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We consider an overdamped run-and-tumble particle in two dimensions, with self propulsion in
an orientation that stochastically rotates by 90 degrees at a constant rate, clockwise or counter-
clockwise with equal probabilities. In addition, the particle is confined by an external harmonic po-
tential of stiffness µ, and possibly diffuses. We find the exact time-dependent distribution P (x, y, t)
of the particle’s position, and in particular, the steady-state distribution Pst (x, y) that is reached
in the long-time limit. We also find P (x, y, t) for a “free” particle, µ = 0. We achieve this by
showing that, under a proper change of coordinates, the problem decomposes into two statistically-
independent one-dimensional problems, whose exact solution has recently been obtained. We then
extend these results in several directions, to two such run-and-tumble particles with a harmonic
interaction, to analogous systems of dimension three or higher, and by allowing stochastic resetting.

I. INTRODUCTION

Active particles consume energy from their environ-
ment and use it in order to generate dissipated directed
motion [1–10]. Examples of active matter are ubiqui-
tous in nature, including many biological systems of liv-
ing cells and/or bacteria [11–16], flocks of birds [17, 18]
fish schools [19, 20], and also physical systems such as
granular matter [21–23]. Activity breaks time-reversal
symmetry, and therefore, drives the system out of ther-
mal equilibrium. Active matter has attracted much inter-
est over recent years, which led to the discovery of several
remarkable collective behaviors that are very different to
those observed in systems in thermal equilibrium. These
behaviors include motility induced phase separation [24–
26], clustering [27–29], and the absence of an equation
of state relating pressure to the system’s bulk properties
[30].

In fact, even at the level of a single particle, active
particles display some nontrivial features that are not ob-
served in their passive counterparts. In particular, active
particles that are affected by an external potential have
been recently studied, both theoretically [31–34] and ex-
perimentally [35–38]. It was shown that such a particle
can reach a non-Boltzmann steady state, and/or clus-
ter near the boundaries of a spatial region in which it
is confined [39–43], and that it develops a nonzero drift
velocity even if the external potential is periodic [44].
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First-passage and relaxation properties were also studied
[45–47].

In order to make progress analytically, it is usual
to focus the study on simple theoretical models. One
such model of active particles, that has been exten-
sively studied, is the model of the run-and-tumble parti-
cle (RTP). This model describes an overdamped particle
whose speed v0 is constant, while the orientation of its
velocity changes in time randomly via sudden jumps (or
‘tumbles’). In one spatial dimension (1D), this model
becomes especially simple: the only possible velocity ori-
entations are σ = ±1, i.e., the particle’s velocity can be
±v0. At a constant rate γ, the orientation flips σ → −σ.
One can optionally take into account an external poten-
tial U(x) too. The position x(t) of this RTP obeys the
Langevin equation

ẋ = f(x) + v0σ(t) . (1)

Here f(x) = −U ′(x) is the deterministic force exerted on
the particle due to the external potential U(x), while
the orientation σ plays the role of a telegraphic (di-
chotomous) noise. The statistical properties of σ lead
to a breaking of time reversal symmetry. In contrast
to the white (Gaussian) noise in equilibrium systems,
σ(t) is a colored noise; its autocorrelation function is

〈σ(t)σ(t′)〉 = e−2γ|t−t′| (angular brackets denote ensem-
ble averaging), describing exponential decay with a typ-
ical timescale of τ = (2γ)−1. Many properties of the 1D
RTP can be found exactly, as we recall shortly. However,
despite its apparent simplicity, the model displays many
nontrivial features, e.g., a steady-state distribution that
is non-Boltzmann [41, 45].

One of the most fundamental quantities to study is the
(time-dependent) position distribution P (x, t) of the par-
ticle, given that it is initially at the origin x(t = 0) = 0.

ar
X

iv
:2

20
7.

10
44

5v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

6 
N

ov
 2

02
2

mailto:naftalismith@gmail.com
mailto:pierre.ledoussal@phys.ens.fr
mailto:satya.majumdar@universite-paris-saclay.fr
mailto:schehr@lpthe.jussieu.fr


2

Let us assume that the initial orientation is randomly se-
lected from the two possible values, σ(0) = ±1, each with
equal probability 1/2. For an RTP in 1D that is ‘free’,
i.e., in the absence of an external potential (so f(x) = 0),
P (x, t) is known exactly, but is nevertheless highly non-
trivial [41, 45, 48–54]. The support of the distribution
is is the interval x ∈ [−v0 t, v0 t] and for |x| ≤ v0 t it is
given by

Pfree (x, t) =
e−γt

2

{
δ (x− v0t) + δ (x+ v0t)

+
γ

2v0

[
I0(ρ) +

γI1(ρ)

ρ

]
θ (v0t− |x|)

}
, (2)

where

ρ =
√
v2

0t
2 − x2

γ

v0
(3)

and I0(ρ) and I1(ρ) are modified Bessel functions of the
first kind. The δ functions at the edges of the support
x = ±v0 t correspond to the cases where σ(0) = ±1 (re-
spectively) and the noise σ(t) does not change its value
up to time t. At long times, the central part of the distri-
bution approaches a Gaussian form, as one would expect
since the free RTP reduces, at late times, to ordinary
Brownian motion.

The presence of a confining potential complicates
the theoretical analysis considerably. Nevertheless, the
(nonequilibrium) steady-state distribution of the RTP’s
position is known exactly for an arbitrary confining po-
tential U(x). It is given, up to a normalization constant,
by

Pst(x) ∝ 1

v2
0 − f2(x)

exp

[
2γ

∫ x

0

dy
f(y)

v2
0 − f2(y)

]
(4)

The result (4) has been known for decades, obtained orig-
inally in the context of quantum optics [55–58] and later
reproduced in the study of colored noise on dynamical
systems [59, 60] and of active matter [30, 41]. In the
diffusive limit, when v0 → ∞, γ → ∞ but keeping the
ratio v2

0/2γ = D fixed, the dynamics converge to the
overdamped dynamics of a particle of diffusivity D in a
trapping potential U(x). Indeed, one finds that in this
limit the distribution (4) reduces to a Boltzmann dis-
tribution Pst(x) ∝ e−U(x)/D. For a harmonic potential,
U(x) = µx2/2, a case which is of particular interest, not
only theoretically but also experimentally [36, 38], the
stationary distribution (4) simplifies to [41, 61]

Pst(x) =
2µ

4βB(β, β)v0

[
1−

(
µx

v0

)2
]β−1

, (5)

where β = γ/µ and B(u, v) is the beta-function. The dis-
tribution is symmetric, Pst(x) = Pst(−x) and describes
a particle that is confined to the region |x| ≤ v0/µ. As
one varies β, the shape of the distribution changes from
a unimodal distribution centered around x = 0 at β > 1,

describing a ‘passive phase’, to a bimodal distribution in
which the peaks are near the edges x = ±v0/µ at β < 1,
describing an ‘active phase’ (at β = 1 the distribution
is uniform). In the strongly passive limit β � 1, the

distribution (5) becomes a Gaussian Pst(x) ∝ e−γµx2/v20 ,
corresponding to a Boltzmann distribution with diffusiv-
ity D = v2

0/2γ.
In fact, for a harmonic potential, the full time-

dependent position distribution P (x, t) has recently been
obtained exactly [41]. It is given, in terms of its Laplace
transform

P̃ (x, s) =

∫ ∞
0

e−stP (x, t) dt , (6)

by

P̃ (x, s) = B (s) zγ̄+s̄−1
2F1 (1− γ̄, γ̄; γ̄ + s̄; z) , (7)

where

B (s) = 22(γ̄+s̄)−3Γ (s̄/2)Γ [γ̄ + (1 + s̄) /2]√
πΓ (γ̄ + s̄)

, (8)

z =
1

2

(
1− µ|x|

v0

)
, (9)

s̄ = s/µ, γ̄ = γ/µ, and 2F1(a, b; c; d) is a standard hyper-
geometric function. One can check that in the free case
µ = 0, the result simplifies to Eq. (2).

The principal goal of the present work is to calcu-
late the position distribution of an RTP in higher spa-
tial dimension, focusing mostly on two dimensions (2D),
thereby extending the known 1D results. Such extensions
are very important from the point of view of relevance to
experiments. In contrast to 1D where there is essentially
just one natural definition of an RTP whose speed is con-
stant, in 2D different models of active particles have been
introduced and studied, with growing interest over the
last few years [39, 46, 53, 62–71].

In the active Brownian particle (ABP) model, the ve-
locity can be oriented toward any direction in the plane,
and the orientation changes continuously in time through
angular diffusion. The position distribution of an ABP in
2D was studied, with and without an external harmonic
potential, in Refs. [39, 40, 46, 70, 71]. There are different
RTP models in 2D (with an orientation that changes dis-
continuously in time), in which the details differ: The set
of possible orientations can be finite or infinite, and differ-
ent possible transition rules of the orientation have been
studied. The steady-state distribution of a RTP whose
orientation is chosen randomly at each tumbling event,
uniformly from all possible orientations, in the presence
of a harmonic trap in 2D and 3D, was obtained very
recently in [66]. In the present work, we significantly ad-
vance the understanding of RTPs in 2D by finding the
exact, time-dependent position distribution of an RTP
in 2D whose orientation vector stochastically rotates by
90 degrees (clockwise or counter-clockwise), confined by
an external harmonic potential and possibly diffusing, as
well as some extensions of this model. This is achieved by
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employing a change of coordinates, that leads to a decom-
position of the problem into two statistically-independent
one-dimensional problems whose solution has been re-
cently found.

Let us briefly describe the structure of the remainder of
the paper. In section II, we give the precise definition of
the 2D RTP model that we study. In section III, we solve
the model exactly, and calculate the distribution of the
position of the particle and related quantities. In section
IV, we present several generalizations of the model (to
more than one RTP, to higher dimensions etc) and briefly
describe how to extend our results to cover those cases
too. In section V, we summarize and discuss our main
findings. Some of the technical details of the calculations
are given in the Appendices.

II. MODEL

The 2D RTP model that we study was originally in-
troduced in [62]. It consists of an overdamped particle
in the 2D (xy) plane, which is is affected by an exter-
nal harmonic potential U (x, y) = µ

(
x2 + y2

)
/2, and in

addition, has an internal degree of freedom σ that is a
unit vector, describing the particle’s orientation. The
dynamics of the particle’s position are described by the
Langevin equation

ṙ = −µr (t) +
√

2 v0σ (t) , (10)

where r = (x, y) is the position of the particle and
√

2 v0

would be the particle’s speed in the absence of external
potential (the factor

√
2 being included for later con-

venience). The dynamics of σ are stochastic: it ro-
tates (“tumbles”) by 90 degrees, clockwise or counter-
clockwise with equal probabilities, each of the rotations
occurring at a constant rate γ. Thus, there are four pos-
sible orientations for σ, which we choose to be in the
directions ±x̂,±ŷ (where x̂ and ŷ are unit vectors in
the directions of the x and y axes, respectively). These
four directions are denoted by E,W,N, S respectively,
see Fig. 1. Thus, the master equation that describes the
dynamics of σ is

d

dt

 pE
pN
pW
pS

 = γ

 −2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2


 pE
pN
pW
pS

 , (11)

where pi(t) denotes the probability that at time t, the
orientation of the particle is i = E,N,W, S. The par-
ticle is initially at the origin, x (t = 0) = y (t = 0) = 0,
with σ(t = 0) uniformly distributed over the 4 possible
orientations [72].

In [62], the exact steady-state marginal distribution
along the x axis was calculated for this model. However,
the relaxation to this steady state, as described by the
time dependent distributions, has not been known, and
more importantly, neither has the full (two-dimensional)

γ

γ

γ

γ

EW

S

N

FIG. 1. A schematic representation of the dynamics of the
orientation vector σ(t) in the 2D RTP model. σ rotates by
90 degrees to the left or to the right, each at rate γ. The four
possible orientations are aligned with the x and y axes. As
explained in the text, the key to our solution of this model is
the observation that a 90-degree rotation of σ corresponds to
an inversion of exactly one of its two components σu and σv,
where û = (x̂+ ŷ) /

√
2 and v̂ = (x̂− ŷ) /

√
2 are coordinates

rotated by 45 degrees with respect to the x, y coordinates.
In fact, we find that

√
2σu(t) and

√
2σv(t) are statistically-

independent telegraphic noises, leading to a complete decou-
pling of the problem in the u, v coordinates.

distribution P (x, y, t). In particular, the steady-state
distribution Pst (x, y) has not been known. Note that
the time-dependent distribution is meaningful and im-
portant also for a “free” RTP, i.e., in the absence of an
external potential, µ = 0 [53, 67, 73, 74]. In this paper we
resolve exactly these outstanding issues: We find the ex-
act time-dependent distribution of the particle’s position
P (x, y, t) for µ ≥ 0, and in particular, we find the steady
state distribution Pst (x, y) that is reached at long times
for µ > 0. We also solve related problems such as the
survival and first-passage properties, and discuss several
extensions of the model.

III. EXACT SOLUTION

The 2D RTP model becomes considerably simpler to
analyze if one changes to a coordinate system

u =
x+ y√

2
, v =

x− y√
2
, (12)

that is rotated by 45 degrees with respect to the x, y coor-
dinates. In this section, we exactly solve the 2D model us-
ing the following three key ingredients: (i) We show that
the u and v components of the noise σ are statistically-
independent telegraphic noises. (ii) We find that the u
and v coordinates of the particle are also statistically-
independent processes, and that each of them is mathe-
matically equivalent to the position of a 1D harmonically-
confined RTP. (iii) We recall the known exact results for
the 1D case, and employ them to get the solution to the
2D model. After obtaining the exact solution, we study
some of its properties such as its anisotropy and the re-
laxation to the steady state.



4

A. Decoupling of the noise

The first key step to solving this model exactly is to
observe that

√
2σu (t) and

√
2σv (t) (where σu and σv

are the u and v components of σ) are two statistically-
independent telegraphic noises, each of which takes the
values ±1 and stochastically flips its sign with rate γ.
Let us begin by showing that

√
2σu (t) is a telegraphic

noise. This is quite easy. One simply has

p+ ≡ Prob
(√

2σu = 1
)

= pE + pN , (13)

p− ≡ Prob
(√

2σu = −1
)

= pW + pS . (14)

By summing the first two components and the last two
components of the master equation (11), one then finds
that the dynamics of (p+, p−) is governed by the master
equation

dp+

dt
= −γp+ + γp− , (15)

dp−
dt

= −γp− + γp+ , (16)

which coincides exactly with that of a telegraphic noise.
One similarly proves that

√
2σv (t) is a telegraphic noise.

However, proving that the two processes
√

2σu (t) and√
2σv (t) are statistically independent is a little more

tricky.
Let us now prove the statistical independence of the

two processes
√

2σu (t) and
√

2σv (t), which turns out to
be crucial for the solution of the 2D model. Our strategy
in the proof is to define a 2D noise Σ whose u and v com-
ponents are statistically-independent telegraphic noises,
and then, to show that Σ and σ are equivalent. So, let
us define a 2D noise

Σ (t) = Σu (t) û+Σv (t) v̂ , (17)

where Σu (t) and Σv (t), the u and v components (respec-
tively) of Σ (t), are two statistically-independent (decou-

pled) telegraphic noises, each taking the values ±1/
√

2
and switching between them at rate γ. Σu (t = 0) and
Σv (t = 0) are each randomly and independently selected
from the two possible values that each of them can take.
Thus, Σ(t = 0) takes each of the four possible values
±x̂,±ŷ, each with probability 1/4 [just like σ(t = 0)].

We now show the equivalence between the two pro-
cesses Σ(t) and σ(t). Both of them are stationary
Markov processes: For Σ(t), this property is inherited
from Σu (t) and Σv (t). Next, we notice that they are
both unit vectors, taking one of the four values ±û,±v̂.
In order to show the equivalence between Σ(t) and σ(t),
it thus remains to show that the transition rates between
these possible values are identical for the two processes,
or equivalently, that their dynamics are governed by the
same master equation. Indeed, one finds that the master
equation for σ, Eq. (11), describes the dynamics of Σ(t)
too. A change of sign of Σu (t) corresponds to one of the

transitions E ↔ S and W ↔ N , while a change of sign
of Σv (t) corresponds to one of the transitions E ↔ N
and W ↔ S, and each of these transitions occurs at rate
γ, leading to the master equation (11). This completes
the proof of the equivalence between Σ(t) and σ(t). It

follows that
√

2σu (t) and
√

2σv (t) are two statistically-
independent telegraphic noises, each of which takes the
values ±1 and stochastically switches sign at rate γ.

B. Decoupling of the particle’s position

Now that we have seen that the noise decouples in the
u, v coordinates, it is reasonable to expect the analysis
of the 2D RTP model to simplify when studied in these
coordinates. Indeed, writing the Langevin dynamics (10)
explicitly in the u, v coordinates, we have

u̇ = −µu (t) +
√

2 v0σu (t) , (18)

v̇ = −µv (t) +
√

2 v0σv (t) . (19)

One immediately observes that Eqs. (18) and (19) are
decoupled, which makes the solution far simpler. Note
that no coupling enters through the noise terms, since
we have already shown that

√
2σu (t) and

√
2σv (t)

are statistically-independent telegraphic noises. More-
over, Eqs. (18) and (19) are mathematically equiva-
lent to the equations that describe two noninteracting,
harmonically-confined RTP’s in 1D. As a result, u(t) and
v(t) are two statistically-independent processes, each of
which corresponds to a 1D RTP whose free velocity is
given by v0.

This decoupling enables us to immediately solve the 2D
model exactly, as we now explain. Consider the Green’s
function Pσσ′ (r, t | r’, t’) that gives the joint distribu-
tion of the RTP’s position r and orientation σ at time t,
conditioned on their values at time t′ < t. We find that
the Green’s function decomposes (in the u, v coordinates)
as

Pσσ′ (r, t | r’, t’) = Pσuσ′
u

(u, t | u’, t’)Pσvσ′
v

(v, t | v’, t’) ,
(20)

where Pσσ′ (x, t | x’, t’) is the Green’s function for an
RTP in 1D. Eq. (20) follows immediately from the argu-
ments given above. However, as an alternative approach,
we also recover Eq. (20) by analyzing the joint Fokker-
Planck equation for the position and orientation of the
particle in Appendix A, providing a useful check of this
result.

Similarly, the time-dependent position distribution de-
composes as

P (r, t) = P (u, t)P (v, t) , (21)

where P (. . . , t) is the position distribution of a 1D
harmonically-confined RTP, and is given above. In par-
ticular, the steady-state distribution is given by

Pst (u, v) = Pst (u)Pst (v) (22)
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FIG. 2. The steady-state distribution (23) for a 2D RTP confined by a harmonic potential, for β = 2/3 (a) and β = 2 (b). In
this figure, units are chosen such that µ = v0 = 1. At β < 1 the particle is most likely to be accumulated away from the center,
whereas at β > 1 it is maximal around the center of the trap.

where Pst (. . . ) is given by Eq. (5). Explicitly, the steady-
state distribution is

Pst (u, v) =
4µ2

24β [B (β, β) v0]
2

×

[(
1−

(
µu

v0

)2
)(

1−
(
µv

v0

)2
)]β−1

, (23)

where we recall that β = γ/µ, see Fig. 2. The support
of the distribution Pst (u, v) is the square |u| , |v| < v0/µ.
In the active phase β < 1, the position of the particle
accumulates near the edges of the support, the distribu-
tion becoming localized around the corners of the square
|u| , |v| < v0/µ in the limit β � 1. In the passive phase
β > 1 the distribution is maximal near the center of the
trap, and in the diffusive limit β � 1, typical fluctua-
tions are described by an isotropic Gaussian distribution
around the origin. This corresponds to the passive limit
in which the noise can be approximated as white. For
a free particle (µ = 0), the distribution never reaches a
steady state. However, the time-dependent distribution
simplifies, since Eq. (21) reduces to

Pfree (u, v, t) = Pfree (u, t)Pfree (v, t) , (24)

where Pfree is given by (2). The solution (24) for the free
case has been known for some time [67, 73, 74].

As a useful check of these results, one can calculate
the marginal distribution of x = (u+ v) /

√
2 and com-

pare it to the previously-known results [53, 62]. In Ap-
pendix B we perform this check explicitly for the sta-
tionary distribution (23) for β ∈ {1, 2}, and for the time-
dependent distribution (24) for a free particle, and find
perfect agreement.

C. Anisotropy of the distribution

In order to quantify the anisotropy of the distribution,
one can consider the marginal distribution of the polar
coordinate θ of the particle’s position in the xy plane. In

the steady state, this distribution is given by

pmarginal,st (θ)

=

∫ ∞
0

Pst

(
u = r cos

(
θ +

π

4

)
, v = −r sin

(
θ +

π

4

))
rdr

=

∫ M(φ)

0

4
[(

1− (r cosφ)
2
)(

1− (r sinφ)
2
)]β−1

24β [B (β, β)]
2 rdr ,

(25)

where

M (φ) ≡ min

{∣∣∣∣ 1

cosφ

∣∣∣∣ , ∣∣∣∣ 1

sinφ

∣∣∣∣} , (26)

and φ = θ + π/4. It is independent of µ and v0 (as one
could expect from dimensional analysis). For certain val-
ues of β, the integral can be solved, yielding for instance

pmarginal,st (θ)|β=1 =
M2 (φ)

8
, (27)

pmarginal,st (θ)|β=2

=
3M2 (φ)

256

[
M4 (φ) (1− cos (4φ))− 12M2 (φ) + 24

]
.

(28)

pmarginal,st (θ) is plotted in Fig. 3 for β = 2/3 and β = 2.
pmarginal,st (θ) is maximal (as a function of θ) in the di-
rections of the possible orientations of the noise, θ ∈
{0, π/2, π, 3π/2}, and minimal in the directions of the u
and v axes. In the active limit β � 1, the anisotropy be-
comes very pronounced, because the distribution is local-
ized around the corners of the square |x| , |y| < v0/µ. In
the opposite (diffusive) limit, β � 1, the anisotropy be-
comes very weak (as explained above), i.e., pmarginal,st (θ)
is nearly uniform on the interval 0 < θ < 2π. These lim-
iting behaviors are not shown in the figure.

D. Relaxation to the steady state for a generic
initial orientation distribution

One can easily extend the discussion to the slightly
more general problem of a 2D harmonically-confined
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FIG. 3. The marginal steady-state distribution (25) of the
polar angle θ of the RTP’s position for β = 2/3 (solid line)
and β = 2 (dashed line).

RTP initially at the origin x (t = 0) = y (t = 0) whose
initial orientation is given by some distribution(

p
(0)
E , p

(0)
N , p

(0)
W , p

(0)
S

)
(29)

where p
(0)
i = pi (t = 0) is the probability that the ini-

tial orientation is in the direction i. For a deterministic
initial orientation, the position distribution P (r, t) will
decompose in the u, v coordinates (this can be seen, for
instance, by summing Eq. (20) with r′ = t′ = 0 over
the four possible values of σ). This result can be easily
extended to some general initial orientation distribution
(29) by using the superposition principle, and the result
will simply be

P (u, v, t) =
∑
σ1=±

∑
σ2=±

p(0)
σu,σv

×P (u, t |σu (t = 0) = σ1)P (v, t |σv (t = 0) = σ2) ,

(30)

where, in the expression p
(0)
σu,σv , we identify the four pos-

sible orientations of the noise with their corresponding u
and v components of the noise, i.e.,

E ≡ (+,+) , N ≡ (+,−) , W ≡ (−,−) , S ≡ (−,+) ,
(31)

and where

P (u, t |σ (t = 0) = σ0) (32)

is the position distribution of a 1D harmonically-confined
RTP whose initial orientation is σ0. Eq. (30) describes
the relaxation of the position distribution to the steady
state (23), which is reached in the long-time limit t→∞
for any initial condition.

E. First-passage and survival properties

The statistical independence of u(t) and v(t) has ad-
ditional important consequences, beyond the decompo-

sition (21) of their joint distribution. One such conse-
quence is that survival and exit probabilities for a 2D
RTP are related to the corresponding ones in 1D, for
certain geometries. In 1D, such problems have been stud-
ied quite extensively [41, 44, 45, 47, 52, 75–81]. For
instance, the first-passage time tq of the 2D RTP r(t)
out of the quadrant {u > 0, v > 0} is defined as the first
time at which the particle exits the quadrant. Clearly,
tq = min {tu, tv} where tu and tv are the first-passage
times of u(t) and v(t) out of the half lines u > 0 and
v > 0 respectively. Now, since u(t) and v(t) are sta-
tistically independent, so are tu and tv. As a result, the
cumulative distribution function Prob (tq < τ) of tq, that
describes the probability that the particle ‘survives’ (i.e.,
remains) inside the quadrant up to time τ is given by the
product of the probabilities that u(t) and v(t) remain
positive up to time τ , i.e,

Prob (tq < τ) = Prob (tu < τ) Prob (tv < τ) =

= [Prob (tu < τ)]
2
, (33)

where in the second equality we used the fact that tu
and tv are identically distributed. The distribution of tu
is exactly known for the free case µ = 0, see Refs. [45, 78],
and using this result together with Eq. (33), one obtains
the distribution of tq for the free case.

IV. EXTENSIONS

In this section we briefly outline some extensions of
these results in several directions.

A. Different propulsion velocities

Let us consider a version of the model in which the x
and y directions are not on equal footing. We will assume
that the propulsion velocities in the x and y directions
are different, by allowing the possible values of the noise
term to be ±x̂,±αy for some general α > 0.

It turns out that the same method that we used above
can be straightforwardly extended to this case, with only
minor technical complications, as follows. The noise term
still decouples as

σ (t) = σu (t)
x̂+ αŷ√

2
+ σv (t)

x̂− αŷ√
2

(34)

where
√

2σu(t) and
√

2σv(t) are two statistically-
independent telegraphic noises. Similarly, one expresses
the position of the RTP as

r (t) = u (t)
x̂+ αŷ√

2
+ v (t)

x̂− αŷ√
2

. (35)

Now, by using Eqs. (10), (34) and (35) one finds that
the dynamics of u and v are given by Eqs. (18) and (19)
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respectively. As a result, u(t) and v(t) are statistically-
independent, and each of them mathematically corre-
sponds to the position of a 1D harmonically-confined
RTP. Therefore, the position distribution P (r, t) is
still straightforward to find, with only a small techni-
cal complication arising from the fact that the basis{
x̂+αŷ√

2
, x̂−αŷ√

2

}
is not orthonormal for general α. Using

the transformation formula

u =
x+ y/α√

2
, v =

x− y/α√
2

, (36)

we find that Eq. (21) gives way to

P (r, t) =
1

2

(
1 +

1

α2

)
P (u, t)P (v, t) , (37)

where the factor 1
2

(
1 + 1

α2

)
is the Jacobian of the trans-

formation (36).

B. Two interacting RTP’s

It is fairly straightforward to extend our results to two
2D RTPs with a harmonic interaction (and possibly con-
fined by an external harmonic potential), as long as their
possible orientation vectors are the same. The Langevin
equations describing the time evolution of the positions
rA and rB of the two particles are

ṙA = −µrA (t)− λ (rA (t)− rB (t)) +
√

2 v0σA (t) , (38)

ṙB = −µrB (t)− λ (rB (t)− rA (t)) +
√

2 v0σB (t) , (39)

where λ is the strength of the harmonic interaction
between the particles, and σA (t) and σB (t) are two
statistically-independent noises, each of which is defined
as in the single-particle model (10). By rewriting these
equations in the u, v coordinates, one simply finds that
the problem decouples into two independent problems in
the directions u and v, each of which consists of two 1D
RTPs with a harmonic interaction, so the joint distribu-
tion of the positions of the two RTPs is given by

P (uA, vA, uB , vB , t) = P (uA, uB , t)P (vA, vB , t) , (40)

where uA(t) and vA(t) are the u and v coordinates of the
first particle (and similarly for the second particle). The
corresponding 1D problem was studied in Ref. [82], and
the steady state was obtained exactly P (x1, x2, t→∞)
for a general attractive interaction in the case µ = 0
(however, our extension to 2D only works if the interac-
tion is harmonic).

C. General damping strength:

One can extend this model to an RTP that is not
(strongly) overdamped, by taking into account an addi-
tional inertial term mr̈ in Eq. (10). The decomposition

in the u and v coordinates will still work, i.e., Eq. (21)
will still hold. The 1D distribution P (x, t) is not ex-
actly known in the presence of an inertial term. It is,
however, known in the limit of zero damping, for the
free case µ = 0 [54]. Moreover, for µ > 0 the cor-
responding steady-state distribution Pst (x) is approx-
imately known in various limits, such as the rapidly-
tumbling limit γ → ∞, for the RTP and similar models
of active particles [79, 83–85].

D. Diffusion:

One can further take into account diffusion. In 1D, for
instance, one can consider

ẋ = −µx+ v0σ (t) + ξ (t) , (41)

which is Eq. (1) for the harmonic force f(x) = −µx,
with an additional white (Gaussian) noise term ξ(t),
with zero mean 〈ξ (t)〉 = 0 and correlation function
〈ξ (t) ξ (t′)〉 = 2Dδ (t− t′) (here D is the diffusion coeffi-
cient, and angular brackets denote ensemble averaging).
Since Eq. (41) is linear, x(t) can be written as the sum
of two independent stochastic processes,

x (t) = x1 (t) + x2 (t) , (42)

which each follows the original dynamics but with just a
single noise term, i.e.,

ẋ1 = −µx1 + v0σ (t) , (43)

ẋ2 = −µx2 + ξ (t) . (44)

As a result, the distribution P (x, t) is simply given by
the convolution

P (x, t) =

∫ ∞
−∞

P1 (x1, t)P2 (x− x1, t) dx1 , (45)

where P1 (x1, t) and P2 (x2, t) are the distributions that
correspond to the processes x1(t) and x2(t), respectively,
and are each exactly known (x1(t) being the confined 1D
RTP studied in [41] as described above, and x2(t) being
an Ornstein-Uhlenbeck process). This decomposition can
be generalized, in 1D, to the sum of any number of noise
terms of any type [82, 86].

Returning to 2D, we could consider (10) with an addi-
tional white-noise term,

ṙ = −µr (t) +
√

2 v0σ (t) + ξ (t) , (46)

where 〈ξ (t)〉 = 0 and 〈ξi (t) ξj (t′)〉 = 2Dδijδ (t− t′) (for
i, j ∈ {x, y}. As in the case D = 0, one finds that the
dynamics decouple in the coordinates u and v, and in
each of these two coordinates one has to consider the
1D dynamics (41). Thus, the decomposition (21) is still
valid, but with P (x, t) now given by Eq. (45).

For this 2D model with diffusion, Eq. (46), we can cal-
culate the (internal) entropy production rate (EPR), as
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was recently done in 1D in [87]. The EPR is defined as
the Kullback–Leibler distance between forward and back-
ward paths (a precise definition can be found in [87]).
They found that the EPR for a 1D diffusing RTP [de-
scribed by Eq. (41)] is given by

Ṡ1D =
2γv2

0

D (µ+ 2γ)
, (47)

assuming that the observer knows the orientation σ(t).
Since the 2D model (46) decouples in the u, v coordinates,
and since the entropy is additive, one simply finds that
the EPR in the 2D model is given by Ṡ2D = 2Ṡ1D.

E. Stochastic resetting:

Let us consider the case of a free particle, µ = 0, but
with stochastic resetting of the position of the particle to
the origin at rate r̃ (which is not to be confused with the
RTP’s radial distance r from the origin). For simplicity,
let us assume that when resetting occurs, the orientation
is randomly chosen from its 4 possible values with equal
probabilities. At long times, the position distribution
approaches a nonequilibrium steady state, that we now
find exactly. We thus extend the 1D result of [52], that
is given by

Pfree,r̃ (x) =
λ (r̃)

2
e−λ(r̃)|x| (48)

where

λ (r̃) =

√
r̃ (r̃ + 2γ)

v0
. (49)

Before performing the calculation, we notice that u(t)
and v(t) are 1D RTP’s with stochastic resetting. How-
ever, the resetting leads to a statistical dependence be-
tween u and v. Therefore, their joint distribution is non-
trivial, since it is not given by the product of the 1D
distributions.

Denoting by Pfree,r̃ (r, t) the time-dependent position
of the particle initially at the origin with a random ori-
entation and with stochastic resetting, we find that [88]

Pfree,r̃ (r, t) =

e−r̃tPfree,0 (r, t) + r̃

∫ t

0

e−r̃τPfree,0 (r, τ) dτ , (50)

where Pfree,0 = Pfree is the distribution in the absence
of resetting. Eq. (50) follows from a renewal approach,
the first term on the right-hand side corresponding to
the case in which no resetting events occurs on the time
interval [0, t], and in the second term corresponding to
the case in which at least one such event occurs, and the
integral is over the time t− τ of the last resetting event
before time t. The steady state is obtained by taking the
limit t→∞ in (50), and it gives

Pst
free,r̃ (r) = r̃P̃free (r, r̃) (51)

where

P̃free (r, r̃) =

∫ ∞
0

e−r̃tPfree (r, t) dt (52)

is the Laplace transform of the time dependent distribu-
tion Pfree (r, t).

It turns out to be convenient to take a Fourier trans-
form in space, i.e., to calculate

Qst
free,r̃ (k) =

∫
eik·rPst

free,r̃ (r) dr =

=

∫ ∞
0

r̃e−r̃tdt

∫
eik·rPfree (r, t) dr (53)

Working in the u, v coordinates, we find, using the de-
composition (24) of Pst

free (r, t), that

Qst
free,r̃ (ku, kv) =

∫ ∞
0

r̃e−r̃tQfree (ku, t)Qfree (kv, t) dt ,

(54)
where

Qfree (k, t) =

∫ ∞
−∞

eikxPfree (x, t) dx (55)

is the Fourier transform of the distribution (2) of the
position of a free 1D RTP, and is exactly known [45]
(in the rest of this subsection, we choose units in which
γ = v0 = 1)

Qfree (k, t) = e−t

×
[
cosh

(
t
√

1− k2
)

+
1√

1− k2
sinh

(
t
√

1− k2
)]
.(56)

Plugging (56) into (54), the integral over t can be per-
formed because the integrand can be written as a sum of
exponentials. The result is:

Qst
free,r̃ (ku, kv) =

r̃ (r̃ + 2)
[
k2
u + k2

v + (r̃ + 2) (r̃ + 4)
]

(k2
u − k2

v)
2

+ [2 (k2
u + k2

v) + r̃ (r̃ + 4)] (r̃ + 2)
2 . (57)

A useful check for the result (57) is that, when plugging
in kv = 0, we obtain

Qst
free,r̃ (ku, kv = 0) =

r̃ (r̃ + 2)

k2
u + r̃ (r̃ + 2)

, (58)

which indeed coincides with the Fourier transform of
Pfree,r̃ (x) from Eq. (48).

All of the moments of the distribution Pst
free,r̃ (r) can

be read off Eq. (57), since Qst
free,r̃ (k) is the characteristic

function of the distribution. The Taylor-series expansion
of Qst

free,r̃ (ku, kv) around ku = kv = 0, up to quadratic
order in ku and kv, is

Qst
free,r̃ (ku, kv) = 1− k2

u + k2
v

r̃ (r̃ + 2)
+

(6r̃ + 8) k2
uk

2
v

r̃2 (r̃ + 2)
2

(r̃ + 4)
+ . . . .

(59)
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FIG. 4. The steady-state distribution Pr̃(x) for a 1D RTP confined by a harmonic potential, for β = 1/2 (a), β = 1 (b) and
β = 2 (c), with resetting rates r̃ = 0 (solid lines), r̃ = 1 (dashed lines) and r̃ = 3 (dotted lines), see Eq. (62). In this figure,
units are chosen such that µ = v0 = 1. The resetting causes the particle to be localized closer to the center of the trap.

Of particular interest are the correlation functions that
describe the statistical dependence between u and v. The
first of these is their covariance 〈uv〉− 〈u〉 〈v〉 (where an-
gular brackets denote averaging over the steady-state dis-
tribution Pst

free,r̃) which vanishes because the coefficients

of kukv, ku and kv in Eq. (59) vanish. The lowest non-
vanishing correlation function of x and y is therefore〈
u2v2

〉
−
〈
u2
〉 〈
v2
〉

= ∂2
ku∂

2
kvQ

st
free,r̃ (ku, kv)

∣∣
ku=kv=0

− ∂2
kuQ

st
free,r̃ (ku, kv)

∣∣
ku=kv=0

∂2
kvQ

st
free,r̃ (ku, kv)

∣∣
ku=kv=0

=
4 (5r̃ + 4)

r̃2 (r̃ + 2)
2

(r̃ + 4)
. (60)

In fact, one can also consider stochastic resetting with
an additional confining harmonic potential, with µ > 0.
This setting has not been considered even for a 1D RTP.
Using a renewal approach that is very similar to the one
that gives Eq. (51), one can show that the steady-state
distribution is given by

Pr̃ (x) = r̃

∫ ∞
0

e−r̃τP (x, τ) dτ = r̃P̃ (x, r̃) (61)

where P (x, τ) is the time-dependent position distribu-

tion in the absence of resetting, and P̃ (x, r̃) is its Laplace
transform, which is given above in Eq. (7). Plugging
Eq. (7) into (61), we obtain

Pr̃ (x) = r̃B (r̃) zγ̄+ r̃
µ−1

2F1

(
1− γ̄, γ̄; γ̄ +

r̃

µ
; z

)
, (62)

where we recall that z = (1− µ|x|/v0) /2, and B(r̃) is
defined in Eq. (8) above. Pr̃ (x) is plotted in Fig. 4. As
seen in the figure, the resetting causes the distribution
to be localized closer to the center of the trap. In the
limit r̃ � 1, the trap becomes unimportant and one re-
covers the result for a resetting free particle (not shown).
One could consider the 2D case as well, following a sim-
ilar approach to the one that we used in the free case,
i.e., by performing a spatial Fourier transform. However,
the calculation would become more technically involved,
without presenting much useful additional physics, so we
will not present it here.

F. Higher dimensions and/or other geometries

Our results can immediately be extended to an RTP
in 3D, whose orientation vector points towards one of the
8 vertices of a cube centered at the origin, and stochasti-
cally jumps between adjacent vertices at a constant rate.
One simply has to choose a coordinate system (u, v, w)
such that the vertices of the cube are in the directions
±û±v̂±ŵ. The problem then decouples into statistically-
independent problems for u, v and w, that each corre-
sponds to a harmonically-confined RTP in 1D. One can
similarly extend to dimensions higher than 3 as well.

Other geometrical configurations for the orientation σ
can also be considered, some of which are also exactly
solvable. Let us introduce a planar hexagonal model,
in which σ can take 8 possible values: six vertices of a
regular hexagon, σ0, . . .σ5 where σn =

(
cos nπ3 , sin

nπ
3

)
,

and two distinct “rest” states which we will denote by
00 and 01. Each of the rest states sits at the origin,
i.e., σ = 0, and the difference between them corresponds
to an internal state of the particle. The dynamics of
the orientation vector are as follows. From a nonzero
orientation, the orientation can rotate by 60 degrees, i.e.,

σn → σ(n±1) mod 6, (63)

or else move to the rest state whose index has parity
identical to n, i.e.,

σn → 0nmod 2. (64)

From a rest state, the orientation can move to one of 3
nonzero states with the same index parities, as follows:

0n → σn,σn+2,σn+4 , for n ∈ {0, 1} . (65)

Each of the possible transitions in the system occurs at a
constant rate which can be taken to be γ. The dynamics
of σ are graphically represented in Fig. 5.

Let us now briefly outline the solution to this hexago-
nal model. Remarkably, it turns out that the model can
be written as the projection to the xy plane of the 3D
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FIG. 5. A schematic representation of the dynamics of the
orientation vector σ(t) in the 2D RTP hexagonal model de-
scribed in the text. The possible orientations are the 6 vertices
of a regular hexagon σ0, . . .σ5, and two distinct rest states 00

and 01 for which σ = 0. Transitions occur between adjacent
vertices of the hexagon, and between rest states and vertices
whose indices have the same parity (the different parities are
indicated by different colors in the figure). All transitions oc-
cur at the same, constant rate γ. For clarity of the figure, the
transitions between the rest state 01 and the states σ1,σ3,σ5

are not indicated, and the rest states are not placed exactly
at the origin.

“cube” model described above, with

û=

√
2

3

 1

0

1/
√

2

 , v̂=

√
2

3

cos 2π
3

sin 2π
3

1/
√

2

 , ŵ=

√
2

3

cos 4π
3

sin 4π
3

1/
√

2

.
(66)

Indeed, one finds that the vertices of the hexagon cor-
respond to the xy projections of 6 of the vertices of the
cube, as we now describe. The nonzero orientation states
are identified with the vertices of the cube according to

σ0 ↔ û− v̂ − ŵ, σ1 ↔ û+ v̂ − ŵ, (67)

σ2 ↔ −û+ v̂ − ŵ, σ3 ↔ −û+ v̂ + ŵ, (68)

σ4 ↔ −û− v̂ + ŵ, σ5 ↔ û− v̂ + ŵ (69)

(when considering only the projections into the xy plane
of the 3D vectors, and up to a constant of proportionality
which can be absorbed into the definition of v0). The two
rest states are identified with the two remaining vertices
of the cube,

01 ↔ û+ v̂ + ŵ, 00 ↔ −û− v̂ − ŵ . (70)

This correspondence can then be immediately ex-
ploited in order to solve the hexagonal model. For exam-
ple, one can take the exact position distribution of the
3D model (which factorizes in the u, v, w coordinates),
and then, by marginalizing it along the z direction, one
obtains the position distribution of the hexagonal model.
We do not present these calculations explicitly here.

Yet another 2D model that can be solved by a de-
composition into effective 1D models is that in which
the orientation vector takes one of the 9 possible values
σxx̂+σy ŷ, with σx, σy ∈ {−1, 0, 1}, and where the possi-
ble transitions are those for which exactly one of the two
components σx, σy changes by ±1. All possible transi-
tions occur at the same rate γ. This model decomposes
in the x and y coordinates, i.e., the processes x(t) and
y(t) are statistically independent, and each of them is de-
scribed by a 1D RTP model with a noise σ(t), changing
by ±1 between the values {−1, 0, 1} where all transitions
that are possible occur at rate γ.

V. DISCUSSION

To summarize, we calculated the exact time-dependent
distribution P (r, t) of the position r of an RTP in 2D
whose orientation stochastically rotates by 90 degrees,
confined by an external harmonic potential. In particu-
lar, we found the exact steady-state distribution Pst (r)
that is reached in the long-time limit, and also P (r, t)
for a “free” RTP (in the absence of an external poten-
tial). We achieved this by observing that in a properly-
chosen coordinate system, the 2D problem decouples into
statistically-independent 1D problems, whose solution
has been exactly known previously. We extended these
results in several directions. In particular, we showed
how to account for diffusion of the RTP, extended the
results to particular RTP models in dimension higher
than 2, to two harmonically-interacting RTPs in 2D, and
considered stochastic resetting of the RTP’s position. It
is worth noting that a decomposition analogous to that
of our P (r, t) holds for a random walker hopping on a
2D square lattice in discrete time (but not in continuous
time). This is a classical result that has been known for
quite some time [89, 90].

It would be interesting to try to extend these results
to anharmonic potentials and/or to other 2D RTP mod-
els, whose orientation changes discontinuously in time,
but not by a 90-degree rotation. This presents a major
challenge because the equation of motion would then not
decouple in the (u, v) coordinates as in the case studied
here. We hope that the theoretical insight that is gained
from the exact solution of the particular case studied may
shed light on the more general case, perhaps enabling ap-
proximate solutions in certain limiting cases.

Another interesting direction for future research is that
of systems of many RTPs. 1D chains and gases of RTPs
were studied in Refs. [91–96], and it would be interesting
to investigate the 2D case.

Acknowledgments: NRS thanks Oded Farago for a col-
laboration on related topics. This research was supported
by ANR grant ANR-17-CE30-0027-01 RaMaTraF.
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Appendix A: Proving the Green’s function decomposition via the Fokker-Planck approach

As described in the main text, the decomposition (20) of the Green’s function follows immediately from the fact
that Eqs. (18) and (19) are decoupled, together with the statistical independence of the processes σu(t) and σv(t).
Nevertheless, as a useful check, we recover Eq. (20) by using a Fokker-Planck (FP) approach. Although it is rather
technical, it may be more natural to some readers, as this approach was used in several previous works.

The joint distribution Pi(x, y, t) of the position (x, y) and orientation i = E,N,W, S of the RTP evolves according
to the FP equation [62, 72]

∂

∂t
PE(x, y, t) =

∂

∂x

[(
µx−

√
2 v0

)
PE
]

+
∂

∂y
(µyPE) + γ (PN + PS)− 2γPE , (A1)

∂

∂t
PN (x, y, t) =

∂

∂x
(µxPN ) +

∂

∂y

[(
µy −

√
2 v0

)
PN
]

+ γ (PE + PW )− 2γPN , (A2)

∂

∂t
PW (x, y, t) =

∂

∂x

[(
µx+

√
2 v0

)
PW

]
+

∂

∂y
(µyPW ) + γ (PN + PS)− 2γPW , (A3)

∂

∂t
PS(x, y, t) =

∂

∂x
(µxPS) +

∂

∂y

[(
µy +

√
2 v0

)
PS
]

+ γ (PE + PW )− 2γPS . (A4)

However, it is far more convenient to solve the problem in the u, v coordinates (12). The FP equations that correspond
to the Langevin equations (18) and (19) are

∂

∂t
PE (u, v, t) =

∂

∂u
[(µu− v0)PE ] +

∂

∂v
[(µv − v0)PE ] + γ (PN + PS)− 2γPE , (A5)

∂

∂t
PN (u, v, t) =

∂

∂u
[(µu− v0)PN ] +

∂

∂v
[(µv + v0)PN ] + γ (PE + PW )− 2γPN , (A6)

∂

∂t
PW (u, v, t) =

∂

∂u
[(µu+ v0)PW ] +

∂

∂v
[(µv + v0)PW ] + γ (PN + PS)− 2γPW , (A7)

∂

∂t
PS (u, v, t) =

∂

∂u
[(µu+ v0)PS ] +

∂

∂v
[(µv − v0)PS ] + γ (PE + PW )− 2γPS . (A8)

We now wish to show that the solutions to these equations decompose to solutions of the FP equations for a 1D RTP,

∂

∂t
P+ (x, t) =

∂

∂u
[(µu− v0)P+] + γP− − γP+ , (A9)

∂

∂t
P− (x, t) =

∂

∂u
[(µu+ v0)P−] + γP+ − γP− . (A10)

Indeed, one can verify directly that given any two solutions P
(1)
σu (u, t) and P

(2)
σv (v, t) to the 1D equations (A9) and

(A10),

Pσu,σv (u, v, t) = P (1)
σu (u, t)P (2)

σv (v, t) (A11)

is a solution to Eqs. (A5)-(A8), under the identification

E ≡ (+,+) , N ≡ (+,−) , W ≡ (−,−) , S ≡ (−,+) (A12)

between the possible orientations of σ and the corresponding signs of its components σu and σv. Let us demonstrate
that this is indeed the case. Taking a time derivative of Eq. (A11) for σu = σv = +, one obtains, using Eq. (A9),

∂

∂t
PE (u, v, t) =

∂

∂t
P

(1)
+ (u, t)P

(2)
+ (v, t) + P

(1)
+ (u, t)

∂

∂t
P

(2)
+ (v, t)

=

{
∂

∂u

[
(µu− v0)P

(1)
+ (u, t)

]
+ γP

(1)
− (u, t)− γP (1)

+ (u, t)

}
P

(2)
+ (v, t)

+ P
(1)
+ (u, t)

{
∂

∂v

[
(µv − v0)P

(2)
+ (v, t)

]
+ γP

(2)
− (v, t)− γP (2)

+ (v, t)

}
=

∂

∂u
[(µu− v0)PE ] + γPS − γPE +

∂

∂v
[(µv − v0)PE ] + γPN − γPE , (A13)

which indeed coincides with the right hand side of Eq. (A5).
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The decomposition (20) of the Green’s function given in the main text is a particular case of Eq. (A11) in which

P (1)
σu (u, t = t′) = δ (u− u′) δσu,σ′

u
(A14)

and similarly in the v direction. Similarly, the decomposition (21) of the position distribution is a particular case of
Eq. (A11) in which the initial condition is

P (1)
σu (u, t = 0) =

1

2
δ (u) (A15)

and similarly in the v direction.

Appendix B: Marginal distribution of x

In [62], the marginal steady-state distribution of x was calculated for the 2D RTP. As a useful check of (23) of the

main text, we can reproduce this result. By using x = (u+ v) /
√

2, the marginal distribution that we predict is

Pmarginal,st (x) =

∫ ∞
−∞

du

∫ ∞
−∞

dvPst (u, v) δ

(
x− u+ v√

2

)
=
√

2

∫ ∞
−∞

duPst

(
u, v =

√
2x− u

)
=

√
2

Z

∫ v0/µ

√
2 |x|−v0/µ

du

[(
1−

(
µu

v0

)2
)(

1−
(
µ

v0

)2 (√
2 |x| − u

)2
)]β−1

, (B1)

where

Z−1 =
4µ2

24β [B (β, β) v0]
2 (B2)

is a normalization factor, and we used the mirror symmetry Pmarginal,st (−x) = Pmarginal,st (x). The integral in (B1)
is in general not so easy to calculate. However, for β = 1 and β = 2 it evaluates to

Pmarginal,st (x)|β=1 =
µ

2v0

(√
2− µ |x|

v0

)
(B3)

and

Pmarginal,st (x)|β=2 =
9µ

8
√

2v0

[
16

15
− 8

3

(
µx

v0

)2

+
4
√

2

3

∣∣∣∣µxv0

∣∣∣∣3 − 2

15

√
2

∣∣∣∣µxv0

∣∣∣∣5
]

(B4)

respectively, in perfect agreement with [62, 72] (note that in [62] an explicit expression for the marginal distribution,
in terms of hypergeometric functions, was obtained for arbitrary β > 0).

We can preform the same check for the time-dependent marginal distribution of the x coordinate of a free RTP,
comparing with the exact result from Ref. [53]. It turns out to be much simpler to perform the comparison in Fourier
space. For simplicity, let us choose units in which γ = v0 = 1. The Fourier transform of the distribution (2) of the
position of a free 1D RTP is given by [45] Eq. (56) of the main text, which we give here again for convenience:

Qfree (k, t) =

∫ ∞
−∞

eikxPfree (x, t) dx = e−t
[
cosh

(
t
√

1− k2
)

+
1√

1− k2
sinh

(
t
√

1− k2
)]
. (B5)

Now, since x = (u+ v) /
√

2, u(t) and v(t) both being independent and described by the same distribution (2), the
marginal distribution Pmarginal,free (x, t) is given by the convolution of the distributions of u and v. In Fourier space,

the convolution becomes a product, which (taking into account the factor
√

2) leads to

Qmarginal,free (k, t) =

∫ ∞
−∞

eikxPmarginal,free (x, t) dx =

[
Qfree

(
k√
2
, t

)]2

. (B6)
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Using Eq. (B5), we find

[Qfree (k, t)]
2

=
e−2t

2 (1− k2)

[
−k2 +

(
2− k2

)
cosh

(
2t
√

1− k2
)

+ 2
√

1− k2 sinh
(

2t
√

1− k2
)]

, (B7)

where we used the standard identities

coshx sinhx =
sinh (2x)

2
, cosh2 x =

cosh (2x) + 1

2
, cosh2 x− sinh2 x = 1 . (B8)

Eq. (B7) is in perfect agreement with the result of [53, 72, 97]. In fact, in [53], the Fourier transform was inverted
and an expression for Pmarginal,free (x, t) was obtained.
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[10] É. Fodor, R. L. Jack and M. E. Cates, Irreversibility
and Biased Ensembles in Active Matter: Insights from
Stochastic Thermodynamics, Annu. Rev. Condens. Mat-
ter Phys. 13, 215 (2022).

[11] E. Coli in Motion, H. C. Berg, (Springer Verlag, Heidel-
berg, Germany) (2004).

[12] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacK-
intosh, Nonequilibrium Mechanics of Active Cytoskeletal
Networks, Science 315, 370 (2007).

[13] C. Wilhelm, Out-of-Equilibrium Microrheology inside
Living Cells, Phys. Rev. Lett. 101, 028101 (2008)

[14] M. E. Cates, Diffusive transport without detailed balance:
Does microbiology need statistical physics?, Rep. Prog.
Phys. 75, 042601 (2012).

[15] W. W. Ahmed, E. Fodor, M. Almonacid, M. Bussonnier,
M.-H. Verlhac, N. S. Gov, P. Visco, F. van Wijland, and
T. Betz, Active cell mechanics: Measurement and theory,

Biochim. Biophys. Acta 1853, 3083 (2015).
[16] D. Breoni, F. J. Schwarzendahl, R. Blossey, H. Löwen, A
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