x] Q̃+
M (x, s) = γ Q̃−M (x, s) + 1 ,

[s+ γ + (v0 − µ)∂x] Q̃−M (x, s) = γ Q̃+
M (x, s) + 1 .

(H3)

The solution of the differential equation above is given by the sum of two terms. The first term is a the constant
solution Q̃±M (x, s) = 1/s and the second term solves the associated homogeneous equation

[s+ γ − (v0 + µ)∂x] Q̃+
M (x, s) = γ Q̃−M (x, s) ,

[s+ γ + (v0 − µ)∂x] Q̃−M (x, s) = γ Q̃+
M (x, s) .

(H4)

We now apply the operator [s+ γ − (v0 + µ)∂x] to both sides of the second equation in (H4) and, using the first
equation, we find

[s+ γ − (v0 + µ)∂x] [s+ γ + (v0 − µ)∂x] Q̃−M (x, s) = γ2 Q̃−M (x, s) , (H5)

which only depends on Q̃−M (x, s). Using the exponential ansatz Q̃−M (x, s) ∼ eλx, we obtain the following condition for
λ

[s+ γ − (v0 + µ)γ] [s+ γ + (v0 − µ)γ] = γ2 , (H6)

which has the two solutions

λ± =
−µ(s+ γ)± k

v2
0 − µ2

, (H7)

where

k =
√
s2v2

0 + 2sv2
0γ + γ2µ2 . (H8)

Thus, we find that the solution of Eq. (H3) is

Q̃−M (x, s) =
1

s
+A e(−µ(s+γ)+k)x/(v20−µ

2) +B e(−µ(s+γ)−k)x/(v20−µ
2) , (H9)

where A and B are arbitrary constants. Using the second line of Eq. (H3), we also find that

Q̃+
M (x, s) =

1

s
+A

v0(γ + s) + k

γ(v0 + µ)
e(−µ(s+γ)+k)x/(v20−µ

2) +B
v0(γ + s)− k
γ(v0 + µ)

e(−µ(s+γ)−k)x/(v20−µ
2) . (H10)

Finally, the constants A and B can be fixed by using the boundary conditions in Eq. (H2) and one obtains the final
result in the first line of Eq. (242).

In the case M > 0 one has to solve the Eq. (H1) in the regions x < 0 and x > 0 separately and then match the two
solutions. In the region x < 0, the solution of Eq. (H1) is given in Eqs. (H9) and (H10). On the other hand, when
x > 0, it is easy to show that the most general solution of Eq. (H1) can be written as

Q̃−M (x, s) =
1

s
+ C e(µ(s+γ)+k)x/(v20−µ

2) +D e(µ(s+γ)−k)x/(v20−µ
2) , (H11)

Q̃+
M (x, s) =

1

s
+ C

v0(γ + s) + k

γ(v0 − µ)
e(µ(s+γ)+k)x/(v20−µ

2) +D
v0(γ + s)− k
γ(v0 − µ)

e(µ(s+γ)−k)x/(v20−µ
2) , (H12)
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where C and D are arbitrary constants. Finally, the four constants A, B, C, and D can be determined by imposing
the boundary conditions (H2) and the continuity of Q̃±M (x, s) at x = 0. Applying these conditions, we find the result
in Eq. (242).
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