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Abstract. We give a self-contained proof of the connection existing between diffusion equa-
tions with spatially dependent coefficients and fractal Cauer-type networks initiated by J.
Sabatier in 2020 and discussed in more details in [J. Sabatier and al., Fractional behaviours
modelling, Springer, 2022].
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1. Introduction

Diffusion equations with spatially dependent coefficients were recently used to model power-
law behaviors observed in Hydrogen storage experiments by V. Tartaglione in ([4],Chap.4,
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4.2.4). The type of diffusion equation used in this work is very particular and is related un-
der a specific spatial discretization to Cauer type networks (see [4],Chap.2,2.6). It was first
discussed by J. Sabatier in [6]. These models seems to provide a good alternative to more con-
ventional modeling using fractional models, meaning particular form of the transfer function
admitting a fractional form (see [4], equation (4.10)).

The aim of the present work is to provide complete proofs and a self-contained presentation
for relations and results presented in [6, 4]. In particular, we are interested in a global theorem
which precises the connection existing between Cauer-type networks and in particular fractal
Cauer-type networks and diffusion equation with spatially dependent coefficients. Moreover,
we also prove the functional relations satisfied by the transfer function of a fractal Cauer-type
network allowing us to characterize the power-law type behaviors which can be expected.

The paper is organized as follows: In Section 2, we define the class of diffusion equations
under study as well as the equations obtained under a spatial discretization. Section 3 deals
with Cauer type ladder networks and the connection with discretizations of specific diffusion
equations. Section 4 gives an explicit expression for the transfer function of a Cauer type
ladder network and section 5 specify all the previous results for Fractal Cauer type ladder
networks. Section 6 is devoted to a characterization of the fractional behavior of fractal Cauer
type ladder network and Section 7 gives some perspectives of this work.

2. Diffusion equation with variable coefficient

Let u : R+ × R+ → R, u = u(t, z), is a solution of the following diffusion equation with
spatially dependant coefficients:

(1) ∂tu = γ(z)∂z

(
β(z)∂zu

)
where γ : R+ → R, β : R+ → R and let u(0, z) = u0(z).

Taking the Laplace transform of (1)

(2) U(s, z) = L (u)(s),

where L is the Laplace transform, we obtain

(3) sU = γ(z)∂z

(
β(z)∂zU

)
.

In [1], following a previous work of A. Oustaloup [2], we have proved that discretization
over a geometric space-scale of the inverse Fourier transform of the diffusion equation with
constant coefficient can be interpreted as a fractal RL ladder network.

In the following, we give the properties satisfied by a space-discretization of the diffusion
equation (3) over a uniform space-scale.

2.1. Space discretization of diffusion equation. Let h > 0, we denote by Tz the uniform
space-scale defined by the set of points zk = kh, k ∈ N.

Let φ(s, z) = β(z)∂zU , then we consider the following space-discretizations φh, Uh of func-
tions φ and U
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(4)
φh(s, kh) = β(kh)

1

h

(
Uh(s, (k + 1)h)− Uh(s, kh)

)
sUh(s, kh) = γ(kh)

1

h

(
φh(s, kh)− φh(s, (k − 1)h)

)
.

Therefore, (φh, Uh) satisfy for all k ∈ N, k ≥ 1, the following relations

(5)
φh(s, kh) = β(kh)∆+[Uh](s, kh)

sUh(s, kh) = γ(kh)∆−[φh](s, kh),

where ∆+, ∆− are the forward and backward discrete operators defined for all g ∈ C(Tz,Rd)
by

(6) ∆+[f ](zk) =
f(zk+1)− f(zk)

h
and ∆−[f ](zk) =

f(zk)− f(zk−1)

h
,

respectively.

The space-discretization of equation (3) over the space scale Tz is then given by

(7) sUh(s, kh) = γ(kh)∆−

[
β(kh)∆+[Uh]

]
(s, kh), k ≥ 1.

The next section gives formal expression for the recursive relation between voltage and
current in a Cauer-type ladder network. We will see that the discrete form of the diffusion
equation (7) over the space scale Tz can be interpreted as a specific Cauer-type ladder network.

3. Cauer type ladder networks

3.1. Classical relations on electronic circuits. Let us denote by Z and Y the impedance

and admittance, respectively. We have Z =
1

Y
. In the following, by S we denote an equivalent

to one of any component of electronic circuit: resistance (R), inductance (L), capacitance (C).
We introduce two kinds of the basic relations of the impedance with the current I and the

voltage U .
• series type relation:

S1 S2 U = U1 + U2 = ZI,

Z = Z1[S1] + Z2[S2]

I

U1 U2

U

• parallel type relation:

3.2. Cauer type RC networks. Let us introduce the recursive synthesis of the Cauer type
RC network.

According to Figure 1 we can observe that the RC circuit can be described by the recurrent
pattern presented on Figure 2.

We use the classical current and voltage relationships in the components of RC electronic
circuit with series-parallel topology (Figures 3 and 4).
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S1

S2

U = Z(I1 + I2) = ZI,

1

Z
=

1

Z1[S1]
+

1

Z2[S2]

I

I1

I2

U

R1

R2

C1

S3

C2

I0

I1

I2

S1

S2

U0

U1

U2

Figure 1. Recursive synthesis of the RC circuit with the series-parallel topol-
ogy

Rk

Sk+1

Ck

Ik−1

Ik

Uk−1

Figure 2. Recurrent pattern of RC circuit

Let U ∈ C(R+ ×N;R), I ∈ C(R+ ×N;R), R ∈ C(N;R), C ∈ C(N;R). We consider a Cauer
type RC network (Figure 2) with

Ik = I(s, k), Uk = U(s, k), Rk = R(k), Ck = C(k).
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Ck Z[Ck](Ik−1 − Ik) = Uk, k ≥ 1
Ik−1 − Ik

Uk

Figure 3. Current-voltage relationship in capacitor

Rk Uk−1 − Uk = Z[Rk]Ik−1, k ≥ 1
Ik−1

Uk−1 − Uk

Figure 4. Current-voltage relationship in resistance

for all k ≥ 0. The impedance of resistor and capacitor in RC circuit is given by

Z[Rk](s) = Rk, Z[Ck](s) =
1

sCk

for all k ≥ 0. Then the classical relations for elements behaviour of the Cauer type RC network
can be written in the form:

(8)
− 1

Rσ(k)
∆+[U ](s, k) = I(s, k), k ≥ 0,

− 1

C(k)
∆−[I](s, k) = sU(s, k), k ≥ 1.

where Rσ(k) = R(k + 1). From (8) we derive for all k ≥ 1

(9) sU(s, k) = − 1

C(k)
∆−

[
− 1

Rσ(k)
∆+[U ](s, k)

]
(s, k).

This equation is very close to the discrete form of a diffusion equation with spatially depen-
dents coefficients (7) discuss in the previous section. We precise this connection in the next
Section.

3.3. Interpretation of a diffusion equation as a Cauer type network. Comparing (7)
and (9), we see that (7) can be obtained as a Cauer type network by choosing appropriately
the functions R and C in C(N,R).

Precisely, let Tz = {zk = kh}k≥0. We introduce the mapping πh : N → Tz defined for all
k ∈ N by πh(k) = kh. We have the following diagram

Tz N

R

f ∈ C(T;R)

πh

f ◦ πh ∈ C(N;R)
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allowing to associated to any function f ∈ C(Tz,R) a function in C(N,R).

We then choose R and C such that the following relations are satisfied

(10) − 1

C
= β ◦ πh, β ∈ C(T,R),

(11) − 1

Rσ
= γ ◦ πh, γ ∈ C(T,R).

We want to select specific Cauer-type ladder networks which are able to exhibits fractional
behaviors. In order to do that, we first derive an explicit form of the transfer function associ-
ated to a Cauer type ladder networks.

4. The transfer function of a Cauer tpe ladder network

4.1. Recursive expansion of the transfer function. Let us denote by H : C(R+ ×N;R)
the transfer function

H(s, k) =
I(s, k)

U(s, k)
, k ≥ 0.

Using (8) we obtain for all k ≥ 0

(12) H(s, k) =

1

R(k + 1)

1 +

1

sR(k + 1)C(k + 1)

1 +
1

sC(k + 1)
H(s, k + 1)

.

Denoting by ZC(s) = Z[C](s) =
1

sC
, (12) can be rewritten as

(13) H(s, k) =

1

R(k + 1)

1 +
ZC(k+1)(sR(k + 1))

1 + ZC(k+1)(s)H(s, k + 1)

.

4.2. Continued fraction. In order to write clearly the recursive formula, we introduce the
following form of the continued fractions:

(14) [a1, . . . , ak] =
a1

1 +
a2

1 +
a3

1 + · · ·
1 +

ak−1

1 + ak

The continued fraction (14) can be rewritten by construction as:

(15) [a1, a2, . . . , ak] = [a1, [a2, . . . , ak]]

and we have

(16) α[a1, a2, . . . , ak] = [αa1, a2, . . . , ak].
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4.3. Continued fraction and the transfer function. Based on relations (15) and (16) we
are able to introduce the following lemma:

Lemma 4.1. The closed formula for transfer function H ∈ C(R+ × N) has the form

(17) H(s, 0) =
[ 1

R(1)
, ZC(1)(R(1)s), ZC(1)(R(2)s), . . . , ZC(k)(R(k)s), ZC(k)(R(k + 1)s), . . .

]
Proof. Using (13) and (14) we can write

H(s, 0) =
[ 1

R(1)
, ZC(1)(R(1)s), ZC(1)(s)H(s, 1)

]
.

and for k ≥ 1 we have

(18) H(s, k) =
[ 1

R(k + 1)
, ZC(k+1)(R(k + 1)s), ZC(k+1)(s)H(s, k + 1)

]
.

Replacing H(s, 1) in H(s, 0) by expression (18) for k = 1, we have:

H(s, 0) =

[
1

R(1)
, ZC(1)(R(1)s), ZC(1)(s)

[ 1

R(2)
, ZC(2)(R(2)s), ZC(2)(s)H(s, 2)

]]
.

Form (15) and from 1
αZC(1)(s) = ZC(1)(αs) we obtain

H(s, 0) =
[ 1

R(1)
, ZC(1)(R(1)s), ZC(1)(R(2)s), ZC(2)(R(2)s), ZC(2)(s)H(s, 2)

]
.

By recurrence we obtain the form (17). □

5. Fractal Cauer type ladder networks

Fractal Cauer type ladder networks are specific type of Cauer ladder networks which can
be defined using few parameters and exhibiting a rich dynamics. We give an explicit form for
the transfer function of a Fractal Cauer type ladder network.

5.1. Fractal Cauer ladder networks. We consider a Cauer type ladder network with coef-
ficients Rk and Lk for k ≥ 1. As usual, we identify Rk and Lk as the values of two functions
R : N → R and L : N → R at point k ∈ N.

A Cauer type ladder network is said fractal if there exists two constants σ and ρ, such that
we have the scaling relation

(19) R(k + 1) = σR(k), C(k + 1) = ρC(k).

5.2. Fractal Cauer transfer function. Then we can simplify the expression of the transfer
function H(s, 0) given by (17), as follows

(20) H(s, 0) =
[ 1

R1
, Z(s),

1

σ
Z(s),

1

ρσ
Z(s), . . . ,

1

ρnσn
Z(s),

1

ρnσn+1
Z(s), . . .

]
with Z(s) = ZC(1)(R(1)s).
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5.3. Diffusion equation associated to a fractal Cauer type network. Using (10) and
(11), we want to explicit the functions β and γ such that R and C satisfy the fractality
condition (19).

By definition, R and C depend on h. As a consequence, the fractal constant σ and ρ are
functions of h. Instead of searching β and γ, we look for two continuous functions r(ζ) and
c(ζ) satisfying

r(kh) = R(k), c(kh) = C(k).

Then the scaling relations (19) read as follows for all h > 0

(21)
r((k + 1)h) = σ(h) r(kh),

c((k + 1)h) = ρ(h) c(kh),
∀k≥0.

These two conditions are of the form: for a given ς : R → R find f : R → R such that for all
h > 0 we have

(22) f((k + 1)h) = ς(h)f(kh), ∀k≥0.

From (22) for k = 0 we have
f(h) = ς(h)f(0),

and we obtain a definition of function ς in (22):

(23) ς(h) =
f(h)

f(0)

Posing g(ζ) =
f(ζ)

f(0)
, the equation (22) with (23) reads as follows

(24) ∀h>0 g((k + 1)h) = g(h)g(kh), ∀k≥0.

This functional relation has very particular solution:

Theorem 5.1. A continuous real valued function g is a solution of (24) if anf only if it there
exists a constant λ ∈ R such that

(25) g(ζ) = eζλ.

Proof. First we proof that the functional relation (24) is satisfied. This proof consists with
three steps:

1) ∀k,k′∈N
g((k + k′)ζ) = g(kζ)g(k′ζ);

2) ∀a,b∈Q
g(a+ b) = g(a)g(b);

3) ∀u,v∈R
g(u+ v) = g(kζ)g(k′ζ);

The first equality is proved by induction. Indeed, we have

(26) g((k + k′)z) = g((k + k′ − 1)z + z) = g((k + k′ − 1)z)g(z).

Replacing g((k + k′ − 1)z) by g((k + k′ − 2)z)g(z) we obtain

(27) g((k + k′)z) = g((k + k′ − 2)z)g(z)g(z).

But g(z)g(z) = g(2z) so

(28) g((k + k′)z) = g((k + k′ − 2)z)g(2z).
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By iteration, we obtain for all i = 0, . . . , k′, that

(29) g((k + k′ − i)z + iz) = g((k + k′ − i)z)g(iz).

In particular, for i = k′, we obtain

(30) g((k + k′)z) = g(kz)g(k′z).

As z can be negative, the result extend to k, k′ ∈ Z.
The second equality is a simple computation using equality 1). We consider two rational

numbers of the form m/n and p/q with n, q ∈ N∗ and m,n ∈ N. We have

(31) g

(
m

n
+

p

q

)
= g

(
mq + np

nq

)
= g

(
(mq + np)

1

nq

)
Using equality 1), we then obtain

(32) g

(
m

n
+

p

q

)
= g

(
mq

1

nq

)
g

(
np

1

nq

)
= g

(m
n

)
g

(
p

q

)
.

The last equality is proved by density using the continuity of g. Let u, v ∈ R+ and un, vn,
n ∈ N be two sequences of rational numbers converging to u and v respectively. Then, for all
n ∈ N, we have by equality 2) that

(33) g(un + vn) = g(un)g(vn).

Taking the limit when n goes to +∞ and by continuity of g, we obtain for all u, v ∈ R that

(34) g(u+ v) = g(u)g(v).

As g is a positive function, the previous equality means that g is a continuous morphism of
the additive group (R,+) to the multiplicative group (R+,×). It is known in this case that g
must be of the form g(z) = eλz for a given λ ∈ R. □

Using the previous Theorem, we obtain the following structure result:

Theorem 5.2. Continuous positive real valued functions R and C satisfy equality (10) and
(11), respectively, if and only if there exists two real constants λR and λC such that R(z) =

R0e
λRz and C(z) = C0e

λCz

As a consequence, Fractal Cauer type networks are associated to diffusion equations char-
acterized by β(z) = −β0e

−λRz and γ(z) = −γ0e
−λCz.

We then obtain the following connection between Fractal Cauer type networks and gener-
alized diffusion equations:

Theorem 5.3. Fractal Cauer type networks with characteristics λR and λC are in one to one
correspondence for all h > 0 with the discretization in space along the space-scale {kh}, k ∈ N
of the diffusion equation with non-constant diffusion coefficient

(35) ∂tu = −γ0e
−λCz∂z

(
−β0e

−λRz∂zu
)
.
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6. Fractional behavior of fractal Cauer networks

A fractional behavior is associated to a transfer function of the form

(36) H(s) = csν ,

where c and ν are two constants. The main problem is to determine if a fractal Cauer type
systems exhibits a fractional behavior and if yes, to characterize the exponent.

We first derive structural relations satisfied by the transfer function of fractal Causer net-
works and we then determine the possible fractional behaviors.

6.1. Structural relations. Let us denote by g(z, σ, ρ) the function

(37) g(z, σ, ρ) = [z, zσ−1, z(σρ)−1, z(σ2ρ)−1, z(σ2ρ2)−1, . . . ].

Then, using equation (20), we have

(38) H(s, σ, ρ) = [R−1
1 , g(Z(s), σ, ρ)].

We have the following functional relation satisfied by the function g:

Theorem 6.1. The function g satisfies

(39) g(Z(s), σ, ρ) =
Z(z)

1 + g(Z(σs), ρ, σ)
.

It is important to notice the permutation between σ and ρ in the formula (39). Formula
(6.1) was first stated by J. Sabatier in ([6], Property 1 p.249) without a formal proof.

Proof. Using equality (15) we can write

(40) g(Z(s), σ, ρ) = [Z(s), [Z(s)σ−1, Z(s)(σρ)−1, . . . , Z(s)(σρ)−n, Z(s)σ−1(σρ)−n, . . . ]].

As we have Z(σs) = Z(s)σ−1, we obtain
(41)
[Z(s)σ−1, . . . , Z(s)(σρ)−n, Z(s)σ−1(σρ)−n, . . . ] = [Z(σs), Z(σs)ρ−1, . . . , Z(σs)(ρσ)−n, Z(σs)ρ−1(ρσ)−n, . . . ],

= g(Z(σs), ρ, σ).

This concludes the proof. □

The previous functional relation is difficult to study directly. We can look for a simplified
version of it following an idea already used by A. Oustaloup in [[2],p.208]:

Let us assume that s is such that g satisfies

(42) | g(Z(s), ρ, σ) |>> 1

or equivalently that

(43) | g(Z(s), ρ, σ) |−1<< 1.

Let 1 >> ϵ > 0 be such that

(44) | g(Z(s), ρ, σ) |−1< ϵ.

We consider the simplified functional relation

(45) g(Z(s), σ, ρ)g(Z(σs), ρ, σ) =
Z(s)

1 + ϵ
,
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corresponding to an approximation of (39).

In the next Section, we characterize the fractional behaviors compatible with the functional
relation (45).

6.2. Fractional behaviors. We look for solutions of (45) of the form

(46) g(Z(s), σ, ρ; ϵ) = K(σ, ρ; ϵ)Z(s)n(σ,ρ).

Our goal is to determine the possible values for the exponent n(σ, ρ).

Replacing g by its expression (46) in (45), we obtain:

(47) K(σ, ρ; ϵ)K(ρ, σ; ϵ)Z(s)n(σ,ρ)+n(ρ,σ)σ−n(ρ,σ) =
Z(s)

1 + ϵ
.

As a consequence, we obtain by identification the following system:

(48) K(σ, ρ; ϵ)K(ρ, σ; ϵ) =
σn(ρ,σ)

1 + ϵ
,

n(σ, ρ+ n(ρ, σ) = 1.

The first equation of (48) must be valid by exchanging the role of σ and ρ due to the
symmetry of the left hand side. As a consequence, we must have:

(49)
σn(ρ,σ)

1 + ϵ
=

ρn(σ,ρ)

1 + ϵ
.

As n(ρ, σ) = 1−n(σ, ρ) by the second equation of (48), we deduce by replacing in (49) that

(50) σ = (σρ)n(σ,ρ).

We then deduce the following theorem:

Theorem 6.2. Fractional behaviors of the form (46) satisfying the simplified functional rela-
tion (45) possess a fractional exponent given by

(51) n(σ, ρ) =
ln(σ)

ln(σρ)
.

The previous result appear in ([6],Appendix 2, (A2.28)) as a consequences of relations
satisfied by a formal expansion of the function g (see [6],Theorem 1).

7. Conclusion and perspectives

The previous results can be used in a variety of situations as already stressed by J. Sabatier
in [6] and V. Tartaglione et al. in [4, 3] covering application to the modeling of diffusion in
materials used for the storage of Hydrogen. The functional relations satisfied by the transfer
function of a Fractal Cauer type ladder networks is very specific and the previous discussion
is only a first step in its study. In particular, two mathematical directions deserve more
attention:
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• J. Sabatier in ([6],Theorem 1) and V. Tartagione et al. in [3] discuss a result concerning
the asymptotic behavior of the transfer function using an explicit expression (see [3],
Theorem 7.1. and details in Appendix B). The proof is based on an assumed form
for the transfer function which is not proved in the paper. A complete and detailed
discussion of this result is then needed.

• J. Sabatier [6] discuss distributions, i.e. relations between the parameters of the Cauer
type networks or equivalently different space scale discretization of a diffusion equation
with spatially dependent coefficient, which are going beyond geometric distribution
(see [6],p.250) and leading to power law behaviour. It will be interesting to give a
full characterization of the possible distributions as well as the form of the associated
coefficients corresponding to the class discuss in [6].

From the application point of view, it would be nice to give full characterization of the
diffusion properties of some specific material like COF (Covalent Organic Framework) or
MOF (Metal-Organic Framework) (see [5] for a review) using the previous approach.
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