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1 Introduction.

Consider the finite field IF q with q elements and a non-negative integer n. A linear code over IF q of length n is a subspace of IF n q . The dual of a linear code C of length n over IF q is defined as C ⊥ = {x ∈ IF n q | ∀y ∈ C, x, y = 0} where •, • is an inner product over IF n q × IF n q . The code C is self-dual if C is equal to C ⊥ . Cyclic codes over IF q form a class of linear codes who are invariant under a cyclic shift of coordinates. This cyclicity condition enables to describe a cyclic code as an ideal (g)/(X n -1) of IF q [X]/(X n -1) where g is a monic divisor of X n -1. If we replace X n -1 with a polynomial f ∈ IF q [X] of degree n we get a polycyclic code. It is well known that the Euclidean dual of a cyclic code is a cyclic code and self-dual cyclic codes have been extensively studied ( [START_REF] Jia | On self-dual cyclic codes over finite fields[END_REF], [START_REF] Sloane | Cyclic self-dual codes[END_REF], . . . ). However the dual of a polycyclic code is not polycyclic. In [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], an inner product is defined over IF n q in such a way that the dual of a polycyclic code is a polycyclic code. In this note, we will design a new notion of duality for polycyclic codes and skew module codes.

In Section 2, we give some generalities on skew module codes. In Section 3, we design a new notion of duality based on skew polynomials. In Section 4, we characterize self-dual skew module codes by an equation called self-dual skew module equation and in Section 5, we give some clues for the resolution of this equation when q = p 2 .

2 Generalities on skew module codes.

For an automorphism θ of IF q , one considers the ring R = IF q [X; θ] where addition is defined to be the usual addition of polynomials and where multiplication is defined by the rule: for a in IF q X • a = θ(a) X.

The ring R is called a skew polynomial ring or Ore ring (cf. [START_REF] Ore | Theory of non-commutative polynomials[END_REF]) and its elements are skew polynomials. When θ is not the identity, the ring R is not commutative, it is a left and right Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm exist in R and can be computed using the left and right Euclidean algorithms. The center of R is the commutative polynomial ring Z(R) = IF θ q [X m ] where IF θ q is the fixed field of θ and m is the order of θ.

Definition 1 ([6]) Consider f in R of degree n. A θ-module code or skew module code C is a R-sub-module on the left Rg/Rf ⊂ R/Rf where g is a right divisor of f in R. Its length is n = deg(f ) and its dimension is k = deg(f ) -deg(g). The skew polynomial g is a (skew) generator polynomial of C. If g is monic, g is the (monic) skew generator polynomial of C. If f = X n -a with a ∈ IF q , one says that the code C is (θ, a)-constacyclic. It is θ-cyclic if a = 1 and θ-negacyclic if a = -1.
For x, y in IF n q , x, y E := n i=1 x i y i is the (Euclidean) scalar product of x and y. The code C is (Euclidean) self-dual if C is equal to C ⊥ . Assume that σ is an automorphism of IF q of order 2. The (Hermitian) dual of a linear code C of length n over IF q is defined as

C ⊥ H = {x ∈ IF n q | ∀y ∈ C, x, y H = 0} where for x, y in IF n q , x, y H := n i=1 x i σ(y i ) is the (Hermitian) scalar product of x and y. The code C is (Hermitian) self-dual if C is equal to C ⊥ H .
If C is θ-module code of length n, either it is θ-constacyclic and then its (Euclidean) dual is a θ-constacyclic code (Theorem 1 and Lemma 2 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF]); either it is the shortened code of a θ-cyclic code (of length N > n) and its (Euclidean) dual is a punctured code of a θ-cyclic code (Proposition 3 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF]). Furthermore, in [START_REF] Matsuoka | θ-polycyclic codes and θ-sequential codes over finite fields[END_REF], the (Euclidean) dual of a θ-module code (also called θ-polycyclic code) is identified as a θ-sequential code (see Theorem 2 of [START_REF] Matsuoka | θ-polycyclic codes and θ-sequential codes over finite fields[END_REF]).

In [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF] an inner product is introduced in such a way that the dual of a polycyclic code (i.e. a θ-module code for θ = id) is polycyclic. In this note, we want to design a new notion of duality such that the dual of a polycyclic code is a polycyclic code and the dual of a skew module code is a skew module code. Note that when θ = id, the dual defined in this note is not the same as the one obtained in [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF] (see Remark 1 and Remark 3).

We conclude this introductive part with some material on skew reciprocal polynomials which will be useful in this note.

Definition 2 (Definition 3 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF] or Definition 2 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF])

Consider h = k i=0 h i X i ∈ R of degree k. The skew reciprocal polynomial of h is h * = k i=0 X k-i • h i = k-v i=0 θ i (h k-i )X i
and the monic skew reciprocal polynomial of h is

h = 1 θ k-v (h v ) h * = X k-v + k-v-1 i=0 θ i (h k-i ) θ k-v (h v ) where v = min{i | h i = 0} is the valuation of h.
In what follows, we will denote

θ : R → R a i X i → θ(a i )X i and σ : R → R a i X i → σ(a i )X i . Lemma 1 (Lemma 1 of [8]) Consider f , g, h in R non zero. 1. (h • g) * = θ deg(h) (g * ) • h * .
2. Let d be the degree of f and let v be the valuation of f , then

(f * ) * • X v = θ d-v (f ).
We will use a slight modification of the skew reciprocal polynomial : for h ∈ R of degree less than n, the n-skew reciprocal polynomial of h is

r n (h) := X n-deg(h) • h * = n-v i=n-k θ i (h n-i )X i ( 2 
)
where k is the degree of h and v is its valuation.

In particular, for g, h in R of degree less than n we have

r n (g + h) = r n (g) + r n (h).
3 A notion of duality based on skew polynomials.

In [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], an inner product •, • f is defined over IF n q in the following way. Consider f in IF q [X] of degree n and a = (a 0 , . . . , a n-1

), b = (b 0 , . . . , b n-1 ) in IF n q . Associate to a, b the polynomials a(X) = n-1 i=0 a i X i and b(X) = n-1 i=0 b i X i in IF q [X]. The f -scalar product of a and b is defined as a, b f = Q(0) where Q(X) is the remainder in the division of a(X)b(X) ∈ IF q [X]
by f (X). Inspired by the work of [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], we consider here a new map •, • f,θ,σ where f (X) is a monic central polynomial of R = IF q [X; θ], θ is an automorphism of IF q and σ is an automorphism of IF q such that σ 2 = id.

In what follows, we associate to a = (a 0 , . . . , a n-1 ) ∈ IF n q the skew polynomial a(X) = n-1 i=0 a i X i in R. Furthermore we assume that f is a monic central polynomial.

Definition 3 The map •, • f,θ,σ from IF n q × IF n q to IF q is defined by : for a, b in IF n q a, b f,θ,σ = P (0) (3) 
where P (X) is the remainder in the division on the right of the skew polynomial a(X) • σ(r n (b(X))) by f (X) and P (0) is the constant coefficient of P (X).

Remark 1 Consider θ = σ = id, f ∈ IF q [X] of degree n, a ∈ IF n q and b ∈ IF n q . We have a, b f,id,σ = P (0) where P (X) is the remainder in the division of a(X) • r n (b(X)) by f (X) in IF q [X]. Meanwhile the scalar product defined in [1] •, • f is defined by a, b f = Q(0) where Q(X) is the remainder in the division of a(X)b(X) by f (X) in IF q [X].
We recall that a σ-sesquilinear form (see [START_REF] Szabo | Properties of dual codes defined by nondegenerate forms[END_REF]) on IF n q is defined as a map •, • : IF n q × IF n q → IF q such that if x, y, z ∈ IF n q and a ∈ IF q then x+z, y = x, y + z, y , x, y+z = x, y + x, z , ax, y = a x, y and x, ay = x, y σ(a).

Proposition 1 The map •, • f,θ,σ is a σ-sesquilinear form. Proof. We denote •, • = •, • f,θ,σ . Consider a, b, c in IF n q and λ in IF q . We have (a(X) + b(X)) • σ(r n (c(X))) = a(X) • σ(r n (c(X))) + b(X) • σ(r n (c(X))) therefore a + b, c = a, c + b, c . We have r n (b(X) + c(X)) = r n (b(X)) + r n (c(X)) therefore a(X) • σ(r n (b(X) + c(X))) = a(X) • σ(r n (b(X))) + a(X) • σ(r n (c(X))) and a, b + c = a, b + a, c .
Consider P (X) the remainder in the division on the right of a(X) • σ(r n (b(X))) by f (X) in R. Then λP (X) is the remainder in the division on the right of λa(X)

• σ(r n (b(X))) by f (X) in R and we have λa, b = (λP )(0) = λ a, b . We have a(X)σ(r n (λb(X))) = a(X) • σ(r n (b(X)))σ(λ) and as f (X) is central, the remainder in the division of a(X) • σ(r n (b(X))λ) by f (X) on the right is P (X) • σ(λ), therefore a, λb = (P • σ(λ))(0) = σ(λ)P (0) = a, b σ(λ).
Definition 4 Consider a linear code C over IF q with length n.

The left dual of C for •, • f,θ,σ is defined as

l(C) = l f,θ,σ (C) = {x ∈ IF n q | ∀c ∈ C, x, c f,θ,σ = 0}. ( 4 
)
The right dual of C is defined as

r(C) = r f,θ,σ (C) = {x ∈ IF n q | ∀c ∈ C, c, x f,θ,σ = 0}. (5) 
In the proposition below, we make the link with the Euclidean dual and the Hermitian dual of linear codes.

Proposition 2 Assume that f = X n -is a central polynomial with = 0.

• If σ = id, then r(C) = l(C) is the dual C ⊥ of C for the Euclidean scalar product.

• If σ has order 2, then r(C) = l(C) is the dual C ⊥ H of C for the Hermitian scalar product.

Proof. Consider a, b ∈ IF n q . The constant coefficient of P (X) = a(X) • σ(r n (b(X))) = n-1 i=0 a i X i • n-1 j=0 X n-j • σ(b j ) ∈ R/Rf is × n-1 i=0 a i θ i+n-i (σ(b i )) = × n-1 i=0 a i σ(b i ). Therefore for a, b ∈ IF n q , a, b f,θ,σ = 0 ⇔ n-1 i=0 a i × σ(b i ) = 0.
In what follows, we give an analogue of the MacWilliams formula for l(C) and r(C) inspired from [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF].

Lemma 2 If f (0) = 0, then the σ-sesquilinear form •, • f,θ,σ is non-degenerate. Proof. We denote •, • = •, • f,θ,σ and F (X) = -1 f (0) f (X)-f (0) X , which is well-defined as f (0) = 0. We have F (X) • X = X • F (X) = 1 in R/Rf .
Consider a in IF n q and assume that for all b non-zero in IF n q we have a, b = 0. Then for b = 1, we get a, 1 = 0 therefore a(0) = 0 and a(X) = a (X)X. Denote v the degree of the lowest term of F (X) and consider b The weight enumerator of a code C of length n over IF q is

(X) = r n (F (X)). Then b(X) = X • F * (X), therefore deg(b) = 1 + n -1 -v = n -v and b * (X)X v = (XF * (X)) * X v = (F * (X)) * X v = F (X). We conclude that r n (b(X)) = X n-(n-v) b * (X) = F (X),
W C (x, y) = n i=0 A i x n-i y i ∈ Z Z[x, y]
where A i is the number of codewords of weight i. Consider a function φ defined over IF n q . Following [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], we consider two Fourier transforms φl and φr defined by φl (c) =

d∈I F n q Ψ( c, d f,θ,σ )φ(d) and φr (c) = d∈I F n q Ψ( d, c f,θ,σ )φ(d)
where Ψ is the character defined over IF q = IF p r by Ψ(x) = w T r(x) with w a complex primitive root of unity of order the characteristic p of IF q and T r is the trace map from IF q to IF p defined by T r(x)

= x + x p + • • • + x p r-1 .
Lemma 3 Assume that f (0) = 0. Consider a linear code C of length n over IF q and a function φ defined over IF n q . We have the summation formulas

c∈l(C) φ(c) = 1 |C| c∈C φl (c)
and

c∈r(C) φ(c) = 1 |C| c∈C φr (c).
Proof. We denote

•, • = •, • f,θ,σ . We have c∈C φl (c) = d∈l(C) φ(d) c∈C Ψ( c, d ) + d ∈l(C) φ(d) c∈C Ψ( c, d ).
The first term is equal to d∈l(C) φ(d

) c∈C 1 = |C| d∈l(C) φ(d).
Let us prove that the second term of this sum vanishes. Consider d ∈ l(C) and φ d the map from C to IF q which maps c to c, d . This map is a morphism according to Proposition 1, therefore

c∈C Ψ( c, d ) = |Ker(φ d )| α∈Im(φ d ) Ψ(α). Furthermore •,
• is non-degenerate and d ∈ l(C) therefore Im(φ d ) = {0}. We conclude using the orthogonality relation for group characters.

The same conclusion holds for φr because the map from C to IF q which maps c to d, c f,θ,σ is also a morphism.

Proposition 3 Consider C a linear code over IF q of length n. The weight enumerators of l(C) = l f,θ,σ (C) and r(C) = r f,θ,σ (C) are

W l(C) (x, y) = 1 |C| c∈C d∈I F n q Ψ( c, d f,θ,σ )x n-w(d) y w(d) and W r(C) (x, y) = 1 |C| c∈C d∈I F n q Ψ( d, c f,θ,σ )x n-w(d) y w(d) .
Proof. Apply Lemma 3 with φ : c → x w(c) y n-w(c)

4 Central skew module codes and self-duality.

In this section we arrive to the main result of this note about the dual of a central skew module code, that means a code Rg/Rf where f is a monic central polynomial and g is a monic right divisor of f in R = IF q [X; θ]. We recall that σ is an automorphism of IF q such that σ 2 = id. 1. Consider H = σ -1 (h ). Let us prove that X i • g, X j • H f,θ,σ = 0.

Proposition 4 Consider g in R and h ∈ R monic such that g • h = h • g = f . Assume that f = f .
We have X i • g, X j • H f,θ,σ = P (0) where P is the remainder in the division of (X i • g • σ(r n (X j • H)) by f on the right. Furthermore

X i • g • σ(r n (X j • H)) = X i • g • σ(X n-(k+j) (X j • H) * ) = X i • g • θ n-k-j (θ j (σ(H) * ))X n-(k+j) because (X j • H) * = θ j (H * ) = X i • (g • θ n-k (σ(H) * ))X n-(k+j) . Furthermore θ n-k (σ(H) * ) = h • λ where λ is a non-zero constant. As g • h = f is central, we get P = 0 therefore X i • g, X j • H f,θ,σ = 0. 2. Consider H = σ(h ). Let us prove that X j • H, X i • g f,θ,σ = 0.
We have

X j • H • σ(r n (X i • g)) = σ(X j • h • X n-(n-k+i) (X i • g) * ) = σ(X j • h • θ k-i (θ i (g * ))X k-i ) = σ(X j • 1/θ k (h 0 )h * • θ k (g * )X k-i ) = σ(X j • θ k (1/h 0 )θ k (θ n-k (h * ) • g * )X k-i ). Furthermore θ n-k (h * ) • g * = (g • h) * = 0 in R/Rf * , therefore X j • H, X i • g f ,θ,σ = 0. 3. As σ = σ -1 we get σ(h ) = σ -1 (h ) therefore l(C) = r(C) = RH/Rf where H = σ(h ).
Proposition 5 (Self-dual skew module equation) Consider g in R and h ∈ R monic such that g • h = h • g = f . Consider the skew module code C = Rg/Rf with monic skew generator polynomial g. The code C is self-dual for •, • f,θ,σ if, and only if, the skew polynomial h defined by g

• h = h • g = f satsifies σ(h ) • h = f. (6) 
In this case we have f = f . Remark 2 When f = X n -with 2 = 1, the self-dual skew module equation ( 6) is called self-dual skew equation (Corollary 1 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]) and existence conditions were given in [START_REF] Boucher | A note on the existence of self-dual skew codes over finite fields[END_REF] for this equation. In next section, we will give some existence conditions to equation ( 6) when θ has order 2 and f is any monic central element.

Remark 3 When θ = σ = id, one can check that there exists a self-dual polycyclic code for •, • f,θ,σ if, and only if, the product of the self-reciprocal irreducible factors which divide f is a square. In particular, if f = X n -1, we recover that there exists a (Euclidean) self-dual cyclic code if and only if q is a power of 2 and n is even (see [START_REF] Jia | On self-dual cyclic codes over finite fields[END_REF]). Note that in [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], self-dual polycyclic codes for •, • f are those for which f is a square (Theorem 3 of [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF]) therefore when

f = X n -1, self-dual polycyclic codes for •, • f are not (Euclidean) self-dual cyclic codes. Example 1 Consider R = IF 4 [X; θ]
where IF 4 = IF 2 (α), α 2 +α + 1 = 0 and θ is the Frobenius automorphism. There are three central monic polynomials f of degree 8 satisfying f = f : X 8 + 1, X 8 + X 4 + 1 and X 8 + X 6 + X 4 + X 2 + 1. We consider the self dual skew module codes Rg/Rf for the scalar products •, • f,θ,id . For f = X 8 + 1 we obtain the three already known (Euclidean) self-dual θ-cyclic codes. For f = X 8 + X 4 + 1 there are 7 self-dual skew module codes Rg/Rf for the scalar products •, • f,θ,id . For f = X 8 + X 6 + X 4 + X 2 + 1, we have 5 self-dual codes and give one of them here :consider h = X 4 + αX 3 + αX + α and

g = h = X 4 + αX 3 + αX + α 2 . The skew module code C = Rg/Rf is a [8, 4, 4] 4 code. As h • h = X 8 + X 6 + X 4 + X 2 + 1, C is self-dual for the scalar product •, • f,θ,id .
Example 2 Consider R = IF 9 [X; θ] where IF 9 = IF 2 (w), w 2 = w + 1 and θ is the Frobenius automorphism. There are six monic central polynomials f of degree

6 satisfying f = f : X 6 + 1, X 6 -1, X 6 + X 4 + X 2 + 1, X 6 + X 4 + 2X 2 + 2, X 6 + 2X 4 + X 2 + 2 and X 6 + 2X 4 + 2X 2 + 1. If f ∈ {X 6 + 1, X 6 + X 4 + X 2 + 1, X 6 + 2X 4 + 2X 2 + 1} there is no self-dual skew module code Rg/Rf for •, • f,θ,id . Consider f = X 6 + 2X 4 + X 2 + 2. The skew polynomial g = X 3 + w 5 X 2 + w 3 X + w 2 generates a [6, 3, 4] 9 skew module code Rg/Rf which is self-dual for •, • f,θ,id .
5 Self-dual central skew module codes over IF p 2 .

Self-dual θ-cyclic codes and θ-negacyclic codes have been studied over IF p 2 in [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF][START_REF] Boucher | A first step towards the skew duadic codes[END_REF]. Using and completing the material developed in these two previous works, we give here a necessary and sufficient condition of existence of self dual skew module codes Rg/Rf for •, • f,θ,σ when f is a monic central polynomial and σ 2 = id. Consider, for a monic central polynomial f (X 2 ) ∈ IF p [X 2 ] the set :

H (σ) f (X 2 ) := {h ∈ R | h monic and σ(h ) • h = f (X 2 )}.
Necessarily if

H (σ) f (X 2
) is non empty then f = f . Proposition 6 (Proposition 2 of [START_REF] Boucher | A first step towards the skew duadic codes[END_REF]) Consider IF q a finite field with q = p 2 elements where p is a prime number, θ : x → x p the Frobenius automorphism over

IF p 2 , R = IF q [X; θ]. Consider f (X 2 ) = f 1 (X 2 ) • • • f r (X 2 ) where f 1 (X 2 ), . . . , f r (X 2 ) are pairwise coprime polyno- mials of IF p [X 2 ] satisfying f i = f i . The application φ : H (σ) f 1 (X 2 ) × • • • × H (σ) fr(X 2 ) → H (σ) f (X 2 ) (h 1 , . . . , h r ) → lcrm(h 1 , . . . , h r ) is bijective. Example 3 Consider R = IF 4 [X; θ] where IF 4 = IF 2 (α), α 2 + α + 1 = 0, θ is the Frobenius automorphism and f (X 2 ) = X 16 + X 14 + X 12 + X 10 + X 8 + X 6 + X 4 + X 2 + 1 = (X 4 + X 2 + 1)(X 12 + X 6 + 1). Consider h 1 = X 2 + α and h 2 = X 6 + α 2 X 5 + αX 4 + αX 2 + α 2 X + α 2 .
We have

h 1 • h 1 = X 4 + X 2 + 1 and h 2 • h 2 = X 12 + X 6 + 1. Consider h = lcrm(h 1 , h 2 ) = X 8 + α 2 X 7 + X 6 + X 5 + α 2 X 4 + α 2 X 3 + αX 2 + X + α h • h = f (X 2
). The skew module code Rg/Rf with skew generator polynomial g = h is a self-dual [16, 8, 6] 4 for •, • f,θ,id and we improve the best distance for all Euclidean self-dual θ-cyclic codes of length 16 over IF 4 (4 according to Section 4 of [START_REF] Boucher | Coding with skew polynomial rings[END_REF]).

Using the same construction, we get a self-dual [24, 12, 8] 4 code for •, • f,θ,id with f (X 2 ) = X 24 + X 22 + X 12 + X 2 + 1 and a self-dual [32, 16, 9] 4 code for •, • f,θ,id with f (X 2 ) = X 32 + X 22 + X 20 + X 18 + X 16 + X 14 + X 12 + X 10 + 1. The best Euclidean self-dual θ-cyclic codes over IF 4 of lengths 24 and 32 are [24, [START_REF] Ore | Theory of non-commutative polynomials[END_REF][START_REF] Boucher | Coding with skew polynomial rings[END_REF] 4 and [32, 16, 4] 4 (Section 4 of [START_REF] Boucher | Coding with skew polynomial rings[END_REF]).

We now derive necessary and sufficient existence conditions for self-dual skew module codes defined over IF p 2 .

Lemma 4 Consider IF q a finite field with q = p 2 elements where p is a prime number, θ : x → x p the Frobenius automorphism over

IF p 2 , σ ∈ {id, θ}, R = IF q [X; θ]. Consider f (X 2 ) = f (X 2 ) which is either irreducible in IF p [X 2 ] or the product of two irreducible polynomials g(X 2 ) = g (X 2 ). The set H (σ) f (X 2
) is non-empty if, and only if, one of the following conditions is fulfilled :

1. m is even; 2. m is odd and deg X 2 (f (X 2 )) > 1; 3. m is odd, p = 2 and f = X 2 + 1; 4. m is odd, p is odd, σ = id and f = X 2 -(-1) p+1 2 ; 5. m is odd, p is odd, σ = θ and f = X 2 + 1. Proof. 1. If m is even then f m/2 ∈ H (σ) f (X 2 ) m . 2. If deg X 2 (f (X 2 
)) > 1, according to Lemma 3.3 and Lemma 3.5 of [START_REF] Boucher | A first step towards the skew duadic codes[END_REF] , the set

H (σ) f (X 2 ) is non-empty. Consider H ∈ H (σ) f (X 2 ) , then f (m-1)/2 H = Hf (m-1)/2 ∈ H (σ) f (X 2 ) m . 3. If m is odd, p = 2 and f = X 2 + 1, then (X + 1) m ∈ H (σ) f (X 2 ) m . 4. If m is odd, p is odd, σ = id and f = X 2 -, with 2 = 1, according to Proposition 2 of [2], the set H (σ)
f (X 2 ) m is non-empty if and only if (-1)

p+1 2 = .
5. Assume that m is odd, p is odd, σ = θ and f = X 2 -, with 2 = 1. The set

H (σ) f (X 2 ) m is the disjoint union (m-1)/2 j=0 f (X 2 ) j H (σ) f (X 2 ) m-2j where for i ≥ 0, H (σ) f (X 2 ) i := {h ∈ H (σ) f (X 2 ) i | f (X 2 ) |h} is the set of elements of H (σ) f (X 2 ) i which are not divisible by f (X 2 ) = X 2 -.
One can adapt the proof of Lemma 4.1 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF] to get that for i ≥ 1, the set H (σ) f (X 2 ) i is non-empty if and only if = -1. The conclusion follows.

Proposition 7 Consider IF q a finite field with q = p 2 elements where p is an odd prime number, θ : x → x p the Frobenius automorphism over

IF p 2 , σ ∈ {id, θ}, R = IF q [X; θ]. Consider f (X 2 ) = f (X 2 ) in IF p [X 2 ]. Consider m 1 , m 2 ∈ IN such that f (X 2 ) = (X 2 - 1) m 1 (X 2 + 1) m 2 F (X 2
) and F is not divisible by X 2 + 1 or X 2 -1. There exists a self-dual skew module code Rg/Rf for •, • f,θ,σ if, and only if, one of these conditions is satisfied :

• m 1 and m 2 are even;

• m 1 is odd, m 2 is even, p ≡ 3 (mod 4), σ = id;

• m 1 is even, m 2 is odd, p ≡ 1 (mod 4), σ = id;

• m 1 is even, m 2 is odd, σ = θ.

Proof. The proof is deduced from Proposition 6 and Lemma 4.

Example 4

In Example 2, we have seen that there is no self-dual skew module code Rg/Rf over IF 9 for the scalar product •, • f,θ,id when f (X 2 ) is one of the following monic central polynomials : X 6 + 1 = (X 2 + 1) 3 , X 6 + X 4 + X 2 + 1 = (X 2 + 1)(X 4 + 1) and X 6 + 2X 4 + 2X 2 + 1 = (X 2 + 1)(X 2 -1) 2 while there exists a self-dual skew module code Rg/Rf over IF 9 if f (X 2 ) is one of the following monic central polynomials : X 6 -1 = (X 2 -1) 3 , X 6 + X 4 + 2X 2 + 2 = (X 2 + 1) 2 (X 2 -1) and X 6 + 2X 4 + X 2 + 2 = (X 2 -1)(X 4 + 1).

Conclusion.

In this note, inspired by [START_REF] Alahmadi | On the duality and the direction of polycyclic codes[END_REF], we have constructed a new notion of duality for polycyclic codes and for central skew module codes. With this new notion of duality, we consider self-dual central θ-module codes Rg/Rf for any monic central self-reciprocal skew polynomial f . When f = X n -with 2 = 1, we get Euclidean and Hermitian self-dual θ-constacyclic codes. When the order of θ is 2, we give necessary and sufficient existence conditions of self-dual central skew module codes by using the results previously obtained in [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF][START_REF] Boucher | A first step towards the skew duadic codes[END_REF]. It could be interesting to study these self-dual codes more deeply for any monic central skew polynomial f = X n -, especially when the automorphism θ has an order = 1, 2, n.

  therefore a, b = a (0) = 0. Repeating the operation, we obtain a = 0.Consider b in IF n q and assume that for all a non-zero in IF n q we have a, b = 0. For a = 1 we get 1, b = 0, therefore σ(r n (b))(0) = 0 and σ(r n (b(X))) = Xb (X). For a(X) = F (X), we get F, b = 0, therefore F (X)σ(r n (b(X))) = b (X) ∈ R/Rf cancels at 0. Repeating the operation, we get σ(r n (b)) = 0 and b = 0.

  Consider the skew module code C = Rg/Rf with monic skew generator polynomial g. Then l(C) = r(C) is the skew module code RH/Rf where H = σ(h ). Proof. Let us denote k the dimension of C. We have deg(g) = n -k and deg(h) = k. As f (0) = 0, deg(h ) = deg(h) = k. Consider i ∈ {0, . . . , k -1} and j ∈ {0, . . . , n -k -1}.
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