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ABSTRACT

Numerical simulations indicate that cosmological halos display power-law radial profiles of pseudo phase-space density (PPSD),
Q = p/o?, where p is the mass density and o is the velocity dispersion. We tested these predictions for Q(r) using the parameters
derived from the Markov chain Monte Carlo (MCMC) analysis performed with the MAMPOSSt mass-orbit modeling code on the
observed kinematics of a velocity dispersion based stack (o,) of 54 nearby regular clusters of galaxies from the WINGS data set. In
the definition of PPSD, the density is either in total mass p (Q,) or in galaxy number density v (Q,) of three morphological classes
of galaxies (ellipticals, lenticulars, and spirals), while the velocity dispersion (obtained by inversion of the Jeans equation using the
MCMC parameters) is either the total (Q, and Q,) or its radial component (Q,,, and Q,.,). We find that the PPSD profiles are indeed
power-law relations for nearly all MCMC parameters. The logarithmic slopes of our observed Q,(r) and Q,.,(r) for ellipticals and
spirals are in excellent agreement with the predictions for particles in simulations, but slightly shallower for SOs. For Q,(r) and Q,,(r),
only the ellipticals have a PPSD slope matching that of particles in simulations, while the slope for spirals is much shallower, similar
to that of subhalos. However, for cluster stacks based on the richness or gas temperature, the fraction of power-law PPSDs is lower
(esp. O,) and the Q, slopes are shallower, except for SOs. The observed PPSD profiles, defined using p rather than v, appear to be
a fundamental property of galaxy clusters. They would be imprinted during an early phase of violent relaxation for dark matter and
ellipticals, and later for spirals as they move toward dynamical equilibrium in the cluster gravitational potential, while SOs are either

intermediate (richness and temperature-based stacks) or a mixed class (o, stack).

Key words. galaxies: clusters: general — galaxies: kinematics and dynamics — dark matter

1. Introduction

Cosmological dissipationless simulations have led to the build-
ing blocks of the standard model of dark matter, in particular
through the establishment of the universality of cosmic struc-
ture (halo) density profiles, which are well characterized by the
NFW (Navarro et al. 1996) and Einasto models (Navarro et al.
2004)!. Further insight into the structure of clusters of galax-
ies have come from the analysis of Taylor & Navarro (2001),
who examined the coarse-grained phase-space density profiles
of cold dark matter (DM) halos from cosmological simulations.
They defined the pseudo-phase space density (PPSD) profile
Q(r) = p(r)/o(r)’, where p(r) and o(r) are the radial profiles
of total mass density and velocity dispersion, respectively. They
found Q(r) to follow a power-law Q(r) oc r® with @ = —1.875
over two and a half decades in radius. The equivalent PPSD built
with the radial component of the velocity dispersion o, that is
0,(r) = p(r)/ o(r)?, was also found to obey a power-law relation
with radial coordinate r, with a slightly steeper slope than Q(r)
(Rasia et al. 2004; Dehnen & McLaughlin 2005)?. These power-
law behaviors are remarkable given that the logarithmic density
profile log p(r) and the logarithmic velocity dispersion profiles

! The Einasto model was first proposed by Einasto (1965) in a com-

pletely different context.
2 For the sake of simplicity, in the rest of this Introduction we use Q to
refer to both Q and Q, unless specified otherwise.

log o (r) (total) and log o,(r) (radial) are all convex functions of
log r. The slope of Q(r) matches the slope of —15/8 expected
from secondary infall models based on the (quasi)-power law
density profile p ~ r~/* (Gott 1975; Gunn 1977; Bertschinger
1985), despite the fact that DM halos in the cosmological simu-
lations of Taylor & Navarro (2001) assemble in a different way
from the regular phase-space stratification process described by
Gott (1975), Gunn (1977), and Bertschinger (1985).

Much effort has been employed in trying to understand why
QO(r) is a simple power law, and why its slope is so close to the
value predicted by the secondary infall model of Bertschinger
(1985). Analytical and numerical studies have shown that the
final shape of Q(r) does not depend on whether the halo evolves
through major mergers or spherical infall (Manrique et al. 2003;
Ascasibar et al. 2004; Austin et al. 2005; Hoffman et al. 2007).
The final Q(r) configuration of cosmological halos appears
to be reached very early on, that is to say soon or imme-
diately after the early violent relaxation phase (Lynden-Bell
1967; Vass et al. 2009; Colombi 2021). Other collective relax-
ation processes might be important as well in shaping
Q(r), such as Landau damping and radial orbit instability
(Henriksen 2006; MacMillan et al. 2006). At large radii, where
relaxation is still incomplete, a deviation from the power-
law behavior was expected theoretically (Bertschinger 1985;
Lapi & Cavaliere 2011), and also detected in numerical simu-
lations. However, deviations from the power-law behavior never
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exceed 20% within the halo virial radius (Ascasibar & Gottlober
2008; Navarro et al. 2010; Ludlow et al. 2010; Marini et al.
2021). Close to the halo center, where baryonic effects can be
important, both a steepening (Lapi & Cavaliere 2011) and a flat-
tening (Butsky et al. 2016) of Q(r) have been predicted.

Vass et al. (2009) suggested that the original physical asso-
ciation of Q(r) with the halo coarse phase-space density is not
justified since the two quantities have different behaviors (but
see Ma & He 2009). Interpretation of Q(r) in terms of the power
—3/2 of the dynamical entropy of a gravitating system might
prove more useful to understand its origin. Faltenbacher et al.
(2007) noted the similarity in the so-defined dynamical entropy
of DM particles and the thermodynamic entropy of the intra-
cluster gas, outside the core of simulated clusters. He & Kang
(2010) argued that Q(r) corresponds to a minimum entropy state,
that is the end result of long-range (e.g., violent) relaxation
processes in gravitating systems, while the state of maximum
entropy is only reached locally, where short-range (e.g., two-
body) relaxations dominate.

The analysis of simulations has led to contradicting conclu-
sions on the universality of Q(r) slopes. Schmidt et al. (2008)
argued that Q(r) is not universal, while Dehnen & McLaughlin
(2005), Navarro et al. (2010), and Marini et al. (2021) found
very similar slopes for the Q(r) of different halos (with a
difference of <15%). The Q(r) slope is only mildly depen-
dent (=+10%) on redshift (Lapi & Cavaliere 2009; Marini et al.
2021) and on the power spectrum of primordial density fluctua-
tions (Knollmann et al. 2008; Brown et al. 2020).

Almost all numerical investigations so far have been focused
on the Q(r) traced by DM particles, and similar results for Q(r)
have been obtained in DM-only and hydrodynamical simulations
(compare, e.g., Dehnen & McLaughlin 2005; Rasia et al. 2004).
Only recently have different tracers been considered in the defi-
nition of Q(r) in the study of Marini et al. (2021), and the Q(r)
slope has been found to be strongly dependent on the chosen
tracer, with it being steeper for stars and shallower for galax-
ies (subhalos in hydrodynamical simulations) than for DM par-
ticles (¢ = —3,—1.3, and —1.8, respectively). This dependence
is very relevant when comparing simulation-based predictions
with observations since Q(r) is not an observable; p(r) can be
inferred from stellar and galaxy kinematics, from gravitational
lensing, or from the temperature and pressure of the intra-cluster
gas (see, e.g., Pratt et al. 2019, for a review), but o(r) can only
be determined for the tracer of the gravitational potential. Since
only the tracer o(r) can be determined observationally, for con-
sistency some authors have used the number density profile of
the tracers, v(r), rather than the total mass density profile p(r) in
the definition of Q(r).

Several observational studies have confirmed the expected
simulation-based power-law behavior of Q(r), both for galaxies
and for clusters of galaxies. Chae (2014) found that Q(r) is a
power law for Coma cluster elliptical galaxies with a slope of
1.93 + 0.06. On larger scales, Q(r) has been measured in sev-
eral clusters of galaxies over the redshift range 0.06—1.34, and
it has always been found to be similar to, or at least consistent
with, the simulation-based expectations, both when Q(r) was
defined using the total mass density profile p(r) (Biviano et al.
2013, 2016, 2021; Munari et al. 2014) and when the tracer v(r)
was used instead for tracers of different colors and luminosities
(Munari et al. 2015; Aguerri et al. 2017; Capasso et al. 2019).

Despite the good agreement of the simulation-based pre-
dictions with observations, the power-law behavior, and even
the physical reality of Q(r) have been questioned. Nadler et al.
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(2017) argue against a power-law behavior of Q(r) at any radial
scale and that the agreement between Q(r) found in numeri-
cal simulations and the solution of the secondary infall model
of Bertschinger (1985) is purely coincidental. According to
Schmidt et al. (2008), different halos follow p/o o r® relations,
with different best-fit values of € and «, that is, e = 3 is not a uni-
versal value. Arora & Williams (2020) argue that the power-law
behavior of Q(r) does not have a physical origin, but it is for-
tuitous, as it is a consequence of the linear relation between the
logarithmic slope of the mass density profile, y = dlnp/dInr,
and the velocity anisotropy profile 8 = 1 — 03/0%, where o7y
and o, are the tangential and radial component of the velocity
dispersion tensor. The linear S — 7y relation was discovered by
Hansen & Moore (2006) and Hansen & Stadel (2006) in a vari-
ety of simulated gravitating systems, issued from controlled sim-
ulations of halo-halo collisions and radial infall, as well as from
cosmological simulations. However, the physical origin of the
linear 8 — vy relation is not better elucidated than that of the Q(r)
power law, and the relation is not clearly established in real clus-
ters (Biviano et al. 2013, 2021; Munari et al. 2014; Aguerri et al.
2017).

Lacking a clear understanding of the physical origin(s) of
either Q(r) o« r® or the linear S — 7y relation, several studies have
tried to investigate their consistency in the context of the dynam-
ical equilibrium of a spherical gravitating system, as described
by the Jeans equation, which for a spherical stationary system is
(Binney 1980)

d("o'z) vo?

+28(r) GM)
dr

72

=-v(r) : ey

-
By assuming a linear 8 — v relation, Dehnen & McLaughlin
(2005) found a critical solution that satisfies p/o o r®, with
the value of @ being dependent on only € and Sy, and indepen-
dent of the slope of the 8 — vy relation. In particular, € = 3 and
Bo = 0lead to @ = 1.94, which is essentially the same value
found in numerical simulations. Barnes et al. (2007) considered
density profiles of the NFW or Einasto form, but they could not
find consistent solutions of the Jeans equation with a power-law
Q(r) and a linear 8 — vy relation similar to the relations found in
simulations. They suggested that the 8 —y relation for any single
halo is not strictly linear, and that the 8 — y relation is not just a
manifestation of a scale-free Q(r). Zait et al. (2008) started from
the power-law behavior of Q(r) to show that a linear 8 — y rela-
tion is inconsistent with generalized NFW density profiles (Zhao
1996), but consistent with Einasto profiles of index n = 6 (see,
e.g., Eq. (16) of Mamon et al. 2019, Paper II hereafter).

The behavior of Q(r) should depend on the choice of tracer
used to measure o(r) and o ,(r), and possibly the density profile,
when the number density profile, v(r), is used in the definition
of Q(r). However, the influence of the tracer choice on Q(r) has
not been addressed yet.

In this article, we investigate Q(r) and Q,(r) in 54 nearby
clusters of galaxies (0.04 < z < 0.07) from the WINGS data set
(Fasano et al. 2006), which Cava et al. (2017, hereafter Paper I)
found to be regular systems. In a forthcoming article (Mamon
& Biviano, in prep.), we will investigate the 8 — y relation in a
similar fashion. We exploit the results of the kinematic analy-
sis of Paper II, which determined the mass density and velocity
anisotropy profiles, p(r) and B(r), of stack samples of these clus-
ters, as well as the number density profiles for each of three mor-
phological classes of galaxies, from Gaussian priors obtained
from previous fits in Paper I of model plus the constant back-
ground of the photometric data for the same stacked clusters.
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For the first time, we determine Q(r) and Q,(r) separately for
three different morphological classes of cluster galaxies.

In the rest of this paper, we use Q and Q, to refer to the
pseudo-phase-space density profiles generically without a dis-
tinction being made as to whether they have been derived using
p(r) or v(r). When needed, we use subscripts to distinguish the
different profiles, Q,, O:, and Oy, Q.

The structure of this paper is the following. In Sect. 2 we
describe our data set, and our method of analysis is provided
in Sect. 3. In Sect. 4 we present our results. We discuss our
results in Sect. 5. Section 6 provides a summary and our conclu-
sions. Throughout this paper we adopt the following cosmologi-
cal parameters: Qn,, = 0.3,Q = 0.7, and Hy = 70kms~! Mpc~'.

2. The data set

Our analysis is based on the WINGS data set, which contains
X-ray-selected clusters at 0.04 < z < 0.07 (Fasano et al. 2006)
with spectroscopic coverage for cluster galaxies with a median
stellar mass of log(M,/My) = 10.0 for ellipticals (E) and 10.4
for spirals (S; Cava et al. 2009; Moretti et al. 2014; Paper II).
Morphological types were derived by Fasano et al. (2006) using
the MORPHOT tool. In Paper I, we defined three intervals in the
MORPHOT classification parameter corresponding to the three
morphological classes of ellipticals, lenticulars (SO), and spirals.

In Paper I, we identified cluster members using the Clean
algorithm (Mamon et al. 2013) and selected a subsample of 68
clusters with at least 30 spectroscopic members. Using the sub-
structure test of Dressler & Shectman (1988), we identified 54
regular and 14 irregular clusters. We then estimated rpo and
vyoo of these 68 clusters in three different ways: based on (i)
the cluster velocity dispersion (sigv), (ii) an estimate of the
cluster richness (num, Mamon et al., in prep., see Old et al.
2014), and (iii) the cluster X-ray temperature (tempX, only avail-
able for 38 of these clusters). Using these three estimates of
200, V200 in Paper I, we then stacked the 54 (38, in the case of
tempX scaling) regular clusters into three pseudo-clusters, by
rescaling the projected radii and rest-frame velocities of clus-
ter galaxies by their cluster rygp and vygo, respectively. These
three pseudo-clusters formed the data set for the kinematic mod-
eling that we performed in Paper II, using the MAMPOSSt
algorithm of Mamon et al. (2013). Irregular clusters were not
considered because MAMPOSSt is based on the Jeans equation,
which being derived from the collisionless Boltzmann equation,
assumes that the tracers are test particles orbiting the gravita-
tional potential and not interacting with one another in contrast
to galaxies within a substructure of an irregular cluster.

MAMPOSSt fits parametric models to the distributions of
galaxies in projected phase space (projected distance to the cen-
ter and line of sight velocity). The parameters are those describ-
ing the total mass density profile, p(r), the tracer density pro-
files for the three morphological types (i), v;(r), and the velocity
anisotropy profiles for the three types, 8;(r). MAMPOSSt speeds
up the calculations by a large factor by assuming that the three
spherical-coordinate components of the local velocity distribu-
tion function are Gaussian. The recovered radial profiles of mass
density and velocity anisotropy are as good with MAMPOSSt as
with other methods (Read et al. 2021), even though MAMPOSSt
is much faster.

Here we use the results of the kinematic modeling of
Paper II. More specifically, we consider the M(r) and 5(r) model
parameters of the outputs (chain elements) of the Markov chain
Monte Carlo (MCMC) investigation of parameter space used by
MAMPOSS, using CosmoMC (Lewis et al. 2002), based on the

Metropolis-Hastings algorithm. This allows us to determine Q(r)
and Q,(r) at several values of r, and for the three different mor-
phological classes, as detailed in Sect. 3. For Q, and Q,,, we
also used the tracer number density profiles, v;(r), for each mor-
phological class, obtained from fitting NFW models plus con-
stant background to the photometric data and then refined in the
MCMC analysis with MAMPOSSt.

For each model, MAMPOSSt was run using six MCMC par-
allel chains, each with over 10° elements, for a total of over
500000 chain elements (i.e., points in parameter space) per
model. We discard the 20% of the first elements of each chain
of each model, which corresponds to the “burn-in” phase where
the MCMC has not yet settled to its equilibrium and estimate
Q(r) and Q,(r) for all remaining chains.

We consider all three stacks obtained using the three scal-
ings, sigv, num, tempX. We present the results for the sigv
scaling in the main text and discuss them in Sect. 5.1. Results
for the num and tempX scalings are presented in Appendix A and
discussed in Sect. 5.2 in comparison with the results obtained for
the sigv scaling.

3. Analysis

The parameter values in each MCMC are used to directly derive
the radial profile v(r), p(r), and B(r). To determine Q(r) and
Q,(r), we also derive o(r) and o,(r) via:

o) = —— f " exp [2 f ' ﬂ(t)g] NLACN )
v(r) J, Pt 52

(van der Marel 1994; Mamon & L.okas 2005) and

a*(r) = [3 = 28] o), 3)

where M(r) is the total mass profile.
Paper II considered 30 sets of priors according to chosen
models for the mass density profile:

P o PO (4 P YT 4)
with mass density logarithmic slope

+ Voo X
¥y = 21T ®)

1+x

where x = r/ry, while y( and vy, are the logarithmic slopes of the
density profile at » = 0 and at infinity, respectively. The models
considered in Paper II nearly all assumed y, = =3, yo = —1 for
NFW and vy, # —1 for generalized NFW (‘gNFW”’), scale radius
rs related to the radius where y = —2: r_, = (2 + ) 7.

We had also adopted Einasto (1965) mass models, which fit
even better the distribution of radii in halos in ACDM dissipa-
tionless cosmological simulations (Navarro et al. 2004),

r 1/n
p(r) e exp [—2n (Z) } (6)
yielding
r 1/n
y(r)=-2 (rTz) : (N

The mass density models are normalized by the mass at radius
r200 = C200 '—2 Where the mean mass density is equal to 200 times
the critical density of the Universe at z = 0.055, the median
redshift of the WINGS clusters.
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Fig. 1. Examples of 20 linear, as defined by / = 1 —D/L > 0.9 (red solid

lines), and 20 nonlinear, / < 0.9 (green dashed lines), Q,(r) for ellipti-
cals in model 7. L and D are defined in Eqs. (10) and (11), respectively.

The anisotropy models considered in Paper II followed

")
Br) = o + (Beo = o) ——. ®)
r’ + I"ﬁ,

where By and S, are the values of 8 at r = 0 and at infin-
ity, respectively, rg is the anisotropy radius where 8 is mid-
way beween £y and ., and ¢ is the anisotropy sharpness, with
o0 = 1 for Tiret et al. (2007) anisotropy and 6 = 2 for the gen-
eralized Osipkov-Merritt (‘gOM’) anisotropy (Osipkov 1979;
Merritt 1985). For § = 1 or 2, the exponential term in Eq. (2)
is (Appendix B of Mamon et al. 2013 for these anisotropy mod-
els and a few others)

O +dd 2(Boo—P0)/0

(55 + a‘s) '

The anisotropy radius was either a free parameter or fixed to
the scale radius of the given morphology, r,, previously fitted to
the photometric data in Paper I, using a projected NFW model
plus a constant field surface density. In Paper II, we found that
the elliptical galaxy distribution traces the mass very well, the
SO distribution traces it reasonably well, while the spiral galaxy
distribution traces it very poorly. In other words, r, g = r_, while
rys ~4r_;.

In the present paper, among the 30 models of Paper II, we
only considered single-component mass models with free inner
and outer anisotropy for all three morphological types. We also
excluded the models with Tiret anisotropy with anisotropy radius
fixed to r3 = r,, which lead to linear g —  relations if tracer
follows mass (Mamon & Biviano, in prep.). This left us with
models 6, 7, 12, and 15 in Table 2 of Paper II. Our results are
therefore independent from the linear 8 — y relation assump-
tion that according to some authors could explain the power-
law behavior of Q(r) and Q,(r) (Dehnen & McLaughlin 2005;
Arora & Williams 2020).
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All four considered Paper II models assume NFW v(r), with
a scale radius r, as a free parameter, one r, parameter for each
morphological class. In models 6 and 7, p(r) is modeled by the
gNFW profile, with y., = =3 and y, as a free parameter (Eq. (4)).
In models 12 and 15, p(r) is instead modeled by the NFW pro-
file. In all four models ryg9, and therefore My, is a free param-
eter of p(r), while ¢y is related to Mg through the relation of
Dutton & Maccio (2014):

M
log ca00 = 2.13 = 0.10 1og( MQOO), ©)

©

with a Gaussian prior o(logcy) = 0.13. Therefore the mass
density profile involves 2 (NFW and n = 6 Einasto) or 3 (gNFW)
free parameters.

Models 7 and 12 adopt the Tiret model for 8(r), while mod-
els 6 and 15 adopt the gOM anisotropy model. Both the Tiret
and the gOM models are characterized by two free parame-
ters per each morphological class, the inner and outer veloc-
ity anisotropies By and .. The anisotropy scale radius rg is a
free parameter in Tiret models 7 and 12, whereas it is tied to
the tracer scale radius, 73 = r, in gOM models 6 and 15. Thus,
the anisotropy profile involves 2 (fixed ) to 3 (free ) parame-
ters per morphological type, hence 6 (fixed rg) to 9 (free rp) free
parameters after summing over the three morphological types.

In addition to the four models described above we consider
the three following models. Model 7c is the same as model 7
but with cyg0 as a fully free parameter (with a uniform prior for
log c from O to 1). Model 12e and 15e are the same as, respec-
tively, model 12 and 15, but with a n = 6 Einasto p(r) in lieu
of NFW. The properties of these seven models are summarized
in Table 1.

For each MCMC chain element, we determine Q(r) and
0O,(r) at six logarithmically spaced radii, from r/r_, = 0.125
to 4, in steps of a factor 2: r/r_, = 2% i =1,...,6, that is from
roughly 0.03 to 1 virial radius. We fit straight lines to the six val-
ues of log Q versus log r, log O, versus log r, for each individual
MCMC, yielding log Q(r) = a + b log(r/r—,). We measure the
linearity of Q(r) and Q,(r) using the quantity / = 1 —D/L, where
L is the length of the fitted line,

L=(1+b)"?|x5-x |, (10)

where x; = log(r;/r-»), and D is the orthogonal deviation of the
six measurements from the fitted line,

6
D=1+ |y —(bxi+a)l, (11)
i=1

where y; = log[Q(r)/Q(r-»)], or its analog for Q, instead of Q.
We arbitrarily set a limit / = 0.9 above which the relation is con-
sidered to be linear, that is the points deviate on average from the
fitted line by less than 10% of the line length. We show examples
of linear and nonlinear relations in Fig. 1.

4. Results
4.1. Linearity of log Q versus log r

We first consider whether the Q(r) and Q,(r) profiles are linear
in logarithmic space. Figure 2 shows the fraction f; of MCMC
chain elements that have / > 0.9 (see Sect. 3) with the f; values
listed in Table 2. Independently of the chosen model and galaxy

3 The logarithms are all in base 10.
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Table 1. Mass—velocity anisotropy models.

Model 6 7 7c 12 12e 15 15¢

€9 Color Magenta Orange Red Royal blue Green Navy blue
2) p(r) eNFW eNFW  gNFW NFW n=6Einasto = NFW 7 = 6 Einasto
3) B(r) gOM Tiret Tiret Tiret Tiret gOM gOM
4@ R7! 0.011 0.040 0.040 0.031 0.031 0.003 0.002
(&) Nfree 12 15 15 14 14 11 11
(6) 7200 Free Free Free Free Free Free Free
(7 a0  f(Mao)  f(Mao)  free S (M2o0) S (M20) S (M200) S (Ma00)
8) 0% Free Free Free - - - -
) Ty Free Free Free Free Free Free Free
(10) Bo Free Free Free Free Free Free Free
(11) Boo Free Free Free Free Free Free Free
(12) g Ty Free Free Free Free Ty ry

Notes. The model number is the same as in Table 2 of Paper II. Letters following the model numbers indicate slight modifications to the models;
we use ‘c’ to indicate that the halo concentration ¢y is a fully free parameter, and ‘e’ that the Einasto total density model p(r) model is adopted.
The rows are (1): color coding used in the figures (unless otherwise specified); (2): total density model; (3): velocity anisotropy model (parameter
o of Eq. (8)); (4): Gelman & Rubin (1992) convergence criterion of the 6 MCMC chains (values below 0.02 are considered very good, and values
between 0.02 and 0.04 are considered adequate); (5): number of free parameters; (6): virial radius; (7): halo concentration (when c¢yg0 = f(Mag0) We
use Eq. (9) from Dutton & Maccio (2014) to estimate ¢y from Mo, SO 290 s not a fully free parameter: it has a Gaussian prior with uncertainty
o(log cape) = 0.1); (8): slope of the inner total mass density profile; (9—12): for each of the three morphological classes, the scale radius of the
number density profile (9), the inner (10) and outer (11) velocity anisotropies, and the anisotropy radius (12), where rz = r, means that we fixed

the anisotropy radius to the tracer scale radius.
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Fig. 2. Fraction of linear, [ > 0.9, relations deduced from the MCMC
chain elements, for E, SO, and S tracers, in different models (color coded
as in Table 1) for the sigv scaling, using total mass density profile (left)
and tracer number density profiles (right), with total velocity dispersion
(top) and radial velocity dispersion (bottom). Error bars are smaller than
the symbol sizes.

linear fraction

type, all profiles are linear for over 95% of the MCMC chains for
0, and Q,,. The f; values of the O, and Q,, profiles are almost
identical. There is no clear dependence of f; on either the p(r) or
the B(r) model chosen. Recall that we did not consider the mod-
els of Paper II that lead to linear 8 — 7 relations to avoid biasing
the linearity of the PPSD, since the PPSD and 8 — y relations
may be physically related.

The Q, and Q,, profiles are also linear for over 90% of the
MCMC chain elements, independently of the chosen model, but

only when either ellipticals or spirals are considered. When con-
sidering SO, the f; values for the Q, and Q,, profiles can be as
low as ~0.80. Models with gNFW p(#) have lower values of f;
when considering SO. The f; values of the O, and Q,, profiles
are very similar.

Combining all three morphological classes, the linear frac-
tions for Q, and Q,, are maximal for model 15¢ (n = 6
Einasto with gOM anisotropy). Similarly, for Q, and Q,,, the
linear fractions are maximal for model 12 (NFW with Tiret
anisotropy).

4.2. Slopes

We then fit straight lines to log Q and log Q, vs. log(r/r_,), for
the MCMC chain elements for which / > 0.9 (nonlinear pro-
files are not considered as the straight line slope is not a useful
statistic for them). We show the distributions of the best-fit log-
arithmic slopes of Q(r) in Fig. 3 (left panel: Q,, right panel: Q,)
and of Q,(r) in Fig. 4. The slope distributions do not differ in
a significant way from one model to another and have similar
unimodal shapes for all profiles.

We compare our observational results with the predic-
tions for DM particles from cosmological simulations, adopt-
ing the slope values that Dehnen & McLaughlin (2005) obtained
from the DM-only cosmological simulations of Diemand et al.
(2004a,b), —1.84 and —-1.92 for Q(r) and Q,(r), respec-
tively, with uncertainties of 0.025 and 0.05, respectively, to
account for the scatter among the values found in differ-
ent studies, that include both DM-only and hydrodynam-
ical simulations (Taylor & Navarro 2001; Rasiaetal. 2004;
Dehnen & McLaughlin 2005; Knollmann et al. 2008). We also
compare the observational results with the only available pre-
dictions for subhalos in cosmological hydrodynamical simula-
tions, those of Marini et al. (2021), who found a Q(r) slope of
—1.29 + 0.03 (the authors did not study Q,(r)).

Figure 5 shows the biweight means and dispersions of the
marginal distributions of the PPSD slopes (total and radial)
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Table 2. Q and Q, profiles: f; and slopes for the sigv scaling.

o Oy
E SO S E SO S

Model f; Slope fi Slope fi Slope fi Slope fi Slope fi Slope

6 0.99 -1.90+0.09 098 -1.76+£0.10 1.00 -1.78 £0.11 098 -1.76 +0.10 0.89 —1.60+0.10 0.97 —-1.24 +0.11
7 1.00 -1.85+0.09 098 —-1.73+0.10 098 —1.83+0.18 096 —-1.78+0.12 0.86 —1.63 £0.10 0.96 —1.24+0.11
Tc 1.00 -1.81£0.08 099 -1.70+0.08 098 -1.73+0.17 0.95 -1.78 £0.11 0.81 —-1.64+0.10 0.95 -1.28 +£0.11
12 1.00 -1.84+0.09 099 -1.72+0.10 0.99 —-1.82+0.18 1.00 —1.85+0.11 0.99 -1.67+0.10 0.99 -1.21+0.11
12e 1.00 -1.86+0.08 1.00 —-1.74+0.09 098 -1.83+0.18 1.00 —1.81 +0.10 0.97 —-1.64 +0.09 0.99 —-1.22+0.11
15 098 -1.86+0.11 096 —-1.73+0.11 1.00 -1.82+0.13 097 -1.84+0.12 096 -1.66+0.12 0.97 —-1.21 £0.11
15e 0.99 -1.89+0.10 099 -1.75+0.11 1.00 -1.82+0.12 097 -1.82+0.11 095 -1.65+0.11 097 -1.22+0.11
Mean 099 -1.86+0.03 098 -1.73+0.02 0.99 -1.80+0.03 097 —-1.81+0.03 092 -1.64+0.02 097 -1.23+0.02

Qr,p Qr,v
E SO S E SO S

Model f; Slope fi Slope fi Slope fi Slope fi Slope fi Slope

6 0.98 -2.09+0.23 098 -1.85+0.20 1.00 -1.88+0.14 098 —-1.98 +0.20 0.89 —-1.73+0.17 098 —-1.48 +0.14
7 0.99 -1.92+0.21 097 -1.77+£0.20 099 -2.03+0.32 093 -1.88+0.20 0.84 —-1.70+0.18 0.97 —-1.46+0.17
Tc 0.99 -1.90+0.19 098 —-1.75+0.16 099 —-191+0.29 092 -1.89+0.20 0.80 -1.70+0.17 0.96 —1.46+0.17
12 098 -1.86+0.17 096 -1.73+0.17 1.00 -1.99 +£0.28 098 —1.87+0.18 096 —-1.68 +0.17 0.99 —-1.41+0.16
12e 1.00 -1.89+0.17 098 —1.75+0.18 099 -2.02+0.31 097 -1.85+0.18 093 -1.67+0.16 0.99 —-1.43+0.18
15 0.97 -1.90+0.21 096 —-1.75+0.19 1.00 -1.92+0.16 096 -1.89+0.22 0.95 -1.68+0.19 1.00 —1.44 +0.15
15e 0.99 -1.98+0.21 099 -1.80+0.19 1.00 -1.93+0.15 097 -1.92+0.21 094 -1.71+0.19 1.00 —-1.45+0.15
Mean 098 -193+0.08 097 -1.77+0.04 1.00 —1.94+0.06 0.96 —1.90+0.04 090 -1.70+0.02 0.99 -1.45+0.02

Notes. Columns labeled ‘f;” give the fraction of linear (/ = 1 — D/L > 0.9) MCMC Q profiles. Columns labeled ‘slope’ give the average and
dispersion of the slopes of the MCMC Q profiles with [ > 0.9. Rows labeled ‘mean’ list the weighted mean and dispersion of all the model slopes,

using the inverse of model slope dispersions as weights.

shown in Figs. 3 and 4, compared with the simulation-based
values. We also provide the average and dispersion of the log-
arithmic slopes of the linear Q, O, profiles for all models and
all galaxy types in Table 2. Our results do not depend in a sig-
nificant way on the assumed model for p(r) and SB(r). In fact,
the average logarithmic slopes of the Q and Q, profiles for a
given galaxy type are very similar across different models, and
the dispersions of the average slope values of the seven models
is much smaller than the dispersion in the values of the slopes
obtained from the MCMC of any individual model (see rows
labeled ‘mean’ in Table 2).

Both for ellipticals and spirals, and also marginally for SOs,
the logarithmic slopes of the linear O, and Q,, profiles are con-
sistent with the simulation-based prediction for DM tracers for
all models (Fig. 5). The Q, and Q,, profile slopes for ellipticals
are consistent with those of simulations based on DM tracers,
while the corresponding slopes for spirals are not. The Q, slopes
for SOs are also inconsistent with the simulation-based predic-
tions based on DM tracers for all models, while the Q,, profile
slopes for SOs are marginally consistent with the same simula-
tion predictions (thanks to larger dispersions). Interestingly, the
spiral Q, profile slopes are in agreement with the simulation-
based prediction for subhalos, while the elliptical and SO Q, pro-
files are not.

5. Discussion

We discuss in turn our results on sigv stacks and on the other
two stacks (num and tempX).
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5.1. Discussion of results on sigv stacked clusters

Most Q, and Q,, profiles are very close to power-law relations:
96% of all models and galaxy types show PPSDs with linear-
ity I > 0.9 (see Fig. 2, left panels, and Table 2). The large
majority of MCMC chain elements predict power-law Q,(r)
and Q,,(r) with average slopes in very good agreement and
fully consistent with the simulation-based expectations using
DM particles as tracers, but slightly flatter for SOs than for
ellipticals and spirals (see Fig. 5, top-left panel). Our results
support the findings of several studies based on both DM-
only and hydrodynamical simulations (Taylor & Navarro 2001;
Rasia et al. 2004; Dehnen & McLaughlin 2005; Ludlow et al.
2010; Navarro et al. 2010), and of previous observational stud-
ies (Biviano et al. 2013, 2016, 2021; Munari et al. 2014), and
do not support claims against the power-law behavior of Q(r)
(Nadler et al. 2017). Since our results are based on a stack clus-
ter, we can neither confirm nor reject the numerical result of
Schmidt et al. (2008) against the universality of Q(r) across dif-
ferent cosmological halos. However, for none of the three galaxy
classes do the Q,(r) slopes agree with those obtained for subha-
los in numerical simulations (Marini et al. 2021).

If both Q(r) and Q,(r) are power laws, of respective slopes «
and @ + Aa, then their ratio R = Q,/Q = (3 —28)*/? should also
be a power law of slope Aa. For the Tiret and gOM anisotropy
models (Eq. (8)), one then expects

y6

yﬁ +1 o yzAll//?!, (12)

R =3-260 =2 (B — o)
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Fig. 3. Marginal distributions of the logarithmic slopes of the linear
(I > 0.9) Q profiles, for different morphological classes (E, SO, S in
the fop, middle, and bottom panel, respectively) using different models
(color coded as in Table 1), for sigv scaling. Left panels: Q,; right
panels: Q,. Grey (respectively yellow) shadings indicate the simulation-
based prediction for the slope of DM tracers (respectively subhalos),
—1.84 +0.025 (respectively —1.29 + 0.03).
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Fig. 4. Same as Fig. 3, but for Q, instead of Q. Gray shadings indicate
the simulation-based prediction for the slope of DM tracers, —1.92 +
0.05.

where y = r/rg. Equation (12) indicates that R varies from one
constant value, Ry = 3 — 2 8y, at small radii, to another constant
value, R, = 3 — 28, at large radii. Therefore, Q,/Q cannot be
a power law over the full range of radii (unless S = o).
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Fig. 5. Average and dispersion of the Q profile logarithmic slope and the
simulation-based predictions for DM tracers (grey shading), —1.84 +
0.025 for Q(r) and —1.92 + 0.05 for Q,(r), and for subhalos (yellow
shading), —1.29 + 0.03, for different morphological classes (indicated
on the x axis), in different models (color coded as in Fig. 2 and Table 1).
Only linear (I > 0.9) profiles are considered.

Po=0, fo =05

0.1 1 10

r/rp

Fig. 6. Illustration of the nonlinearity of Q,/Q in Tiret and gOM
anisotropy models (Eq. (12) with ¢ = 1 and 2, respectively). Our analy-
sis was limited to the radii in the shaded region.

If one restricts the analysis to a narrow range of radii around
r = rg, one expects a quasi-linear behavior obtained by a series
expansion of R(y) in Eq. (12):

R(y):3—,80—ﬁw—% (Boo = o) 6 (y = 1) + oy = ). (13)
The zeroth order term is positive since 8 < 1 by definition. The
first order term is proportional to §, and is negative for S, > B9
but positive otherwise. Hence, the transition of Q,/Q from Ry at
small radii to R, at large radii is smoother for low ¢ anisotropy
profiles. This is illustrated in Fig. 6, which shows that the gOM
model (6 = 2) is less linear than the Tiret (6 = 1) model. In turn,
this would indicate that the fraction of linear models should be
higher with Tiret anisotropy than for similar mass models with
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gOM anisotropy. However, in practice, the necessary nonlinear-
ity of Q,/Q is not a worry, because the nonlinearity range of
0,/Q is smaller than the nonlinearity range of either Q(r) or
Q,(r), because the logarithmic slopes of Q(r) and Q,(r) are sim-
ilar (Table 2). For example, if Q(r) were perfectly linear (I = 1),
then Q, would have a linearity / = 0.997 and 0.992 for the Tiret
and gOM anisotropy models, respectively, hence much greater
than our threshold of 0.9 for linear models.

It might at first appear surprising that Q, and Q,, should
have similar slopes for the three morphological classes, given
that the three classes have different line-of-sight velocity disper-
sion profiles (Paper I) and different 8(r) (Paper II). The similar-
ity of O, and Q,., for the three classes then imply that they also
have similar o(r) and o ,(r) and that the observed differences in
their line-of-sight velocity dispersion profiles (Paper I) and S(r)
(Paper 1) is compensated by their different v(r) (see Egs. (2), (3),
and Paper I).

One expects larger differences between the Q,(r) profiles
of different morphological classes, because Q, is proportional
to the number density of that class, and the number concen-
trations of the best-fit NFW models of each class differ signif-
icantly (Paper I). Indeed, the PPSDs of Q, and Q,, are increas-
ingly shallower when moving from ellipticals to SOs to spirals
(bottom panels of Fig. 5), even if these profiles are also quite
close to power-law relations, with f; > 0.8 for all models and all
galaxy types (see Fig. 2, right panels, and Table 2). At variance
with Q, and Q,.,, only for ellipticals is there a good agreement
between the observed Q, and Q,., slopes and the expected values
from simulations using DM particles as tracers (bottom panels of
Fig. 5). This is not surprising, given that v(r) ~ p(r) for ellipti-
cals, but not for the other two types (Paper II).

Interestingly, the logarithmic slope of Q,(r) for spirals is
very similar to the one found by Marini et al. (2021) for sub-
halos in cluster-size halos in cosmological hydrodynamical sim-
ulations (see bottom-left panel of Fig. 5). This similarity is prob-
ably related to the more extended radial distributions of spirals
on one hand (Paper I) and of subhalos on the other (Marini et al.
2021). One should note that subhalos in dark matter only cos-
mological simulations of the same resolution show instead that
the power-law dynamical entropy turns to flat inside half a virial
radius.

The more extended subhalo number density profile, if not
due to numerical effects (van den Bosch & Ogiya 2018), can
be explained in several ways. Strong cluster tides at pericen-
ter remove mass from infalling subhalos (Merritt 1983), as
seen in simulations (e.g., Hayashi et al. 2003; Saro et al. 2006;
Springel et al. 2008). Note again that the steeper dynamical
entropy (hence steeper Q,) for the subhalos in hydrodynami-
cal simulations relative to those in dark matter only ones sug-
gests that the dissipative nature of gas leads to more concen-
trated subhalos that are more resilient to cluster tides. Such
tides will remove mass from those subhalos that traverse the
inner regions of clusters, causing (some of) the galaxies asso-
ciated with them to fall below the data luminosity threshold. But
tides affect all classes of galaxies, not just spirals. Alternatively,
ram pressure stripping of the gas of spiral galaxies will stran-
gle their subsequent star formation, leading to lower luminosi-
ties than gas-poor galaxies with the same orbits (Gunn & Gott
1972; Boselli et al. 2016). Another explanation may lie in tem-
poral segregation instead of spatial segregation. If spiral galaxies
are rapidly transformed into SOs and progressively into ellipti-
cals (as argued, e.g., in Paper II), then SOs and ellipticals are the
end products of galaxies that entered in the cluster earlier, most
probably from lower apocenters. Thus the radial distribution of
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spirals is much more extended than SOs and ellipticals, leading
to the shallower Q, slope of spirals. However, spirals are not
expected to be the dominant morphological class in simulated
cluster subhalos. Therefore, the good agreement between the Q,
slopes of observed spirals and simulated subhalos remains an
open question.

Our results for the Q, and Q,, profiles agree with those
obtained from analysis of observations of Capasso et al. (2019),
who determined Q,(r) for passive galaxies only, but not with
Munari et al. (2015) and Aguerri et al. (2017), who found Q,(7)
to be consistent with the simulation-based expectations by
Dehnen & McLaughlin (2005), for all classes of galaxies in two
nearby clusters. Perhaps, thanks to our large data set, we are able
to detect significant differences that were not visible in individ-
ual cluster analyses because of limited statistics.

When comparing Q,, O,, versus Q,, Q,,, we should take
into account that we forced the NFW model for v(r), but allowed
three different models for p(r) (see Table 1). However, our
results are very insensitive to the choice of the p(r) model, and
models 12 and 15, that use NFW for p(r), behave very similarly
to all the others. Our analysis then suggests that the p-based def-
inition of Q and Q, is more fundamental than that based on v,
even if, observationally, Q, and Q,,, are derived using inhomo-
geneous quantities, as p(r) refers to the distribution of total mat-
ter, dominated by DM, and o, o, to the velocity dispersion of
galaxies.

To interpret our results, we note that recent numerical sim-
ulations (Colombi 2021) show that the power-law Q, and O,
profiles are established very early on for cluster DM, during the
violent relaxation phase, possibly because of a tendency of the
system toward a state of minimal entropy (He & Kang 2010). As
galaxies enter the cluster gravitational potential well, their orbits
and spatial distributions may evolve to reach the same state of
dynamical entropy (ecQ™>%), leading to the same Q, and Q,, as
that of DM. Since the spatial distribution of ellipticals is simi-
lar to that of the total matter, we argue that the bulk motions of
ellipticals experienced the same process of violent relaxation as
the total matter, that is their progenitors (perhaps with different
morphologies) were present at the time of cluster formation.

Violent relaxation at cluster formation cannot be the pro-
cess shaping the PPSD profiles of SOs and spirals. Spirals
have probably entered the cluster within the last ~2 to 3 Gyr,
after which they are morphologically transformed to SOs and/or
ellipticals (e.g., Larson et al. 1980; Couch et al. 1998; see also
Paper II), and quenched by the cluster environment (e.g.,
Poggianti et al. 2004; Haines et al. 2013), with indications that
morphological transformation precedes star formation quench-
ing (Sampaio et al. 2022). There is also observational evidence
that SOs are not a pristine cluster population (Postman et al.
2005; Smith et al. 2005; Desai et al. 2007). The deviation of
the SOs and spirals Q, and Q,, profiles from simulation-based
expectations for DM particles is probably an indication that their
PPSD is achieved in a different way from ellipticals. SOs are an
intermediate population between that of ellipticals and spirals, in
terms of their PPSD. If SOs originate from spirals through some
environmental process, such a process could also be responsible
for the gradual PPSD evolution from that of spirals to that of
ellipticals (Paper I). However, no such evolution is seen for the
subhalo PPSD in cluster-sized halos from cosmological simula-
tion (I. Marini, private comm.).

While the O, and Q,, profiles of SOs and spirals differ from
the simulation-based expectations for DM particles, it is surpris-
ing that their Q, and Q,, do not. Then, violent relaxation can-
not be the only process conducive to the observed Q, and O,
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Fig. 7. Distributions of Q,, logarithmic slopes vs. central velocity
anisotropy, By for the E (top panel), SO (middle panel), and S (bot-
tom panel) classes. Dots indicate the peaks of the density distribution
of the MCMC chain elements in this diagram, for the different models
(color coded as in Table 1). The contour contains 68% of the MCMC
chain elements for model 15e (navy blue). We omit the contours of
the other models for the sake of clarity. The solid line is the relation
a, = —=35/18 +2/9, from Dehnen & McLaughlin (2005).

power-law slopes. According to Dehnen & McLaughlin (2005)
the dynamical process that leads to the O, power-law behavior
can be understood in terms of the Jeans equation of dynamical
equilibrium by assuming that S is linearly related to vy. In their
model, the logarithmic slope @, of Q,, must be related to the
central orbital anisotropy Sy by

35 2

= —1g+g5ho (14)
In Fig. 7, we show the distributions of the MCMC chain ele-
ments in the @, — By plane, separately for the three morphological
classes. Ellipticals follow quite closely Dehnen & McLaughlin
(2005)’s relation (Eq. (14), above), and so do spirals for most —
but not all — models, while SOs do not. So the dynamical pro-
cess that leads to the observed Q, and Q,, power-law slopes,
might indeed be the one suggested by Dehnen & McLaughlin
(2005) for spirals. Even if spirals are only recently accreted to
the cluster, and cannot be considered fully dynamically relaxed
in the cluster potential, the analysis of semi-analytical simula-
tions indicate that they obey the Jeans equation of dynamical
equilibrium (Aguirre Tagliaferro et al. 2021), so the above inter-
pretation of Dehnen & McLaughlin (2005) can apply to them.

On the other hand, the process described by
Dehnen & McLaughlin (2005) does not seem to be a viable
explanation for the consistency of the Q,(r) and Q,.,(r) of SOs
with simulation-based expectations for DM particles, as they
appear to depart from the relation between PPSD slope and
inner velocity anisotropy of Eq. (14). However, among the three
morphological classes considered here, SOs show the strongest,
albeit not very significant, deviation of the Q, and Q,,, profile
slopes from the simulation-based expectations (see Fig. 5). In
Paper I we argued that SOs are a transition class between the
spiral and elliptical classes, as far as their dynamics within the
cluster is concerned. Their velocity dispersion profile appears
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Fig. 8. Velocity dispersion profiles: total (top panel) and radial compo-
nent (bottom panel) for the ellipticals (solid red line and pink shading),
SO0s (dash-dotted green line and light green shading), and spirals (dashed
blue line and cyan shading). The curves are the biweight averages over
all seven models and the shadings are the dispersions among the seven
models.

to be close to that of spirals near the center and to that of
ellipticals in the outer regions. This is true not only for the
line-of-sight velocity dispersion profile, as we noted in Paper I
already, but also when considering the total, o(r), and radial,
o,(r), profiles, as shown in Fig. 8. On the other hand, the
ellipticals and spirals have very similar o(r) and o ,(r), except
for different normalizations, as expected from the similarity of
the logarithmic slopes of their Q,, and Q,, profiles.

It is possible that SOs are not a homogeneous class, but a
mixed bag of galaxies that formed in different ways at different
epochs of the cluster evolution, namely by ram pressure strip-
ping of disks (Gunn & Gott 1972) and by merger growth of bulges
(van den Bergh 1990). The two formation channels of SOs is sug-
gested by studies of their internal structure, gas content, and kine-
matics (Coccato et al. 2020; Deeley et al. 2020, 2021), with disk
stripping dominating in clusters and bulge growth in isolated
galaxies (Deeley et al. 2020). So maybe the Q, and Q,,, profiles
of SOs agree with simulation-based expectations (albeit less well
than those of ellipticals and spirals) because some SOs followed
the dynamical history of ellipticals and some that of spirals.

We are thus led to suggest the following conclusion. Both
0,(r) and Q,,,(r) keep memory of the accretion time of the clus-
ter population, while Q,(r) and Q,,(r) are related to the dynam-
ical equilibrium of the population within the cluster potential,
that is not necessarily achieved via violent relaxation only.

5.2. Discussion of results on num and tempX stacked
clusters

We now turn to the results of our analysis using the other two
stacking methods (to determine the virial radii): num (richness)
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Fig. 9. Difference A between the logarithmic slopes obtained for the
num (circles) and tempX (crosses) scalings and the slopes obtained for
the sigv scaling, for the three morphological classes, ellipticals (red),
SOs (green), spirals (blue), for the different models (x axis). The A dif-
ferences are given in units of the quadratically combined dispersions of
the slopes.

and tempX (X-ray temperature). The tables and figures are dis-
played in Appendix A.

Figures A.1 and A.2 show the linear fractions, f;, of Q and Q,
profiles from the MCMC chain elements for the num and tempX
scalings, respectively. One sees f; values as low or even a bit
lower than 40%, depending on the model and the galaxy type,
considerably lower than the >95% obtained for the sigv scaling.
This indicates that the ensemble cluster built using the sigv scal-
ing has a (projected) phase-space distribution that is more similar
to that of simulated halos, than the ensemble clusters built using
the other two scalings. Another remarkable difference of the num
and tempX scalings is that f; for O, profiles is on average lowest
for ellipticals among the three morphological classes, while it is
lowest for SOs when considering the sigv scaling.

The marginal distributions of the best-fit logarithmic slopes
of Q(r) and Q,(r) (considering only linear profiles) are displayed
in Figs. A.3 and A.4 for the num scaling, respectively, (left panel:
0, right panel: Q,) and in Figs. A.5 and A.6 for the tempX scal-
ing. For the num scaling, we show in Figs. A.7 the averages and
dispersions of the Q(r) and Q,(r) logarithmic slopes obtained
on the MCMC chain elements (considering only linear profiles).
Figure A.8 shows the corresponding quantities for the tempX
scaling. We also provide the average and dispersion of the log-
arithmic slopes of the Q and Q, profiles for all MCMC chain
elements with linear PPSDs, for all models and all galaxy types
in Tables A.1 and A.2 for the num and tempX scaling, respec-
tively.

The results for the slopes of Q,(r) and Q,.,(r) obtained using
the num and tempX scalings are generally within one standard
deviation of the results obtained using the sigv scaling. This is
illustrated in Fig. 9, where we show the differences A between
both the num- and the tempX-scaling slopes and the sigv-scaling
slope, considering only linear profiles among all MCMC chains.
The differences are shown in units of the quadratically combined
dispersions of the slopes, oopes. These differences are not sta-
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Fig. 10. Difference of mean logarithmic slope of Q,, with logarithmic
slope of Q, (here @ = —1.8) as a function of difference in velocity
anisotropies between virial radius and 0, using Eqs. (8) and (12) for
¢ = ryo/rg = 4. Changing c and « has negligible effect on the curves.
This indicates that Q,., is steeper than Q, unless 5(r200) < Bo.

tistically significant. The most significant differences come from
the Q,(r) slopes of ellipticals and spirals, which are almost iden-
tical to that of SOs, and they are all somewhat flatter than the
expected relations from numerical simulations (see the top-right
panels of Figs. A.7 and A.8). Moreover, the Q(r) slopes of SOs
are intermediate between those of ellipticals and spirals, unlike
what was found with the sigv scaling.

SOs also appear to be an intermediate class between ellip-
ticals and spirals in the Sy — a, diagram. As seen in Figs. A.9
and A.10, it is not the SOs but the spirals that are the most distant
from the expected relation, contrary to what was found using the
sigv scaling. Moreover, the velocity dispersion profiles of SOs
show less of a transition from those of spirals at small radii to
those of ellipticals near the virial radius (Figs. A.11 and A.12)
than is the case for the sigv stack (Fig. 8). The results for the
num and tempX scalings therefore suggest that SOs are an inter-
mediate class between ellipticals and spirals, rather than a mixed
class. Another remarkable difference with respect to the sigv
scaling, is that the By — «, relation of Eq. (14) is not obeyed
by any of the three morphological classes. This means we can-
not rely on Dehnen & McLaughlin (2005)’s explanation for why
later accreted galaxy populations such as the spirals, and to a
lesser extent, SOs, have Q(r) profiles consistent with those of
DM particles.

Not only are the Q,, profiles obtained using the num and
tempX scalings flatter than simulations predict for DM par-
ticles, they are in some cases even flatter than the Q, pro-
files. This can happen if the velocity anisotropy profiles are
more radial near the center than at the cluster virial radius,
as illustrated in Fig. 10. Anisotropy profiles of this kind
are not typical of either simulated cluster-size halos (e.g.,
Ascasibar & Gottlober 2008; Mamon et al. 2010; Lemze et al.
2012; Munarietal. 2013; Lotzetal. 2019) or real clus-
ters (e.g., Natarajan & Kneib 1996; Biviano & Katgert 2003;
Lemze et al. 2009; Wojtak & Lokas 2010; Biviano et al. 2013;
Annunziatella et al. 2016; Aguerri et al. 2017; Capasso et al.
2019). This suggests that one should take the results obtained
using the num and tempX scalings with some caution.

In conclusion, while the results we obtain for the num
and tempX scalings are not significantly different from those
obtained for the sigv scaling, they are more distant from the
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predictions from numerical simulations for what concerns the
linearity of the profiles and the slope of Q,,(r). If the power-
law behavior of Q(r) and Q,(r) could be theoretically motivated,
the better adherence of the sigv-based profiles to the power-law
behavior would suggest that the velocity dispersion is a better
o0 estimator than either the cluster richness or its X-ray tem-
perature, at least for the WINGS cluster data set.

6. Summary and conclusions

We determined the average Q and Q, profiles of nearby galaxy
clusters, using either total mass density p(r) or tracer num-
ber density v(r), as well as the velocity dispersion profiles
of three galaxy classes, ellipticals, SOs, and spirals. For this,
we have used the results of the MCMC analysis of the kine-
matics of a velocity-dispersion-based (sigv) stack of 54 reg-
ular clusters (Paper I) from the WINGS data set (Fasano et al.
2006; Cava et al. 2009; Moretti et al. 2014) performed with the
MAMPOSSt code in Paper II.

We find that Q,(r) and Q,,(r) are very close to
the power-law relations predicted by numerical simulations
for DM particles (Taylor & Navarro 2001; Rasia et al. 2004;
Dehnen & McLaughlin 2005), at least in a range from a few
percent to one virial radius. On the other hand, Q,(r) and
Q,,(r) only agree with the simulation-based predictions for
DM particles for the ellipticals, and they deviate from the
simulation-based predictions for the SOs and spirals marginally
and significantly, respectively. Only the spiral Q,(r) is similar
to that of subhalos in halos from cosmological hydrodynamical
simulations.

We checked our results on two different stacks of the same
data set, based on richness (num) and gas temperature (tempX)
scalings. While we find a lower fraction of power-law Q and Q,
profiles, the average slopes of these profiles are not significantly
different from those obtained for the sigv scaling.

We argue that our results based on the sigv scaling support
a scenario in which Q,(r) and Q,.,(r) are either established early
on, during the cluster violent relaxation phase, for the DM and
ellipticals, or established subsequently, for spirals by adapting
their orbital and spatial distribution as they move toward dynam-
ical equilibrium in the cluster potential. SOs might be a mixed
class, with part of them following the dynamical history of ellip-
ticals and the other part following that of spirals, as suggested by
our analysis of the sigv stack, or an intermediate class between
spirals and ellipticals as is consistent with our analysis of the num
and tempX stacks. On the other hand, Q,(r) and Q,,(r) are not
universal, and they depend on the time of accretion of the tracer
population in the cluster. In conclusion, our results give strong
observational support to the simulation-based power-law Q and
0, profiles when they are defined using total mass density p(r),
rather than the tracer number density v(r).
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Appendix A: Results for the num and tempX scalings

In the main text of this paper, we provided the results for the
velocity dispersion-based sigv scaling used to stack the clusters.
Here we provide the results for the richness-based, num, and X-
ray temperature-based, tempX scalings.
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Fig. A.1. Same as Fig. 2, but for the num scaling.
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Fig. A.2. Same as Fig. 2, but for the tempX scaling.

03¢

0.1

05¢}

0.1
05¢}
03¢

0.1

05¢}

03¢

Qp QV
TE
LN
S0
A

Y i

-25 -20 -15 -1.0-25 -0 -15 -1.0

slope

slope

Fig. A.3. Same as Fig. 3, but for the num scaling.
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Fig. A.4. Same as Fig. 4, but for the num scaling.

Al7, page 13 of 16



A&A 670, A17 (2023)

Table A.1. Q and Q, profiles: f; and slopes for the num scaling

9 oy

E SO S E SO S
Model fi slope l fi slope l fi slope H fi slope l fi slope l fi slope

6| 095 -183+0.08 | 095 -1.75+0.10 | .00 -1.70+0.12 066 -1.74+0.07 | 048 -1.67+0.07 | 0.60 —-1.42+0.09

7| 100 -182+0.07 | 1.00 -1.77+0.08 | 1.00 -1.72+0.13 062 -1.72+0.07 | 0.50 -1.67+0.07 | 055 -1.42+0.09
7c | 1.00 -1.82+0.05 | 1.0O00 -1.77+0.05 | 1.00 -1.66+0.08 063 -1.76+0.07 | 051 -1.71+0.07 | 0.60 —1.48+0.08
12 | 098 -1.82+0.08 | 096 -1.79+0.09 | 099 -1.73+0.14 097 -186+0.10 | 096 -1.77+0.10 | 1.00 -1.37+0.10
12e | 1.00 -1.85+0.07 | 099 -1.81+0.09 | 1.00 -1.75+0.14 096 -1.83+0.09 | 094 -1.74+0.09 | 099 -137+0.10
15| 083 -1.80+0.07 | 0.79 -1.75+0.09 | 099 -1.72+0.14 077 -1.82+0.10 | 0.79 -1.71+0.10 | 098 -1.37+0.10
15 | 094 -1.82+0.08 | 091 -1.76+0.09 | 1.00 -1.73+0.13 074 -181+0.10 | 0.74 -1.71+0.09 | 096 -1.37+0.09

mean | 096 -1.82+0.01 | 094 -1.77+0.02 | 099 -1.71+0.03 076 -1.78+0.05 | 0.70 -1.71+0.04 | 0.81 -1.40+0.04

Qr,p Qr,v
E SO S E SO S
Model fi slope fi slope fi slope fi slope fi slope fi slope
6| 091 -185+024 | 093 -1.71+0.21 1.00 -1.71+0.17 064 -184+0.18 | 047 -1.71+£0.16 | 0.61 -1.49=+0.15
7109 -184+020 | 099 -1.78+0.19 | 1.00 -1.80+0.27 0.55 -181=+0.17 | 047 -1.75+0.15 | 0.62 —-1.53+0.15
7c | 1.00 -1.85+0.14 | 099 -1.78+0.14 | 1.00 -1.72+0.19 058 -1.87+0.16 | 0.50 -1.79+0.16 | 0.64 -1.56+0.14

12 | 091 -1.74+0.16 | 0.89 -1.72+0.17 | 097 -1.80+0.24 089 -1.78+0.19 | 0.89 -1.71+0.19 | 098 -1.41+0.14
12 | 097 -1.77+0.17 | 096 -1.75+0.18 | 099 -1.81+0.24 08 -1.79+0.18 | 0.85 -1.72+0.17 | 097 -143+0.15
15 | 071 -1.69+0.16 | 0.75 -1.63+0.17 | 1.00 -1.73+0.19 069 -1.71+0.19 | 071 -1.60+0.17 | 097 -1.39+0.15
15¢ | 0.83 -1.71+0.17 | 0.87 -1.65+0.18 | 1.00 -1.74+0.19 066 -174+0.18 | 0.66 -1.64+0.16 | 095 -140+0.14

mean | 090 -1.77+0.07 | 091 -1.72+0.06 | 099 -1.75+0.04 070 -1.79+0.05 | 0.65 -1.71+0.06 | 0.82 —-1.46+0.07

Notes. Columns labeled ‘f;” give the fraction of linear MCMC Q profiles. Columns labeled ’slope’ give the average and dispersion of the slopes
of the MCMC Q profiles with f; > 0.1. Rows labeled ‘mean’ give the weighted mean and dispersion of all the models, using the slope dispersions
as weights.

Table A.2. Q and Q, profiles: f; and slopes for the tempX scaling

O Oy
E SO S E SO S
Model fi slope l fi slope l fi slope l l fi slope l fi slope l fi slope

6| 08 -178+0.09 | 095 -1.75+0.11 | 099 -1.69+0.16 || 042 -1.76+0.10 | 0.74 -1.66+0.10 | 0.77 -1.25+0.12

7| 098 -181+0.08 | 099 -1.72+0.10 | 099 —-1.66+0.15 062 -1.76+0.10 | 0.65 -1.65+0.09 | 0.72 -1.27+0.11

7c | 099 -1.81+0.06 | 099 -1.70+0.08 | 099 -1.61=+0.11 055 -177+0.09 | 053 -1.67+0.09 | 0.61 -1.33+0.11

12 | 094 -181+0.08 | 096 -1.72+0.10 | 097 -1.67+0.17 088 -1.86+0.12 | 095 -1.71+0.11 | 099 -122+0.11
12¢ | 099 -1.83+0.08 | 099 -1.73+0.10 | 099 -1.68+0.16 || 0.86 —-1.84+0.11 | 092 -1.68+0.10 | 098 -1.23+0.11

15 ] 063 -1.78+0.08 | 0.88 —-1.74+0.12 | 098 —1.74+0.18 052 -1.81+0.11 | 0.88 —-1.71+0.12 | 095 -120+0.12

15¢ | 0.82 -1.79+0.08 | 094 -1.75+0.12 | 1.00 -1.73+0.17 048 -180+0.11 | 0.83 -1.69+0.11 | 094 -1.21=+0.11

mean | 0.80 -1.80+0.02 | 096 -1.73+0.02 | 099 -1.68+0.05 062 -1.80+0.04 | 0.78 -1.68+0.02 | 0.85 -1.24+0.04

Qr,p Qr,v
E SO S E SO S
Model fi slope fi slope fi slope fi slope fi slope fi slope
6 | 068 —-172+024 | 094 -1.81+023 | 1.00 -1.72+0.20 038 -1.78+0.20 | 0.73 -1.76+0.19 | 0.78 -1.36+0.16
7109 -176+0.19 | 098 -1.74+021 | 098 -1.71+£0.25 054 -1.77+0.18 | 0.64 -1.72+0.19 | 0.72 -1.35+0.16
7c | 098 -1.80+0.15 | 099 -1.74+0.17 | 098 -1.63+0.19 050 -1.82+0.16 | 0.56 -1.78+0.19 | 0.61 -1.40=+0.15
12 | 083 -1.70+0.18 | 092 -1.71+0.18 | 094 -1.71+0.24 078 -1.76+0.23 | 092 -1.70+0.18 | 095 -1.27+0.15
12¢ | 094 -1.73+0.18 | 097 -1.73+0.18 | 098 —-1.72+0.24 075 -1.78+0.19 | 0.87 -1.69+0.17 | 095 -1.28=+0.15
15 | 046 -1.65+0.16 | 0.87 -1.74+0.21 | 099 -1.78+0.23 042 -1.68+0.20 | 0.85 -1.71+0.21 | 096 —-1.30+0.16
15¢ | 0.61 -1.67+0.18 | 093 -1.76+0.22 | 1.00 -1.77+0.21 041 -1.72+0.19 | 0.81 -1.73+020 | 095 -1.31=+0.16
mean | 0.78 -1.72+0.06 | 094 -1.74+0.03 | 098 -1.72+0.05 054 -1.76+0.04 | 0.77 -1.73+0.03 | 0.84 -1.32+0.05

Notes. Columns labeled ’ f;” give the fraction of linear MCMC Q profiles. Columns labeled ’slope’ give the average and dispersion of the slopes of
the MCMC Q profiles with f; > 0.1. Rows labeled "mean" gives the weighted mean and dispersion of all the models, using the slope dispersions
as weights.
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Fig. A.5. Same as Fig. 3 but for the tempX scaling.
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Fig. A.6. Same as Fig. 4, but for the tempX scaling.
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Fig. A.7. Same as Fig. 5, but for the num scaling.
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Fig. A.8. Same as Fig. 5, but for the tempX scaling.
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