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A note on the duality of skew module codes.

D. Boucher ∗

December 16, 2022

Abstract

We introduce a new notion of duality inspired from the paper On the duality and
the direction of polycyclic codes by Adel Alahmadi, Steven Dougherty, André Leroy and
Patrick Solé. We get that the dual of a central skew module code is a central skew module
code.

1 Introduction.

Consider the finite field IFq with q elements and a non-negative integer n. A linear code over
IFq of length n is a subspace of IFnq . The dual of a linear code C of length n over IFq is defined

as C⊥ = {x ∈ IFnq | ∀y ∈ C, 〈x, y〉 = 0} where 〈·, ·〉 is an inner product over IFnq × IFnq . The

code C is self-dual if C is equal to C⊥. Cyclic codes over IFq form a class of linear codes who
are invariant under a cyclic shift of coordinates. This cyclicity condition enables to describe a
cyclic code as an ideal (g)/(Xn− 1) of IFq[X]/(Xn− 1) where g is a monic divisor of Xn− 1.
If we replace Xn − 1 with a polynomial f ∈ IFq[X] of degree n we get a polycyclic code. It
is well known that the Euclidean dual of a cyclic code is a cyclic code and self-dual cyclic
codes have been extensively studied ([10], [13], . . . ). However the dual of a polycyclic code is
not polycyclic. In [1], an inner product is defined over IFnq in such a way that the dual of a
polycyclic code is a polycyclic code. In this note, we will design a new notion of duality for
polycyclic codes and skew module codes.

In Section 2, we give some generalities on skew module codes. In Section 3, we design a
new notion of duality based on skew polynomials. In Section 4, we characterize self-dual skew
module codes by an equation called self-dual skew module equation and in Section 5, we give
some clues for the resolution of this equation when q = p2.

2 Generalities on skew module codes.

For an automorphism θ of IFq, one considers the ring R = IFq[X; θ] where addition is defined
to be the usual addition of polynomials and where multiplication is defined by the rule: for
a in IFq

X · a = θ(a)X. (1)

The ring R is called a skew polynomial ring or Ore ring (cf. [12]) and its elements are skew
polynomials. When θ is not the identity, the ring R is not commutative, it is a left and right
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Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm exist in
R and can be computed using the left and right Euclidean algorithms. The center of R is the
commutative polynomial ring Z(R) = IFθq[X

m] where IFθq is the fixed field of θ and m is the
order of θ.

Definition 1 ([6]) Consider f in R of degree n. A θ-module code or skew module code C
is a R-sub-module on the left Rg/Rf ⊂ R/Rf where g is a right divisor of f in R. Its length
is n = deg(f) and its dimension is k = deg(f)− deg(g). The skew polynomial g is a (skew)
generator polynomial of C. If g is monic, g is the (monic) skew generator polynomial of C.

If f = Xn − a with a ∈ IFq, one says that the code C is (θ, a)-constacyclic. It is θ-cyclic
if a = 1 and θ-negacyclic if a = −1.

For x, y in IFnq , 〈x, y〉E :=
∑n

i=1 xiyi is the (Euclidean) scalar product of x and y. The

code C is (Euclidean) self-dual if C is equal to C⊥. Assume that σ is an automorphism of
IFq of order 2. The (Hermitian) dual of a linear code C of length n over IFq is defined as
C⊥H = {x ∈ IFnq | ∀y ∈ C, 〈x, y〉H = 0} where for x, y in IFnq , 〈x, y〉H :=

∑n
i=1 xiσ(yi) is the

(Hermitian) scalar product of x and y. The code C is (Hermitian) self-dual if C is equal to
C⊥H .

If C is θ-module code of length n, either it is θ-constacyclic and then its (Euclidean) dual
is a θ-constacyclic code (Theorem 1 and Lemma 2 of [8]); either it is the shortened code of
a θ-cyclic code (of length N > n) and its (Euclidean) dual is a punctured code of a θ-cyclic
code (Proposition 3 of [8]). Furthermore, in [11], the (Euclidean) dual of a θ-module code
(also called θ-polycyclic code) is identified as a θ-sequential code (see Theorem 2 of [11]).

In [1] an inner product is introduced in such a way that the dual of a polycyclic code (i.e.
a θ-module code for θ = id) is polycyclic. In this note, we want to design a new notion of
duality such that the dual of a polycyclic code is a polycyclic code and the dual of a skew
module code is a skew module code. Note that when θ = id, the dual defined in this note is
not the same as the one obtained in [1] (see Remark 1 and Remark 3).

We conclude this introductive part with some material on skew reciprocal polynomials
which will be useful in this note.

Definition 2 (Definition 3 of [8] or Definition 2 of [2]) Consider h =

k∑
i=0

hiX
i ∈ R of

degree k. The skew reciprocal polynomial of h is

h∗ =

k∑
i=0

Xk−i · hi =
k−v∑
i=0

θi(hk−i)X
i

and the monic skew reciprocal polynomial of h is

h\ =
1

θk−v(hv)
h∗ = Xk−v +

k−v−1∑
i=0

θi(hk−i)

θk−v(hv)

where v = min{i | hi 6= 0} is the valuation of h.

In what follows, we will denote

θ :

{
R → R∑
aiX

i 7→
∑
θ(ai)X

i and σ :

{
R → R∑
aiX

i 7→
∑
σ(ai)X

i.
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Lemma 1 (Lemma 1 of [8]) Consider f , g, h in R non zero.

1. (h · g)∗ = θdeg(h)(g∗) · h∗.

2. Let d be the degree of f and let v be the valuation of f , then (f∗)∗ ·Xv = θd−v(f).

We will use a slight modification of the skew reciprocal polynomial : for h ∈ R of degree
less than n, the n-skew reciprocal polynomial of h is

rn(h) := Xn−deg(h) · h∗ =
n−v∑
i=n−k

θi(hn−i)X
i (2)

where k is the degree of h and v is its valuation.
In particular, for g, h in R of degree less than n we have

rn(g + h) = rn(g) + rn(h).

3 A notion of duality based on skew polynomials.

In [1], an inner product 〈·, ·〉f is defined over IFnq in the following way. Consider f in IFq[X] of
degree n and a = (a0, . . . , an−1), b = (b0, . . . , bn−1) in IFnq . Associate to a, b the polynomials

a(X) =
∑n−1

i=0 aiX
i and b(X) =

∑n−1
i=0 biX

i in IFq[X]. The f -scalar product of a and b is
defined as 〈a, b〉f = Q(0) where Q(X) is the remainder in the division of a(X)b(X) ∈ IFq[X]
by f(X). Inspired by the work of [1], we consider here a new map 〈·, ·〉f,θ,σ where f(X)
is a monic central polynomial of R = IFq[X; θ], θ is an automorphism of IFq and σ is an
automorphism of IFq such that σ2 = id.

In what follows, we associate to a = (a0, . . . , an−1) ∈ IFnq the skew polynomial a(X) =∑n−1
i=0 aiX

i in R. Furthermore we assume that f is a monic central polynomial.

Definition 3 The map 〈·, ·〉f,θ,σ from IFnq × IFnq to IFq is defined by : for a, b in IFnq

〈a, b〉f,θ,σ = P (0) (3)

where P (X) is the remainder in the division on the right of the skew polynomial a(X) ·
σ(rn(b(X))) by f(X) and P (0) is the constant coefficient of P (X).

Remark 1 Consider θ = σ = id, f ∈ IFq[X] of degree n, a ∈ IFnq and b ∈ IFnq . We have
〈a, b〉f,id,σ = P (0) where P (X) is the remainder in the division of a(X) · rn(b(X)) by f(X) in
IFq[X]. Meanwhile the scalar product defined in [1] 〈·, ·〉f is defined by 〈a, b〉f = Q(0) where
Q(X) is the remainder in the division of a(X)b(X) by f(X) in IFq[X].

We recall that a σ-sesquilinear form (see [14]) on IFnq is defined as a map 〈·, ·〉 : IFnq × IFnq →
IFq such that if x, y, z ∈ IFnq and a ∈ IFq then 〈x+z, y〉 = 〈x, y〉+〈z, y〉, 〈x, y+z〉 = 〈x, y〉+〈x, z〉,
〈ax, y〉 = a〈x, y〉 and 〈x, ay〉 = 〈x, y〉σ(a).

Proposition 1 The map 〈·, ·〉f,θ,σ is a σ-sesquilinear form.
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Proof. We denote 〈·, ·〉 = 〈·, ·〉f,θ,σ. Consider a, b, c in IFnq and λ in IFq. We have
(a(X) + b(X)) · σ(rn(c(X))) = a(X) · σ(rn(c(X))) + b(X) · σ(rn(c(X))) therefore 〈a+ b, c〉 =
〈a, c〉+ 〈b, c〉. We have rn(b(X) + c(X)) = rn(b(X)) + rn(c(X)) therefore a(X) · σ(rn(b(X) +
c(X))) = a(X) · σ(rn(b(X))) + a(X) · σ(rn(c(X))) and 〈a, b+ c〉 = 〈a, b〉+ 〈a, c〉.

Consider P (X) the remainder in the division on the right of a(X) · σ(rn(b(X))) by f(X)
in R. Then λP (X) is the remainder in the division on the right of λa(X) · σ(rn(b(X))) by
f(X) in R and we have 〈λa, b〉 = (λP )(0) = λ〈a, b〉. We have a(X)σ(rn(λb(X))) = a(X) ·
σ(rn(b(X)))σ(λ) and as f(X) is central, the remainder in the division of a(X) ·σ(rn(b(X))λ)
by f(X) on the right is P (X) ·σ(λ), therefore 〈a, λb〉 = (P ·σ(λ))(0) = σ(λ)P (0) = 〈a, b〉σ(λ).

Definition 4 Consider a linear code C over IFq with length n.
The left dual of C for 〈·, ·〉f,θ,σ is defined as

l(C) = lf,θ,σ(C) = {x ∈ IFnq | ∀c ∈ C, 〈x, c〉f,θ,σ = 0}. (4)

The right dual of C is defined as

r(C) = rf,θ,σ(C) = {x ∈ IFnq | ∀c ∈ C, 〈c, x〉f,θ,σ = 0}. (5)

In the proposition below, we make the link with the Euclidean dual and the Hermitian dual
of linear codes.

Proposition 2 Assume that f = Xn − ε is a central polynomial with ε 6= 0.

• If σ = id, then r(C) = l(C) is the dual C⊥ of C for the Euclidean scalar product.

• If σ has order 2, then r(C) = l(C) is the dual C⊥H of C for the Hermitian scalar
product.

Proof. Consider a, b ∈ IFnq . The constant coefficient of P (X) = a(X) · σ(rn(b(X))) =∑n−1
i=0 aiX

i ·
∑n−1

j=0 X
n−j · σ(bj) ∈ R/Rf is ε ×

∑n−1
i=0 aiθ

i+n−i(σ(bi)) = ε ×
∑n−1

i=0 aiσ(bi).

Therefore for a, b ∈ IFnq , 〈a, b〉f,θ,σ = 0⇔
∑n−1

i=0 ai × σ(bi) = 0.

In what follows, we give an analogue of the MacWilliams formula for l(C) and r(C)
inspired from [1].

Lemma 2 If f(0) 6= 0, then the σ-sesquilinear form 〈·, ·〉f,θ,σ is non-degenerate.

Proof. We denote 〈·, ·〉 = 〈·, ·〉f,θ,σ and F (X) = −1
f(0)

f(X)−f(0)
X , which is well-defined as

f(0) 6= 0. We have F (X) ·X = X · F (X) = 1 in R/Rf .
Consider a in IFnq and assume that for all b non-zero in IFnq we have 〈a, b〉 = 0. Then for

b = 1, we get 〈a, 1〉 = 0 therefore a(0) = 0 and a(X) = a′(X)X. Denote v the degree of
the lowest term of F (X) and consider b(X) = rn(F (X)). Then b(X) = X · F ∗(X), therefore
deg(b) = 1 + n− 1− v = n− v and b∗(X)Xv = (XF ∗(X))∗Xv = (F ∗(X))∗Xv = F (X). We
conclude that rn(b(X)) = Xn−(n−v)b∗(X) = F (X), therefore 〈a, b〉 = a′(0) = 0. Repeating
the operation, we obtain a = 0.

Consider b in IFnq and assume that for all a non-zero in IFnq we have 〈a, b〉 = 0. For a = 1
we get 〈1, b〉 = 0, therefore σ(rn(b))(0) = 0 and σ(rn(b(X))) = Xb′(X). For a(X) = F (X),
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we get 〈F, b〉 = 0, therefore F (X)σ(rn(b(X))) = b′(X) ∈ R/Rf cancels at 0. Repeating the
operation, we get σ(rn(b)) = 0 and b = 0.

The weight enumerator of a code C of length n over IFq is

WC(x, y) =
n∑
i=0

Aix
n−iyi ∈ ZZ[x, y]

where Ai is the number of codewords of weight i.
Consider a function φ defined over IFnq . Following [1], we consider two Fourier transforms

φ̂l and φ̂r defined by

φ̂l(c) =
∑
d∈IFn

q

Ψ(〈c, d〉f,θ,σ)φ(d)

and
φ̂r(c) =

∑
d∈IFn

q

Ψ(〈d, c〉f,θ,σ)φ(d)

where Ψ is the character defined over IFq = IFpr by Ψ(x) = wTr(x) with w a complex primitive
root of unity of order the characteristic p of IFq and Tr is the trace map from IFq to IFp defined

by Tr(x) = x+ xp + · · ·+ xp
r−1

.

Lemma 3 Assume that f(0) 6= 0. Consider a linear code C of length n over IFq and a
function φ defined over IFnq . We have the summation formulas∑

c∈l(C)

φ(c) =
1

|C|
∑
c∈C

φ̂l(c)

and ∑
c∈r(C)

φ(c) =
1

|C|
∑
c∈C

φ̂r(c).

Proof. We denote 〈·, ·〉 = 〈·, ·〉f,θ,σ. We have∑
c∈C

φ̂l(c) =
∑
d∈l(C)

φ(d)
∑
c∈C

Ψ(〈c, d〉) +
∑
d 6∈l(C)

φ(d)
∑
c∈C

Ψ(〈c, d〉).

The first term is equal to
∑

d∈l(C) φ(d)
∑

c∈C 1 = |C|
∑

d∈l(C) φ(d). Let us prove that the
second term of this sum vanishes. Consider d 6∈ l(C) and φd the map from C to IFq
which maps c to 〈c, d〉. This map is a morphism according to Proposition 1, therefore∑

c∈C Ψ(〈c, d〉) = |Ker(φd)|
∑

α∈Im(φd)
Ψ(α). Furthermore 〈·, ·〉 is non-degenerate and d 6∈

l(C) therefore Im(φd) 6= {0}. We conclude using the orthogonality relation for group charac-
ters.

The same conclusion holds for φ̂r because the map from C to IFq which maps c to 〈d, c〉f,θ,σ
is also a morphism.
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Proposition 3 Consider C a linear code over IFq of length n. The weight enumerators of
l(C) = lf,θ,σ(C) and r(C) = rf,θ,σ(C) are

Wl(C)(x, y) =
1

|C|
∑
c∈C

∑
d∈IFn

q

Ψ(〈c, d〉f,θ,σ)xn−w(d)yw(d)

and

Wr(C)(x, y) =
1

|C|
∑
c∈C

∑
d∈IFn

q

Ψ(〈d, c〉f,θ,σ)xn−w(d)yw(d).

Proof. Apply Lemma 3 with φ : c 7→ xw(c)yn−w(c)

4 Central skew module codes and self-duality.

In this section we arrive to the main result of this note about the dual of a central skew
module code, that means a code Rg/Rf where f is a monic central polynomial and g is a
monic right divisor of f in R = IFq[X; θ]. We recall that σ is an automorphism of IFq such
that σ2 = id.

Proposition 4 Consider g in R and h ∈ R monic such that g · h = h · g = f . Assume that
f = f \. Consider the skew module code C = Rg/Rf with monic skew generator polynomial
g. Then l(C) = r(C) is the skew module code RH/Rf where H = σ(h\).

Proof. Let us denote k the dimension of C. We have deg(g) = n− k and deg(h) = k. As
f(0) 6= 0, deg(h\) = deg(h) = k. Consider i ∈ {0, . . . , k − 1} and j ∈ {0, . . . , n− k − 1}.

1. Consider H = σ−1(h\). Let us prove that 〈Xi · g,Xj ·H〉f,θ,σ = 0.

We have 〈Xi · g,Xj ·H〉f,θ,σ = P (0) where P is the remainder in the division of (Xi ·
g · σ(rn(Xj ·H)) by f on the right. Furthermore

Xi · g · σ(rn(Xj ·H)) = Xi · g · σ(Xn−(k+j)(Xj ·H)∗)

= Xi · g · θn−k−j(θj(σ(H)∗))Xn−(k+j) because (Xj ·H)∗ = θj(H∗)

= Xi · (g · θn−k(σ(H)∗))Xn−(k+j).

Furthermore θn−k(σ(H)∗) = h ·λ where λ is a non-zero constant. As g ·h = f is central,
we get P = 0 therefore 〈Xi · g,Xj ·H〉f,θ,σ = 0.

2. Consider H = σ(h\). Let us prove that 〈Xj ·H,Xi · g〉f,θ,σ = 0. We have

Xj ·H · σ(rn(Xi · g)) = σ(Xj · h\ ·Xn−(n−k+i)(Xi · g)∗)
= σ(Xj · h\ · θk−i(θi(g∗))Xk−i)
= σ(Xj · 1/θk(h0)h∗ · θk(g∗)Xk−i)
= σ(Xj · θk(1/h0)θk(θn−k(h∗) · g∗)Xk−i).

Furthermore θn−k(h∗) · g∗ = (g · h)∗ = 0 in R/Rf∗, therefore 〈Xj ·H,Xi · g〉f\,θ,σ = 0.

3. As σ = σ−1 we get σ(h\) = σ−1(h\) therefore l(C) = r(C) = RH/Rf where H = σ(h\).
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Proposition 5 (Self-dual skew module equation) Consider g in R and h ∈ R monic
such that g · h = h · g = f . Consider the skew module code C = Rg/Rf with monic skew gen-
erator polynomial g. The code C is self-dual for 〈·, ·〉f,θ,σ if, and only if, the skew polynomial
h defined by g · h = h · g = f satsifies

σ(h\) · h = f. (6)

In this case we have f = f \.

Remark 2 When f = Xn − ε with ε2 = 1, the self-dual skew module equation (6) is called
self-dual skew equation (Corollary 1 of [9]) and existence conditions were given in [4] for this
equation. In next section, we will give some existence conditions to equation (6) when θ has
order 2 and f is any monic central element.

Remark 3 When θ = σ = id, one can check that there exists a self-dual polycyclic code for
〈·, ·〉f,θ,σ if, and only if, the product of the self-reciprocal irreducible factors which divide f is
a square. In particular, if f = Xn − 1, we recover that there exists a (Euclidean) self-dual
cyclic code if and only if q is a power of 2 and n is even (see [10]). Note that in [1], self-dual
polycyclic codes for 〈·, ·〉f are those for which f is a square (Theorem 3 of [1]) therefore when
f = Xn − 1, self-dual polycyclic codes for 〈·, ·〉f are not (Euclidean) self-dual cyclic codes.

Example 1 Consider R = IF4[X; θ] where IF4 = IF2(α), α2+α+1 = 0 and θ is the Frobenius
automorphism. There are three central monic polynomials f of degree 8 satisfying f = f \ :
X8 + 1, X8 + X4 + 1 and X8 + X6 + X4 + X2 + 1. We consider the self dual skew module
codes Rg/Rf for the scalar products 〈·, ·〉f,θ,id. For f = X8 + 1 we obtain the three already
known (Euclidean) self-dual θ-cyclic codes. For f = X8 + X4 + 1 there are 7 self-dual skew
module codes Rg/Rf for the scalar products 〈·, ·〉f,θ,id. For f = X8 + X6 + X4 + X2 + 1,
we have 5 self-dual codes and give one of them here :consider h = X4 + αX3 + αX + α and
g = h\ = X4 + αX3 + αX + α2. The skew module code C = Rg/Rf is a [8, 4, 4]4 code. As
h\ · h = X8 +X6 +X4 +X2 + 1, C is self-dual for the scalar product 〈·, ·〉f,θ,id.

Example 2 Consider R = IF9[X; θ] where IF9 = IF2(w), w2 = w + 1 and θ is the Frobenius
automorphism. There are six monic central polynomials f of degree 6 satisfying f = f \

: X6 + 1, X6 − 1, X6 + X4 + X2 + 1, X6 + X4 + 2X2 + 2, X6 + 2X4 + X2 + 2 and
X6 + 2X4 + 2X2 + 1. If f ∈ {X6 + 1, X6 +X4 +X2 + 1, X6 + 2X4 + 2X2 + 1} there is no
self-dual skew module code Rg/Rf for 〈·, ·〉f,θ,id. Consider f = X6 + 2X4 +X2 + 2. The skew
polynomial g = X3 +w5X2 +w3X +w2 generates a [6, 3, 4]9 skew module code Rg/Rf which
is self-dual for 〈·, ·〉f,θ,id.

5 Self-dual central skew module codes over IFp2.

Self-dual θ-cyclic codes and θ-negacyclic codes have been studied over IFp2 in [2, 3]. Using
and completing the material developed in these two previous works, we give here a necessary
and sufficient condition of existence of self dual skew module codes Rg/Rf for 〈·, ·〉f,θ,σ when
f is a monic central polynomial and σ2 = id.

Consider, for a monic central polynomial f(X2) ∈ IFp[X
2] the set :

H(σ)
f(X2)

:= {h ∈ R | hmonic and σ(h\) · h = f(X2)}.
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Necessarily if H(σ)
f(X2)

is non empty then f = f \.

Proposition 6 (Proposition 2 of [3]) Consider IFq a finite field with q = p2 elements
where p is a prime number, θ : x 7→ xp the Frobenius automorphism over IFp2, R = IFq[X; θ].
Consider f(X2) = f1(X

2) · · · fr(X2) where f1(X
2), . . . , fr(X

2) are pairwise coprime polyno-

mials of IFp[X
2] satisfying f \i = fi. The application

φ :

{
H(σ)
f1(X2)

× · · · × H(σ)
fr(X2)

→ H(σ)
f(X2)

(h1, . . . , hr) 7→ lcrm(h1, . . . , hr)

is bijective.

Example 3 Consider R = IF4[X; θ] where IF4 = IF2(α), α2 + α + 1 = 0, θ is the Frobenius
automorphism and f(X2) = X16 +X14 +X12 +X10 +X8 +X6 +X4 +X2 + 1 = (X4 +X2 +
1)(X12 +X6 + 1). Consider h1 = X2 + α and h2 = X6 + α2X5 + αX4 + αX2 + α2X + α2.

We have h\1 · h1 = X4 + X2 + 1 and h\2 · h2 = X12 + X6 + 1. Consider h = lcrm(h1, h2) =
X8 +α2X7 +X6 +X5 +α2X4 +α2X3 +αX2 +X +α then h\ ·h = f(X2). The skew module
code Rg/Rf with skew generator polynomial g = h\ is a self-dual [16, 8, 6]4 for 〈·, ·〉f,θ,id and
we improve the best distance for all Euclidean self-dual θ-cyclic codes of length 16 over IF4 (4
according to Section 4 of [7]).

Using the same construction, we get a self-dual [24, 12, 8]4 code for 〈·, ·〉f,θ,id with f(X2) =
X24 +X22 +X12 +X2 + 1 and a self-dual [32, 16, 9]4 code for 〈·, ·〉f,θ,id with f(X2) = X32 +
X22 +X20 +X18 +X16 +X14 +X12 +X10 + 1. The best Euclidean self-dual θ-cyclic codes
over IF4 of lengths 24 and 32 are [24, 12, 7]4 and [32, 16, 4]4 (Section 4 of [7]).

We now derive necessary and sufficient existence conditions for self-dual skew module
codes defined over IFp2 .

Lemma 4 Consider IFq a finite field with q = p2 elements where p is a prime number, θ :
x 7→ xp the Frobenius automorphism over IFp2, σ ∈ {id, θ}, R = IFq[X; θ]. Consider f(X2) =
f \(X2) which is either irreducible in IFp[X

2] or the product of two irreducible polynomials

g(X2) 6= g\(X2). The set H(σ)
f(X2)

is non-empty if, and only if, one of the following conditions

is fulfilled :

1. m is even;

2. m is odd and degX2(f(X2)) > 1;

3. m is odd, p = 2 and f = X2 + 1;

4. m is odd, p is odd, σ = id and f = X2 − (−1)
p+1
2 ;

5. m is odd, p is odd, σ = θ and f = X2 + 1.

Proof.

1. If m is even then fm/2 ∈ H(σ)
f(X2)m

.

2. If degX2(f(X2)) > 1, according to Lemma 3.3 and Lemma 3.5 of [3] , the set H(σ)
f(X2)

is

non-empty. Consider H ∈ H(σ)
f(X2)

, then f (m−1)/2H = Hf (m−1)/2 ∈ H(σ)
f(X2)m

.
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3. If m is odd, p = 2 and f = X2 + 1, then (X + 1)m ∈ H(σ)
f(X2)m

.

4. If m is odd, p is odd, σ = id and f = X2 − ε, with ε2 = 1, according to Proposition 2

of [2], the set H(σ)
f(X2)m

is non-empty if and only if (−1)
p+1
2 = ε.

5. Assume that m is odd, p is odd, σ = θ and f = X2 − ε, with ε2 = 1. The set H(σ)
f(X2)m

is the disjoint union t(m−1)/2j=0 f(X2)jH(σ)
f(X2)m−2j where for i ≥ 0, H(σ)

f(X2)i := {h ∈
H(σ)

f(X2)i
| f(X2) 6 |h} is the set of elements of H(σ)

f(X2)i
which are not divisible by f(X2) =

X2 − ε. One can adapt the proof of Lemma 4.1 of [2] to get that for i ≥ 1, the set

H(σ)
f(X2)i is non-empty if and only if ε = −1. The conclusion follows.

Proposition 7 Consider IFq a finite field with q = p2 elements where p is an odd prime
number, θ : x 7→ xp the Frobenius automorphism over IFp2, σ ∈ {id, θ}, R = IFq[X; θ].
Consider f(X2) = f \(X2) in IFp[X

2]. Consider m1,m2 ∈ IN such that f(X2) = (X2 −
1)m1(X2 + 1)m2F (X2) and F is not divisible by X2 + 1 or X2 − 1. There exists a self-dual
skew module code Rg/Rf for 〈·, ·〉f,θ,σ if, and only if, one of these conditions is satisfied :

• m1 and m2 are even;

• m1 is odd, m2 is even, p ≡ 3 (mod 4), σ = id;

• m1 is even, m2 is odd, p ≡ 1 (mod 4), σ = id;

• m1 is even, m2 is odd, σ = θ.

Proof. The proof is deduced from Proposition 6 and Lemma 4.

Example 4 In Example 2, we have seen that there is no self-dual skew module code Rg/Rf
over IF9 for the scalar product 〈·, ·〉f,θ,id when f(X2) is one of the following monic central
polynomials : X6 + 1 = (X2 + 1)3, X6 + X4 + X2 + 1 = (X2 + 1)(X4 + 1) and X6 +
2X4 + 2X2 + 1 = (X2 + 1)(X2 − 1)2 while there exists a self-dual skew module code Rg/Rf
over IF9 if f(X2) is one of the following monic central polynomials : X6 − 1 = (X2 − 1)3,
X6 +X4 + 2X2 + 2 = (X2 + 1)2(X2 − 1) and X6 + 2X4 +X2 + 2 = (X2 − 1)(X4 + 1).

6 Conclusion.

In this note, inspired by [1], we have constructed a new notion of duality for polycyclic codes
and for central skew module codes. With this new notion of duality, we consider self-dual
central θ-module codes Rg/Rf for any monic central self-reciprocal skew polynomial f . When
f = Xn−ε with ε2 = 1, we get Euclidean and Hermitian self-dual θ-constacyclic codes. When
the order of θ is 2, we give necessary and sufficient existence conditions of self-dual central
skew module codes by using the results previously obtained in [2, 3]. It could be interesting
to study these self-dual codes more deeply for any monic central skew polynomial f 6= Xn−ε,
especially when the automorphism θ has an order 6= 1, 2, n.
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