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MEAN FIELD LIMIT FOR THE KAC MODEL AND GRAND CANONICAL

FORMALISM

THIERRY PAUL, MARIO PULVIRENTI, AND SERGIO SIMONELLA

Abstract. We consider the classical Kac’s model for the approximation of the Boltzmann equation,

and study the correlation error measuring the defect of propagation of chaos in the mean field limit.

This contribution is inspired by a recent paper of the same authors [22] where a large class of models,

including quantum systems, are considered. Here we outline the main ideas in the context of grand

canonical measures, for which both the evolution equations and the proof simplify.
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This note is dedicated to the memory of our colleague and friend Maria

Conceicao Carvalho. Among her many important contributions to the the-

ory of Kac’s model, Sao’s work [5, 6] explained the long time behaviour

of the homogeneous Boltzmann equation without using the H-theorem nor

global properties, but exploiting a Dyson expansion over trajectories. Our

contribution is, in spirit, close to this approach.

1. Introduction

The kinetic description of particle systems is strongly related to propaga-

tion of chaos. This property allows one to substitute the complex dynam-

ics of a huge number of particles by a single nonlinear partial differential

equation for the probability density of a given particle. More precisely, one

adopts a statistical description. At time zero, the N−particle system is

assumed to be “chaotic” in the sense that each particle is distributed iden-

tically and independently from the others, at least up to an error which is

vanishing when N diverges. The dynamics creates correlations and the in-

dependence property is lost at any positive time. However, under suitable
1
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scaling limits, the statistical independence of any finite group of particles

can be recovered, after averaging, in the limit N →∞. As a consequence,

a given particle evolves according to an effective kinetic equation. The na-

ture of this dynamics is determined by the microscopic details of the system

and by the regime of physical parameters. Such a mechanism works in the

formal (in a few cases, rigorous) derivation of the most common kinetic

equations.

If the system is described by a symmetric probability measureWN(ZN , t)
at time t, where ZN = (z1,⋯, zN) is a configuration of the system, being

zi = (xi, vi) position and velocity of the particle i, the probability density

of finding the first j particles in the microscopic state Zj is given by the

marginal

fN
j (Zj, t) ∶= ∫ dzj+1⋯dzNWN(ZN , t) .

In case of a two-body interaction, we have that fN
1 depends on fN

2 , which

depends on fN
3 and so on, and these marginals are not tensorized. Indeed,

the dynamics creates correlations even though at time zero it is assumed

that

WN = (f0)⊗N .

In many cases, the physical regime of interest can be expressed in terms

of suitable scaling limits (N →∞, together with additional prescriptions),

which one can hope to use to prove that

(1) fN
j (t)→ f(t)⊗j,

where f(t) is a solution of the aforementioned kinetic equation.

In three dimensions, fundamental scaling limits for Hamiltonian systems

are the following.

● Mean-field limit for classical systems: N →∞ and the coupling con-

stant of the two-body interaction is scaled by 1
N . Namely, a system

of point particles with the mean-field Hamiltonian

HN =
1

2

N

∑
i=1

v2i +
1

2N
∑
i≠j

φ(xi − xj) ,

where φ is a two-body potential. The corresponding expected kinetic

equation is, in this case, the Vlasov equation.
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● Low-density or Boltzmann-Grad limit: N → ∞ and the diameter of

hard-sphere like particles is ∼ N− 1
2 . The corresponding kinetic equa-

tion is the Boltzmann equation.

● Weak-coupling limit: N →∞ and ε ∼ N− 1
3 is a scale parameter coding

the interaction length. The radial interaction potential - say, smooth

and decaying - is scaled as φ(rε), so that the Hamiltonian of the

system is

HN =
1

2

N

∑
i=1

v2i +
√
ε

2
∑
i≠j

φ(
∣xi − xj ∣

ε
) .

The corresponding kinetic equation is the Landau equation.

● High-density limit: N →∞ and ε ∼ N− 1
4 , where the Hamiltonian is

HN =
1

2

N

∑
i=1

v2i +
ε

2
∑
i≠j

φ(
∣xi − xj ∣

ε
) .

The corresponding kinetic equation is the Lenard-Balescu equation.

For a recent analysis of these scalings we refer to [19, 20], where allowed

classes of interaction potentials are also discussed. Scaling limits and prop-

agation of chaos have a long history starting from the pioneering work of

Bogoliubov [1], see e.g. [25, 24] for surveys.

The mechanism for which we expect that propagation of chaos actually

holds is deeply different in the above cases. For the mean-field limit, the

force exerted by particle j on particle i is O( 1N ) so that the effect of one

particle on the other is triviallynegligible. Hence zi and zj can be considered

as independent random variables in the limit N → ∞, if they were so at

time zero. At variance, in the case of the Boltzmann-Grad limit, the forces

are strong; but due to the low density regime, the probability of two given

particles colliding in (0, t) is small, although any given particle is subject

to a collision with strictly positive rate. Finally in the weak-coupling limit,

the forces are of order 1√
ε
∼ N 2

3 , but the potential range is small and the

interaction takes place in a time interval of order ε. Overall the variation

of momentum of particle i due to the interaction with particle j is of order
√
ε, thus negligible. A similar argument holds in the high-density case.

Going further in this analysis, one may ask about quantitative estimates

on the defect of chaos. In recent times, the authors have approached
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this problem in [22] by the method of “correlation errors” (also called

“v-functions”), which goes back to previous work in the context of kinetic

limits [2]-[11], [23]. Correlation errors are a tool to measure the tendency

of fN
j to factorize and converge in the mean field limit. We will give a

precise definition in the next section (Definition 1 below; see also Def. 2.1

in [22]). In [22], they have been used to prove a result on the Kac’s model,

which we recall next.

We considerN particles following a stochastic dynamics: to each particle,

say particle i, we associate a velocity vi ∈ R3 and the vector

VN = {v1,⋯, vN}

changes by means of two-body collisions at random times, with random

scattering angle. The probability density WN(VN , t) evolves according to

the master equation (forward Kolmogorov equation)

(2) ∂tW
N = 1

N
TNW

N

where

TNW
N =∑

i<j

Ti,jW
N ,

(3) Ti,jW
N(VN) = ∫ dωB(ω; vi − vj){WN(V i,j

N ) −W
N(VN)} ,

and where V i,j
N = {v1,⋯, vi−1, v′i, vi+1,⋯, vj−1, v′j, vj+1,⋯, vN} and the pair

v′i, v
′
j gives the outgoing velocities after a collision with scattering (unit)

vector ω and incoming velocities vi, vj.
B(ω;vi−vj)
∣vi−vj ∣

is the differential cross-

section of the two-body process and we shall assume here, for simplicity,

that B is bounded. The resulting kinetic equation is the homogeneous

Boltzmann equation

∂tf(v) = ∫ dv1∫ dωB(ω; v − v1){f(v′)f(v′1) − f(v)f(v1)}

=∶ Q(f, f)(v)(4)

Such a model has been introduced and studied by Kac in [15, 16] and has

given rise to a wide literature later on (see e.g. [13, 26, 12, 14, 17, 18]). For

instance in [22], we prove the following.

Theorem 1.1 ([22]). For all t > 0 and all j = 1, ...,N , the marginals satisfy

(5) ∥fN
j (t) − f(t)⊗j∥L1

≤ C2 e
C1t

j2

N
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where C1,C2 > 0 are explicitly computable constants.

In the present paper, we are going to recover a similar result, albeit in

a different setting which we refer to as grand canonical ensemble. This is

a standard formalism in statistical mechanics, adapted here to the kinetic

problem. With respect to the model introduced above, the novelty of

the grand canonical framework is twofold: (i) we allow the total number

of particles N to be a (Poisson) random variable with intensity µ → ∞,

and consequently (ii) we do not label the particles from 1 to N (as done

in the definition of marginal), but compute only averages of symmetrized

quantities. This leads to the notion of correlation functions, denoted below

{fµ
j }
∞

j=1
, which play the role of the marginals {fN

j }
∞

j=1
in this context.

The advantage of the grand-canonical formalism is that the correlations

due to conservation of energy and mass are zero by assumption, and one

can focus more easily on the correlations having a purely dynamical origin.

In this spirit we will reformulate the method of [22] leading to a result

analogous to (5), in terms of correlation functions (Theorem 3.2 below).

We shall see that this leads to simplifications of the corresponding proof

in the canonical ensemble. Indeed, even if fN
j and fµ

j are asymptotically

equivalent, the latter functions encode fewer correlations. This is reflected

eventually in a smaller number of terms in the basic evolution equations

for the error (see Remark 3.1 below).

The paper is organized as follows. In the next section, we introduce the

Kac’s model in the grand canonical ensemble, and define the correlation

errors. In Section 3 we discuss the evolution equations, whose derivation

is postponed to the appendix. In Section 3 we establish the main result,

Theorem 3.2, and its proof is presented in the last section.

2. Kac model and grand canonical ensemble

We start by recalling the main ensembles which can be adopted to de-

scribe a collisional dynamics, in the spirit of the abovementioned Kac’s

model.

● Microcanonical. The binary collisions preserve energy, and the sto-

chastic dynamics lives in the energy surface

E = 1

N
∑
i

v2i .
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● Canonical. E is random and onlyN is fixed, as in the model discussed

in the Introduction.

● Grand canonical. N is random. We introduce a sequence of ini-

tial density distributions {W n
0 }n≥0 on the phase space ⋃n≥0R3n. By

definition, 1
n!W

n
0 (Vn) is the symmetric probability density of the con-

figuration Vn, being n the total number of particles. The average

number of particles is then

µ ∶=∑
n≥0

n∫
1

n!
W n

0 (Vn)dVn .

Here µ > 0 is a free parameter (eventually µ →∞) and the distribu-

tions do depend on µ, although this dependence is dropped in our

notation (W n
0 = W n,µ

0 ). At time t > 0, the state of the system is

described by the time-evolved measure {W n(t)}n≥0 solving (cf. (2))

(6) ∂tW
n = 1

µ
TnW

n .

Focusing now on the grand canonical case, let us introduce a natural

description of correlations and propagation of chaos. In order to examine

correlations due exclusively to the dynamics, we choose a perfectly ten-

sorized and still symmetric initial state, namely

(7) W n
0 = f⊗n0 e−µµn

(however most of our discussion could be extended to a larger class of initial

measures).

Instead of computing probability densities of particles with labels {1,⋯, j},
we define rescaled correlation functions by

fµ
j (Vj, t) = µ−j∑

k≥0

1

k! ∫
dvj+1⋯dvj+kW j+k(Vj+k, t) .

Loosely speaking, this corresponds to computing the amount of j−tuples of
particles in the configuration Vj at time t. For a purely factorized state the

average total number of j−tuples is µj, which explains the rescaling factor.

In particular with the choice (7), one checks that ∥fµ
j ∥L1 = 1 (initially and

for all times).

Suppose that

(8) lim
N→∞

fµ
j = f(t)

⊗j ,
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say in L1−norm. We may ask about convergence rates. We observe that, in

general (e.g. for j ∼ µ) fµ
j (t) is not expected to be asymptotically equivalent

to (fµ
1 (t))⊗j, even if it is assumed to be so at time zero. One can then pose

the question: how large can j = j(µ) be in such a way that (8) holds true?

Having at our disposal the estimate

(9) ∥fµ
j − f(t)

⊗j∥L1 ≤ Cj (1
µ
)
α

for some α ∈ (0,1) and C > 0, we cannot make better predictions than

j(µ) ∼ logµ. On the other hand if for a moderately large j, say j ≈ µγ,

γ ∈ (0,1), fµ
j ≈ (f

µ
1 (t))⊗j, then it is natural to consider

(10) (fµ
1 (t) − f(t))⊗j =∶ Ej ;

namely the product of the differences rather than the difference of the

products. Expanding (10) one finds that

(11) Ej(t) ∶= ∑
K⊂J

(−1)∣K ∣fµ
J/K
(t)f(t)⊗K

where J = {1,2,⋯, j} is the set of the first j indices, K is any subset of

J , J/K is the relative complement of K in J and ∣K ∣ is the cardinality of

K. fµ
A(t) stands for the ∣A∣−marginal fµ

∣A∣
(t) computed in the configuration

(zi)i∈A. Similarly f(t)⊗K = f(t)⊗∣K ∣ evaluated in (zi)i∈K . The formula (11)

has an inverse formula, (see [22]) that is

(12) fµ
j (t) = ∑

K⊂J

EJ/K(t)f(t)⊗K

where the notation EJ/K is the same one as for F µ
J/K

, and where we set

E0 = E∅ = 1.
This motivates the following

Definition 1 (Correlation error (grand-canonical)). For any j ≥ 1, setting
J = {1,2,⋯, j}, we define the “correlation error” of order j by

(13) Ej(t) ∶= ∑
K⊂J

(−1)∣K ∣fµ
J/K
(t)f(t)⊗K ,

where the terms K = ∅ and K = J have to be interpreted as fµ
J = f

µ
j and

(−1)jf⊗J = (−1)jf⊗j, respectively.
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For instance

E1(v1) = fµ
1 (v1) − f(v1)

E2(v1, v2) = fµ
2 (v1, v2) − f

µ
1 (v1)f1(v2) − f(v1)f

µ
1 (v1) + f(v1)f(v2)

E3(v1, v2, v3) = fµ
3 (v1, v2, v3) − f

µ
2 (v1, v2)f(v3)⋯+ f

µ
1 (v1)f(v2)f(v3)⋯

−f(v1)f(v2)f(v3) .

3. Dynamical equations

It is well known, and can be easily checked from (6), that the sequence

{fµ
j } satisfies the following hierarchy of equations (called BBKGY in anal-

ogy with the Hamiltonian case):

(14) ∂tf
µ
j =

Tj

µ
fµ
j +Cj+1f

µ
j+1

for j = 1,⋯,∞ , where

(15) Cj+1f
µ
j+1(Vj) =

j

∑
i=1

Ci,j+1f
µ
j+1(Vj)

and

(16) Ci,j+1f
µ
j+1(Vj) = ∫ dvj+1∫ dωB(ω; vi − vj){fµ

j+1(V
i,j+1
j+1 ) − f

µ
j+1(Vj+1)}

with the same notations as in (3).

This hierarchy must be compared with the limiting hierarchy (in the

formal limit µ→∞)

(17) ∂tfj = Cj+1fj+1

which is satisfied by products fj(t) = f(t)⊗j, being f(t) solution of the

homogeneous Boltzmann equation (4).

Introducing correlation errors given by (13), we deduce from (14) the

corresponding evolution equations. We find (see the Appendix)

∂tEj =
Tj

µ
Ej +DjEj +D1

j (Ej+1) +D−1j (Ej−1) +D−2j (Ej−2)(18)

where D1
j = Cj+1 and the operators Dj,D−1j ,D−2j are defined by:

DjEj =∑
i∈J

Ci,j+1[f⊗{i}EJ i∪{j+1} + f⊗{j+1}EJ]

D−1j Ej−1 =
1

µ
∑
i,s∈J

Ti,sf
⊗{i}EJ i

D−2j Ej−2 =
1

2µ
∑
i,s∈J

Ti,sf
⊗{i,s}EJ i,s ,(19)
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where J is the set of the first j indices, J i = J/{i}, J i,s = J/{i, s} and

f⊗{i} = f(vi), f⊗{i,s} = f(vi)f(vs) .

Here we use the convention the D−21 = 0. Moreover these operators may

depend on time, although we will drop out this dependence from the no-

tation.

Note that the first line contains operators which do not change the parti-

cle number, Cj+1 is an operator decreasing by one the number of particles,

while D−1j and D−2j are operators increasing the number of particles by one

and two respectively.

Remark 3.1. The marginals in the canonical setting satisfy the same hier-

archy of equations as in (14) (with µ replaced by N), up to a combinatorial

factor (N − j)/N in front of the collision operator Cj+1. This slight dif-

ference produces several spurious terms in the definitions of the operators

Dj,D−1j ,D−2j (see Eq.s (42)-(44) in [22]), which are absent in the definition

(19). Therefore the grand-canonical equations single out the contributions

having a purely dynamical interpretation, in terms of variation of clus-

ters (groups of particles) with j mutually correlated particles. Since the

interactions are binary, such a cluster can be created in five ways only,

corresponding respectively to the five terms in (18), and depending on how

many independent particles enter the game through the described collision.

We conclude this section by establishing our main result.

Theorem 3.2. Let us assume fµ
j (0) = f

⊗j
0 being f0 the initial datum for

the Boltzmann equation. Then for all t > 0, there exists G > 1 such that,

for j
√
µ sufficiently small,

(20) ∥fµ
j (t) − f

⊗j(t)∥L1
≤ Gj2

µ
.

Here we are assuming a full factorization at time zero. Looking at the

proof it will be clear that this condition can be relaxed. Here we prefer to

work in the simplest context to outline the main ideas.

Let us remark that, as it can be shown from of the proof of Theorem 3.2

the condition “ j
√
µ sufficiently small” can be quantified as “ j

√
µ ≤ αe−βt for

some contants α,β > 0”.
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4. Towards the Boltzmann equation

Starting from (14), by the Dyson (Duhamel) expansion we have:

fµ
j (t) =

∞

∑
n=0
∫

t

0
dt1∫

t1

0
dt2⋯∫

tn−1

0
dtn(21)

Uµ
j (t − t1)Cj+1 . . . U

µ
j+n−1(tn−1 − tn)Cj+nU

µ
j+n(tn)f0,n+j,

where f0,j = f⊗j0 and

Uµ
j (t) = e

Tj
µ
t.

On the other hand we also have, for fj(t) = f(t)⊗j, being f(t) the solution
to the Boltzmann equation

fj(t) =
∞

∑
n=0
∫

t

0
dt1∫

t1

0
dt2⋯∫

tn−1

0
dtnCj+1 . . .Cj+nf0,n+j(22)

=
∞

∑
n=0

tn

n!
Cj+1 . . .Cj+nf0,n+j.

Assuming that B is bounded then we have

(23) ∥Tj∥ ≤ C1
j(j − 1)

2
, ∥Cj+1∥ ≤ C1j.

From now on we denote by ∥ ⋅ ∥ the L1 -norm and by Ci, i = 1,2⋯ different

numerical (positive) constants.

Then since ∥Uµ
j (t)∥ = 1 both the right hand side of (21) and (22) are

bounded by

∑
n≥0

Cn
2

tn

n!
j(j + 1)⋯(j + n − 1) ≤ 2j∑

n≥0

(2C2t)n,

which is converging for t small. Therefore the rest of the two series is

negligible, uniformly in µ, and this allows us to perform the limit µ →∞.

Indeed realizing that, for all j,

lim
µ→∞

Uµ
j (t) = I

strongly, we have also the term by term convergence of (21) to (22) in

L1. Once having the convergence for t < 1
2C2

, we can iterate the procedure

since the new initial conditions, fµ
j (t) satisfy ∥f

µ
j (t)∥ = 1. Then we have

convergence for any arbitrary time.

What is the size of chaos in this case? By size of chaos we mean the

maximal α for which we have convergence for all j such that j
µα → 0 as

µ →∞. Our main Theorem 3.2 shows that the size of chaos is 1
2 . On the
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other hand, as we shall see in a moment, we do not expect a size of chaos

strictly greater than 1
2 so we believe that our result can be considered as

optimal as regards this feature.

We observe that

lim
µ,j→∞

Uµ
j (t) = I

only if j2

µ → 0. Indeed expressing Uµ(t) in terms of the series expansion

Uµ(t)f0,j =∑
n

tn

n!

1

µn ∑
i1<k1

⋯ ∑
in<kn

Ti1,k1⋯Tin,knf0,j

we realize that the L1 norm of the right hand side can be bounded by

∑
n

(Ct)n
n!
(j(j − 1)

2µ
)
n

.

Therefore we expect that an estimate of the size of chaos cannot be better

than 1
2 and this can be considered as optimal.

Coming back to the dynamical description given by (18), we estimate

the size of the L1 norms of the operators appearing in (18) by

∥Dj∥ = O(j), ∥D1
j∥ = O(j), ∥D−1j ∥ = O (

j2

µ
) , ∥D−2j ∥ = O (

j2

µ
) .

Note that (18) is inhomogeneous so that it has nontrivial solutions even

for initial data Ej(0) = 0, j > 0 (namely when the initial state is tensorized)

which is the case we consider here.

The control of E passes trough a Dyson expansion around the two pa-

rameters semigroup V̄j generated by
Tj

µ Ej +DjEj, namely the solution of

∂tV̄j(t, s) = (Tj

µ +Dj) V̄j(t, s)
V̄j(s, s) = I.

We easily derive the following bound

(24) ∥V̄j(t, s)∥ ≤ e
C( j

2

µ
+j)(t−s)

.

The action of the other operators Cj+1,D−1j ,D−2j represents a positive, a

negative and a negative double jump respectively in the space of indices.

We recall that initially the distribution factorizes, namely

Ej(0) = δj,0,
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then

Ej(t) =
∞

∑
n=0
∑

k1⋯kn
∫

t

0
dt1∫

t1

0
dt2 ⋯∫

tn−1

0
dtn(25)

V̄s1(t, t1)Dk1 . . . V̄sn(tn−1, tn)DknV̄sn+1(tn)Ej0(0).

where ki ∈ {−1,−2,1}. The sequence {s1⋯sn} is defined recursively by

sr+1 = sr + kr, s1 = j.

and

j0 = j +
n

∑
i=1

ki

the initial index. Here Dk = Dk
sk and we drop the indices for notational

simplicity.

We have to consider the case j0 = 0 but in the following it will be conve-

nient to consider general j0 ≥ 0.
Note also that E0 = 1 and the only possible term involving E0 is

D−22 E0 =
1

µ
T2f

⊗2

which is perfectly defined in L1(R2d) being f = f(t) the solution of the

homogeneous Boltzmann equation.

For simplicity and without loss of generality we choose the parameters

in such a way that

∥Tj∥ ≤
j2

2
, ∥Dj∥ ≤

j

2
, ∥D1

j∥ ≤ j, ∥D−1j ∥ ≤
j2

µ
, ∥D−2j ∥ ≤

j2

µ

and we can prove

Proposition 4.1. Suppose that,

(26) ∥Ej(0)∥ ≤ (
j2

µ
)
j/2

Cj
0 , for all j ≥ 1,

for some C0 ≥ 1. Then, there exists t0 sufficiently small and A > 0 (both

explicitily computable) such that for any t ≤ t0 ,

(27) ∥Ej(t)∥ ≤ (
j2

µ
)
j/2

(AC0)j, for all j ≥ 1.

We first observe that we can assume j ≤ 2
C0

√
µ because otherwise

∥Ej(t)∥ ≤ 2j ≤ 2j (
jC0

2
√
µ
)
j

= (jC0√
µ
)
j

.
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Next from (25) we have

Ej(t) =
M−1

∑
n=0
∑

k1⋯kn
∫

t

0
dt1∫

t1

0
dt2⋯∫

tn−1

0
dtn

V̄s1(t, t1)Dk1 . . . V̄sn(tn−1, tn)DknV̄sn+1(tn)Ej0(0) +

∑
k1⋯kM

∫
t

0
dt1⋯∫

tM−1

0
dtM V̄s1(t, t1)Dk1 . . . V̄sM(tM−1 − tM)DkMEj0(tM)

and denote by T 1
j (t) and T 2

j (t) respectively the two terms in the right hand

side of the above expression.

Moreover we fix M = 2
C0

√
µ. With this choice

j + sm ≤ j +M ≤
4

C0

√
µ

so that all the operators D−1j and D−2j appearing in the definition of T 1
j

and T 2
j satisfy the bound

∥Tj∥ ≤ j, ∥D−1j ∥ ≤
j2

µ
≤ j, ∥D−2j ∥ ≤

j2

µ
≤ j

provided that µ is large enough. As a consequence, by (24)

(28) ∥V̄j(t)∥ ≤ ejt.

We first estimate T 2
j (t). Observe that, for t0 ≤ 1 for which ejt0 ≤ ej

∥V̄s1(t, t1)Dk1 . . . V̄sM(tM−1 − tM)DkMEj0(tM)∥ ≤ ejeMt(j +M)M2j+M

as follows by the estimates

es1(t−t1)es2(t1−t2)⋯esM(tM−1−tM) ≤ e(j+M)t ≤ ejeMt

(j + k1)(j + k1 + k2)⋯(j + k1 + k2 + ⋅kM) ≤ (j +M)M ≤ (2M)M

∥Ej0(tM)∥ ≤ 2j+M .

Therefore, setting τ = tet, using the bound MM ≤ CM
1 M ! and choosing τ

so small that τ8C1 ≤ 1
2 , we have

∥T 2
j (t)∥ ≤ 4M

τM

M !
MMej2j+M ≤ (2e)j(12)

M .

Finally since

sup
M

M j(12)
M ≤ (C2j)j

we conclude that

(29) ∥T 2
j (t)∥ ≤ (

C3j√
µ
)
j

.
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To estimate T 1
j (t) we split it into two contributions T 1,<

j (t) and T
1,>
j (t)

relative to the events j0 ≤ j and j0 > j respectively. Then, proceeding as

above

∥T 1,<
j (t)∥ ≤ ∑

n≤M−1

∑
k1⋯kn

ej
τn

n!
(j + n)n (j

2

µ
)

j−j0
2

∥Ej0∥.

The contribution (j
2

µ )
j−j0
2 arises from the fact that to reach j0 from j we

need at least j−j0
2 negative jumps, each of them produces a factor bounded

by j2

µ .

Finally using (26) and the usual arguments we arrive at

∥T 1,<
j (t)∥ ≤∑

n≥0

(C4τ)nej (
j2

µ
)

j−j0
2

(
C2

0j
2
0

µ
)

j0
2

≤ (
C5C2

0j
2

µ
)

j
2

.

Finally

∥T 1,>
j (t)∥ ≤ ∑

n≤M−1

∑
k1⋯kn

ej
τn

n!
(j + n)n (

j20
µ
)

j0
2

Cj0
0 .

Setting now ℓ = ℓ(k1, k2⋯kn) = j0 − j we have

((j + ℓ)
2

µ
)

j+ℓ
2 Cℓ

0 = (
j2

µ
)
j/2

((j + ℓ)
2

µ
)

ℓ
2

(j + ℓ
j
)
j

Cℓ
0

≤ (j
2

µ
)
j/2

( 2
C0
)ℓeℓCℓ

0 ≤ (
j2

µ
)
j/2

(2e)n.(30)

where, in the last step we used that (remind that both j andM are bounded

by
2
√
µ

C0
)

(j + ℓ)
√
µ
≤ j +M√

µ
≤ 4

C0
, (j + ℓ

j
)
j

≤ eℓ, ℓ ≤ n.

Thus, for τ small enough:

∥T 1,>
j (t)∥ ≤ e

2jCj
0∑
n≥0

Cn
5 τ

n (j
2

µ
)

j
2

≤ (
C6C2

0j
2

µ
)

j
2

and the proof is achieved.

As a Corollary we can easily prove

Proposition 4.2. Let us suppose that Ej(0) = 0 for j ≥ 1 (E∅(0) = 1)

corresponding to a fully factorized initial state. Then for all t > 0 and all
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j > 1, one has

(31) ∥Ej(t)∥ ≤ (AeBt)j ( j
√
µ
)
j

where B ≥ 0 and A ≥ 1.

Note that from the evolution equation

∂tE1 =D1E1 +C1,2E2

and Proposition 4.2 we also obtain the estimate

∥E1(t)∥ ≤ tA2e2Bt 4

µ

which will be useful in a moment.

Proof of Theorem 3.2

We find that, for some time-dependent constants C7,C8,G, using Propo-

sition 4.2 and the estimate for E1(t) above,

∥fµ
j (t) − f

⊗j(t)∥ ≤j∥E1(t)∥ +
j

∑
k=2

j!

k!(j − k)!
∥EK(t)∥

≤ jC8

µ
+

j

∑
k=2

j!

k!(j − k)!
(Ae

Btk
√
µ
)
k

≤ jC8

µ
+

j

∑
k=2

(C7j√
µ
)
k

= jC8

µ
+ (C7j√

µ
)
2

1

1 − C7j√
µ

= G( j
√
µ
)
2

for µ large such that C7j√
µ <

1
2 .

Appendix. Derivation of (18)

In this appendix, we deduce the correlation error equations starting from

the BBGKY hierarchy, (14), which we rewrite for the reader’s convenience:

∂tf
µ
j =

Tj

µ
fµ
j +Cj+1f

µ
j+1 j ≥ 1 .

We shall see that the computation is drastically simpler with respect to the

analogous derivation in the canonical ensemble reported in the Appendix

of [22] (where additional terms appear due to the canonical constraint).

We recall the definition of correlation error

(32) Ej ∶= ∑
K⊂J

(−1)∣K ∣fµ
J/K

f⊗K
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together with the following notation. For any set of particle indices K =
{i1,⋯, ik} of cardinality k = ∣K ∣, we write

fµ
K = f

µ
k (zi1,⋯, zik) ,

EK = Ek (zi1,⋯, zik) ,
f⊗K = f(zi1)⋯f(zik)

with the conventions fµ
∅ = E∅ = f⊗∅ = 1. We also write Q(f, f)i =

Q(f, f)(vi) for the Boltzmann operator (4) evaluated in particle i.

We start by the simple computation for j = 1:

∂tE{1} = ∂t (fµ
{1}
− f⊗{1})

= C2f
µ
{1,2}
−Q(f, f)1

= C2 (f⊗{1,2} + f⊗{1}E{2} +E{1}f⊗{2} +E{1,2}) −Q(f, f)1

where in the last step we used the inverse formula (cf. (12)) for j = 2.

Noticing that, by (15)-(16), C2(f⊗{1,2}) = Q(f, f)1, we are left with

∂tE{1} = C2 (f⊗{1}E{2} +E{1}f⊗{2}) +C2 (E{1,2})

and the two terms on the right hand side correspond toD1E{1} andD1
1(E{1,2})

respectively. Therefore (18) is verified for j = 1.
We assume now that {Ek}k≤j−1 satisfy (18), and prove the same thing for

k = j. Using definition (32) and the evolution equations for fµ
J and f , we

find that

∂tEJ = ∂t
⎛
⎜
⎝
fµ
J − ∑

K⊂J
K≠∅

f⊗K EJ/K

⎞
⎟
⎠

=
Tj

µ
fµ
J +∑

i∈J

Ci,j+1f
µ
J∪{j+1}

− ∑
K⊂J
K≠∅

f⊗K ∂tEJ/K

− ∑
K⊂J
K≠∅

∑
i∈K

f⊗K/{i}Q(f, f)iEJ/K .(33)
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We compute the three terms in the second line, one by one. First, using

the inverse formula and denoting J i = J/{i}, J i,s = J/{i, s} etc.,
Tj

µ
fµ
J =

Tj

µ
EJ + ∑

i,s∈J
i≠s

Ti,s

µ
{f⊗{i}EJ i + 1

2
f⊗{i,s}EJ i,s}

+ ∑
K⊂J
K≠∅

f⊗K
Tj−k

µ
EJ/K

+ ∑
K⊂J
∣K ∣≠0,1

∑
i∈K

s∈J/K

Ti,s

µ
f⊗{i}f⊗K

i

EJ/K + ∑
K⊂J
∣K ∣≠0,1,2

∑
i,s∈K
i≠s

Ti,s

2µ
f⊗{i,s}f⊗K

i,s

EJ/K(34)

and, similarly,

∑
i∈J

Ci,j+1f
µ
J∪{j+1}

=∑
i∈J

Ci,j+1 {EJf
⊗{j+1} + f⊗{i}EJ i∪{j+1} +EJ∪{j+1}}

+ ∑
K⊂J
∣K ∣≠0

∑
i∈J/K

Ci,j+1f
⊗Kf⊗{j+1}EJ/K

+ ∑
K⊂J
K≠∅

∑
i∈J/K

Ci,j+1f
⊗K {f⊗{j+1}EJ/K + f⊗{i}E(J∪{j+1}/K)i +EJ∪{j+1}/K} .(35)

Secondly, using the inductive hypothesis and the explicit definition of the

operators Dj−k,D1
j−k,D

−1
j−k,D

−2
j−k, we obtain that

− ∑
K⊂J
K≠∅

f⊗K ∂tEJ/K = − ∑
K⊂J
K≠∅

f⊗K
Tj−k

µ
EJ/K

− ∑
K⊂J
K≠∅

∑
i,s∈J/K

i≠s

Ti,s

µ
f⊗K {f⊗{i}E(J/K)i +

1

2
f⊗{i,s}E(J/K)i,s}

− ∑
K⊂J
K≠∅

∑
i∈J/K

Ci,j+1f
⊗K {f⊗{j+1}EJ/K + f⊗{i}E(J∪{j+1}/K)i +EJ∪{j+1}/K} .(36)

We note that the first line in (34) and the first line in (35) reproduce the

right hand side of the desired equation (18). Therefore we need to check

that the remaining terms cancel out. This is straightforward:

● the second line in (34) cancels with the first term on the right hand

side in (36);

● last line in (34) cancels with the second line in (36) (change variables

K →K ∪ {i} and K →K ∪ {i, s});
● second line in (35) cancels with last line in (33);

● last line in (35) cancels with last line in (36).
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This concludes the derivation of (18).

Acknowledgment

We thank the ”Istituto Nazionale di Alta Matematica”(INdAM) for par-

tial support.

References
[1] N.N. Bogolyubov: Problems of a dynamical theory in Statistical Physics. Moscow: State Technical Press (1946) in

Russian; English translation in Studies in Statistical Mechanics I, edited by J. de Boer and G. E. Uhlenbeck, part A,

Amsterdam: North-Holland (1962).

[2] C. Boldrighini, A. De Masi, A. Pellegrinotti : Non equilibrium fluctuations in particle systems modelling Reaction-

Diffusion equations. Stochastic Processes and Appl. 42 , 1-30 (1992).

[3] S. Caprino, M. Pulvirenti: A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result

Comm. Math. Phys . 166, 3 (1995), 603-631.

[4] S. Caprino, A. De Masi, E. Presutti, M. Pulvirenti: A derivation of the Broadwell equation. Comm. Math. Phys. 135

(1991) 3, 443–465.

[5] E. Carlen, M-C. Carvalho, E. Gabetta: Central limit theorem for Maxwellian molecules and truncation of the wild

expansion. CPAM, 53 , (2000) 3, 370-397.

[6] E. Carlen, M-C. Carvalho, E. Gabetta: On the relation between rates of relaxation and convergence of wild sums for

solutions of the Kac equation. Jour. Funct. An. 220, (2005) 2, 362-387.

[7] S. Caprino, M. Pulvirenti and W. Wagner: A particle systems approximating stationary solutions to the Boltzmann

equation SIAM J. Math. Anal. 4 (1998), 913-934.

[8] A.De Masi, E. Presutti: Mathematical methods for hydrodynamical limits. Lecture Notes in Mathematics 1501,

Springer-Verlag, (1991).

[9] A. De Masi, E. Orlandi, E. Presutti, L. Triolo: Glauber evolution with Kac potentials. I.Mesoscopic and macroscopic

limits, interface dynamics. Nonlinearity 7, 633-696, (1994).

[10] A.De Masi, E. Orlandi, E. Presutti, L. Triolo: Glauber evolution with Kac potentials. II. Fluctuations. Nonlinearity 9,

27–51, (1996).

[11] A.De Masi, E. Presutti, D. Tsagkarogiannis, M.E. Vares: Truncated correlations in the stirring process with births and

deaths. Electronic Journal of Probability,17, 1-35, (2012).
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