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DISJOINT AND COMMON HYPERCYCLIC ALGEBRAS

FRÉDÉRIC BAYART, FERNANDO COSTA JÚNIOR, AND DIMITRIS PAPATHANASIOU

Abstract. Over time the concept of hypercyclicity has been explored in different man-
ners and contexts, gaining new forms and applications. In particular when the space
has an adjacent structure, we can always look for sets of hypercyclic vectors compatible
with that framework. In this paper we deal with hypercyclic operators acting on Fréchet
sequence algebras and give criteria for the existence of common and disjoint hypercyclic
algebras.

1. Introduction

This paper goes over some structures of hypercyclic vectors in a linear dynamical system
(X,T ), that is, a couple of a topological vector space X and a continuous linear operator
T on X. We say that a vector x ∈ X is hypercyclic for T when its orbit Orb(x, T ) :=
{x, Tx, T 2x, ...} is dense in X. Since its first appearance in the ’80s with the thesis of
Kitai (see [10]), this concept has been the object of multiple interesting generalizations
and modifications which yielded to many new related concepts (frequent hypercyclicity,
common hypercyclicity, disjoint hypercyclicity, etc.).

When the underlying space has a richer structure, it is natural to investigate the existence
of sets of hypercyclic vectors maintaining that framework. For instance, when X is an F -
algebra, that is, a metrizable and complete topological algebra, and denoting by HC(T )
the set of all hypercyclic vectors for T , it is natural to ask whether HC(T )∪{0} contains a
non-trivial algebra. This is what we call a hypercyclic algebra. The first result in this vein
was done independently by Shkarin in [11] and by Bayart and Matheron in [3]. They have
shown that the derivation operator D : f 7→ f ′, acting on the Fréchet algebra H(C) of
entire functions endowed with the pointwise multiplication, supports a hypercyclic algebra.

In this paper we are interested in the existence of algebraic structures within two concepts
related to hypercyclicity, namely disjoint and common hypercyclicity. We will study them
in the context of weighted backward shifts on Fréchet sequence algebras. Precisely, we
assume that X is a subspace of the space ω = CN0 of all complex sequences, whose topology
is induced by a non-decreasing sequence of seminorms (‖ · ‖q)q≥1 and that X is endowed
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with a product · such that, for all x, y ∈ X, all q ≥ 1,

‖x · y‖q ≤ ‖x‖q × ‖y‖q.

There are two natural products on a Fréchet sequence space: the coordinatewise product
and the convolution or Cauchy product. They are defined as follows. Let (an)n≥0 and
(bn)n≥0 be sequences in ω. Their coordinatewise product is defined as

(an)n · (bn)n = (anbn)n.

Their convolution product is defined as

(an)n · (bn)n = (cn)n,

where cn =
∑n

k=0 akbn−k for all n ≥ 0. It is clear that `p and c0 are Fréchet sequence
algebras for the coordinatewise product, and that `1 is also a Fréchet sequence algebra for
the convolution product. Endowing H(C) with∥∥∥∥∥∑

n≥0

anz
n

∥∥∥∥∥
q

=
∑
n≥0

|an|qn

and ω with

‖(xn)‖q =

q∑
n=0

|xn|,

we also obtain that H(C) and ω are Fréchet sequence algebras for both products (on H(C),
the Cauchy product of f and g is nothing else but the product of the two functions f and
g).

Our results will cover both the coordinatewise and the Cauchy product. Before go-
ing further, we mention that they behave very differently. The main point is that the
coordinatewise product preserves the support, whereas the Cauchy product mixes it. In
particular, if x and y are two vectors with disjoint supports, then (x + y)m = xm + ym

for the coordinatewise product whereas this is not at all the case for the Cauchy product.
This explains why the latter case is considerably more difficult to handle.

As announced above, we will work with weighted backward shifts, one of the favourite
class of examples in linear dynamics. Given a sequence of nonzero complex numbers
w = (wn)n∈N, the (unilateral) weighted backward shift Bw with weight w is defined by

Bw(x0, x1, . . . ) = (w1x1, w2x2, . . . ).

The weight w will be called admissible (for X) if Bw is a bounded operator on X. It is
known that, provided the canonical basis (en) is a Schauder basis of X, Bw is hypercyclic
if and only if there exists a sequence (nk) such that for all l ∈ N,

(
(wl+1 · · ·wnk+l)

−1enk+l

)
goes to zero.
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1.1. Disjoint hypercyclic algebras. The notion of disjointness was introduced in linear
dynamics in [5] and [6]; we shall limit ourselves to the case of two operators. We say
that two operators T1 and T2 acting on the same F -space X are disjointly hypercyclic if
there exists a vector x ∈ X, called a disjointly hypercyclic vector for T1 and T2, such that
(T n1 x, T

n
2 x)n≥0 is dense in X2. Many examples or counterexamples of disjointly hypercyclic

operators can be found in the literature. In particular, in [6] and in [7], our favourite
examples, weighted backward shifts, are studied in depth: in [6], it is characterized when
two shifts Br1

1 and Br2
2 are disjointly hypercyclic on `p when they are not raised to the same

power (namely r1 < r2), whereas in [7] such a characterization is given when r1 = r2 = 1.
From the proofs given in [6] and in [7] we see that the two cases are very different, as it
will become clearer later on in this paper.

Assume now that X is an algebra. We say that T1 and T2 support a disjoint hypercyclic
algebra if there exists a nontrivial subalgebra A of X such that any non zero element of
A is a disjointly hypercyclic vector for T1 and T2. We will study whether two backward
shifts acting on a Fréchet sequence algebra X support a disjoint hypercyclic algebra or
not. When X is endowed with the coordinatewise product, mixing the arguments of [4]
with that of [6, 7], we will get a complete characterization of the existence of a disjoint
hypercyclic algebra for Br1

1 and Br2
2 (to avoid cumbersome statements, we will focus on

the cases r1 = r2 = 1 and r1 = 1 < r2 = 2). Despite the problem of the support, we will
also succeed to provide such a characterization when X is endowed with the convolution
product and r1 = r2 = 1 (see the forthcoming Theorems 2.5, 2.10, 2.19). The most
difficult case is that of the Cauchy product and two shifts raised to different powers. We
shall concentrate ourselves on the multiples of B and D. In [6], it is shown that λB and
µB2 are disjointly hypercyclic on `1 if and only if 1 < λ < µ and that, for all λ, µ > 0, λD
and µD2 are disjointly hypercyclic on H(C). Under these assumptions we will even get a
disjointly hypercyclic algebra.

Theorem 1.1. Let λ, µ > 0.

a) λB and µB2 support a disjoint hypercyclic algebra on `1 (endowed with the convolution
product) if and only if 1 < λ < µ.

b) λD and µD2 support a disjoint hypercyclic algebra on H(C).

1.2. Common hypercyclic algebras. If (Tλ)λ∈Λ is a family of hypercyclic operators
acting on the same F -space X, it is natural to ask whether it admits a common hypercyclic
vector, namely if

⋂
λ∈ΛHC(Tλ) is non-empty. This is trivial if Λ is countable since each

HC(Tλ) is a residual set. However, this becomes already an issue for the first natural
example which comes in mind, that is the multiples of the unweighted backward shift B.
It was proved by Abakumov and Gordon in [1] that indeed

⋂
λ>1HC(λB) 6= ∅ where B

is seen acting on any `p-space or on c0. Further examples were given in subsequent papers
(for instance in [8], [2])

Suppose now that we have a family (Tλ)λ∈Λ of operators acting on the same F -algebra,
each one supporting a hypercyclic algebra. It is natural to ask whether

⋂
λ∈Λ HC(Tλ)∪{0}

contains a nontrivial algebra, which will be called a common hypercyclic algebra. Even when
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Λ has two elements, this is unclear. In this paper, we concentrate ourselves on the case
where (Tλ) is a family of weighted shifts acting on X.

Firstly, regarding Fréchet sequence algebras endowed with the coordinatewise product,
we have been able to get a general statement covering all the cases (and even more!) known
for the existence of a common hypercyclic vector. As a corollary of our work, we have the
following statement.

Theorem 1.2. (i) Let X = `p, 1 ≤ p < +∞, or X = c0 endowed with the coordinatewise
product. Then the family (λB)λ>1 admits a common hypercyclic algebra.

(ii) Let X = `p, 1 ≤ p < +∞, or X = c0 endowed with the coordinatewise product. For
λ > 0, define w(λ) = (1 + λ/n)n≥1. Then the family (Bw(λ))λ>0 admits a common
hypercyclic algebra.

(iii) Let X = H(C) endowed with the coordinatewise product. Then the family (λD)λ>0

admits a common hypercyclic algebra.

The statement of (ii) is particularly interesting. Indeed, for this family of weights, the
existence of a single common hypercyclic vector was only known for λ > 1/p.

Again, it is much more difficult to handle Fréchet sequence algebras endowed with the
Cauchy product. Nevertheless, we will be able to give a general sufficient condition which
implies the following result.

Theorem 1.3. (i) Let X = `1 endowed with the Cauchy product. Then (λB)λ>1 admits
a common hypercyclic algebra.

(ii) Let X = H(C) endowed with the Cauchy product. Then (λD)λ>0 admits a common
hypercyclic algebra.

1.3. Organization of the paper. All the criteria of this paper are based on a Baire
argument. This idea first appeared in [3, Remark 8.28] and is a sort of Birkhoff transitivity
theorem for hypercyclic algebras. Here we adapt this criterion to produce either common or
disjoint hypercyclic algebras. Each section begins with its own particular criterion followed
by more practical criteria for the particular case of Fréchet sequence algebras and then we
apply these results on some classical examples.

1.4. Notations. The symbol N will stand for the set of positive integers, whereas N0 =
N ∪ {0}. We shall denote by Pf (A) the set of finite subsets of a given set A.

For x =
∑+∞

n=0 xnen ∈ ω, the support of x is equal to supp(x) = {n ∈ N0 : xn 6= 0}. The
notation c00 will denote the set of sequences in ω with finite support.

For u ∈ Xd and α ∈ Nd
0, uα will mean uα1

1 · · ·u
αd
d . If z is any complex number and

m ∈ N, z1/m will denote any mth root of z.
When working on a Fréchet space (X, ‖ · ‖p), it is often convenient to endow X with an

F -norm ‖ · ‖ defining the topology of X (see [9, Section 2.1]). Such an F -norm can be
defined by the formula

‖x‖ =
+∞∑
p=1

1

2p
min(1, ‖x‖p).
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In particular, an F -norm satisfies the triangle inequality and the inequality

(1) ∀λ ∈ C, ∀x ∈ X, ‖λx‖ ≤ (|λ|+ 1)‖x‖,
a property which replaces the positive homogeneity of the norm.

We finally recall some results on unconditional convergence in Fréchet spaces (see for
instance [9, Appendix A]). A series

∑+∞
n=0 xn in a Fréchet space X is called unconditionally

convergent if for any bijection π : N0 → N0, the series
∑+∞

n=0 xπ(n) is convergent. This
amounts to saying that, for any ε > 0, there is some N ∈ N such that, whenever supn |αn| ≤
1, the series

∑+∞
n=0 αnxn converges and∥∥∥∥∥

+∞∑
n=N

αnxn

∥∥∥∥∥ < ε.

Acknowledgement. We thank the referee for his/her very careful reading of the paper
which leads to several significant improvements.

2. Disjoint hypercyclic algebras

2.1. How to get a disjoint hypercyclic algebra. As described in the introduction, we
adapt Birkhoff’s transitivity theorem to get a criterion ensuring disjoint hypercyclicity. We
may observe the similarity with [6, Proposition 2.3].

Proposition 2.1. Let T1 and T2 be two operators acting on the same F -algebra X. Assume
that for each I ∈ Pf (N)\{∅}, there exists m0 ∈ I such that, for all U , V1 and V2 nonempty
open subsets of X, for all W neighbourhood of zero, there exist u ∈ U and N ∈ N such
that {

TN1 (un) ∈ W, TN2 (un) ∈ W for all n ∈ I, n 6= m0

TN1 (um0) ∈ V1, T
N
2 (um0) ∈ V2.

Then T1 and T2 admit a disjoint hypercyclic algebra.

Proof. For V, V ′ ⊂ X open and nonempty, for W a neighbourhood of zero, for I ⊂
Pf (N)\{∅}, let us define

A(I, V, V ′,W ) =
{
u ∈ X : ∃N ∈ N, TN1 (un) ∈ W for all n ∈ I\{m0(I)}

TN2 (un) ∈ W for all n ∈ I\{m0(I)}

TN1 (um0(I)) ∈ V, TN2 (um0(I)) ∈ V ′
}

Fixing (Vk) a basis of open subsets of X and (Wl) a basis of neighbourhoods of 0, one can
verify that each set A(I, Vk, Vk′ ,Wl) is open and dense, hence

⋂
I,k,k′,lA(I, Vk, Vk′ ,Wl) is

non-empty and we can argue exactly like in [4, Theorem 2.1] to prove that any vector in
this intersection generates a disjoint hypercyclic algebra for T1 and T2. �

Similarly to [4], for the Cauchy product we will apply this proposition for m0 = max I
and for the coordinatewise product we will do the opposite choice m0 = min I. The
corresponding corollaries are the following.
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Corollary 2.2. Let T1 and T2 be two operators acting on the same F -algebra X. As-
sume that for all m ≥ 1, for all U , V1 and V2 nonempty open subsets of X, for all W
neighbourhood of zero, there exist u ∈ U and N ∈ N such that{

TN1 (un) ∈ W, TN2 (un) ∈ W for all n < m
TN1 (um) ∈ V1, T

N
2 (um) ∈ V2.

Then T1 and T2 admit a disjoint hypercyclic algebra.

Corollary 2.3. Let T1 and T2 be two operators acting on the same F -algebra X. Assume
that for all positive integers m0 < m1, for all U , V1 and V2 nonempty open subsets of X,
for all W neighbourhood of zero, there exist u ∈ U and N ∈ N such that{

TN1 (un) ∈ W, TN2 (un) ∈ W for all n ∈ {m0 + 1, . . . ,m1}
TN1 (um0) ∈ V1, T

N
2 (um0) ∈ V2.

Then T1 and T2 admit a disjoint hypercyclic algebra.

2.2. Disjoint hypercyclic algebras for backward shifts - coordinatewise product.
We now show how these general results can be applied to get disjoint hypercyclic algebras
for backward shifts operators. We first begin with Fréchet sequence algebras endowed with
the coordinatewise product. We get complete characterizations either for the case where
the shifts are raised to different powers as for the case where the powers are the same.

We recall that a Fréchet space (X, (‖ · ‖q)) admits a continuous norm if there exists a
norm ‖ · ‖ : X → R that is continuous for the topology of X, namely there exists q ∈ N
and C > 0 with ‖x‖ ≤ C‖x‖q for all x ∈ X. In particular, for any q large enough, ‖ · ‖q
itself is a norm. The following lemma is taken from [4, Lemma 4.1].

Lemma 2.4. Let X be a Fréchet sequence algebra for the coordinatewise product and with
a continuous norm. Then the sequence (en) is bounded below.

This follows from the simple observation that, for all q ≥ 0, 0 < ‖en‖q = ‖en ·en‖q ≤ ‖en‖2
q,

which implies ‖en‖q ≥ 1.

2.2.1. Backward shifts raised to different powers. We first state a characterization of the
existence of a disjoint hypercyclic algebra for B1 and B2

2 when B1 and B2 are two weighted
shifts on the Fréchet sequence algebra X.

Theorem 2.5. Let X be a Fréchet sequence algebra for the coordinatewise product with a
continuous norm and such that (en) is a Schauder basis. Let B1 = Bw(1) and B2 = Bw(2)

be two bounded weighted shifts on X. The following assertions are equivalent.

(i) B1 and B2
2 support a disjoint hypercyclic algebra.

(ii) For all p ∈ N, for all m ≥ 1, there exists a sequence of integers (nk) such that, for
all l = 0, ..., p, (

w
(1)
l+1 · · ·w

(1)
nk+l

)−1/m
enk+l

k→+∞−−−−→ 0,(
w

(2)
l+1 · · ·w

(2)
2nk+l

)−1/m
e2nk+l

k→+∞−−−−→ 0,



DISJOINT AND COMMON HYPERCYCLIC ALGEBRAS 7

w
(1)
nk+l+1 · · ·w

(1)
2nk+l

w
(2)
l+1 · · ·w

(2)
2nk+l

enk+l
k→+∞−−−−→ 0.

(iii) There exists a sequence (nk) such that, for all l ≥ 0, for all γ > 0,(
w

(1)
l+1 · · ·w

(1)
nk+l

)−γ
enk+l

k→+∞−−−−→ 0,(
w

(2)
l+1 · · ·w

(2)
2nk+l

)−γ
e2nk+l

k→+∞−−−−→ 0,

w
(1)
nk+l+1 · · ·w

(1)
2nk+l

w
(2)
l+1 · · ·w

(2)
2nk+l

enk+l
k→+∞−−−−→ 0.

Proof. (i) =⇒ (ii). Let m ≥ 1 and let x ∈ X, x =
∑+∞

n=0 xnen, be such that xm

is a disjoint hypercyclic vector for B1 and B2
2 . Let p ≥ 1 and let (nk) be a sequence

of integers such that (Bjnk
j (xm))k goes to e0 + · · · + ep, j = 1, 2. Let us see what we

obtain for j = 1. Since convergence in X implies coordinatewise convergence, for all l =

0, ..., p, (w
(1)
l+1 · · ·w

(1)
nk+lx

m
nk+l) converges to 1. Hence the sequences

(
(w

(1)
l+1 · · ·w

(1)
nk+l)

1/mxnk+l

)
are bounded below. Writing(

w
(1)
l+1 · · ·w

(1)
nk+l

)−1/m
enk+l =

1(
w

(1)
l+1 · · ·w

(1)
nk+l

)1/m
xnk+l

xnk+lenk+l

we get that
(
w

(1)
l+1 · · ·w

(1)
nk+l

)−1/m
enk+l

k→+∞−−−−→ 0. Similarly we obtain for all l = 0, . . . , p,(
w

(2)
l+1 · · ·w

(2)
2nk+l

)−1/m
e2nk+l

k→+∞−−−−→ 0,

w
(2)
l+1 · · ·w

(2)
2nk+lx

m
2nk+l

k→+∞−−−−→ 1.(2)

Moreover, write

Bnk
1 (xm) = z +

p∑
l=0

w
(1)
nk+l+1 · · ·w

(1)
2nk+lx

m
2nk+lenk+l + z′,

with supp(z) ⊂ [0, nk) and supp(z′) ⊂ (nk+p,+∞). Again, since convergence in X implies
pointwise convergence, we get

w
(1)
nk+l+1 · · ·w

(1)
2nk+lx

m
2nk+lenk+l

k→+∞−−−−→ 0 for all l = 0, . . . , p

which in turn, in view of (2), gives

w
(1)
nk+l+1 · · ·w

(1)
2nk+l

w
(2)
l+1 · · ·w

(2)
2nk+l

enk+l
k→+∞−−−−→ 0 for all l = 0, . . . , p.

(ii) =⇒ (iii). This follows from a diagonal argument.
(iii) =⇒ (i). We intend to apply Corollary 2.3. Let m0 < m1 be two positive integers,

let U, V1, V2 be nonempty open subsets of X and let W be a neighbourhood of 0. Let x ∈ U
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with finite support, let yi =
∑p

l=0 yi,lel belonging to Vi, i = 1, 2. We set

u = x+

p∑
l=0

y
1/m0

1,l

(w
(1)
l+1 · · ·w

(1)
nk+l)

1/m0

enk+l +

p∑
l=0

y
1/m0

2,l

(w
(2)
l+1 · · ·w

(2)
2nk+l)

1/m0

e2nk+l,

which belongs to U for all large values of k. We recall that, since the sequence (en) is

bounded below, for all l ≥ 0, the sequences
(
w

(1)
l+1 · · ·w

(1)
nk+l

)
and

(
w

(2)
l+1 · · ·w

(2)
2nk+l

)
tend to

+∞. Let n ∈ {m0, . . . ,m1} and let us compute B2nk
2 (un):

B2nk
2 (un) =

p∑
l=0

y
n/m0

2,l

(w
(2)
l+1 · · ·w

(2)
2nk+l)

n
m0
−1
el.

The assumptions tell us that B2nk
2 (um0) = y2 while B2nk

2 (un) tends to 0 if n > m0. On the
other hand,

Bnk
1 (un) =

p∑
l=0

y
n/m0

1,l(
w

(1)
l+1 · · ·w

(1)
nk+l

) n
m0
−1
el +

p∑
l=0

y
n/m0

2,l

w
(1)
nk+l+1 · · ·w

(1)
2nk+l(

w
(2)
l+1 · · ·w

(2)
2nk+l

) n
m0

enk+l.

Writing

w
(1)
nk+l+1 · · ·w

(1)
2nk+l(

w
(2)
l+1 · · ·w

(2)
2nk+l

) n
m0

enk+l =
1(

w
(2)
l+1 · · ·w

(2)
2nk+l

) n
m0
−1
×
w

(1)
nk+l+1 · · ·w

(1)
2nk+l

w
(2)
l+1 · · ·w

(2)
2nk+l

enk+l,

we get that the second (finite) sum tends to zero for all n ≥ m0, whereas the first sum can
be handled exactly as for B2. �

Remark 2.6. If we are just interested in disjointly hypercyclic operators, our proof can be
easily modified to give the following extension of [6, Theorem 4.1] : let X be a Fréchet
sequence space such that (en) is a Schauder basis for X. Let B1 = Bw(1) and B2 = Bw(2)

be two bounded weighted shifts on X. Then B1 and B2
2 are disjointly hypercyclic if and

only if there exists a sequence (nk) such that, for all l ≥ 0,(
w

(1)
l+1 · · ·w

(1)
nk+l

)−1
enk+l

k→+∞−−−−→ 0,(
w

(2)
l+1 · · ·w

(2)
2nk+l

)−1
e2nk+l

k→+∞−−−−→ 0,

w
(1)
nk+l+1 · · ·w

(1)
2nk+l

w
(2)
l+1 · · ·w

(2)
2nk+l

enk+l
k→+∞−−−−→ 0.

We point out that we do not need that (en) is bounded below. This last assumption

was only useful when n > m0, where we used it to deduce that (w
(1)
l+1 · · ·w

(1)
nk+l

)
and(

w
(2)
l+1 · · ·w

(2)
2nk+l

)
tend to +∞. For the existence of a disjointly hypercyclic vector, we

always have n = m0 = 1.

This remark also leads us to an interesting example of a couple of disjointly hypercyclic
operators not having a disjoint hypercyclic algebra.
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Example 2.7. Let B1 and B2
2 be weighted shifts induced respectively by the weight se-

quences w
(1)
n = n2

(n−1)2
with w

(1)
1 = 1 and w

(2)
n = 2, n ≥ 1, both acting on the weighted `1(v)

with vn = n for all n ≥ 1. By weighted `1(v) we mean the Banach space

`1(v) = {(xn)n :
∞∑
n=1

|xn|vn < +∞}

equipped with the weighted `1-norm

‖(xn)n‖ =
∞∑
n=1

|xn|vn.

For this example, all conditions of the previous theorem are satisfied for m = 1 (which
grants a disjointly hypercyclic vector) but, for m = 2 and for any sequence (nk)k, we have
that

‖
(
w

(1)
1 · · ·w(1)

nk

)−1/2
enk‖ =

nk
(n2

k)
1/2

= 1

does not go to 0 as k → +∞.

Remark 2.8. In particular, if the sequence (en) is bounded (it is already bounded below),
the conditions of Theorem 2.5 are equivalent to say that there exists a sequence (nk) such
that, for all l = 0, ..., p,

w
(1)
l+1 · · ·w

(1)
nk+l

k→+∞−−−−→ +∞,

w
(2)
l+1 · · ·w

(2)
2nk+l

k→+∞−−−−→ +∞,

w
(1)
nk+l+1 · · ·w

(1)
2nk+l

w
(2)
l+1 · · ·w

(2)
2nk+l

k→+∞−−−−→ 0.

In turn, this amounts to saying that B1 and B2
2 are disjointly hypercyclic. Hence, all the

examples given in [6] support a disjoint hypercyclic algebra.

It is plain that this result can be extended for a finite list Bn1

w(1) , ..., B
nr
w(r) raised to different

powers n1, ..., nr. The statement of precise conditions are left to the reader.
We close this subsection by addressing the case of ω which is the prototypical example

of a Fréchet space without a continuous norm. The following result resembles [4, Theorem
4.8].

Theorem 2.9. If B1 = Bw(1) and B2 = Bw(2) are weighted backward shifts on ω endowed
with the coordinatewise product, then B1 and B2

2 support a disjoint hypercyclic algebra.

Proof. For V1 and V2 non-empty open subsets of ω, I ⊂ N finite and non-empty and s > 0,
let us define

E(I, s) =
{
P ∈ C[z] : |P̂ (min I)| ≥ 1/s, |P̂ (max I)| ≥ 1/s,

|P̂ (n)| ≤ s for all n ∈ N,
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P̂ (n) = 0 when n /∈ I
}

A(I, s, V1, V2) =
{
u ∈ ω : ∀P ∈ E(I, s), ∃N ≥ 1, BiN

i (P (u)) ∈ Vi, i = 1, 2
}
.

By a Baire category argument, it is enough to prove that each set A(I, s, V1, V2) is dense
and open. The last property follows easily from the compactness of E(I, s). Thus, let us fix
I, s, V1 and V2 and let us prove that A(I, s, V1, V2) is dense. We set m0 = min(I) and m1 =
max(I). Let U be a non-empty open subset of ω. Let p ∈ N0, u0, . . . , up, vi,0, . . . , vi,p ∈ C,
for i = 1, 2, and ε > 0 be such that, for all x, y1 and y2 in ω,

|xl − ul| < ε for all l = 0, . . . , p implies x ∈ U,

|yi,l − vi,l| < ε for all l = 0, . . . , p implies yi ∈ Vi, i = 1, 2.

Let us first look at the sequence (w
(1)
1 · · ·w

(1)
n ). Three possibilities (which are not mutually

exclusive) can occur:

• either (w
(1)
1 · · ·w

(1)
n ) is bounded and bounded below;

• or it admits a subsequence going to zero;
• or it admits a subsequence going to +∞.

Thus, we get the existence of a subsequence (w
(1)
1 · · ·w

(1)
nk ) going to a1,0 ∈ [0,+∞]. We

then do the same with (w
(1)
2 · · ·w

(1)
nk+1) and so on. By successive extractions, we get the

existence of a sequence of integers (nk) (we can assume that nk+1 − 2nk > p and nk > p
for all k) and of ai,0, . . . , ai,p ∈ [0,+∞], i = 1, 2, such that, for all l = 0, . . . , p, and

i = 1, 2, (w
(i)
l+1 · · ·w

(i)
nk+l) tends to ai,l. We set Ai,1 = {l ∈ {0, . . . , p} : ai,l = +∞},

Ai,2 = {l ∈ {0, . . . , p} : ai,l = 0} and Ai,3 = {l ∈ {0, . . . , p} : ai,l ∈ (0,+∞)}.
We fix now (α(k)), (β(k)) two sequences of non-zero complex numbers and (zi(k)),

i = 1, 2, sequences in Cp+1 such that (α(k), β(k), z1(k), z2(k)) is dense in C2(p+2). We set

x = u+
+∞∑
k=0

y1(k) +
+∞∑
k=0

y2(k)

where, for l = 0, . . . , p and i = 1, 2,

yi,ink+l(k) =



v
1/m0

i,l

α(k)1/m0(w
(i)
l+1 · · ·w

(i)
nk+l)

1/m0

provided l ∈ Ai,1,

v
1/m1

i,l

β(k)1/m1(w
(i)
l+1 · · ·w

(i)
nk+l)

1/m1

provided l ∈ Ai,2,

zi,l(k) provided l ∈ Ai,3
and yi,j(k) = 0 if j 6= ink, . . . , ink + p.

We claim that x ∈ U ∩ A(I, s, V1, V2). The definition of ε and p ensure that x ∈ U . Let

P ∈ E(I, s). There exists an increasing function φ : N → N such that α(φ(k)) → P̂ (m0),

β(φ(k)) → P̂ (m1) and ai,lP (zi,l(φ(k))) → vi,l for all l ∈ Ai,3 and i = 1, 2. We claim that
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(B
inφ(k)
i (P (x))) belongs to Vi, i = 1, 2, provided k is large enough. It suffices to prove that

for l = 0, . . . , p and i = 1, 2, the l-th coordinate of B
inφ(k)
i (P (x)) tends to vi,l. Assume first

that l ∈ Ai,1. This l-th coordinate is equal to

w
(i)
l+1 · · ·w

(i)
nφ(k)+l

P

 v
1/m0

i,l

α(φ(k))1/m0(w
(i)
l+1 · · ·w

(i)
nφ(k)+l

)1/m0

 .

Now, since w
(i)
l+1 · · ·w

(i)
nφ(k)+l

tends to +∞, and m0 = min(I),

w
(i)
l+1 · · ·w

(i)
nφ(k)+l

P

 v
1/m0

i,l

α(φ(k))1/m0(w
(i)
l+1 · · ·w

(i)
nφ(k)+l

)1/m0

 = P̂ (m0)
vi,l

α(φ(k))
+ o(1)

and this tends to vi,l. When l ∈ Ai,2, the proof is similar since now, because w
(i)
l+1 · · ·w

(i)
nφ(k)+l

tends to 0, and m1 = max(I),

w
(i)
l+1 · · ·w

(i)
nφ(k)+l

P

 v
1/m1

i,l

β(φ(k))1/m1(w
(i)
l+1 · · ·w

(i)
nφ(k)+l

)1/m1

 = P̂ (m1)
vi,l

β(φ(k))
+ o(1)

and this also goes to vi,l. Finally, when l ∈ Ai,3, the l-th coordinate of B
inφ(k)
i (P (x)) is

equal to w
(i)
l+1 · · ·w

(i)
nφ(k)+l

P (zi,l(φ(k))) which tends again to vi,l. �

2.2.2. Backward shifts raised to the same power. We now do the same for two shifts raised
to the same power.

Theorem 2.10. Let X be a Fréchet sequence algebra for the coordinatewise product with
a continuous norm and such that (en) is a Schauder basis. Let B1 = Bw(1) and B2 = Bw(2)

be two bounded weighted shifts on X. The following assertions are equivalent.

(i) B1 and B2 support a disjoint hypercyclic algebra.
(ii) For all p ∈ N, for all m ≥ 1, there exists a sequence (nk) such that(

w
(1)
l+1 · · ·w

(1)
nk+l

)−1/m
enk+l

k→+∞−−−−→ 0, for all l = 0, . . . , p,
(
w

(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

)
l≥0

: k ≥ 0

 is dense in ω.

(iii) There exists a sequence (nk) such that, for all γ > 0, for all l ≥ 0,(
w

(1)
l+1 · · ·w

(1)
nk+l

)−γ
enk+l

k→+∞−−−−→ 0
(
w

(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

)
l≥0

: k ≥ 0

 is dense in ω.
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Proof. (i) =⇒ (ii). Let m ≥ 1 and let x ∈ X, x =
∑+∞

n=0 xnen, be such that xm is a
disjointly hypercyclic vector for B1 and B2. Let also (λ(k)) be a dense sequence in ω of
vectors with finite support. We may assume that supp(λ(k)) ⊂ [0, k] and that, for any
fixed k0, there are infinitely many k such that λ(k) = λ(k0). We then choose an increasing
sequence of integers (nk) such that, for all k ≥ 1,∥∥∥∥∥Bnk

1 (xm)−
k∑
l=0

el

∥∥∥∥∥ < 1

k
,(3) ∥∥∥∥∥Bnk

2 (xm)−
k∑
l=0

λ
(k)
l el

∥∥∥∥∥ < 1

k
.(4)

As we have already observed, (3) implies that, for all l ≥ 0,(
w

(1)
l+1 · · ·w

(1)
nk+l

)−1/m
enk+l

k→+∞−−−−→ 0,

w
(1)
l+1 · · ·w

(1)
nk+lx

m
nk+l

k→+∞−−−−→ 1.

Let us now fix U a nonempty open subset of ω and k0 ∈ N be such that λ(k0) ∈ U . Let
(nφ(k)) be a subsequence of (nk) such that λ(φ(k)) = λk0 for all k. By (4), we know that

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

xmnφ(k)+l
k→+∞−−−−→ λ

(k0)
l for all l ≥ 0.

Combining the two last properties, we find that

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

w
(1)
l+1 · · ·w

(1)
nφ(k)+l

k→+∞−−−−→ λ
(k0)
l for all l ≥ 0.

Hence, for k large enough, w(2)
l+1 · · ·w

(2)
nφ(k)+l

w
(1)
l+1 · · ·w

(1)
nφ(k)+l


l≥0

∈ U.

(ii) =⇒ (iii). This follows from a diagonal argument.
(iii) =⇒ (i). Let m0 < m1 be two positive integers, let U, V1, V2 be nonempty open

subsets of X and let W be a neighbourhood of 0. Let x ∈ U with finite support, let
yi =

∑p
l=0 yi,lel belonging to Vi, i = 1, 2. Without loss of generality, we may assume that

y1,l 6= 0 for all l = 0, . . . , p. We then consider a sequence (nk) of integers such that, for all
l = 0, ..., p, (

w
(1)
l+1 · · ·w

(1)
nk+l

)−1/m0enk+l
k→+∞−−−−→ 0,

w
(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

k→+∞−−−−→ y2,l

y1,l

.(5)
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Observe that w
(1)
l+1 · · ·w

(1)
nk+l goes to +∞ for all l ≥ 0. We finally set

u = x+

p∑
l=0

y
1/m0

1,l(
w

(1)
l+1 · · ·w

(1)
nk+l

)1/m0
enk+l.

Clearly, u belongs to U (provided k is large enough), Bnk
1 (um0) = y1 and Bnk

1 (un) goes to
0 for all n > m0. Now, let us write

Bnk
2 (un) =

p∑
l=0

y
n/m0

1,l

w
(2)
l+1 · · ·w

(2)
nk+l(

w
(1)
l+1 · · ·w

(1)
nk+l

) n
m0

el.

If n = m0, then (5) tells us immediately that Bnk
2 (um) tends to y2. For n > m0,

y
n
m0
1,l

w
(2)
l+1 · · ·w

(2)
nk+l(

w
(1)
l+1 · · ·w

(1)
nk+l

) n
m0

∼k→+∞
y

n
m0
−1

1,l y2,l(
w

(1)
l+1 · · ·w

(1)
nk+l

) n
m0
−1
.

Since (w
(1)
l+1 · · ·w

(1)
nk+l) tends to +∞, this implies that Bnk

2 (un) belongs to W for k large
enough, so that we may apply Corollary 2.3 to prove that B1 and B2 support a disjoint
hypercyclic algebra. �

Remark 2.11. If we are just interested in disjointly hypercyclic operators, our proof can be
easily modified to give the following result : let X be a Fréchet sequence space such that
(en) is a Schauder basis for X. Let B1 = Bw(1) and B2 = Bw(2) be two bounded weighted
shifts on X. Then B1 and B2 are disjointly hypercyclic if and only if there exists a sequence

(nk) such that
(
(w

(1)
l+1 · · ·w

(1)
nk+l)

−1enk+l

)
tends to zero for all l ≥ 0 and the set

(
w

(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

)
l≥0

: k ≥ 0


is dense in ω.

Remark 2.12. In particular, if the sequence (en) is bounded, the conditions of the above
theorem are all equivalent to say that B1 and B2 are disjointly hypercyclic. Hence, all the
examples given in [7] support a disjoint hypercyclic algebra.

Finally, we address the case of ω.

Theorem 2.13. If B1 = Bw(1) and B2 = Bw(2) are weighted backward shifts on ω endowed
with the coordinatewise product, then the following are equivalent.

(i) B1 and B2 are disjointly hypercyclic
(ii) B1 and B2 support a disjoint hypercyclic algebra.

(iii) The set {(
w

(2)
l+1 · · ·w

(2)
n+l

w
(1)
l+1 · · ·w

(1)
n+l

)
l≥0

: n ≥ 0

}
is dense in ω.
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Proof. The implication (ii) ⇒ (i) is immediate. Let us first show that (i) ⇒ (iii). Let U
be a non-empty open subset of ω, p ∈ N0, u0, . . . , up ∈ C and ε > 0 be such that, for all
y ∈ ω

|yl − ul| < ε for all l = 0, . . . , p implies y ∈ U.
If x is a disjoint hypercyclic vector for B1 and B2, there is a subsequence (nk) such that

Bnk
1 x→

p∑
l=0

el

and

Bnk
2 x→

p∑
l=0

ulel.

That means that for all l = 0, . . . p,

w
(1)
l+1 · · ·w

(1)
nk+lxnk+l → 1

and

w
(2)
l+1 · · ·w

(2)
nk+lxnk+l → ul

from which we immediately get that

w
(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

→ ul.

Next, we show that (iii) ⇒ (ii). For V1 and V2 non-empty open subsets of ω, I ⊂ N
finite and non-empty and s > 0, let us define

E(I, s) =
{
P ∈ C[z] : |P̂ (min I)| ≥ 1/s, |P̂ (max I)| ≥ 1/s,

|P̂ (n)| ≤ s for all n ∈ N,

P̂ (n) = 0 when n /∈ I
}

A(I, s, V1, V2) =
{
u ∈ ω : ∀P ∈ E(I, s), ∃N ≥ 1, BN

i (P (u)) ∈ Vi, i = 1, 2
}
.

By a Baire category argument, it is enough to prove that each set A(I, s, V1, V2) is dense
and open. The last property follows easily from the compactness of E(I, s). Thus, let us fix
I, s, V1 and V2 and let us prove that A(I, s, V1, V2) is dense. We set m0 = min(I) and m1 =
max(I). Let U be a non-empty open subset of ω. Let p ∈ N0, u0, . . . , up, vi,0, . . . , vi,p ∈ C,
for i = 1, 2 (we may assume that v1,l 6= 0 for all l = 0, . . . , p), and ε > 0 be such that, for
all x, y1 and y2 in ω,

|xl − ul| < ε for all l = 0, . . . , p implies x ∈ U,

|yi,l − vi,l| < ε for all l = 0, . . . , p implies yi ∈ Vi, i = 1, 2.
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Let by assumption (nk) be a subsequence such that

w
(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

→ v2,l

v1,l

, l = 0, . . . , p.

By passing to a subsequence we may assume that n0 > p, that nk+1 − nk > p for all k,

and that there are a0, . . . , ap ∈ [0,+∞] such that, for all l = 0, . . . , p, (w
(1)
l+1 · · ·w

(1)
nk+l) tends

to al. We set A1 = {l ∈ {0, . . . , p} : al = +∞}, A2 = {l ∈ {0, . . . , p} : al = 0} and
A3 = {l ∈ {0, . . . , p} : al ∈ (0,+∞)}.

We fix now (α(k)), (β(k)) two sequences of non-zero complex numbers and (z(k)) a
sequence in Cp+1 such that (α(k), β(k), z(k)) is dense in Cp+3. We set

x = u+
+∞∑
k=0

y(k)

where, for l = 0, . . . , p,

ynk+l(k) =



v
1/m0

1,l

α(k)1/m0(w
(1)
l+1 · · ·w

(1)
nk+l)

1/m0

provided l ∈ A1,

v
1/m1

1,l

β(k)1/m1(w
(1)
l+1 · · ·w

(1)
nk+l)

1/m1

provided l ∈ A2,

zl(k) provided l ∈ A3

and yj(k) = 0 if j 6= nk, . . . , nk + p.
We claim that x ∈ U ∩ A(I, s, V1, V2). The definition of ε and p ensure that x ∈ U . Let

P ∈ E(I, s). There exists an increasing function φ : N → N such that α(φ(k)) → P̂ (m0),

β(φ(k)) → P̂ (m1) and alP (zl(φ(k))) → v1,l for all l ∈ A3. We claim that (B
nφ(k)
i (P (x)))

belongs to Vi, i = 1, 2, provided k is large enough. It suffices to prove that for l = 0, . . . , p
and i = 1, 2, the l-th coordinate of B

nφ(k)
i (P (x)) tends to vi,l. The details for the case i = 1

are identical as in [4, Theorem 4.8] hence we will present the case i = 2. Assume first that
l ∈ A1. The l-th coordinate of B

nφ(k)
2 (P (x)) is equal to

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

P

 v
1/m0

1,l

α(φ(k))1/m0(w
(1)
l+1 · · ·w

(1)
nφ(k)+l

)1/m0

 .

Now, since w
(1)
l+1 · · ·w

(1)
nφ(k)+l

tends to +∞, and m0 = min(I), we have for m > m0,

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

(w
(1)
l+1 · · ·w

(1)
nφ(k)+l

)m/m0

=
w

(2)
l+1 · · ·w

(2)
nφ(k)+l

w
(1)
l+1 · · ·w

(1)
nφ(k)+l

(w
(1)
l+1 · · ·w

(1)
nφ(k)+l

)
1− m

m0 → 0.
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Hence,

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

P

 v
1/m0

1,l

α(φ(k))1/m0(w
(1)
l+1 · · ·w

(1)
nφ(k)+l

)1/m0

 =

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

w
(1)
l+1 · · ·w

(1)
nφ(k)+l

P̂ (m0)
v1,l

α(φ(k))
+ o(1)

and this tends to v2,l. When l ∈ A2, the proof is similar. Finally, when l ∈ A3, the l-th

coordinate of B
nφ(k)
2 (P (x)) is equal to

w
(2)
l+1 · · ·w

(2)
nφ(k)+l

P (zl(φ(k))) =
w

(2)
l+1 · · ·w

(2)
nφ(k)+l

w
(1)
l+1 · · ·w

(1)
nφ(k)+l

w
(1)
l+1 · · ·w

(1)
nφ(k)+l

P (zl(φ(k)))

which tends again to v2,l. �

2.3. Disjoint hypercyclic algebras for backward shifts - convolution product.

2.3.1. Backward shifts raised to different powers. We now turn to the case of Fréchet se-
quence algebras endowed with the Cauchy product, and we first study the existence of a
disjoint hypercyclic algebra for two backward shifts raised to different powers. This situa-
tion seems more complicated and we choose to present only two significant examples. The
first one is the multiples of B and B2 on `1. It is known by [6, Cor 4.2] that λB and µB2

are disjointly hypercyclic if and only if 1 < λ < µ. We show that under this condition,
they even support a disjoint hypercyclic algebra. The proof will be done in two steps. We
first handle the case λ < µ1/2. The proof uses a shifting factor which is placed after the
term to approximate.

Theorem 2.14. Let 1 < λ < µ1/2. Then λB and µB2, acting on `1 endowed with the
Cauchy product, support a disjoint hypercyclic algebra.

Proof. We shall prove that the assumptions of Corollary 2.2 are satisfied. Let m ≥ 1, let
U, V1, V2 be nonempty open sets and let W be a neighbourhood of 0. Let p ≥ 1, x ∈ U ,
y1 ∈ V1, y2 ∈ V2 with supp(x), supp(y1), supp(y2) ⊂ [0, p] and let us write yi =

∑p
l=0 yi,lel,

i = 1, 2. Let finally δ > 0 be such that B(yi, 2δ) ⊂ Vi. For σ a large integer, we set

N = mσ − 3p

d1,l =
y1,l

mλN/mδ(m−1)/m
, ε1 =

δ1/m

λN/m

d2,l =
y2,l

mµN/mδ(m−1)/m
, ε2 =

δ1/m

µN/m

z1 =

p∑
l=0

d1,leσ−3p+l + ε1eσ
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z2 =

p∑
l=0

d2,le2σ−6p+l + ε2e2σ

u = x+ z1 + z2.

The terms ε1eσ and ε2e2σ are shifting terms which will be used to build an appropriate
approximating term when we will take the m-th power, despite the mixing of the supports.

It is easy to check that, provided σ, hence N , is large enough, then u ∈ U . We shall
prove that we also have{

(λB)N(um) ∈ V1, (λB)N(un) ∈ W for n < m,
(µB2)N(um) ∈ V2, (µB2)N(un) ∈ W for n < m.

The two last properties are easier to prove: there is no more difficulty to prove them than
to prove that µB2 admits a hypercyclic algebra. Indeed, if n < m, then supp(un) ⊂ [0, 2nσ]
with 2nσ < 2N whence (µB2)N(un) = 0. On the other hand,

um = z +

p∑
l=0

y2,l

µN
e2mσ−6p+l +

δ

µN
e2mσ

with max(supp(z)) < 2N , hence

(µB2)N(um) = y2 + δe6p ∈ V2.

The proofs of the first two properties are more difficult: the powers of z2 are mixed with
that of x + z1. Such a mixing term does not always disappear when you apply BN . It is
also not always smaller than λ−N . But taking into account the strong condition µ > λ2, we
will show that it keeps smaller than λ−N if its support exceeds [0, N ]. We start by writing

um = (x+ z1)m +
∑

α+β+γ=m
γ≥1

(
m

α, β, γ

)
xαzβ1 z

γ
2

= z +

p∑
l=0

y1,l

λN
emσ−3p+l +

δ

λN
emσ +

∑
α+β+γ=m

γ≥1

(
m

α, β, γ

)
xαzβ1 z

γ
2

where (
m

α, β, γ

)
=

m!

α!β!γ!

is the multinomial coefficient and max(supp(z)) < N . For the first three terms, we proceed
as before to observe that, provided σ is large enough,

(λB)N

(
z +

p∑
l=0

y1,l

λN
emσ−3p+l +

δ

λN
emσ

)
= y1 + δe3p.

Let us now look at (λB)N(xαzβ1 z
γ
2 ) with γ ≥ 1 and α+β+γ = m. Expanding the product

and using the behaviour of the terms di,j and εi, x
αzβ1 z

γ
2 is a sum of a finite number of
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terms cjej (this finite number does not depend on σ), with

j ≤ pα + βσ + 2γσ

|cj| ≤ Cα,β,γ
1

λβN/mµγN/m

where the involved constant Cα,β,γ does not depend on σ (of course, it also depends on x,
y1, y2, δ and m). We then distinguish two cases. Assume first that β + 2γ < m. Then,

provided σ is large enough, pα + βσ + 2γσ < N , hence (λB)N(xαzβ1 z
γ
2 ) = 0. On the

contrary, if β + 2γ ≥ m, then∥∥∥(λB)N(xαzβ1 z
γ
2 )
∥∥∥ ≤ Cα,β,γ

λN

λβN/mµγN/m

and the right handside goes to 0 since µ > λ2, hence µγλβ > λm. This shows that, provided
σ is large enough, (λB)N(um) ∈ V1. Finally, for n < m, it is easy to check that

(λB)N(un) =
∑

α+β+γ=n
γ≥1

(
n

α, β, γ

)
(λB)N(xαzβ1 z

γ
2 ).

We use exactly the same arguments to prove that

• (λB)N(xαzβ1 z
γ
2 ) = 0 provided β + 2γ ≤ m;

• (λB)N(xαzβ1 z
γ
2 ) tends to zero as σ tends to +∞ provided β + 2γ > m.

Hence, (λB)N(un) belongs to W , which finishes the proof of Theorem 2.14. �

We turn to the case λ ≥ µ1/2. The proof follows a similar scheme, but we now put the
shifting term before the approximating term.

Theorem 2.15. Let 1 < λ < µ ≤ λ2. Then λB and µB2, acting on `1 endowed with the
Cauchy product, support a disjoint hypercyclic algebra.

Proof. Again we shall prove that the assumptions of Corollary 2.2 are satisfied. Thus, let
m ≥ 1, let U, V1, V2 be nonempty open subsets of `1 and let W be a neighbourhood of 0.
Let p ≥ 1, x ∈ U , y1 ∈ V1, y2 ∈ V2 with supp(x), supp(y1) and supp(y2) ⊂ [0, p] and let us
write yi =

∑p
l=0 yi,lel, i = 1, 2. Let σ > 2p and let ε > 0 be such that the ball B(x, 2ε) is

contained in U . For N a large integer, we define

z1 =
1

mεm−1λN

p∑
l=0

y1,leN−(m−1)σ+l

z2 =
1

mεm−1µN

p∑
l=0

y2,le2N−(m−1)σ+l

u = x+ εeσ + z1 + z2.

The definition of ε ensures that, for N large enough, u belongs to U . Let us show that the
other assumptions of Corollary 2.2 are satisfied. First, consider n < m and write

un = w1 + w2
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where

w1 =
∑

α+β+γ=n
γ≤1

(
n

α, β, γ

)
xα(εeσ)βzγ1

w2 =
∑

α+β+γ=n
γ>1

(
n

α, β, γ

)
xα(εeσ)βzγ1 +

∑
α+β+γ+δ=n

δ≥1

(
n

α, β, γ, δ

)
xα(εeσ)βzγ1z

δ
2.

The support of w1 is contained in [0, N − (m − 1)σ + p + (n − 1)σ] ⊂ [0, N) since σ > p
and n < m. Thus (λB)Nwn1 = 0. Moreover, it is easy to check that

‖w2‖ ≤ C max

(
1

λ2N
,

1

µN

)
where the constant C depends on x, p, ε, y1, y2 but not on N . Since 1 < λ < µ, the norm
of (λB)Nw2 can be adjusted to be arbitrarily small, so that (λB)Nun belongs to W . In
the same vein, write

un = w′1 + w′2
where

w′1 =
∑

α+β+γ=n
γ≤2

(
n

α, β, γ

)
xα(εeσ)βzγ1 +

∑
α+β+δ=n

δ=1

(
n

α, β, δ

)
xα(εeσ)βzδ2

w′2 =
∑

(α,β,γ,δ)∈En

(
n

α, β, γ, δ

)
xα(εeσ)βzγ1z

δ
2

with

En =
{

(α, β, γ, δ) ∈ N4
0 : α + β + γ + δ = n, (γ ≥ 3 and δ = 0)

or (δ ≥ 2 and γ = 0) or (γ ≥ 1 and δ ≥ 1)
}
.

As before, the support of w′1 is contained in [0, 2N), so that (µB2)N(w′1) = 0. Since

‖w′2‖ ≤ C max

(
1

λ3N
,

1

µ2N
,

1

λNµN

)
and µ ≤ λ2 < λ3, we get that (µB2)N(un) belongs to W provided that N is large enough.
Let us now inspect um. We first write it

um = w̃1 +
1

λN

p∑
l=0

y1,leN+l + w̃2

where

w̃1 =
∑

α+β+γ∈Fm

(
m

α, β, γ

)
xα(εeσ)βzγ1
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w̃2 =
∑

α+β+γ=m
γ>1

(
m

α, β, γ

)
xα(εeσ)βzγ1 +

∑
α+β+γ+δ=m

δ≥1

(
m

α, β, γ, δ

)
xα(εeσ)βzγ1z

δ
2

with Fm = {(α, β, γ) ∈ N3
0 : α + β + γ = m, γ ≤ 1} \{(0,m−1, 1)}. The same proof shows

that supp(w̃1) ⊂ [0, N − (m− 1)σ+ p+ (m− 2)σ+ p) ⊂ [0, N) and that (λB)N(w̃2) tends
to 0 as N tends to +∞. Hence, (λB)N(um) ∈ V1 for N large enough. We also write

um = w̃′1 +
1

µN

p∑
l=0

y2,le2N+l + w̃′2

w̃′1 =
∑

α+β+γ=m
γ≤2

(
m

α, β, γ

)
xα(εeσ)βzγ1 +

∑
(α,β,δ)∈F ′m

(
m

α, β, δ

)
xα(εeσ)βzδ2

w′2 =
∑

(α,β,γ,δ)∈Em

(
m

α, β, γ, δ

)
xα(εeσ)βzγ1z

δ
2

F ′m = {(α, β, δ) ∈ Fm : δ = 1} .

Looking at the support of w̃′1 and at the norm of w̃′2, we show again that (µB2)N(um)
belongs to V2 for N large enough, showing that the assumptions of Corollary 2.2 are
satisfied. �

We end up this section by proving the existence of a disjoint hypercyclic algebra for the
multiples of D and D2. The proof follows the scheme of that of Theorem 2.14, but we need
a more careful analysis.

Theorem 2.16. Let λ, µ > 0. Then λD and µD2 support a disjoint hypercyclic algebra
on H(C) endowed with the convolution product.

Proof. The scheme of the proof is similar to that of Theorem 2.14; nevertheless, we will
need to be more careful when we analyze (λD)N(xαzβ1 z

γ
2 ) for β + 2γ = m. We fix m ≥ 1,

U, V1, V2 and W as above. Let q ≥ 0 and x ∈ U with support in [0, q]. Let now p ≥ 1 be
such that 2p > qm and such that there exists yi ∈ Vi with supp(yi) ⊂ [0, p], i = 1, 2. We
again write yi =

∑p
l=0 yi,lei and we consider r ≥ 1 and δ > 0 such that B‖·‖r(yi, 2δ) ⊂ Vi.

We then consider ω > 1/m satisfying the following property: for all integers α, β, γ ≥ 0
with α + β + γ ≤ m and β + 2γ > m, we have

(6) β + 2γ
(
m−m(m− 1)ω

)
> m

(observe that when ω = 1/m, then the left-hand side is equal to β + 2γ, which is greater
than m, and that there is only a finite number of constraints to satisfy). For σ a large
integer, we set

N = mσ − 3p,

d1,l =
l!y1,l

mεm−1
1 λN(N + l)!

, ε1 =
((3p)!)1/mδ1/m

(3p)r/mλN/m[(N + 3p)!]1/m
,
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d2,l =
l!y2,l

mεm−1
2 µN(2N + l)!

, ε2 =
δ1/m

µN/m[(2N + 6p)!]ω
,

z1 =

p∑
l=0

d1,leσ−3p+l + ε1eσ,

z2 =

p∑
l=0

d2,le2σ−6p+l + ε2e2σ,

u = x+ z1 + z2.

The first part of the proof of Theorem 2.14 carries on to our new context. First, we observe
that, using Stirling’s formula, we now have the crude estimates, for some C > 0 and some
κ > 0,

|d1,l| ≤
Cκσ

σσ

|d2,l| ≤
Cκσ

σ2(m−m(m−1)ω)σ

ε1 ≤
Cκσ

σσ

ε2 ≤
Cκσ

σ2mωσ
≤ Cκσ

σ2(m−m(m−1)ω)σ

(the very last inequality is a consequence of ω > 1/m). Hence, we still have u ∈ U provided
σ is large enough. Looking at the support of un shows that (µD2)N(un) = 0 for all n < m,
whereas the values of εm2 and mεm−1

2 d2,l ensure that

(µD2)N(um) = y2 +
δ

((2N + 6p)!)mω−1(6p)!
e6p.

Since ω > 1/m, we clearly have ‖(µD2)N(um)− y2‖r < 2δ provided N is large enough.
Regarding (λD)N , the support of each element and the definitions of d1,l, ε1 ensure that

(λD)N(um) = y1 +
δ

(3p)r
e3p +

∑
α+β+γ=m

γ≥1, β+2γ≥m

(
m

α, β, γ

)
(λD)N(xαzβ1 z

γ
2 )

(λD)N(un) =
∑

α+β+γ=n
γ≥1, β+2γ≥m

(
n

α, β, γ

)
(λD)N(xαzβ1 z

γ
2 ) for n < m.

Hence, it remains to show that (λD)N(xαzβ1 z
γ
2 ) tends to zero as σ tends to +∞ when

α + β + γ ≤ m, γ ≥ 1 and β + 2γ ≥ m. We first assume that β + 2γ > m. The product
xαzβ1 z

γ
2 may be written as a finite sum (whose number of terms do not depend on σ)

∑
j cjej

where

j ≤ qα + βσ + 2γσ
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|cj| ≤
Cα,β,γκ

σ
α,β,γ

σβσ+2γ(m−(m−1)ω)σ
.

Thus, using ‖(λD)Nej‖r ≤ λNjrjN , we get that for some different constants Cα,β,γ and
κα,β,γ, ∥∥∥(λD)N(xαzβ1 z

γ
2 )
∥∥∥
r
≤

Cα,β,γκ
σ
α,β,γσ

mσ

σβσ+2γ(m−(m−1)ω)σ
.

The choice of ω (sufficiently close to 1/m, see (6)) guarantees that this goes to 0 as σ tends
to +∞. Finally, assume that β + 2γ = m and define

w2 =

p∑
l=0

d2,le2σ−6p+l

so that

xαzβ1 z
γ
2 = xαzβ1 (w2 + ε2e2σ)γ

=

γ∑
k=0

(
γ

k

)
εγ−k2 xαzβ1w

k
2e2(γ−k)σ.

Assume first that k 6= 0. Then

max
(
supp(xαzβ1w

k
2e2(γ−k)σ)

)
≤ qα + βσ + 2γσ − 5p

≤ qm+mσ − 5p

< N

since qm < 2p. This implies that

(λD)N(xαzβ1w
k
2e2(γ−k)σ) = 0

and it only remains to handle the term εγ2x
αzβ1 e2γσ. As before, it is equal to a finite sum∑

j cjej with j ≤ qα + (β + 2γ)σ but now we can be slightly more precise on |cj|:

|cj| ≤
Cα,β,γκ

σ
α,β,γ

σβσ+2γmωσ
.

Therefore, ∥∥∥(λD)N(xεγ2x
αzβ1 e2γσ)

∥∥∥
r
≤
Cα,β,γκ

σ
α,β,γσ

mσ

σβσ+2γmωσ
.

Now, since ω > 1/m and β + 2γ = m, this tends to 0 as σ goes to +∞. This finishes the
proof of Theorem 2.16. �

Theorem 2.9 has the following analogue when we are dealing with the convolution prod-
uct.

Theorem 2.17. If B1 = Bw(1) and B2 = Bw(2) are weighted backward shifts on ω endowed
with the Cauchy product, then B1 and B2

2 support a disjoint hypercyclic algebra.
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Proof. We will apply Corollary 2.2. Let m ≥ 1, U, V1, V2 be nonempty open subsets of ω,
and W be a zero neighbourhood. Let also p ∈ N0, u0, . . . , up, vi,0, . . . , vi,p ∈ C, for i = 1, 2,
and ε > 0 be such that, for all x ∈ ω,

|xl − ul| < ε for all l = 0, . . . , p implies x ∈ U,
|xl − vi,l| < ε for all l = 0, . . . , p implies x ∈ Vi, i = 1, 2 and

|xl| < ε for all l = 0, . . . , p implies x ∈ W.
We set

x =

p∑
l=0

ulel + e2p + z1 + z2

where

z1 =

p∑
l=0

v1,l

w
(1)
l+1 . . . w

(1)
6pm+l

e2p(2m+1)+l

and

z2 =

p∑
l=0

v2,l

w
(2)
l+1 . . . w

(2)
12pm+l

e2p(5m+1)+l.

It is immediate that x ∈ U . If N = 6pm, it is tedious but straightforward to check that
the support of BN

1 (xn), with n ≤ m, intersects [0, p] only when n = m. Specifically, for
l = 0, . . . , p, the l-th coordinate of BN

1 (xm) is the l-th coordinate of BN
1 (em−1

2p z1) which

equals to v1,l. That means that BN
1 (xn) ∈ W , for n < m and BN

1 (xm) ∈ V1. Similarly, it
follows that B2N

2 (xn) ∈ W , for n < m and B2N
2 (xm) ∈ V2 which concludes the proof. �

2.3.2. Backward shifts raised to the same power. We conclude this section by studying
the existence of disjoint hypercyclic algebras for two backward shifts (raised to the same
power). We will need something similar to the converse inequality of the continuity of
the product under the F -norm. This idea is captured by the notion of a regular Fréchet
sequence algebra which first appeared in [4].

Definition 2.18. A Fréchet sequence algebra (X, (‖ · ‖q)) is said to be regular when it
satisfies the following properties:

(1) X admits a continuous norm;
(2) (ei) is a Schauder basis for X;
(3) for any r ≥ 1, there exist q ≥ 1 and C > 0 such that, for all n, k ≥ 0,

‖en‖r · ‖ek‖r ≤ C‖en+k‖q.

We were able to get a general result saying that two disjoint hypercyclic backward
shifts support a disjoint hypercyclic algebra, a statement simpler than that regarding the
coordinatewise product.

Theorem 2.19. Let X be a regular Fréchet sequence algebra for the Cauchy product and
let B1 = Bw(1), B2 = Bw(2) be two bounded weighted shifts on X. The following assertions
are equivalent.
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(i) B1 and B2 are disjointly hypercyclic.
(ii) B1 and B2 support a disjoint hypercyclic algebra.

(iii) There exists a sequence (nk) such that
(
(w

(1)
l+1 · · ·w

(1)
nk+l)

−1enk+l

)
tends to zero for all

l ≥ 0 and the set 
(
w

(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

)
l≥0

: k ≥ 0


is dense in ω.

For the proof of Theorem 2.19 we will use property (3) from the definition of regularity
through the following lemma from [4, Corollary 4.14] which works as some kind of index
managing tool.

Lemma 2.20. Let X be a regular Fréchet sequence algebra for the Cauchy product and let
(wn) be an admissible weight sequence on X. Then, for all m ≥ 1, for all N ≥ 1, for all
r ≥ 1, and for all ρ ≥ 0, there exist C > 0 and q ≥ 1 such that, for all n ≥ mN , for all
s ∈ {1, . . . , N},

(wn−s+1+ρ)
m−1 · · · (wn−1+ρ)

m−1(wn+ρ)
m−1‖en−ms+mρ‖r ≤ C‖en−s+ρ‖q.

Proof of Theorem 2.19. The implication (ii) =⇒ (i) is trivial. Let us prove the other
ones.

(iii) =⇒ (ii). Let m ≥ 1, let U, V1, V2 be nonempty open subsets of X and let W be a
neighbourhood of 0. Let p ≥ 1, x ∈ U , y1 ∈ V1, y2 ∈ V2 with supp(x), supp(y1), supp(y2) ⊂
[0, p] and let us write yi =

∑p
l=0 yi,lel. Without loss of generality, we may assume y1,l 6= 0

for all l = 0, . . . , p. Let finally B be a ball for the seminorm ‖ · ‖r with radius δ such that
B ⊂ W , x + B ⊂ U and yi + B ⊂ Vi, i = 1, 2. We consider (nk) a sequence of integers
such that

(w
(1)
l+1 · · ·w

(1)
nk+l)

−1enk+l tends to 0 for all l = 0, . . . , p

w
(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

tends to
y2,l

y1,l

for all l = 0, . . . , p

w
(2)
l+1 · · ·w

(2)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

tends to 1 for all l = 3p, . . . , 3p+ (m− 1).

We can assume without loss of generality n1 > (m − 1)3p. We then consider, for each
k ≥ 1, the integer Jk defined by

nk + 3p ≤ mJk < nk + 3p+m

and we set Nk = Jk − (mJk − nk) ≥ 1 so that 3p ≤ Jk −Nk < 3p+m. We finally define

ε = max
0≤l≤p

(
‖eNk+l‖r

w
(1)
1 · · ·w

(1)
nk+l

) 1
2(m−1)

×min

(
1

‖eJk‖r
,

1

(w
(1)
1 · · ·w

(1)
mJk

)1/m

) 1
2

,
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dl =
y1,l

mεm−1w
(1)
l+1 · · ·w

(1)
nk+l

,

u = x+

p∑
l=0

dleNk+l + εeJk .

Let us assume for a while that the following facts are true:

ε‖eJk‖r → 0 as k → +∞,(7)

|dl| · ‖eNk+l‖r → 0 as k → +∞, for all l = 0, ..., p,(8)

εmw
(1)
1 · · ·w

(1)
mJk
→ 0 as k → +∞.(9)

Then it is clear that u belongs to U for a large integer k and that Bnk
i (un) = 0 for i = 1, 2

and n < m, since max(supp(un)) ≤ (m− 1)Jk = nk −Nk < nk. We can also write

um = z +

p∑
l=0

y1,l

w
(1)
l+1 · · ·w

(1)
nk+l

eNk+(m−1)Jk+l + εmemJk ,

with
max(supp(z)) ≤ (m− 2)Jk + 2Nk + 2p < Nk + (m− 1)Jk = nk.

Hence,

Bnk
i (um) =

p∑
l=0

w
(i)
l+1 · · ·w

(i)
nk+l

w
(1)
l+1 · · ·w

(1)
nk+l

y1,lel + εmw
(i)
mJk−nk+1 · · ·w

(i)
mJk

emJk−nk .

When i = 1, the above sum is equal to y1; when i = 2, it goes to y2. Hence, we have to
prove that, for i = 1, 2,

εmw
(i)
mJk−nk+1 · · ·w

(i)
mJk

emJk−nk
k→+∞−−−−→ 0.

Since (mJk − nk) is a bounded sequence, this amounts to saying that

εmw
(i)
mJk−nk+1 · · ·w

(i)
mJk

k→+∞−−−−→ 0.

For i = 1, this is (9). For i = 2, we just observe that mJk −nk ∈ {3p, . . . , 3p+m− 1} and
we write

w
(2)
mJk−nk+1 · · ·w

(2)
mJk

w
(1)
mJk−nk+1 · · ·w

(1)
mJk

=
w

(2)
mJk−nk+1 · · ·w

(2)
nk+(mJk−nk)

w
(1)
mJk−nk+1 · · ·w

(1)
nk+(mJk−nk)

k→+∞−−−−→ 1.

It remains to prove (7), (8), (9).
Let us first prove (7). By property (3) from Definition 2.18 and an easy induction on

m, there exist q ≥ 1 and C > 0 (depending on r and m) such that, for all k ≥ 1 and all
l ∈ {0, . . . , p},

‖eNk+l‖
1

2(m−1)
r · ‖eJk‖r
‖eJk‖

1
2
r

=
(
‖eNk+l‖r · ‖eJk‖m−1

r

) 1
2(m−1)

≤ C‖enk+l‖
1

2(m−1)
q .
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Hence,

ε‖eJk‖r ≤ C max
0≤l≤p

(
‖enk+l‖q

w
(1)
1 · · ·w

(1)
nk+l

) 1
2(m−1)

and this goes to zero as k tends to +∞.
Regarding (8), we first write

|dl| · ‖eNk+l‖r ≤ C

(
‖eNk+l‖r

w
(1)
1 · · ·w

(1)
nk+l

)1/2

×max
(
‖eJk‖r, (w

(1)
1 · · ·w

(1)
mJk

)1/m
)(m−1)/2

.

If the maximum is attained for ‖eJk‖r, then using

‖eNk+l‖r · ‖eJk‖m−1
r ≤ C‖e(m−1)Jk+Nk+l‖q
≤ C‖enk+l‖q,

we get

|dl| · ‖eNk+l‖r ≤ C

(
‖enk+l‖q

w
(1)
1 · · ·w

(1)
nk+l

)1/2

and this goes to 0. Otherwise, we apply Lemma 2.20 with n = mJk and s = mJk − nk − l
to get (

w
(1)
1 · · ·w

(1)
mJk

)m−1‖eNk+l‖mr ≤ C
(
w

(1)
1 · · ·w

(1)
mJk

)m−1‖emNk+ml‖q
= C

(
w

(1)
1 · · ·w

(1)
mJk

)m−1‖emJk−ms‖q
≤ C ′

(
w

(1)
1 · · ·w

(1)
mJk−s

)m−1‖emJk−s‖q′

= C ′
(
w

(1)
1 · · ·w

(1)
nk+l

)m−1‖enk+l‖q′
whence

|dj| · ‖eNk+l‖r ≤ C ′′

(
‖enk+l‖q′

w
(1)
1 · · ·w

(1)
nk+l

)1/2m

,

which again goes to 0.
Finally, let us prove (9). Once more we apply Lemma 2.20 just as above and get, for all

l = 0, . . . , p, (
‖eNk+l‖r

w
(1)
1 · · ·w

(1)
nk+l

) m
2(m−1)

(w
(1)
1 · · ·w

(1)
mJk

)
1
2

=

(
‖eNk+l‖mr (w

(1)
1 · · ·w

(1)
mJk

)m−1
) 1

2(m−1)

(w
(1)
1 · · ·w

(1)
nk+l)

m
2(m−1)

≤ C1

(
‖enk+l‖q′

(
w

(1)
1 · · ·w

(1)
nk+l

)m−1
) 1

2(m−1)

(w
(1)
1 · · ·w

(1)
nk+l)

m
2(m−1)
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= C1

(
‖enk+l‖q′

w
(1)
1 · · ·w

(1)
nk+l

) 1
2(m−1)

,

which achieves the proof of (9) since the last term goes to zero.
(i) =⇒ (iii). The proof is exactly the same as the proof of (i) =⇒ (ii) in Theorem

2.10, restricted to the case m = 1. �

The situation in ω with the convolution product is easier as the next analogue of Theorem
2.13 shows.

Theorem 2.21. If B1 = Bw(1) and B2 = Bw(2) are weighted backward shifts on ω endowed
with the Cauchy product, then the following are equivalent.

(i) B1 and B2 are disjointly hypercyclic
(ii) B1 and B2 support a disjoint hypercyclic algebra.

(iii) The set {(
w

(2)
l+1 · · ·w

(2)
n+l

w
(1)
l+1 · · ·w

(1)
n+l

)
l≥0

: n ≥ 0

}
is dense in ω.

Proof. The implication (ii) ⇒ (i) is immediate and the equivalence (i) ⇔ (iii) follows by
Theorem 2.13. Hence, we establish that (iii) ⇒ (ii). We will apply Corollary 2.2. Let
m ≥ 1, U, V1, V2 be nonempty open subsets of ω, and W be a zero neighbourhood. Let
also p ∈ N0, u0, . . . , up, vi,0, . . . , vi,p ∈ C, for i = 1, 2, and ε > 0 be such that, for all x ∈ ω,

|xl − ul| < ε for all l = 0, . . . , p implies x ∈ U,
|xl − vi,l| < ε for all l = 0, . . . , p implies x ∈ Vi, i = 1, 2 and

|xl| < ε for all l = 0, . . . , p implies x ∈ W.
We may also assume that v1,l 6= 0 for l = 0, . . . , p. Let (nk) be a subsequence such that

w
(2)
l+1 . . . w

(2)
nk+l

w
(1)
l+1 . . . w

(1)
nk+l

→ v2,l

v1,l

, for l = 0, . . . , p.

We then consider, for each k ≥ 1, the integer Jk defined by

nk + 3p ≤ mJk < nk + 3p+m

and we set Nk = Jk − (mJk − nk) ≥ 1 so that 3p ≤ Jk − Nk < 3p + m. Since evidently,
Nk ∼ nk

m
we may assume that Nk > p, for all k ≥ 1. We now set for k ≥ 1,

x =

p∑
l=0

ulel + z + eJk ,

where

z = z(k) =

p∑
l=0

v1,l

m · w(1)
l+1 . . . w

(1)
nk+l

eNk+l.
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We clearly have that x ∈ U . For i = 1, 2 and n ≤ m, arguing as in the proof of Theo-
rem 2.19, we get that the support of Bnk

i (xn) intersects [0, p] only when n = m. Specifically,
the l-th coordinate of Bnk

i (xm) is the l-th coordinate of Bnk
i (mem−1

Jk
z) which equals to

w
(i)
l+1 . . . w

(i)
nk+l

w
(1)
l+1 . . . w

(1)
nk+l

v1,l

and tends to vi,l as k →∞. Hence, for k large, we have that Bnk
i (xn) ∈ W , if n < m, and

Bnk
i (xm) ∈ Vi, which concludes the proof. �

3. Common hypercyclic algebras

3.1. How to get a common hypercyclic algebra. We begin this section by a parametrized
version of [4, Proposition 2.3]. Let us fix a topological space Λ which is a countable union
of compact sets.

Proposition 3.1. Let Λ be a countable union of compact sets and let (Tλ)λ∈Λ be a family
of operators in L(X) such that the map (λ, x) 7→ Tλ(x) is continuous from Λ×X into X.
Assume that, for all compact sets K ⊂ Λ, for all I ∈ Pf (N)\{∅}, there exists m0 ∈ I such
that, for all U, V non-empty open subsets of X, for all neighborhood W of 0, one can find
u ∈ U such that, for all λ ∈ K, there exists N ∈ N satisfying{

TNλ (um) ∈ W for m ∈ I\{m0}
TNλ (um0) ∈ V.

Then the set of points generating a common hypercyclic algebra for (Tλ)λ∈Λ is residual in
X.

Proof. By the Baire Category theorem, it is enough to show the result assuming that
Λ = K is a compact set. For V ⊂ X open and non-empty, W a neighborhood of 0,
I ⊂ Pf (N)\{∅}, define

A(I, V,W ) =
{
u ∈ X : ∀λ ∈ Λ, ∃N ∈ N, TNλ (um) ∈ W for m ∈ I\{m0(I)} and

TNλ (um0(I)) ∈ V
}

(here, m0(I) is uniquely defined by I using the assumptions of the lemma). The as-
sumption tells us that each set A(I, V,W ) is dense. The compactness of Λ together with
the continuity of (λ, x) 7→ Tλ(x) ensure that these sets are also open. Fix now (Vk) a
basis of open sets of X and (Wl) a basis of open neighborhoods of 0 and let us con-

sider u ∈
⋂
I,k,lA(I, Vk,Wl). Let P ∈ C[z] be non-constant, P (z) =

∑
m∈I P̂ (m)zm with

P̂ (m) 6= 0 for m ∈ I and P (0) = 0. Let V be any non-empty open subset of X and let

k, l be such that P̂ (m0(I))Vk + (
∑

m 6=m0(I) |P̂ (m)|)Wl ⊂ V . Since u ∈ A(I, Vk,Wl), for all
λ ∈ Λ, there exists N ∈ N such that

TNλ (P (u)) = P̂ (m0(I))TNλ (um0(I)) +
∑

m6=m0(I)

P̂ (m)TNλ (um) ∈ V.
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Hence, P (u) belongs to
⋂
λ∈ΛHC(Tλ) and the proof is complete. �

3.2. Common hypercyclic algebras for a family of backward shifts - coordi-
natewise product. We now specialize our study to backward shifts. Thus we fix X a
Fréchet sequence algebra under the coordinatewise product with a continuous norm in
which span(ei) is dense. Let (w(λ))λ∈Λ be a family of admissible weights. For simplic-
ity, we will denote by Tλ the operator Bw(λ) and by Sλr the forward shift defined by

Sλrei = 1
wri+1(λ)

ei+1. For x = (xn) ∈ ω, we will also denote x1/m = (x
1/m
n ).

Proposition 3.1 will be interpreted under the following form.

Lemma 3.2. Assume that the map (λ, x) 7→ Tλ(x) is continuous. Assume that, for all
m0 ≤ m1 ∈ N, for all v ∈ X with finite support, for all M > 0, for all O neighborhood of
0, one can find

• parameters λ1, . . . , λq,
• sets of parameters Λ1, . . . ,Λq ⊂ Λ with Λ ⊂

⋃q
i=1 Λi,

• integers N1, . . . , Nq ∈ N with N1 > M and Ni+1 −Ni > M for all i,

such that

(i)
∑q

i=1 S
Ni

λ
1/m0
i

(v1/m0) ∈ O;

(ii)
∑q

j=i+1 T
Ni
λ

((
S
Nj

λ
1/m0
j

v1/m0

)m)
∈ O for all m ∈ [m0,m1], all i ∈ {1, . . . , q}, all

λ ∈ Λi;

(iii) TNiλ

((
SNi
λ
1/m0
i

v1/m0

)m)
∈ O for all m ∈ (m0,m1], all i ∈ {1, . . . , q}, all λ ∈ Λi;

(iv) TNiλ

((
SNi
λ
1/m0
i

v1/m0

)m0
)
− v ∈ O for all i ∈ {1, . . . , q}, all λ ∈ Λi.

Then the set of points generating a common hypercyclic algebra for (Tλ)λ∈Λ is residual in
X.

Proof. We apply Proposition 3.1. Let I ⊂ Pf (N)\{∅}. We set m0 = min(I), m1 = max(I).
Let U, V,W be three non-empty open subsets of X with 0 ∈ W . Let x ∈ U , v ∈ V with
finite support and let O be a neighborhood of zero such that x+O ⊂ U , v +O +O ⊂ V
and O +O ⊂W .

Let M be bigger than any integer in the support of x and v. The assumptions of the
lemma give us parameters λ1, . . . , λq, sets of parameters Λ1, . . . ,Λq and integers N1, . . . , Nq.
We set

u = x+

q∑
i=1

SNi
λ
1/m0
i

(v1/m0)

so that assumption (i) says that u belongs to U . Fix λ ∈ Λ and let i ∈ {1, . . . , q} be such
that λ ∈ Λi. We intend to prove that TNiλ (um) ∈ W for m ∈ I\{m0} and TNiλ (um0) ∈ V .
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Since we are working with the coordinatewise product and by the choice of M , we have

um = xm +

q∑
i=1

(
SNi
λ
1/m0
i

(v1/m0)

)m
and

TNiλ (um) = TNiλ

((
SNi
λ
1/m0
i

(v1/m0)

)m)
+

q∑
j=i+1

TNiλ

((
SNi
λ
1/m0
j

(v1/m0)

)m)
.

Assumptions (ii), (iii) and (iv) and the choice of v and O allow us to conclude that
TNλ (um) ∈ W for m ∈ I\{m0} and TNλ (um0) ∈ V . �

We now give a more concrete application. We first need a definition.

Definition 3.3. Let (xk,α)k≥1,α∈I be a family of vectors of X. The series
∑

k≥1 xk,α, α ∈ I,
are said to be uniformly unconditionally convergent if, for any neighborhood O of 0, there
exists K ≥ 1 such that, for all α ∈ I, for all sequences (ωk) ⊂ [−1, 1]N,∑

k≥K

ωkxk,α ∈ O.

Implicitly, in the previous definition, we assume that each series
∑

k ωkxk,α is convergent.
Of course, if I is finite and each series

∑
k xk,α is unconditionally convergent, then they are

uniformly unconditionally convergent.

Theorem 3.4. Let Λ = [a, b] be a compact interval and let (w(λ))λ∈Λ be a family of
admissible weight sequences. Assume that

(a) (ei) is an unconditional basis of X;
(b) for each n, the function log(wn) is non-decreasing and Lipschitz on Λ, with Lipschitz

constant less than or equal to Ln > 0.
(c) for all p > 0, for all m0 ≥ 1, there exists an increasing sequence of integers (nk) such

that
• the series

∑
k≥1

1(
wl+1(a)···wl+nk (a)

)1/m0
el+nk are unconditionally convergent for all

l = 0, . . . , p;
• the series

∑
k≥1

1
wl+1(a)···wl+nk+i−ni (a)

el+nk+i−ni , i ≥ 1, l = 0, . . . , p are uniformly

unconditionally convergent;
• for all k ≥ 1 and all l = 0, ..., p, wl+1(a) · · ·wl+nk(a) ≥ 1;
•
∑

i>1 1/Cni = +∞, where Cn =
∑n

k=1 Lk.

Then the set of points generating a common hypercyclic algebra for (Tλ)λ∈Λ is residual in
X.

Proof. Let us first prove that (λ, x) 7→ Tλ(x) is continuous. We first observe that the
family (Tλ)λ∈Λ is pointwise bounded. Indeed, for all x ∈ X, since all functions (wn) are
non-decreasing, it follows from the unconditional convergence of

∑
n≥1wn(b)xnen−1 that

the family (Tλ(x))λ∈Λ is bounded. Hence, by the Banach-Steinhaus theorem, the family
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(Tλ)λ∈Λ is equicontinuous. Now let us fix some (µ, y) ∈ Λ×X. For all (λ, x) ∈ Λ×X, we
write

Tλ(x)− Tµ(y) = Tλ(x− y) + Tλ(y)− Tµ(y).

The equicontinuity of (Tλ)λ∈Λ ensures that, fixing ε > 0, there exists δ > 0 such that,
provided ‖x− y‖ < δ, then ‖Tλ(x− y)‖ < ε for all λ ∈ Λ. On the other hand, we write

Tλ(y)− Tµ(y) =
∑
n≥1

(
wn(λ)− wn(µ)

)
ynen−1.

Again, the unconditional convergence of
∑

n≥1wn(b)ynen−1 implies that there exists N ≥ 1
such that, for all λ ∈ Λ, ∥∥∥∥∥∑

n>N

(
wn(λ)− wn(µ)

)
ynen−1

∥∥∥∥∥ < ε.

Finally, we observe that the continuity of each function wn implies, provided |λ − µ| is
small enough, ∥∥∥∥∥

N∑
n=1

(
wn(λ)− wn(µ)

)
ynen−1

∥∥∥∥∥ < ε.

We now show that the assumptions of Lemma 3.2 are satisfied. Let v =
∑p

l=0 vlel ∈ X
with finite support, m0 ≤ m1, M > 0 and O be a neighborhood of 0. By linearity (which
is not destroyed by taking powers since we are using the coordinatewise product), it is
enough to verify that the assumptions are satisfied for v = el. Let (nk) be the sequence
given by the assumptions of the theorem, and let K ≥ 1 be such that, for all i ≥ 0, for all
sequences (ωk) ⊂ [−1, 1]N,

(10)
∑
k≥K

ωk
wl+1(a) · · ·wl+ni+k−ni(a)

el+ni+k−ni ∈ O

(11)
∑
k≥K

ωk(
wl+1(a) · · ·wl+nk(a)

)1/m0
el+nk ∈ O.

Without loss of generality, we may assume that K ≥ M . We then set Ni = nKi. Since
the sequence (Cn) is nondecreasing, we still have∑

i≥1

1

CNi+p
= +∞.

Let τ > 0 be a small real number (a precised condition on τ will be fixed later) and
define λ1 = a, λi+1 = λi + τ

CNi+p
. Let q be the first integer such that λq+1 ≥ b and define

Λi = [λi, λi+1) for i = 1, . . . , q − 1, Λq = [λq, b]. Regarding (i) of Lemma 3.2, we write

(12)

q∑
i=1

SNi
λ
1/m0
i

(el) =

q∑
i=1

1(
wl+1(λi) · · ·wl+Ni(λi)

)1/m0
el+Ni .

Since each (wn) is nondecreasing, using (11), we get that (i) is true.
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Let now i ∈ {1, . . . , q}, λ ∈ Λi and m ∈ [m0,m1]. Then
q∑

j=i+1

TNiλ

((
S
Nj

λ
1/m0
j

(el)

)m)
=

q∑
j=i+1

wl+Nj−Ni+1(λ) · · ·wl+Nj(λ)(
wl+1(λj) · · ·wl+Nj(λj)

)m/m0
el+Nj−Ni

Now, since(
wl+1(λj) · · ·wl+Nj(λj)

)m/m0 ≥ wl+1(λj) · · ·wl+Nj(λj)
≥ wl+1(a) · · ·wl+Nj−Ni(a)wl+Nj−Ni+1(λj) · · ·wl+Nj(λj)

and

wl+Nj−Ni+1(λ) · · ·wl+Nj(λ) ≤ wl+Nj−Ni+1(λj) · · ·wl+Nj(λj)
we get

q∑
j=i+1

TNiλ

((
S
Nj

λ
1/m0
j

(el)

)m)
=

q∑
j=i+1

αi,j(λ)

wl+1(a) · · ·wl+Nj−Ni(a)
el+Nj−Ni

where αi,j(λ) ∈ [0, 1]. Hence, by (10), (ii) of Lemma 3.2 is satisfied. Finally, we have for
i ∈ {1, . . . , q} and λ ∈ Λi,

TNiλ

((
SNi
λ
1/m0
i

el

)m)
=

wl+1(λ) · · ·wl+Ni(λ)(
wl+1(λi) · · ·wl+Ni(λi)

)m/m0
el.

If m = m0, we just write∣∣∣∣ wl+1(λ) · · ·wl+Ni(λ)

wl+1(λi) · · ·wl+Ni(λi)
− 1

∣∣∣∣ ≤
∣∣∣∣∣exp

(
Ni∑
k=1

(
logwl+k(λ)− logwl+k(λi)

))
− 1

∣∣∣∣∣
≤

∣∣∣∣∣exp

(
Ni∑
k=1

Ll+k|λ− λi|

)
− 1

∣∣∣∣∣
≤ |exp (CNi+p|λ− λi|)− 1|
≤ |exp(τ)− 1| .

Hence, provided τ is small enough, (iv) is satisfied and we may also ensure that∣∣∣∣ wl+1(λ) · · ·wl+Ni(λ)

wl+1(λi) · · ·wl+Ni(λi)

∣∣∣∣ ≤ 2.

Hence, if m > m0, using again the monotonicity of each wn, for all i ∈ {1, . . . , q} and all
λ ∈ Λi,

wl+1(λ) · · ·wl+Ni(λ)(
wl+1(λi) · · ·wl+Ni(λi)

)m/m0
≤ 2(

wl+1(a) · · ·wl+Ni(a)
)1/m0

.

Applying a last time (11) (with only one nonzero ωk now), we get that (iii) is satisfied,
which closes the proof of Theorem 3.4. �
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Remark 3.5. If we are only interested in the existence of a common hypercyclic vector, we
have a similar statement by verifying the assumptions of Theorem 3.4 only for m0 = 1.

Before giving specific examples, let us explain the dependance between the behaviour of
(Cn) and the choice of (nk). We work on X = `1 and we assume first that wn(λ) = λ for
all n ≥ 1, λ > 1. In that case, Cn ∼ n and the sequence ni cannot grow too fast in order
to ensure the divergence of

∑
i 1/Cni . It is then natural to set ni = Ni for some N , and

this will be enough to ensure the uniform unconditional convergence of the series involved
in Theorem 3.4, because the product w1(λ) · · ·wn(λ) = λn grows very fast.

Assume now that wn(λ) = 1 + λ/n. In that case, Ln = 1/n and Cn behaves like log n.
This means that we may choose a sequence (ni) going very fast to +∞, like ni = 2i. This
will be necessary to ensure uniform unconditional convergence, since now w1(λ) · · ·wn(λ) ∼
nλ, which grows much slowly, especially if we allow λ to be close to 0.

Let us proceed with the details. We first give a result which should be thought as a
version for hypercyclic algebras of [2, Corollary 4.10].

Theorem 3.6. Let Λ ⊂ R be an interval and let (w(λ))λ∈Λ be a family of admissible weight
sequences. Assume that

(a) (ei) is an unconditional basis of X;
(b) all functions log(wn) are non-decreasing and are Lipschitz on compact sets with uni-

formly bounded Lipschitz constants;
(c) for all m ≥ 1 and all λ ∈ Λ, the series

∑
n(w1(λ) · · ·wn(λ))−1/men converges.

Then
⋂
λ∈ΛHC(Tλ) ∪ {0} contains a non-trivial algebra.

Proof. We may assume that Λ = [a, b] is a compact interval. Let C > 0 be such that all
functions log(wn) are C-Lipschitz. We then set nk = k, k ≥ 0, and observe that, for all
i ≥ 0,∑

k≥1

1(
wl+1(a) · · ·wl+nk+i−ni(a)

)1/m
el+nk+i−ni =

∑
k≥1

1(
wl+1(a) · · ·wl+k(a)

)1/m
el+k,

which shows that the assumptions on unconditional uniform convergence are satisfied. �

Corollary 3.7. Let X be a Fréchet sequence algebra for the coordinatewise product with
a continuous norm and such that (ei) is an unconditional basis of X. Let w = (wn) be an
admissible weight sequence and define

λw = inf

{
λ > 0 :

∑
n

λ−n/m
(
w1 · · ·wn

)−1/m
en converges for all m > 0

}
.

Then
⋂
λ>λw

HC(λBw) ∪ {0} contains a non-trivial algebra.

This corollary includes the case of the families (λB)λ>1 on `p or c0 and (λD)λ>0 on H(C).
For families (λB)λ>0 on ω the same result holds with an even easier proof, although this
space does not admit a continuous norm.

Theorem 3.8. The family (λB)λ>0 admits a common hypercyclic algebra on ω for the
coordinatewise product.
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Proof. It is enough to prove that the sets of vectors generating a common hypercyclic
algebra for (λB)0<λ<1 and (λB)λ>1 on ω with the coordinatewise product are Gδ dense.
Since we know that B itself also has a Gδ dense set of vectors generating a hypercyclic
algebra, we can gather the three cases 0 < λ < 1, λ = 1 and λ > 1 by a Baire argument (a
countable intersection of comeager sets is comeager).

The proof for the family (λB)λ>1 imitates that of Theorem 3.4 and is left to the reader.
Let us consider the family (λB)0<λ<1. Here we need another version of Lemma 3.2 obtained
by an application of Proposition 3.1 with m = max(I). The statement is the same but
with m1 in the place of m0. Let Tλ be λB and Sλ be 1

λ
F , where F is the unweighted

forward shift. Let Λ = [a, b] ⊂ (0, 1), let m0 ≤ m1 in N and let v ∈ ω. Let M > 0 and
finally let O be an open neighborhood of 0 in ω. There exist ε > 0 and p ∈ N such that

|xl| < ε for l = 0, ..., p =⇒ (xn)n ∈ O.
We define Kv = maxl=0,...,p |vl| and fix τ > 0 satisfying, for all m ∈ [m0,m1],

| exp(τ)− 1|Km/m1
v < ε.

We also fix a big integer N > max(p,M) (more conditions will be given later) and we
define Ni = iN for all i ≥ 1, λ1 = a and λi = λi−1 + τ

Ni
for all i > 1. Since

∑
τ
Ni

= +∞,

there exists q ∈ N such that λq+1 > b. Let Λi = [λi, λi+1) for i = 1, ..., q.
By construction we have Λ ⊂

⋃q
i=1 Λi, N1 > M and Ni+1 −Ni > M . Also, since N > p,

we get immediately that
q∑
i=1

SNi
λ
1/m1
i

v1/m1 ∈ O

and, for all m ∈ [m0,m1] and all λ ∈ Λi, i = 1, ..., q,
q∑

j=i+1

TNiλ

(
S
Nj

λ
1/m1
j

v1/m1

)m
∈ O.

Now, let m ∈ [m0,m1] and λ ∈ Λi for some i = 1, ..., q. We write

TNiλ

(
SNi
λ
1/m1
i

v1/m1

)m
=

(
λ

λ
m/m1

i

)Ni

vm/m1 .

If m = m1, then for all l = 0, ..., p,∣∣∣∣∣∣
(

λ

λ
m/m1

i

)Ni

v
m/m1

l − vl

∣∣∣∣∣∣ =

((
λ

λi

)Ni
− 1

)
|vl|

≤
(

exp
(
Ni|λ− λi|

)
− 1
)
Kv

≤
(

exp
(
Ni

τ

Ni

)
− 1
)
Kv

≤
(

exp(τ)− 1
)
Kv

< ε,
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that is, TNiλ

(
SNi
λ
1/m1
i

v1/m1

)m
− v ∈ O. Moreover, if τ > 0 is small enough, we have(

λ

λi

)Ni
≤ 2.

If m ∈ [m0,m1), then for all l = 0, ..., p,∣∣∣∣∣∣
(

λ

λ
m/m1

i

)Ni

v
m/m1

l

∣∣∣∣∣∣ =

(
λ

λ
m/m1

i

)Ni

|vm/m1

l |

≤
(
λ

λi

)Ni(
λ

1− m
m1

i

)Ni |Km/m1
v |

≤ 2b
Ni(1− m

m1
)|Km/m1

v |.

Hence, provided N is big enough, this is less than ε since 0 < b < 1 and 1− m
m1
≥ 1

m1
. �

We can also get examples of families which are not multiples of a single operator.

Example 3.9. Let X = c0 and consider wn(λ) = 1+ λ
n
, λ > 0. Then

⋂
λ>0HC(Bw(λ))∪{0}

contains a non-trivial algebra.

To include the `p-case, we need to change the choice of (nk).

Example 3.10. Let X = `p, 1 ≤ p < ∞ and consider wn(λ) = 1 + λ
n
, λ > 0. Then⋂

λ>0HC(Bw(λ)) ∪ {0} contains a non-trivial algebra.

Proof. Again, we need only to consider the case Λ = [a, b] with a > 0. We apply Theorem
3.4 with Lk = 1/k and nk = 2k. The uniform unconditional convergence of the involved
series is ensured by the inequalities

w1(a) · · ·wn(a) ≥ exp(c log n) = nc for some c > 0

and ∥∥∥∥∥∑
k≥K

1(
wl+1(a) · · ·wl+nk+i−ni(a)

)1/m
el+nk+i−ni

∥∥∥∥∥
≤
∑
k≥K

1(
wl+1(a) · · ·wl+2k+i−2i(a)

)1/m

≤ Cl
∑
k≥K

1

2ic/m(2k − 1)c/m

≤ Cl
∑
k≥K

1

(2k − 1)c/m
.

�
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As mentioned in the introduction, this last result is interesting even for the existence of
a single hypercyclic vector, which was only known for λ > 1/p. The novelty here is that,
since the weight varies very slowly, we may take a sequence (nk) increasing much more
quickly to +∞ without reducing the size of the intervals Ik such that, for all λ, µ ∈ Ik,
T nkλ Snkµ e0 is close to e0. Allowing (nk) to be large helps to ensure the smallness of the sum
appearing in (12), even if the product w1(λ) · · ·wn(λ) is not very large.

3.3. Common hypercyclic algebras for a family of backward shifts - Cauchy
product. In this subsection we are dealing with the question of the existence of common
hypercyclic algebras, for families of weighted backward shifts when the underlying Fréchet
sequence algebra is endowed with the Cauchy product. We will establish a general criterion
for the existence of such algebras which encompasses the case of the multiples of the
backward shift on `1 and of the multiples of D on H(C) as particular cases. Again,
our main tool will be Proposition 3.1. Nevertheless, fixing [a, b] ⊂ Λ, we will not be
able to devise a partition of each [a, b] ⊂ Λ as in the proof of Theorem 3.4. We will
only succeed to do this for intervals [a, κa], where κ will be independent of a. To come
back to the assumptions of Proposition 3.1, we will need an auxiliary lemma. For a
family of admissible weighted sequences (w(λ)) we will denote as usual by Tλ = Bw(λ) the
corresponding weighted backward shift.

Lemma 3.11. Let X be a Fréchet sequence algebra under the Cauchy product in which
span(ei) is dense and let Λ ⊂ R be an interval. Let (w(λ))λ∈Λ be a family of admissible
weights and assume that the map (λ, x) 7→ Tλx is continuous. Suppose that for all [a0, b0] ⊂
Λ, all m ≥ 1 and all non-empty open set V ⊂ X , there exists κ := κ(m,V, a0, b0) > 1 such
that, for all a ∈ [a0, b0], for all O open neighborhood of zero and for all M0 ∈ N, one can
find u ∈ X and M1 ∈ N satisfying

(i) u has finite support and u ∈ O;
(ii) for each λ ∈ [a, κa]∩ [a0, b0] there is N ≤M1 such that, for all x ∈ X with supp(x) ⊂

[0,M0], (Tλ)
N(u+ x)n = 0 for n ≤ m− 1 and (Tλ)

N(u+ x)m ∈ V.
Then (Tλ)λ∈Λ admits a common hypercyclic algebra.

Proof. We are going to apply Proposition 3.1. So let K = [a0, b0] ⊂ Λ, let I ∈ Pf (N)\{∅},
set m = max(I) and let U, V,W ⊂ X be non-empty open subsets, with 0 ∈ W . We begin
by considering κ given by the hypothesis. Let s be the first positive integer satisfying
a0κ

s ≥ b and define ai = κia0, for i = 1, ..., s−1, and as = b0. We will use the assumptions
of the lemma to construct a sequence of pairs (u(1), N1), ..., (u(s), Ns) satisfying, for all
i = 1, . . . , s,

• u(i) ∈ U ;
• for all λ ∈ [a0, ai], there is N ≤ Ni such that (Tλ)

N(u(i)n) ∈ W, for n < m, and
(Tλ)

N(u(i)m) ∈ V .

This construction being done, it is clear that u := u(s) is the desired point we are looking
for in order to apply Proposition 3.1.

We fix u(0) ∈ U with finite support and we let M(0) = max
(
supp(u(0))

)
and O0 such

that u(0) + O0 ⊂ U . For a = a0, O = O0 and M0 = M(0) in the lemma we find u ∈ X
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and M1 =: N1 such that u has finite support, u ∈ O0 and, for each λ ∈ [a0, a1] there is
N ≤ N1 such that, for all x ∈ X with supp(x) ⊂ [0,M0], (Tλ)

N(u+ x)n = 0 for n ≤ m− 1
and (Tλ)

N(u + x)m ∈ V. In particular, for x = u(0) we have u(1) := u(0) + u ∈ U and,
for all λ ∈ [a0, a1], there is N ≤ N1 such that (Tλ)

N(u(1)n) = 0 ∈ W, for n < m, and
(Tλ)

N(u(1)m) ∈ V .
Assume that u(i) has been defined and let us define u(i+1). Instead of applying directly

the lemma we need to adjust things so that the corresponding interval is not just [ai, ai+1]
but [a0, ai+1]. By the inductive properties of u(i), by the continuity of (λ, x) 7→ Tλx and of
the product of X and by the compactness of [a0, ai], we can find Oi an open neighborhood
of zero that

• u(i) +Oi ⊂ U ;
• for all y ∈ u(i) +Oi and all λ ∈ [a0, ai], there is N ≤ Ni such that (Tλ)

N(yn) ∈ W ,
for n < m, and (Tλ)

N(ym) ∈ V .

Now we apply the lemma with a = ai, M0 = max
(
supp(u(i))

)
and O = Oi and we find

u ∈ X and M1 such that u has finite support, u ∈ Oi and, for each λ ∈ [ai, ai+1] there is
N ≤M1 such that, for all x ∈ X with supp(x) ⊂ [0,M0], (Tλ)

N(u+ x)n = 0 for n ≤ m− 1
and (Tλ)

N(u + x)m ∈ V. We set Ni+1 = max(M1, Ni) and u(i + 1) = u(i) + u. Applying
the previous result with x = u(i) when λ ∈ [ai, ai+1] or using that u(i + 1) ∈ u(i) + Oi
when λ ∈ [a0, ai+1], we finally get that for all λ ∈ [a0, ai+1], there is N ≤ Ni+1 such that
(Tλ)

N(u(i+ 1)n) = 0 ∈ W, for n < m, and (Tλ)
N(u(i+ 1)m) ∈ V . �

Now we are ready to prove the main theorem of this subsection.

Theorem 3.12. Let Λ ⊂ R be an interval, let X be a regular Fréchet sequence algebra
under the Cauchy product and let (w(λ))λ∈Λ be a family of admissible weighted sequences
such that all functions log(wn) are non-decreasing and Lipschitz on compact sets with
uniformly bounded Lipschitz constants. Suppose that (en) is an unconditional basis of X
and that

(a) for all λ ∈ Λ,
∞∑
n=1

1

w1(λ) · · ·wn(λ)
en ∈ X;

(b) for all m ∈ N and all [a0, b0] ⊂ Λ there exist c ∈ (0, 1) and κ0 > 1 such that

(13) lim
N→∞

N∑
n=cN

[w1(κ0a) · · ·wmN(κ0a)]
m−1
m

w1(a) · · ·w(m−1)N+n(a)
en = 0, for all a ∈ [a0, b0].

Then (Tλ)λ∈Λ admits a common hypercyclic algebra.

Proof. First we observe that an application of the Banach-Steinhaus theorem as in the
proof of Theorem 3.4 yields that the map (λ, x) 7→ Tλx is continuous. Given [a0, b0] ⊂ Λ,
m ≥ 1 and V ⊂ X open and non-empty, from condition (b) there exist c ∈ (0, 1) ∩Q and
κ0 > 1 such that (13) holds. Since the functions λ 7→ wn(λ) are nondecreasing and by
unconditionality, (13) holds for all κ ∈ (1, κ0). Fix d ∈ (c, c+1

2
)∩Q, take y =

∑p
j=0 yjej ∈ V

and find ρ ≥ 1 and η > 0 so that y + B ⊂ V , where B is the ball for the seminorm ‖ · ‖ρ
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centered at the origin and with radius 3η. By unconditionality of the basis (en), there exist
ρ0 ≥ 1 and Cρ,ρ0 > 0 such that, for all x =

∑
n xnen and all θ ∈ `∞,

(14)

∥∥∥∥∥
+∞∑
n=0

θnxnen

∥∥∥∥∥
ρ

≤ Cρ,ρ0‖θ‖∞

∥∥∥∥∥
+∞∑
n=0

xnen

∥∥∥∥∥
ρ0

.

Take q > p big enough so that

(15)

∥∥∥∥∥∑
n≥q

zn
w1(a0) · · ·wn(a0)

en

∥∥∥∥∥
ρ

< η,

for all z ∈ c00 with ‖z‖∞ ≤ ‖y‖∞(max(1, w1(b0), ..., wp(b0)))p (this is possible by condition
(a)). We also fix M > 0 so that all the functions log(wn) are M -Lipschitz on [a0, b0]. By
continuity of exp we can find γ > 0 so that

(16) | exp(x)− 1| ≤ η

Cρ,ρ0‖y‖ρ0
, for all x ∈ R with |x| ≤ γ.

We then choose τ > 0 and κ ∈ (1, κ0) such that

(17) τ <
γ

M
, (κ− 1)b0 ≤ τ

d− c
(m− 1 + d)q

.

Now let a ∈ [a0, b0], O an open neighborhood of zero and M0 ∈ N be arbitrary. There exist
σ ≥ 1 and δ > 0 such that B‖·‖σ(0, δ) ⊂ O. Take r > 0 large enough such that cr > M0

and cr, dr ∈ N. Later on we will request more conditions on the size of r. For j = cr, ..., dr,
let λj be defined inductively by λcr = a and λj+1 = λj + τ

(m−1)qr+qj
. We notice that

λdr = a+
dr−1∑
j=cr

τ

(m− 1)qr + qj

≥ a+ τ
d− c

(m− 1 + d)q

≥ κa.

Define

u := u(r) =
dr−1∑
j=cr

p∑
l=0

dj,leqj+l + εeqr,

where

dj,l :=
yl

mεm−1wl+1(λj+1) · · ·w(m−1)qr+qj+l(λj+1)
,

ε =

(
1

w1(κa) · · ·wmqr(κa)

) 1
m

.
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Let also M1 := mqr. We shall show that ‖u‖σ < δ if r is big enough. For the double sum
we have∥∥∥∥∥

dr−1∑
j=cr

p∑
l=0

dj,leqj+l

∥∥∥∥∥
σ

=

∥∥∥∥∥
dr−1∑
j=cr

p∑
l=0

yl(w1(κa) · · ·wmqr(κa))
m−1
m

mwl+1(λj+1) · · ·w(m−1)qr+qj+l(λj+1)
eqj+l

∥∥∥∥∥
σ

.

Now, we write the quotient of weights as

w1(a) · · ·w(m−1)qr+qj+l(a)

wl+1(λj+1) · · ·w(m−1)qr+qj+l(λj+1)
× (w1(κa) · · ·wmqr(κa))

m−1
m

w1(a) · · ·w(m−1)qr+qj+l(a)
.

Using unconditionality of the basis (en) as in (14), there exist σ0 ≥ σ and Cσ,σ0 > 0
depending only on σ such that∥∥∥∥∥

dr−1∑
j=cr

p∑
l=0

dj,leqj+l

∥∥∥∥∥
σ0

≤ Cσ,σ0

∥∥∥∥∥
dr−1∑
j=cr

p∑
l=0

ylw1(a) · · ·wl(a)

m

(w1(κa) · · ·wmqr(κa))
m−1
m

w1(a) · · ·w(m−1)qr+qj+l(a)
eqj+l

∥∥∥∥∥
σ0

≤ Cσ,σ0

∥∥∥∥∥
qr∑

n=cqr

zn
(w1(κa) · · ·wmqr(κa))

m−1
m

w1(a) · · ·w(m−1)qr+n(a)
en

∥∥∥∥∥
σ0

,

for some eventually null sequence z = (zn) satisfying

‖z‖∞ ≤ ‖y‖∞(max(1, w1(b0), ..., wp(b0))p)/m.

Therefore, by assumption (b) and the unconditionality of (en), we conclude that the sum∑dr−1
j=cr

∑p
l=0 dj,leqj+l converges to 0 when r → +∞. On the other hand, for the term εeqr,

since X is regular, we find σ1 ≥ σ and Cσ,σ1 > 0 depending only on σ and m such that

‖εeqr‖σ =

∥∥∥∥∥ 1

[w1(κa) · · ·wmqr(κa)]
1
m

eqr

∥∥∥∥∥
σ

=

[
1

w1(κa) · · ·wmqr(κa)
‖eqr‖mσ

] 1
m

≤ Cσ,σ1

[
1

w1(κa) · · ·wmqr(κa)
‖emqr‖σ1

] 1
m

≤ Cσ,σ1

∥∥∥∥ 1

w1(κa) · · ·wmqr(κa)
emqr

∥∥∥∥ 1
m

σ1

,

and this converges to 0 as r → +∞. This shows that condition (i) of Lemma 3.11 is
satisfied if r is big enough.

Now, taking λ ∈ [a, κa], there exists k ∈ {cr, ..., dr − 1} such that λ ∈ [λk, λk+1]. We
choose N = (m − 1)qr + qk ≤ M1 and take x ∈ X with supp(x) ⊂ [0,M0]. Clearly
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we have max
(
supp((u + x)n)

)
≤ (m − 1)qr < N for all n = 1, ...,m − 1, which implies

(Tλ)
N(u+ x)n = 0. On the other hand,

(u+ x)m = x′ +
dr−1∑
j=cr

p∑
l=0

mεm−1dj,le(m−1)qr+qj+l + εmemqr,

with supp(x′) ⊂ [0, (m−2)qr+2(dqr+p)]∪[0, (m−1)qr+M0]. It follows that max
(
supp(x′)

)
<

N if r is big enough. We also have that (m− 1)qr + qj + p < N if j < k. Hence,

(Tλ)
N(u+ x)m

=

p∑
l=0

mεm−1dk,lw(m−1)qr+qk−N+l+1(λ) · · ·w(m−1)qr+qk+l(λ)e(m−1)qr+qk−N+l

+
dr−1∑
j=k+1

p∑
l=0

mεm−1dj,lw(m−1)qr+qj−N+l+1(λ) · · ·w(m−1)qr+qj+l(λ)e(m−1)qr+qj−N+l

+ εmwmqr−N+1(λ) · · ·wmqr(λ)emqr−N

=: P1 + P2 + P3,

where, after substituting dj,l, N and ε by their values,

P1 =

p∑
l=0

wl+1(λ) · · ·w(m−1)qr+qk+l(λ)

wl+1(λk+1) · · ·w(m−1)qr+qk+l(λk+1)
ylel

P2 =
dr−1∑
j=k+1

p∑
l=0

w(j−k)q+l+1(λ) · · ·w(m−1)qr+qj+l(λ)

wl+1(λj+1) · · ·w(m−1)qr+qj+l(λj+1)
yle(j−k)q+l

P3 =
w(r−k)q+1(λ) · · ·wmqr(λ)

w1(κa) · · ·wmqr(κa)
e(r−k)q.

From the definition of λcr, ..., λdr, by the Lipschitz condition on the functions logwn and
by (17), we get ∣∣∣∣∣∣

(m−1)qr+qk∑
j=1

log(wl+j(λ))− log(wl+j(λk+1))

∣∣∣∣∣∣
≤

(m−1)qr+qk∑
j=1

| log(wl+j(λ))− log(wl+j(λk+1))|

≤
(m−1)qr+qk∑

j=1

M(λk+1 − λk)

= ((m− 1)qr + qk)M
τ

(m− 1)qr + qk

< γ.
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Hence, by (16) we have∣∣∣∣ wl+1(λ) · · ·w(m−1)qr+qk+l(λ)

wl+1(λk+1) · · ·w(m−1)qr+qk+l(λk+1)
− 1

∣∣∣∣
=

∣∣∣∣∣∣exp

(m−1)qr+qk∑
j=1

log(wl+j(λ))− log(wl+j(λ))

− 1

∣∣∣∣∣∣
≤ η

Cρ,ρ0‖y‖ρ0
.

Writing

P1 − y =

p∑
l=0

θlylel with |θl| ≤
η

Cρ,ρ0‖y‖ρ0
,

we get by (14) that ‖P1 − y‖ρ ≤ η. Furthermore, let us write

w(j−k)q+l+1(λ) · · ·w(m−1)qr+qj+l(λ)

wl+1(λj+1) · · ·w(m−1)qr+qj+l(λj+1)

=
w1(λj+1) · · ·wl(λj+1)

w1(a0) · · ·w(j−k)q+l(a0)

(j−k)q+l∏
s=1

ws(a0)

ws(λj+1)

(m−1)qr+qj+l∏
s=(j−k)q+l+1

ws(λ)

ws(λj+1)
.

Then we get since the functions (wn) are nondecreasing,

P2 =
∑
n≥q

zn
w1(a0) · · ·wn(a0)

en

for some eventually null sequence (zn) with

‖z‖∞ ≤ ‖y‖∞(max(1, w1(b0), ..., wp(b0)))p.

By (15) we conclude that ‖P2‖ρ < η. Finally,

w(r−k)q+1(λ) · · ·wmqr(λ)

w1(κa) · · ·wmqr(κa)
≤
w(r−k)q+1(κa) · · ·wmqr(κa)

w1(κa) · · ·wmqr(κa)

=
1

w1(κa) · · ·w(r−k)q(κa)

≤ 1

w1(a0) · · ·w(r−k)q(a0)
,

hence ‖P3‖ρ < η if r is big enough. With this we conclude that

‖(Tλ)N(u+ x)m − y‖ρ < 3η,

which shows that (Tλ)
N(u+ x)m ∈ V and completes the proof. �

We now apply Theorem 3.12 to multiples of the backward shift and of the derivative
operator.
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Example 3.13. On `1 endowed with the Cauchy product,
⋂
λ>1HC(λB) ∪ {0} contains

a nontrivial algebra.

Proof. We apply Theorem 3.12 with X = `1, Λ = (1,∞) and wn(λ) = λ. We have that the
functions log(wn) are continuously first differentiable hence uniformly Lipschitz on compact
subsets of Λ. Condition (a) trivially holds and, for (b), we have that∥∥∥∥∥

∞∑
n=cN

[w1(κa) · · ·wmN(κa)]
m−1
m

w1(a) · · ·w(m−1)N+n(a)
en

∥∥∥∥∥ =
a

a− 1
× κ(m−1)N

adcNe

which, for m = 1, tends to 0 as N goes to +∞ for any c ∈ (0, 1), κ > 1 and a > 1, and for

m > 1 it goes to 0 for any c ∈ (0, 1) and 1 < κ < a
c

m−1 . �

Example 3.14. On H(C) endowed with the Cauchy product,
⋂
λ>0HC(λD)∪{0} contains

a non-trivial algebra.

Proof. We apply Theorem 3.12 with X = H(C), Λ = (0,∞) and wn(λ) = λn. Again the
functions log(wn) are uniformly Lipschitz on compact subsets of Λ and condition (a) is
clearly satisfied. For (b) we fix m ≥ 1, a > 0, κ > 1 and r ≥ 1 and we have∥∥∥∥∥∑

n≥cN

(w1(κa) · · ·wmN(κa))(m−1)/m

w1(a) · · ·w(m−1)N+n(a)
en

∥∥∥∥∥
r

= κ(m−1)N
∑
n≥cN

(mN)!(m−1)/m

((m− 1)N + n)!

(r
a

)n
=
(κa
r

)(m−1)N

(mN)!(m−1)/m
∑
n≥cN

(r/a)n+(m−1)N

(n+ (m− 1)N)!

≤ C
(κa
r

)(m−1)N

(mN)!(m−1)/m × (r/a)(m−1+c)N

((m− 1 + c)N)!
.

Since for all ε > 0, Stirling’s formula implies

(mN)!(m−1)/m ≤ CεN
(m−1+ε)N(

(m− 1 + c)N
)
! ≥ CεN

(m−1+c−ε)N ,

choosing ε < 2c, it follows that for all c ∈ (0, 1), all κ > 1, all a > 0, all m ≥ 1 and and all
r ≥ 1, we have (κa

r

)(m−1)N

(mN)!(m−1)/m × (r/a)(m−1+c)N

((m− 1 + c)N)!

N→+∞−−−−→ 0.

Hence, assumption (b) is satisfied. �

Remark 3.15. We can make use of the same ideas and prove that (λBw)λ>0 admits a
common hypercyclic algebra on ω with the Cauchy product. In fact, the separating term
allows us to push all undesirable parcels to the right and that is all we need when the
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topology of ω comes into play. One can even simplify the definitions of εeσ and dj,l as their
sizes are not important as everything will vanish by the support.

Question 3.16. Let X = `1, Λ = (0,+∞) and wn(λ) = 1 + λ/n. In the previous section,
we have shown that

⋂
λ∈ΛHC(Bw(λ)) is not empty. Does it contain (except 0) a nontrivial

algebra for the Cauchy product?

We cannot apply Theorem 3.12 for this family of shifts since (b) is not satisfied. Indeed,
using standard tools of calculus, it can be shown that, for all n ∈ N, all a ∈ Λ, all c ∈ (0, 1)
and all κ > 1, there exists C > 0 such that, for all N ≥ 1,∥∥∥∥∥

N∑
n=cN

[w1(κa) · · ·wmN(κa)]
m−1
m

w1(a) · · ·w(m−1)N+n(a)
en

∥∥∥∥∥
1

≥ CNa(κ(m−1)
m

−1)+1.

For a = m = 2, it is impossible to find κ > 1 such that the right hand-side goes to 0.
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[2] F. Bayart and É. Matheron, How to get common universal vectors Indiana Univ.
Math. J., 56 (2007), 553–580
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