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STUDY OF THE PERIMETER OF A SHOT NOISE RANDOM FIELD BY AN

ELEMENTARY APPROACH

HERMINE BIERMÉ AND ANTOINE LERBET

Abstract. The study of the geometry of excursion sets of 2D random fields, especially the

perimeter or length of level lines, has a growing interest from both the theoretical developments

and the statistical applications. In this paper we are interested in the relationship between
the perimeter of the excursion sets of a shot noise random field compared to the well known

Gaussian framework. Our approach follows the weak framework of special bounded variation

functions in which we consider the functions that map the level of the excursion set to the
perimeter of the excursion set. In this unified framework we exhibit two different regimes with

respect to the intensity of the shot noise random field. The first one is the classical Gaussian
regime in high intensity, while the second new one, in low intensity, is related to an elementary

approximation. In the explicit case of Gaussian correlation functions, we show the pertinence of

such approximation for statistical evaluation. At least, this enables us to propose a classification
procedure to discriminate Gaussian or shot noise fields.

1. Introduction and notation

Random fields are a popular branch of probabilities that allow to model a lot of domains,
including texture synthesis ([36, 23]), image analysis with applications in the medical field ([16, 21])
and extensive spatial modelling. The most popular random field models are certainly the Gaussian
fields, but in this paper we will consider shot noise models defined on R2 by

(1) ∀x ∈ R2, X(x) =
∑
i

mig(x− xi),

where g : R2 → R is the kernel, the xi are the points of a homogeneous Poisson point process
of intensity λ in R2 and the mi are “marks”, independent of the Poisson point process such that
{(xi,mi)}i∈I is a Poisson point process on R2×R of intensity λL⊗F with F a probability measure
on R, defined on (Ω,A,P) a complete probability space. This model can be seen as an extension
of the Germ-Grain models ([18]), and thus of the Boolean model, where the xi are the germs
while the kernel plays the role of the grains, but with the difference that we are interested in the
random fields formed by the sum of the grains and not just the random set formed by their unions.
These fields were first introduced by [20], although they are based on the one-dimensional process
([15, 14, 34]), and have been used in many fields ([7, 28, 35, 23]).

On the one side, there is a strong relationship between the shot noise framework and the Gauss-
ian framework. The main result is due to [25], showing asymptotic normality in high intensity, in
the sense of finite dimensional distribution, and even in the topology of uniform convergence on
compact sets. Since then, this strong result has aroused a lot of interest in application ([28, 17, 4])
and in research ([10, 32]). On the other side, one purpose of this paper is to show that the low in-
tensity behaviour is really distinct from the Gaussian framework but through its visual definition,
based on simple random tools, it allows a certain malleability in the computation ([11, 29, 31, 33])
that is rarely found outside the Gaussian case.
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2 HERMINE BIERMÉ AND ANTOINE LERBET

All random field information is contained in the excursion sets, defined for any u ∈ R and open
subset (the viewing window) T ⊂ R2 by

EX(u, T ) := {x ∈ T | X(x) ≥ u}

Statistically, it is interesting to study geometric characteristics of these random sets, mainly their
area, perimeter and Euler characteristic. It is very rare to know the law of these random functions
of the level but it happens that we can compute their mean values. As it is often the case,
under certain assumptions of stationnarity and regularity, the Gaussian framework allows the
explicit computation of these 3 geometric quantities ([3, 6]). With this exception there are only
a few results on the geometry of excursion sets ([2, 30]), and they usually require assumptions of
regularity and bounded density existence.

Especially for shot noise random fields, by adopting a functional point of view, several results
for the computation of mean geometry were obtained in [11]. More precisely, without bounded
density assumption, they obtained results in two distinct frameworks : the one where the kernel
is smooth and the one where the kernel is elementary, that may be unified in the framework
of special bounded variation function ([5]). The quantity of interest for studying the regularity
of excursion sets is the perimeter u 7→ Per(EX(u, T )) view as a L1(R) function when X is a.s.
a locally special bounded variation function. We emphasize that under stronger assumptions,
Per(EX(u, T )) corresponds to the length of the level set {x ∈ T ;X(x) = u} ([6]), also related to
the Lipschitz-Killing curvature of order 1 of the excursion set ([13]). Since we consider stationary
random sets, our function of interest is the mean density perimeter function

u→ Per(EX(u)) :=
E[Per(EX(u, T ))]

L(T )
,

and by ergodicity, one should have Per(EX(u,T ))
L(T ) → Per(EX(u)) a.s. as T tends to R2. Note

that asymptotic normality have also been investigated in a Gaussian framework in [8] for a fixed
level under regularity assumptions and for shot noise random fields in a weak framework in [31].
However, even for a simple smooth kernel as a Gaussian, the formulas of [11] are not fully explicit
and in order to find the mean density perimeter, a Fourier inversion is needed. Through a kernel
discretization approach, another aim of this paper will be to obtain formulas that are more easily
usable in practice. Finally, we will use the area and perimeter of the excursion sets as a classifier
to distinguish Gaussian field from a shot noise field with the same first and second order statistics,
especially for visually indistinguishable pattern.

The paper is organized as follows. After reviewing the well-known formulas for smooth Gaussian
and shot noise fields, we give in Section 2 the two distinct behaviors of the mean densities of the
level perimeter integral for shot noise smooth random fields : the high regime for large λ values and
the low regime for small λ values. Section 3 is devoted to the case where the kernel is a Gaussian
function and its own properties, with in particular its scale invariances. We will study in Section
4 the discretization of this model and the limit of the mean perimeter when the discretization
step tends to 0. We will make the link between the identified limit and the low regime. Under
normalisation by its total variation, this will lead to more explicit formulas for perimeter than those
already known. Finally, using these formulas, in Section 5 we will give a classification method to
distinguish a shot noise field from a Gaussian field with the same moments of order 1 and 2.

2. Previous results

2.1. General formula. For T an open bounded subset of R2 and X a ”nice” stationary random
field on R2. By stationarity we easily get that the mean density area of excursion sets is given by
the tail function of the common distribution. More precisely, for all u ∈ R,

Area(EX(u)) =
E(L(EX(u, T ))

L(T )
= P(X(0) ≥ u).

The computation of the perimeter is more involved and we use the weak functional approach
developed in [10]. Following the notation of [11] we define, when it exists, the level perimeter
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integral by the linear form

LPX(·, T ) : Cb(R) −→ R(2)

h −→
∫
R
h(u)Per(EX(u), T )du

The knowledge of E[LPX(h, T )] for all h ∈ Cb(R) allows us to get information of E[Per(EX(u), T )]
for almost every level u ∈ R. In particular computing (2) for ν ∈ R and hν given by

(3) hν(u) = eiνu,

E[LPX(hν , T )] corresponds to the Fourier transform of u 7→ E[Per(EX(u), T )] at frequency ν.
Moreover, the total variation of X may be computed using h = 1 or ν = 0 and its expectation is
given by

E[TV(X,T )] = E[LPX(1, T )].

By stationarity, the quantities of interest are related to the mean densities

LPX(h) =
E[LPX(h, T )]

L(T )
=

∫
R
h(u)Per(EX(u)) du and TV(X) = LPX(1).

Note that we might expect that for nice ergodic random fields and nice growing sequences of T

LPX(h, T )

L(T )
−→ LPX(h) and

Per(EX(u), T )

L(T )
−→ Per(EX(u)) a.s.

Assuming that X is a C1 random field with X(0) and ∂jX(0) having finite expectations for all
j = 1, 2, by Theorem 2 of [11], for a.e. u ∈ R, the random variables Per(EX(u), T ) have finite
expectation such that for all h bounded continuous function on R, one has

E(LPX(h, T )) =

∫
R
h(u)E(Per(EX(u), T )) dt

= E (h(X(0))‖∇X(0)‖)L(T ).

In particular,

LPX(h) = E (h(X(0))‖∇X(0)‖) and TV(X) = E[‖∇X(0)‖].
It follows that h 7→ LPX(h) is a continuous linear form on Cb(R) with subordinated norm given

by TV(X). Moreover, when X is also isotropic, the computation may be simplified as

(4) LPX(h) =
π

2
E (h(X(0))|∂1X(0)|) and TV(X) =

π

2
E[|∂1X(0)|].

Following the case of shot noise fields developed in [10] that are infinitely divisible random fields
for which the use of characteristic functions is more tractable, we state the following result.

Proposition 1. Let X be a stationary isotropic C1 random field on R2, such that E(|X(0)|) < +∞
and E(|∂1X(0)|1+ε) < +∞ for some ε > 0, and let us denote for (ν, ξ) ∈ R2,

(5) ϕ(ν, ξ) = E[eiνX(0)+iξ∂1X(0)].

Then

LPX(hν) = −
∫ ∞

0

1

ξ

∂ϕ

∂ξ
(ν, ξ)dξ, and TV(X) = −

∫ ∞
0

1

ξ

∂ϕ

∂ξ
(0, ξ)dξ,(6)

where hν is given by (3) and the improper integrals are defined as limV→+∞
∫ V

0
.

Proof. Let ν ∈ R since X be a stationary isotropic C2 random field on R2, by (4) we have

LPX(hν) =
π

2
E (hν(X(0))|∂1X(0)|) .

According to Proposition 2 of [11], since |hν(X(0))| ≤ 1 and that for some ε > 0 we have
E(|∂1X(0)|1+ε) < +∞, we get

E (hν(X(0))|∂1X(0)|) =
2

π

∫ +∞

0

1

ξ
E (hν(X(0))∂1X(0) sin(ξ∂1X(0))) dξ.
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But ϕ(ν, ξ) = ϕ(ν,−ξ) so that ϕ(ν, ξ) = E (hν(X(0)) cos(ξ∂1X(0))) and therefore

∂ϕ

∂ξ
(ν, ξ) = −E (hν(X(0))∂1X(0) sin(ξ∂1X(0))) ,

from which we deduce the result. �

2.2. Isotropic smooth Gaussian random fields. When the random field X is an isotropic
smooth (at least C1) Gaussian random field, we write ϕX , respectively ϕ∂1X , the characteristic
function ofX(0), respectively of ∂1X(0). SinceX(0) and ∂1X(0) are non correlated by stationarity,
and thus independent by Gaussian distribution, the characteristic function in (5) is ϕ(ν, ξ) =
ϕX(ν)ϕ∂1X(ξ). Hence

−
∫ ∞

0

1

ξ

∂ϕ

∂ξ
(ν, ξ)dξ = ϕX(ν)

(
−
∫ ∞

0

1

ξ

∂ϕ∂1X(ξ)

∂ξ
dξ

)
,

with ϕ∂1X(ξ) = exp(−Var[∂1X(0)]ξ2/2). It follows that for all ν ∈ R,

(7) LPX(hν) =

√
π

2

√
Var[∂1X(0)]ϕX(ν).

Corollary 1. Let X be a stationary isotropic C1 Gaussian random field then for almost all u ∈ R

Per(EX(u)) =

√
π

2

√
Var[∂1X(0)]

1√
2πVar[X(0)]

exp

(
− (u− E(X(0)))2

2Var[X(0)]

)
, and

TV(X) =

√
π

2

√
Var[∂1X(0)].

Note that under the stronger assumption that X is a.s. C2 the previous stated equality will
hold for any level u ∈ R. We refer to Theorem 6.8 of [6] for instance.

2.3. Isotropic smooth shot noise fields. Considering now a shot noise field X given by (1),
with a radial kernel g ∈ C2(R2), we can also go ahead in computations. We recall the notation
gm = mg and introduce a random variable M of distribution F . For p > 0, we denote

(8) µp(gM ) :=

∫
R2

∫
R
|gm(x)|pF (dm)dx = E(|M |p)

∫
R2

|g(x)|pdx.

For g ∈ C2(R2) and i = 1, 2 we note the partial derivative ∂ig := ∂g
∂xi

and for j = (j1, j2) ∈ Z2,

|j| ≤ 2, we note also Djg := ∂|j|g
∂j1x1∂j2x2

such that D(1,0)g = ∂1g.

Actually, under the assumption that µ1(DjgM ) < +∞ for all |j| ≤ 2, the shot noise field X
is a.s a stationary C1 random field and the characteristic function of (X(0), ∂1X(0)) is explicitly
(see [11]) given for (ν, ξ) ∈ R2 by

(9) ϕ(ν, ξ) = exp

(
λ

∫
R2

∫
R

[eiνmg(x)+iξm∂1g(x) − 1]F (dm)dx

)
.

Hence we get ∂ϕ
∂ξ (ν, ξ) = −S0(ν, ξ)ϕ(ν, ξ), with

S0(ν, ξ) = −iλ
∫
R2

∫
R
m∂1g(x)eiνmg(x)+iξm∂1g(x)F (dm)dx

= λ

∫
R2

∫
R
m∂1g(x)eiνmg(x) sin (ξm∂1g(x))F (dm)dx,(10)

and, assuming moreover that µ2(DjgM ) < +∞ for all |j| ≤ 2, by Proposition 1 with ε = 1 (see
also Theorem 3 of [11]), we obtain

∀ν ∈ R, LPX(hν) =

∫ ∞
0

1

ξ
ϕ(ν, ξ)S0(ν, ξ)dξ.(11)
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2.4. Asymptotics for high and small λ. In this section we investigate asymptotics of the level
perimeter function of shot noise random fields with respect to λ. In the sequel we denote Xλ

the shot noise field X given by (1) for an homogeneous Poisson point process of intensity λ > 0.
We assume that g is a C2 radial kernel such that µ1(DjgM ) < +∞ and µ2(DjgM ) < +∞ for all
|j| ≤ 2.

Since µ2(gM ) < +∞, we let Bλ be a stationary Gaussian field with the same second order
statistics than Xλ meaning that for all y, y′ ∈ R2

E(Bλ(y)) = E(Xλ(y)) = λ

∫
R2

∫
R
gm(−x)dxF (dm) = λE(M)

∫
R2

g(x)dx,

and

Cov(Bλ(y), Bλ(y′)) = Cov(Xλ(y), Xλ(y′)) = λ

∫
R2

∫
R
gm(y − x)gm(y′ − x)F (dm)dx

= λE(M2)

∫
R2

g(x)g(x− (y − y′))dx,(12)

using Campbell’s Theorem ([26], [18]).
Under our assumptions, up to choose a modification, we can assume that both Bλ and Xλ are

a.s. C1. It follows that ∂1Bλ and ∂1Xλ are centered, stationary and

Cov(∂1Bλ(y), ∂1Bλ(y′)) = Cov(∂1Xλ(y), ∂1Xλ(y′)) =

∫
R2

∫
R
∂1gm(y − x)∂1gm(y′ − x)F (dm)dx

= λE(M2)

∫
R2

∂1g(x)∂1g(x− (y − y′))dx,

Moreover, writing B(y) = Bλ(y)−E(Bλ(y))√
λ

, and Zλ(y) = Xλ(y)−E(Xλ(y))√
λ

, as λ→ +∞, we obtain as

in [25],

(Zλ(y), ∂1Zλ(y))
d−→

λ→+∞
(B(y), ∂1B(y)) .

Note that this asymptotic normality for high intensity can be strenghen with an invariance principle
and even a coupling between Zλ and B for a strong invariance principle as in [32]. Hence it is not
surprising to observe a Gaussian behavior for geometry of excursion sets in high intensity. This is
the object of our first result, which proof is postponed to Appendix A.

Theorem 1 (High regime). Let us assume that g is a C2 radial kernel and that µp(D
jgM ) < +∞

for all |j| ≤ 2 and 1 ≤ p ≤ 4. Then, there exists C
+

0 , C
+

1 and C
+

2 positive constants such that for

|ν| ≤ C+

0 ,

∀λ > 0,
∣∣LPXλ(hν)− LPBλ(hν)

∣∣ =

∣∣∣∣LPXλ(hν)−
√
λϕBλ(ν)

√
π

2
µ2(∂1gM )

∣∣∣∣
≤ C

+

1 + (1− δ0(ν))C
+

2 ,

where

ϕBλ(ν) = exp

[
iνλE(M)

∫
R2

g(x)dx− λµ2(gM )ν2

2

]
,

δ0(ν) = 1 if ν = 0 and δ0(ν) = 0 otherwise and

C
+

0 ≤ 1

6
min

((
µ4(gM )

µ2(gM )

)1/2

,
5µ2(∂1gM )

µ4(gM )1/2µ4(∂1gM )1/2

)

C
+

1 ≤ 10

(
µ4(∂1gM )

µ2(∂1gM )

)1/2

C
+

2 ≤
√
π

(
3µ4(gM )1/2µ2(∂1gM )1/2

µ2(gM )
+

(
µ4(∂1gM )

µ2(∂1gM )

)1/2
)
.



6 HERMINE BIERMÉ AND ANTOINE LERBET

Observe the interest of the result since ∀ν ∈ R the two quantities
∣∣LPXλ(hν)

∣∣ and
∣∣LPBλ(hν)

∣∣
tend to infinity when λ→∞. Note also that, using

LPZλ(hν) =
e−iνE(Xλ(x))/

√
λ

√
λ

LPXλ(hν/
√
λ) and LPB(hν) =

e−iνE(Xλ(x))/
√
λ

√
λ

LPBλ(hν/
√
λ),

our result extends Theorem 4 of [10] for the normalized shot noise field : for any ν ∈ R,

LPZλ(hν) −→
λ→+∞

LPB(hν).

This implies the following weak convergence for u ∈ R,

Per(EXλ(E(Xλ(x)) + u
√
λ)) →

λ→+∞
Per(EB(u)),

as well as (taking ν = 0)

TV(Xλ)√
λ

→
λ→+∞

TV(B) =

√
π

2
µ2(∂1gM ).

But Theorem 1 actually gives a rate for convergence, following ideas in [9], since∣∣∣∣∣TV(Xλ)√
λ

−
√
π

2
µ2(∂1gM )

∣∣∣∣∣ =

∣∣∣∣∣TV(Xλ)√
λ

− TV(Bλ)√
λ

∣∣∣∣∣ ≤ C
+

1√
λ
.

More surprisingly we observe an other behavior for small values of λ. This is the object of the
following theorem which proof is also postponed to Appendix B.

Theorem 2 (Low regime). Let us assume that g is a C2 radial kernel and that µp(D
jgM ) < +∞

for all |j| ≤ 2 and 1 ≤ p ≤ 2. Assume moreover that there exists β ∈ (0, 1) such that µβ(∂1gM ) <

+∞, then, for C
−

0 > 0 and λ ≤ C−0 , there exists C
−

1 > 0 such that∣∣∣∣LPXλ(hν)− λϕXλ(ν)

∫
R

LPgm(hν ,R2)F (dm)

∣∣∣∣ ≤ C−1 λ 2
1+β ,

with

ϕXλ(ν) = exp

(
λ

∫
R2

∫
R

[
eiνgm(x) − 1

]
F (dm)dx

)
,

LPgm(hν ,R2) :=

∫
R
hν(u)Per(Egm(u),R2)du =

π

2

∫
R2

|∂1gm(x)|eiνgm(x)dx,

and

C
−

1 ≤ β−1C
−

β µ1(∂1gM ) exp(C
−

β C
−

0

1−β
1+β

) + 2 + 2C
−

β C
−

0

1−β
1+β

, for C
−

β = 21−βµβ(∂1gM ).

A particular consequence of this result is that, in view of Lemma 3, taking ν = 0 we get∣∣∣∣∣TV(Xλ)

λ
− π

2
µ1(∂1gM )

∣∣∣∣∣ ≤ C−1 λ 1−β
1+β ,

and therefore

TV(Xλ)

λ
→
λ→0

π

2
µ1(∂1gM ).

The next section is devoted to a special kernel g for which we will be able to identify this limit.
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3. Gaussian shot noise random field and previous results

From now on, we consider for λ, µ, σ ∈ (0,+∞), the Gaussian shot noise random field with
exponential marks defined by

(13) Xλ,µ,σ(x) =
∑
i

gmi,σ(x− xi),

with (xi)i an homogeneous Poisson point process of intensity λ in R2, the (mi)i are independent
marks of exponential law of parameter µ and gm,σ = mgσ with the Gaussian density gσ

(14) gσ(x) =
1

2πσ2
exp

(
−‖x‖

2

2σ2

)
.

Let us emphasize that, gσ is of course a radial C∞ kernel and moreover, if M denotes a random
variable with exponential law of parameter µ whose distribution is denoted by F , then for any
p > 0

µp(gM,σ) = E(Mp)
1

p(2πσ2)p−1
=

Γ(p+ 1)

µp
1

p(2πσ2)p−1
=

Γ(p+ 1)

p(2π)p−1

σ2−2p

µp
,

while

µp(∂1gM,σ) = E(Mp)
1

(2πσ4)p

(∫
R
|x1|pe−

px21
2σ2 dx1

)(∫
R
e−

px22
2σ2 dx2

)
= E(Mp)

1

(2πσ4)p
× Γ

(
p+ 1

2

)(
2σ2

p

) p+1
2

×

√
2π
σ2

p

=
21−p/2Γ(p+ 1)Γ

(
p+1

2

)
p1+p/2πp−1/2

σ2−3p

µp
.

Hence, the model satisfies all the assumptions of the previous section. Moreover, in [11], the
characteristic function of (Xλ,µ,σ(x), ∂1Xλ,µ,σ(x)) is explicitly given for (ν, ξ) ∈ R2 by

ϕ(ν, ξ) = E[eiνXλ,µ,σ(x)+iξ∂1Xλ,µ,σ(x)]

= exp

λ ∞∫
0

2π∫
0

ir(νσ2 − vr cos(θ))e−r
2/2σ2

2πσ4µ− i(νσ2 − vr cos(θ))e−r2/2σ2 dθdr

(15)

and in particular, taking ξ = 0, this shows that Xλ,µ,σ(x) follows a Gamma law of parameters

2πµσ2 and 2πλσ2. As a consequence we simply have E(Xλ,µ,σ(x)) = λ
µ and Var(Xλ,µ,σ(x)) =

λµ2(gM,σ) with µ2(gM,σ) = 1
2πσ2µ2 . We can also simply compute the covariance function in (12),

that remains a Gaussian function, namely

Cov(Xλ,µ,σ(x), Xλ,µ,σ(y)) =
λ

2πσ2µ2
exp

(
−||x− y||2

4σ2

)
.

Finally, in view of Equation (11), we have also

S0(ν, ξ) = iλ

∞∫
0

2π∫
0

2πσ4µr2 cos(θ)e−r
2/2σ2(

2πσ4µ− i(νσ2 − vr cos(θ))e−r2/2σ2
)2 dθdr.(16)

So we can numerically approach ν → LPXλ,µ,σ (hν) and a Fourier inversion allows us to obtain the

desired function u→ Per(EX(u)). We refer to Appendix E for algorithm and illustration.
The model satisfies several invariances as stated in the next proposition.

Proposition 2. Let κ > 0 and k > 0. Then we have{
(Xλ,µ,σ(x), ∂1Xλ,µ,σ(x)) | x ∈ R2

} fdd
=

{(
Xλk2,µk2,σk

(x
k

)
,

1

k
∂1Xλk2,µk2,σk

(x
k

))
| x ∈ R2

}
,

and

{(Xλ,µ,σ(x), ∂1Xλ,µ,σ(x)) | x ∈ R2} fdd=

{
1

κ

(
Xλ,µκ ,σ

(x), ∂1Xλ,µκ ,σ
(x)
)
| x ∈ R2

}
.
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Proof. Let n ∈ N, x1, . . . , xn ∈ R2 and u1,1, u1,2, . . . , un,1, un,2 ∈ R. For x ∈ R2 we note x(1) and

x(2) its spatial coordinates. By Campbell’s Theorem ([26]) we have that

− log

(
E
[
exp

(
i
n∑
l=1

ul,1Xλk2,µk2,σk
(xlk ) +

ul,2
k ∂1Xλk2,µk2,σk

(xlk )

)])
=

∫
R2

∫
R+

[
1− exp

(
i
n∑
l=1

ul,1mk
2

2πσ2 e
−k2|| xl

k
−c||2

2σ2 +
ul,2mk

4x
(1)
l

2πk2σ4 e
−k2|| xl

k
−c||2

2σ2

)]
λk2µk2e−µk

2mdmdc

=
∫
R2

∫
R+

[
1− exp

(
i
n∑
l=1

ul,1m
′

2πσ2 e
−||xl−c

′||2

2σ2 +
ul,2m

′x
(1)
l

2πσ2 e
−||xl−c

′||2

2σ2

)]
λµe−µm

′
dm′dc′

= − log

(
E
[
exp

(
i
n∑
l=1

ul,1Xλ,µ,σ(xl) + ul,2∂1Xλ,µ,σ(xl)

)])

using the change of variables c′ = kc and m′ = k2m, which proves the first equality. The same
arguments allow us to check the second equality, observing that

∫
R2

∫
R+

[
1− exp

(
i
n∑
l=1

ul,1m
2πκσ2 e

−||xl−c||
2

2σ2 +
ul,2mx

(1)
l

2πκσ4 e
−||xl−c||

2

2σ2

)]
λµκe

−µmκ dmdc

=
∫
R2

∫
R+

[
1− exp

(
i
n∑
l=1

ul,1m
′

2πσ2 e
−||xl−c||

2

2σ2 +
ul,2m

′x
(1)
l

2πσ4 e
−||xl−c||

2

2σ2

)]
λµe−µm

′
dm′dc

using m′ = m
κ . �

Note that introducing the Gaussian random field Bλ,µ,σ sharing the same second order statistics
than Xλ,µ,σ, it will also verify the previous invariances. Moreover, since µ1(gM,σ) = 1

µ , µ2(gM,σ) =
1

2πσ2µ2 and µ2(∂1gM,σ) = 1
4πσ4µ2 , we can compute by (7)

LPBλ,µ,σ (hν) =
1

2σ2µ

√
λ

2
ei
λ
µν exp

(
−ν

2

2

λ

2πσ2µ2

)
,

and we can restate Theorem 1 in terms of resolution σ.

Proposition 3. There exist c0(µ), c1(µ) > 0 such that for |ν| ≤ σc0(µ), one has

∣∣LPXλ,µ,σ (hν)− LPBλ,µ,σ (hν)
∣∣ ≤ c1(µ)

σ3
.

Proof. Using Proposition 2 and (4), it follows that

LPXλ,µ,σ (hν) =
1

σ
LPXλσ2,µσ2,1(hν) =

1

σ3
LPXλσ2,µ,1(hν/σ),

and similarly for the Gaussian field. We can take c0(µ) = C
+

0 and c1(µ) = C
+

1 +C
+

2 for M ∼ E(µ)

and λ̃ = λσ2, according to Theorem 1, to get for |ν/σ| ≤ c0(µ)∣∣∣LPXλσ2,µ,1(hν/σ)− LPBλσ2,µ,1(hν/σ)
∣∣∣ ≤ c1(µ),

that gives the result. �

Theorem 1 tells us that for µ > 0 and σ > 0 fixed, we have that LPXλ,µ,σ (hν) is close to

LPBλ,µ,σ (hν) and grows in high intensity. The previous proposition allows us to interpret this

result in high resolution. For λ > 0 and µ > 0 fixed, we have that LPXλ,µ,σ (hν) is close to

LPBλ,µ,σ (hν), decreases in high resolution (σ → ∞) and the difference between them tends to 0

faster (in 1/σ3) than their decreases (in 1/σ2).
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4. Elementary approximation

4.1. The elementary Gaussian function. The idea of this paper is to discretize the Gaussian
kernel to use the other framework of elementary functions in the sense of [11]. To take into account

that the range of gσ depends of σ, we write kσ(x) = e−‖x‖
2/2σ2

. The range of kσ is now (0, 1],
independently from parameters.

For n ≥ 1 we denote the elementary Gaussian function by

k(n)
σ (x) =

1

n

n−1∑
i=1

1I
B(0,r

(n)
i )

(x),

for r
(n)
i = σ

√
−2 log(i/n) in such a way that (r

(n)
i )1≤i≤n−1 is strictly decreasing with r

(n)
n = 0

and that when x ∈ B(0, r
(n)
i ) rB(0, r

(n)
i+1) one has i

n ≤ kσ(x) < i+1
n and k

(n)
σ (x) = i/n such that

‖kσ − k(n)
σ ‖∞ = 1/n.

The function k
(n)
σ is an elementary function with discontinuity points given by its regular points

R
k
(n)
σ

=
n−1
∪
i=1

∂B(0, r
(n)
i ),

meaning that it is piecewize constant with a regular discontinuity set (see Definition 5 in [11]). It

also implies that k
(n)
σ is a special bounded variation function as defined in [5]. An illustration is

given in Appendix D, Figure 4.
As a discretization of the Gaussian kernel we have the following asymptotics in the Lebesgue

Lp(R2) spaces for p > 0.

Lemma 1. Let σ > 0. Then for all p > 0, we have

||kσ − k(n)
σ ||p −→

n→∞
0,

where || · ||p is the classical norm (p > 1) or quasi-norm (0 < p < 1) in Lp(R2).

Proof. Let σ > 0 and n ∈ N. Since kσ ≥ k(n)
σ we have

||kσ − k(n)
σ ||pp =

∫
R2

(
kσ(x)− k(n)

σ (x)
)p

dx

=

n−1∑
i=1

∫
B(0,r

(n)
i )rB(0,r

(n)
i+1)

(
kσ(x)− k(n)

σ (x)
)p

dx+

∫
B(0,r

(n)
1 )c

kσ(x)pdx

≤
n−1∑
i=1

1

np
L
(
B(0, r

(n)
i ) rB(0, r

(n)
i+1)

)
+

∫
B(0,r

(n)
1 )c

kσ(x)pdx.

But for all 1 ≤ i ≤ n− 1 we have

L
(
B(0, r

(n)
i ) rB(0, r

(n)
i+1)

)
=

(
π(r

(n)
i )2 − π(r

(n)
i+1)2

)
= πσ2

(
−2 ln

(
i

n

)
+ 2 ln

(
i+ 1

n

))
= 2πσ2 (ln(i+ 1)− ln(i)) .

Therefore

||kσ − k(n)
σ ||pp ≤

2πσ2

np
ln(n) +

∫
B(0,r

(n)
1 )c

kσ(x)pdx.

Since p > 0 and r
(n)
1 −→

n→∞
+∞ we get ||kσ − k(n)

σ ||pp −→
n→∞

0. �
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Now let us remark that both kσ and k
(n)
σ are functions of SBV(R2), the space of special functions

of bounded variation as defined in [5] with total variation given by

TV(kσ,R2) =

∫
R2

‖∇kσ(x)‖dx

and

TV(k(n)
σ ,R2) =

n−1∑
i=1

1

n
H1(B(0, r

(n)
i )) =

2πσ

n

n−1∑
i=1

√
−2 ln

(
i

n

)
.

Then we can introduce the level perimeter integrals LPkσ (·,R2) and LP
k
(n)
σ

(·,R2) that define

continuous linear form on (Cb(R), ‖ · ‖∞).

Proposition 4. Let σ > 0. Then TV(kσ,R2) = π
√

2πσ and for all n ∈ N,

TV(k(n)
σ ,R2) ≤ TV(kσ,R2).

Moreover, for any h ∈ Cb(R), one has

LP
k
(n)
σ

(h,R2) −→
n→∞

LPkσ (h,R2),

where LPkσ (h,R2) =
∫ 1

0
h(s)2πσ

√
−2 log(s)ds.

Proof. We use the general co-area formula obtained in Theorem 1 of [10]. Let h ∈ Cb(R). It follows
that on the one hand,

LPkσ (h,R2) :=

∫
R
h(u)Per(Ekσ (u),R2)du =

∫
R2

h(kσ(x))‖∇kσ(x)‖dx,

from which we can compute by a change of variables in polar coordinates that

(17) LPkσ (h,R2) = 2π

∫ +∞

0

h
(
e−

r2

2σ2

) r2

σ2
e−

r2

2σ2 dr.

Therefore, with the change of variables s = e−
r2

2σ2 we get

LPkσ (h,R2) =

∫ 1

0

h(s)2πσ
√
−2 log(s)ds.

Note that, for any u ∈ (0, 1], we could also just remark that Ekσ (u) = B(0, σ
√
−2 ln(u)) and

Per(Ekσ (u),R2) = 2πσ
√
−2 ln(u). From (17) we obtain for h = 1 that TV(kσ,R2) = π

√
2πσ.

On the other hand for any n ≥ 1,

LP
k
(n)
σ

(h,R2) :=

∫
R
h(u)Per(E

k
(n)
σ

(u),R2)du =
n−1∑
i=1

∫
∂B(0,r

(n)
i )

∫ i/n

(i−1)/n

h(s)dsH1(dx)

=

n−1∑
i=1

2πr
(n)
i

∫ i/n

(i−1)/n

h(s)ds

Let us note f(s) =
√
−2 log(s). This function is well defined and integrable on (0, 1], non-negative

and strictly decreasing. Moreover we have for all n ∈ N∗∫ 1/n

0

f(s)ds =

√
2 log(n)

n
+

∫ +∞

√
2 log(n)

e−u
2/2du ≤

√
2 log(n)

n
+

1

n
√

2 log(n)
,

using the inequalities on the tail distribution of the Gaussian (see p175 of [22]). So we have∣∣∣∣LPkσ (h,R2)− LP
k
(n)
σ

(h,R2)

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

h(s)2πσ
√
−2 log(s)ds−

n−1∑
i=1

2πσ
√
−2 log(i/n)

∫ i/n

(i−1)/n

h(s)ds

∣∣∣∣
≤ 2πσ||h||∞ (An +Bn + Cn)

with

An =

∫ 1/n

0

∣∣∣∣√−2 log(s)−
√
−2 log(1/n)

∣∣∣∣ds ≤ ∫ 1/n

0

√
−2 log(s)ds ≤ 2

√
2 log(n)

n
,
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Bn =

n−1∑
i=2

∫ i/n

i−1
n

∣∣∣∣√−2 log(s)−
√
−2 log(i/n)

∣∣∣∣ds ≤ n−1∑
i=2

∫ i/n

i−1
n

∣∣∣∣
√
−2 log

(
i− 1

n

)
−
√
−2 log(i/n)

∣∣∣∣ds
=

1

n

n−1∑
i=2

√
−2 log

(
i− 1

n

)
−
√
−2 log(i/n)

=
1

n

(√
−2 log(1/n)−

√
−2 log

(
n− 1

n

))
,

and

Cn =

∫ 1

n−1
n

∣∣∣∣√−2 log(s)

∣∣∣∣ds ≤ 1

n

√
−2 log

(
n− 1

n

)
.

Hence, ∣∣∣∣LPkσ (h,R2)− LP
k
(n)
σ

(h,R2)

∣∣∣∣ ≤ 2πσ||h||∞

(
3
√

2 log(n)

n

)
−→
n→∞

0.

Finally, the uniform upper bound for TV(k
(n)
σ ,R2) can be deduced by taking h = 1 or by remarking

that, for all u ∈ R,

Per(E
k
(n)
σ

(u),R2) ≤ Per(Ekσ (u),R2).

�

Let us conclude this part by remarking that for km,σ = mkσ we have for any level u ∈ R,

Per(Ekm,σ (u),R2) = Per
(
Ekσ

( u
m

)
,R2

)
.

Defining similarly for n ∈ N and m > 0, k
(n)
m,σ = mk

(n)
σ , we can state the following corollary.

Corollary 2. Let σ > 0 and m > 0. Then TV(km,σ,R2) = mTV(kσ,R2) = mπ
√

2πσ and for all
n ≥ 1,

TV(k(n)
m,σ,R2) ≤ TV(km,σ,R2).

Moreover, for any h ∈ Cb(R), one has

LP
k
(n)
m,σ

(h,R2) −→
n→∞

LPkm,σ (h,R2),

where LPkm,σ (h,R2) =
∫ 1

0
mh(ms)2πσ

√
−2 log(s)ds.

Proof. It simply follows from the fact that for h ∈ Cb(R),

LPkm,σ (h,R2) =

∫
R
h(u)Per(Ekm,σ (u),R2)du =

∫
R
h(u)Per(Ekσ (u/m),R2)du

=

∫
R
mh(mv)Per(Ekσ (v),R2)dv,

by a change of variable. Hence, denoting [h]m := mh(m·) we get LPkm,σ (h,R2) = LPkσ ([h]m,R2)

and similarly LP
(n)
km,σ

(h,R2) = LP
(n)
kσ

([h]m,R2) and Proposition 4 concludes the proof. �

4.2. The elementary Gaussian shot noise random field. Let λ, µ, σ ∈ (0,+∞) and Xλ,µ,σ

be a Gaussian shot noise random field defined by (13) and note that

Xλ,µ,σ(x) =
∑
i

mi

2πσ2
kσ(x− xi),

with marks { mi
2πσ2 } with distribution E(2πσ2µ) denoted as Fσ.
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Proposition 5. Let n ≥ 1 and σ > 0. For λ, µ > 0 and {xi}i∈I an homogeneous Poisson point
process of intensity λ on R2 independently marked with {mi}i∈I of exponential distribution Fσ of
parameter 2πσ2µ, the random field

(18) X
(n)
λ,µ,σ(x) :=

∑
i

mik
(n)
σ (x− xi),

is an elementary field on any open bounded T ⊂ R2, in the sense of [11]. Moreover for all h ∈ Cb(R)
one has

LP
X

(n)
λ,µ,σ

(h) = λ

∫
R

LP
k
(n)
m,σ

(h
X

(n)
λ,µ,σ(0)

,R2)Fσ(dm),

where h̄
X

(n)
λ,µ,σ(0)

(s) = E[h(X
(n)
λ,µ,σ(0) + s)] for s ∈ R.

The detailed proof consists in checking assumptions [21], [22], [24], [25], [26] and [31] of Theo-
rem 5 of [11] and is postponed in appendix.

We couple this elementary field with our smooth shot noise field by setting

(19) Xλ,µ,σ(x) :=
∑
i

mikσ(x− xi),

with the same marked Poisson point process with marks of distribution E(2πσ2µ).

Proposition 6. Let λ, µ, σ ∈ (0,+∞), n ∈ N, X
(n)
λ,µ,σ given by (18) and Xλ,µ,σ defined by (19).

Then,
(
X

(n)
λ,µ,σ(x)

)
n

converges towards Xλ,µ,σ(x) in L2(Ω) (and therefore also in L1(Ω)), for all

x ∈ R2.

Proof. By stationarity we can consider x = 0. It follows that

E[|Xλ,µ,σ(0)−X(n)
λ,µ,σ(0)|2] = Var

(
Xλ,µ,σ(0)−X(n)

λ,µ,σ(0)
)

+ E
(
Xλ,µ,σ(0)−X(n)

λ,µ,σ(0)
)2

= λE[M2
σ ]||kσ − k(n)

σ ||22 + λ2E[Mσ]2||kσ − k(n)
σ ||21,

which tends to 0, according to Lemma 1. Here we introduce Mσ a random variable of distribution
E(2πσ2µ). �

Theorem 3. Let λ, µ, σ ∈ (0,+∞), n ∈ N, X
(n)
λ,µ,σ given by (18) and Xλ,µ,σ defined by (19). For

h ∈ Cb(R) and Lipschitz on R, we have

(20) LP
X

(n)
λ,µ,σ

(h) −→
n→∞

LPXλ,µ,σ (h) := λ

∫
R

LPkm,σ (h̄Xλ,µ,σ(0),R2)Fσ(dm)

where h̄Xλ,µ,σ(0)(s) = E[h(Xλ,µ,σ(0) + s)] for s ∈ R and Fσ is the exponential distribution of

parameter 2πσ2µ.

Proof. According to Proposition 5, we know that

(21) LP
X

(n)
λ,µ,σ

(h) = λ

∫
R

LP
k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

,R2)Fσ(dm)

where h̄
X

(n)
λ,µ,σ(0)

(s) = E[h(X
(n)
λ,µ,σ(0) + s)] for s ∈ R.

Lemma 2. Let h ∈ Cb(R) and Lipschitz with Lipschitz constant Lip(h). Then, for all n ≥ 1,

we also have h̄
X

(n)
λ,µ,σ(0)

∈ Cb(R) and Lipschitz with
∥∥∥h̄X(n)

λ,µ,σ(0)

∥∥∥
∞
≤ ‖h‖∞ and Lip

(
h̄
X

(n)
λ,µ,σ(0)

)
≤

Lip(h).

Proof. Let n ≥ 1. It is clear that for h ∈ Cb(R), the function h̄
X

(n)
λ,µ,σ(0)

remains bounded and

moreover, for all s ∈ R,

|h̄
X

(n)
λ,µ,σ(0)

(s)| ≤ E
[∣∣∣h(X

(n)
λ,µ,σ(0) + s)

∣∣∣] ≤ ‖h‖∞.
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Moreover, for s, t ∈ R we have∣∣∣h̄X(n)
λ,µ,σ(0)

(s)− h̄
X

(n)
λ,µ,σ(0)

(t)
∣∣∣ ≤ E

[∣∣∣h(X
(n)
λ,µ,σ(0) + s)− h(X

(n)
λ,µ,σ(0) + t)

∣∣∣]
≤ E [Lip(h)|s− t|]
= Lip(h)|s− t|,

that concludes the proof. �

Now we write for h ∈ Cb(R) and Lipschitz,∣∣∣LP
k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

,R2)− LPkm,σ (h̄Xλ,µ,σ(0),R2)
∣∣∣

≤
∣∣∣LP

k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

− h̄Xλ,µ,σ(0),R2)
∣∣∣+
∣∣∣LP

k
(n)
m,σ

(h̄Xλ,µ,σ(0),R2)− LPkm,σ (h̄Xλ,µ,σ(0),R2)
∣∣∣

Let ε > 0. By Proposition 6, there exists Nε ∈ N such that ∀n ≥ Nε we have

E
[∣∣∣Xλ,µ,σ(0)−X(n)

λ,µ,σ(0)
∣∣∣] ≤ ε

1 + Lip(h)
.

Let n ≥ Nε, then for all u ∈ R,

|h̄Xλ,µ,σ(0)(u)− h̄
X

(n)
λ,µ,σ(0)

(u)| ≤ E
[∣∣∣h(Xλ,µ,σ(0) + u)− h(X

(n)
λ,µ,σ(0) + u)

∣∣∣]
≤ Lip(h)E

[∣∣∣Xλ,µ,σ(0)−X(n)
λ,µ,σ(0)

∣∣∣]
≤ ε.

It follows that ||h̄Xλ,µ,σ(0) − h̄X(n)
λ,µ,σ(0)

||∞ −→
n→∞

0.

Thus, by Corollary 2, we have∣∣∣LP
k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

− h̄Xλ,µ,σ(0),R2)
∣∣∣ ≤ TV(k(n)

m,σ,R2)||h̄Xλ,µ,σ(0) − h̄X(n)
λ,µ,σ(0)

||∞

≤ TV(km,σ,R2)||h̄Xλ,µ,σ(0) − h̄X(n)
λ,µ,σ(0)

||∞.

It follows that
∣∣∣LP

k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

− h̄Xλ,µ,σ(0),R2)
∣∣∣ −→
n→+∞

0.

For the second term, we simply use again Corollary 2 with h := h̄Xλ,µ,σ(0) ∈ Cb(R) and combining
both we can conclude that

LP
k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

,R2) −→
n→∞

LPkm,σ (h̄Xλ,µ,σ(0),R2).

Since we also have

|LP
k
(n)
m,σ

(h̄
X

(n)
λ,µ,σ(0)

,R2)| ≤ ‖h‖∞TV(k(n)
m,σ,R2) ≤ |m|‖h‖∞TV(kσ,R2),

and
∫
R |m|Fσ(dm) = E(|Mσ|) < +∞, we can use Lebesgue’s theorem to obtain the result. �

At that point it is natural to ask if LPXλ,µ,σ (h) = LPXλ,µ,σ (h). Let us look at this with this
next corollary.

Corollary 3. Let λ, µ, σ ∈ (0,+∞), n ∈ N, X
(n)
λ,µ,σ given by (18) and Xλ,µ,σ defined by (19).

Then we have

(22) TV(X
(n)
λ,µ,σ) −→

n→∞
TV(Xλ,µ,σ) := LPXλ,µ,σ (1) =

λ

σµ

√
π

2
.

Proof. By taking h constant equal to 1 we also have h̄
X

(n)
λ,µ,σ(0)

constant equal to 1. Then by

Theorem 3 we have

TV(X
(n)
λ,µ,σ) −→

n→∞
λ

∫
R

LPkm,σ (1,R2)Fσ(dm).
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Then, by Corollary 2, we have

λ

∫
R

LPkm,σ (1,R2)Fσ(dm) = λ

∫
R

1∫
0

m2πσ
√
−2 log(s)dsFσ(dm)

=
2πσλ

2πσ2µ

∫ 1

0

√
−2 log(s)ds

=
λ

σµ

√
π

2
.

�

The simplicity of this result has the defect of representing only the low ”regime” with small λ
of Theorem 2 since we can now identify the limit.

Proposition 7. Let λ, µ, σ ∈ (0,+∞) and ν ∈ R. Then

LPXλ,µ,σ (hν) = λϕXλ,µ,σ (ν)

∫
R

LPgm,σ (hν ,R2)F (dm).

Proof. Actually, by definition of LPXλ,µ,σ in (20) we have that

LPXλ,µ,σ (hν) = λϕXλ,µ,σ (ν)

∫
R

LPkm,σ (hν ,R2)Fσ(dm).

Now, by the general co-area formula obtained in Theorem 1 of [10] we have

LPXλ,µ,σ (hν) = λϕXλ,µ,σ (ν)

∫
R

∫
R2

hν(km,σ(x))‖∇km,σ(x)‖dxFσ(dm),

and a change of variable in m allows us to get

LPXλ,µ,σ (hν) = λϕXλ,µ,σ (ν)

∫
R

∫
R2

hν(gm,σ(x))‖∇gm,σ(x)‖dxF (dm),

where we recognize

LPgm,σ (hν ,R2) =

∫
R2

hν(gm,σ(x))‖∇gm,σ(x)‖dx.

�

Then similarly to what we have done for high regime, we can restate Theorem 2 in terms of σ.

Proposition 8. Assuming λσ2 ≤ c0, for all β ∈ (0, 1), there exists cβ(µ) > 0 such that for all
ν ∈ R ∣∣∣LPXλ,µ,σ (hν)− LPXλ,µ,σ (hν)

∣∣∣ ≤ cβ(µ)λ
2

1+β σ
1−3β
1+β .

Proof. Using change of variables we can also check that it follows that

LPXλ,µ,σ (hν) =
1

σ
LPXλσ2,µσ2,1(hν) =

1

σ3
LPXλσ2,µ,1(hν/σ).

For β ∈ (0, 1), we can take cβ(µ) = C
−

1 for M ∼ E(µ) and σ = 1, according to Theorem 2, to get
for all ν ∈ R, ∣∣∣LPXλσ2,µ,1(hν/σ)− LPBλσ2,µ,1(hν/σ)

∣∣∣ ≤ cβ(µ)
[
λσ2

] 2
1+β ,

that gives the result. �

Hence we introduce the following quantities that will be used for numerical computations.

Proposition 9. Let λ, µ, σ ∈ (0,+∞), and let fλ,µ,σ be the density of a Gamma law of parameters
2πµσ2 and 2πλσ2, then we define the mean elementary perimeter function as

(23) Per(EXλ,µ,σ (u)) := λ

∫
R

∫ 1

0

fλ,µ,σ(u−ms)m2πσ
√
−2 ln(s)dsFσ(dm),
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where Fσ denotes the exponential distribution of parameter 2πσ2µ. Then, for all h ∈ Cb(R), one
has

LPXλ,µ,σ (h) =

∫
R
h(u)Per(EXλ,µ,σ (u))du.

Moreover, its Fourier transform is given for all ν ∈ R by

(24) LPXλ,µ,σ (hν) = λ

(
2πµσ2

2πµσ2 − iν

)2πλσ2

2πσ

∫ 1

0

2πσ2µ

(iνs− 2πσ2µ)2

√
−2 ln(s)ds

Proof. Let h ∈ Cb(R). By Theorem 3 and Corollary 2 it follows that

LPXλ,µ,σ (h) = λ

∫
R

LPkm,σ (h̄Xλ,µ,σ (0),R2)Fσ(dm)

= λ

∫
R

∫ 1

0

E[h(Xλ,µ,σ(0) +ms)]m2πσ
√
−2 ln(s)dsFσ(dm)

= λ

∫
R

∫ 1

0

∫
R
h(t+ms)fλ,µ,σ(t)m2πσ

√
−2ln(s)dtdsFσ(dm)

= λ

∫
R

∫ 1

0

∫
R
h(u)fλ,µ,σ(u−ms)m2πσ

√
−2ln(s)dudsFσ(dm)

=

∫
R
h(u)

(
λ

∫
R

∫ 1

0

fλ,µ,σ(u−ms)m2πσ
√
−2ln(s)dsFσ(dm)

)
du,

where we recognize Per(EXλ,µ,σ (u)) under integral.

Let hν(s) = eiνs for s, ν ∈ R. By Corollary 2 we have that

LPXλ,µ,σ (hν) = λϕXλ,µ,σ (ν)

∫
R

∫ 1

0

eiνmsm2πσ
√
−2 ln(s)dsF (dm)

= λ

(
2πµσ2

2πµσ2 − iν

)2πλσ2

2πσ

∫ 1

0

√
−2 ln(s)

∫
R
meiνmsF (dm)ds

= λ

(
2πµσ2

2πµσ2 − iν

)2πλσ2

2πσ

∫ 1

0

2πσ2µ

(iνs− 2πσ2µ)2

√
−2 ln(s)ds

�

Let us remark that the integral giving u 7→ Per(EXλ,µ,σ (u)) is not easy to compute but can be
efficiently numerically approximated as well as its Fourier transform (see Appendix E).

We also strongly believe that the difference between the theoretical perimeter and the elemen-
tary perimeter comes from the total variation. That is why, for X a random field and u ∈ R, let
us define the normalized perimeter function by

Per∗(EXλ,µ,σ (u)) :=
Per(EXλ,µ,σ (u))

TV(EXλ,µ,σ(u))

,

and make the following conjecture, motivated by Figure 5 (see appendix D).

Conjecture : for almost all u ∈ R we have Per∗(EXλ,µ,σ (u)) =
Per(EXλ,µ,σ(u))

TV(EXλ,µ,σ(u))

.

5. Classification between Gaussian and shot noise fields

We have already seen that there is a closed correspondence between Gaussian and shot noise
random fields. In practice, this can be used in insurance risk management ([28]) or in wireless
networks ([17, 4]). This section has a specific aim : the classification between these two random
fields.
For (λ, µ, σ) ∈ (0,+∞)3, considering a shot noise field Xλ,µ,σ (i.e. a shot noise with a Gaussian
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kernel and exponential mark), by Campbell’s Theorem (see [27]), the mean is E[Xλ,µ,σ(0)] = λ
µ

and the isotropic covariance function is itself Gaussian, since we have for all r > 0

CXλ,µ,σ (r) =
λ

2πσ2µ2
exp(− r2

4σ2
),

where CXλ,µ,σ (r) = Cov(Xλ,µ,σ(x), Xλ,µ,σ(y)) for all x, y ∈ R2 with ||x − y|| = r. Hence we con-

sider a Gaussian random field Bλ,µ,σ with the same mean MBλ,µ,σ = λ
µ and the same covariance

function CBλ,µ,σ (r) = λ
2πσ2µ2 exp(− r2

4σ2 ). When there is no ambiguity, we write X = Xλ,µ,σ and

B = Bλ,µ,σ.
Conversely, let B a Gaussian random field with Gaussian covariance function, then there exist
(λ, µ, σ) ∈ (0,+∞)3 and a shot noise random field Xλ,µ,σ with the same mean, the same variance

and the same covariance function than B. Indeed, if we note CB(r) = Var[B(0)]e−
r2

4σ2 the covari-
ance function and MB = E[B(0)] the mean of the Gaussian random field, the parameters of the
corresponding shot noise Xλ,µ,σ are

λ =
M2
B

2πσ2Var[B(0)]

µ =
MB

2πσ2Var[B(0)]
σ = σ.

Some simulations are presented in Appendix D (Figure 6, 7, 8) to compare a Gaussian field
with a shot noise field. Each random field is simulated on a window T = [0, 1000]2 with the same
mean, same variance and same correlation. We have chosen, arbitrarily, the same intensity of the
Poisson process λ = 0.001 and the same mark µ = 0.01 for all simulations. Although the intensity
parameter λ may seem small, it represents on average 1000 points on T . Also, let us not forget
that the parameter of an exponential law is the inverse of its mean, hence the mark has a mean of
100. The difference between Figures 6, 7, 8 is in the σ parameter and note that, similarly to the
high intensity convergence ([25]), we can less and less distinguish the fields with the increase of σ.

We will start by introducing the classification based on the geometries of Gaussian fields. By
Corollary 1, since the second spectral moment of B is λ2 = Var[∂1B(0)] = ∂2CB(0) = λ

4πµ2σ4 , for

u ∈ R we have that

(25) Per(EB(u)) =
1√
8σ

exp

(
−πµ2σ2

(u− λ
µ )2

λ

)
,

and we have also

(26) Area(EB(u)) =

∞∫
u

1√
2πVar[B(0)]

exp

(
− (x− λ/µ)2

2Var[B(0)]

)
dx

To compute (25) and (26), it is necessary to estimate the parameters. To do this, we use the method
of moments, similar to what we did for the shot noise random fields in [33]. More precisely, suppose
that we observe our field f on a rectangle T ⊂ Z2 and let us introduce the following moment
estimators :

M̂1 =
1

|T |
∑
x∈T

f(x)(27)

M̂2 =
1

|T |
∑
x∈T

f(x)2(28)

ĥ(w) =
1

|T 	 w|
∑

x∈T	w
f(x)f(x+ w),(29)

where w ∈ Z2 and T 	 w = {x ∈ T ; x+ w ∈ T}.
Since the field is assumed to be isotropic, the estimators of mixed moment of second order ĥ(w)
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can be grouped according to the norm of w which allows to improve the estimation. That is why

we consider, for r ∈ Z+,
̂̃
h(r) = 1

2 (ĥ(re1) + ĥ(re2), where (e1, e2) denotes the canonical basis of

R2.

From these estimators, let us introduce the estimators of variance V̂ = M̂2 − M̂1

2
and of the

isotropic correlation function ̂̃ρ(r) = (
̂̃
h(r)−M̂1

2
)

V̂
. Then, to estimate (λ, µ, σ), we can use for any

r ∈ Z2 the estimators :

(30)



λ̂r =
−2M̂1

2
log(̂̃ρ(r))

πr2(M̂2 − M̂1

2
)

µ̂r =
−2M̂1 log(̂̃ρ(r))

πr2(M̂2 − M̂1

2
)

σ̂r =

√
−r2

4 log(̂̃ρ(r))

By property of association of a Gaussian field with Gaussian covariance function, they are consis-
tent estimators and asymptotically normal, similar to what we did for the shot noise fields ([33]).

Following this work, we can optimize the choice of r by taking r∗ = argmin
r∈N∗

|̂̃ρ(r)− exp(− 1
2 )|, the

distance where the covariance function decreases fastest.

These good estimates of the parameters allow us to compute the theoretical formulas (26, 25)

with (λ̂r∗, µ̂r∗, σ̂r∗) instead of (λ, µ, σ). To stay in the spirit of the article, we are interested in the
normalized perimeter function

Per∗(EF (u)) =
Per(EF (u))

TV(EF (u))
.

We can also estimate these geometries. For f our random field data observed on T , let us
introduce umin the minimum of f and umax its maximum. Let val a regular discretization of
[umin, umax] of size lval ≥ 2 and note sval = umax−umin

lval−1 the distance between two successive
points of val. For all u ∈ val, the area function estimator is

Ârea(Ef (u)) =
1

|T |
∑
x∈T

1f(x)≥u.

To estimate the perimeter function we simply use the estimator P̂er(Ef (u), T ) of [1], also defined

as P̂
(1)
f in [19], multiplied by π/4 to correct the bias according to Proposition 4.4 in [12] in view

of isotropy of fields under study. Then we normalized according to the level to set P̂er∗(Ef (u)).

The geometric statistic that will be used as classifier is dB(f) = (dBarea(f), dBper(f)) ∈ R2 with

(31) dBarea(f) =

(
sval

∑
u∈val

(Area(EB(u))− Ârea(Ef (u)))2

)1/2

the discretized L2 distance between the empirical area and the theoretical Gaussian area, and

(32) dBper(f) =

(
sval

∑
u∈val

(Per∗(EB(u))− P̂er∗(Ef (u)))2

)1/2

the discretized L2 distance between the empirical perimeter and the theoretical normalized Gauss-
ian perimeter.

Our classification approach is one of the supervised learning. To use the classical notation of
classification theory, let us note C1 the class of Gaussian random field with Gaussian covariance
and C2 the class of shot noise random field with Gaussian covariance. We use several simulations
of Gaussian fields and shot noise fields to understand the behavior of the two distances (31)-(32)
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under the two different classes. More precisely, we simulate N ∈ N∗ independent Gaussian random
fields B1, . . . , BN in C1 of same distribution than B to compute(

dB(B1), . . . , dB(BN )

)
,

the distances under the Gaussian assumption. In the same way, we simulate N independent shot
noise random fields X1, . . . , XN in C2 with same second order statistics than B to compute the
distances under the shot noise assumption(

dB(X1), . . . , dB(XN )

)
.

We will assume that
(
dB(Bi)

)
1≤i≤N (respectively

(
dB(Xi)

)
1≤i≤N ) are sampled from N (µ1,Σ1)

(respectively from N (µ2,Σ2)). In the classification lexicon, these two samples are called training
set. For k = 1, 2, we estimate the mean µk by

(33) µ̂k =
1

N

N∑
i=1

(
dBarea(fi), d

B
per(fi)

)
,

and the covariance matrix Σk by
(34)

Σ̂k =
1

N

N∑
i=1

(
(dBarea(fi)− µ̂k(1))2 (dBarea(Bi)− µ̂k(1))(dBper(fi)− µ̂k(2))

(dBarea(fi)− µ̂k(1))(dBper(fi)− µ̂k(2)) (dBper(fi)− µ̂k(2))2

)
,

where f1, . . . , fN are iid samples in Ck (i.e. either B1, . . . , BN or X1, . . . , XN ).
It remains to determine to which sample the observed distance pair dB(f) = (dareaB (f), dperB (f))
best belong. To do this, we will use the quadratic discriminant analysis. Since it is accepted that
Σ1 6= Σ2, the boundary of the classification decision rule is quadratic (see [24]). Moreover, since
the two training set have the same size, noting pBk the density of a Gaussian variable N (µk,Σk),
the classification rule is given by{

f ∈ C1 if pB1 (dB(f)) > pB2 (dB(f))
f ∈ C2 if pB1 (dB(f)) < pB2 (dB(f))

When making a classification decision, there is always the possibility of making a mistake. For
d ∈ R2, k = 1, 2, if f ∈ Ck we introduce the score function d → SBk (d) that represents the prob-
ability of choosing class k. In the quadratic discriminant analysis, the score function is given by

SBk (dB(f)) =
pBk (dB(f))

pB1 (dB(f))+pB2 (dB(f))
. Finally, the error of the classification is defined by 1 minus the

score SBk (dB(f)).

Figure 1. Example of a classification, with the two learning samples of size N =
50 and the classification boundary. The initial Gaussien field B was simulated
using λ = 0.001, µ = 0.01 and σ = 10.
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Figure 2. Example of a classification, with the two learning samples of size N =
50 and the classification boundary. The initial Gaussien field B was simulated
using λ = 0.001, µ = 0.01 and σ = 30.

Figure 3. Example of a classification, with the two learning samples of size N =
50 and the classification boundary. The initial Gaussien field B was simulated
using λ = 0.001, µ = 0.01 and σ = 50.

Figure 1, 2 and 3 are 3 examples of a classification where the initial field is Gaussian, and it can
be seen that it is well classified in the class of Gaussian fields. Not surprisingly, the classification
decision is much clearer when σ = 10 that when σ = 50. We refer to this classification as the
Gaussian classification, because it is based on the geometrical formulas of the Gaussian fields, and
performed it on a sample of N = 50 Gaussian fields (the class C1) and N = 50 shot noise fields
(the class C2). Figure 9 (see Appendix D) represents a histogram of the scores of the classifica-
tion SBk (dB(fk,j)) with 1 ≤ j ≤ M and k = 1, 2, where (dB(f1,j))j are the distances obtained
for M = 50 Gaussian random fields data (f1,j)j and (dB(f2,j))j are the distances obtained for
M = 50 shot noise random fields (f2,j)j . We would like to draw your attention in order not to
confuse the role of M and N . For each of the M random fields, we simulate N Gaussian fields
and N shot noise fields, which constitute the training set, using the parameters (λ, µ, σ) estimated
from the initial field. We observe that the classification of Gaussian fields is very successful with
50/50 good results and a very high score with a average of about 0.95 and a standard deviation of
about 0.07. The classifications of shot noise fields is not as successfull since only 25/50 gave the
results and with a bad score with a average of about 0.49 and a standard deviation of about 0.24.

Now, thanks to the study of the perimeter of Gaussian shot noise random fields, we can make
exactly the same classification method, but this time based on shot noise geometries. Once the
model parameters (λ, µ, σ) have been estimated by the method of moments presented in [33], we
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can compute the theoretical volume easily by

Area(EX(u)) =

∞∫
u

x2πλσ2−1e−x2πµσ2

(2πµσ2)2πλσ2

Γ(2πλσ2)
dx,

given that X(0) is gamma distributed. For the theoretical perimeter function, we approximate
it by Algorithm 2 or 3. You can see the differences and similarities of the theoretical Gaussian
and shot noise perimeter functions in Figure 10, by increasing the values of σ and with the same
values of λ and µ. Let us remember that, in view of Proposition 3, that it is consistent to observe
a convergence of the curves with the increase of σ.

So, for f a random field data, the geometric statistic that will be used as classifier is dX(f) =
(DX

area(f), DX
per(f)) defined by (31,32) replacing B by X. With the same N Gaussian and N shot

noise random field simulations than before, we have the two new training sets
(
dX(B1), . . . , dX(BN )

)
and

(
dX(X1), . . . , dX(XN )

)
.

As before, we suppose that for f a random field data and k = 1, 2, conditional on the event
f ∈ Ck, dX(f) correponds to the realisation of a two-dimensional random variable with Gaussian
distribution and we note pXk its density. That is why the classification rule is{

f ∈ C1 if pX1 (dX(f)) > pX2 (dX(f))
f ∈ C2 if pX1 (dX(f)) < pX2 (dX(f))

where for i = 1, 2 the density pXi is compute with the analogue of (33) and (34) replacing B by
X.

This time, we refer to this classification as the shot noise classification, because it is based on
the geometrical formulas of the shot noise fields, and performed it on the same sample of M = 50
Gaussian fields (the class C1) and M = 50 shot noise fields (the class C2) than in the Gaussian
classification. Figure 11 (see Appendix D) represents a histogram of the classifications score
SXk (dX(fk,j)) with 1 ≤ j ≤ M and k = 1, 2, where (dX(f1,j))j are the distances obtained by the
shot noise classification for the same M = 50 Gaussian random fields (f1,j)j than in the Gaussien
classification, and (dX(f2,j))j are the distances obtained for the same M = 50 shot noise random
fields (f2,j)j than in the Gaussien classification. We observe that the classification of Gaussian
fields is bad with 26/50 good results and a bad score with a average of about 0.55 and a standard
deviation of about 0.24. The classifications of shot noise fields is, this time, very successfull with
50/50 good results and with a high score with a average of about 0.95 and a standard deviation
of about 0.06.

This highlights the usefulness of the shot noise classification. These two classifications should
be used together and when they do not have the same conclusion, the classification with the largest
difference between the probability densities is preferred reducing the error as much as possible.
In Appendix D, Figure 12, we compare the classification score for the sample of Gaussian fields.
For better visibility, we have sorted the scores, so that they are ascending for the shot noise
classification. A score below 1/2 means that this is not the choice retained by the classification
procedure. We do the same for the 50 shot noise fields in Figure 13, where we have this time
sorted the scores to be increasing for the Gaussian classification.

Appendix A. Proof of Theorem 1

Recall that ϕ denotes the characteristic function of (Xλ(0), ∂1Xλ(0)). According to (11) we
have for ν ∈ R,

LPXλ(hν) =

∫ ∞
0

1

ξ
ϕ(ν, ξ)S0(ν, ξ)dξ,
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where the improper integral
∫∞

0
is obtained as limV→+∞

∫ V
0

. Actually, for V ′ > V > 0, integrating
by parts, ∫ V ′

V

1

ξ

∂ϕ

∂ξ
(ν, ξ)dξ =

ϕ(ν, V ′)

V ′
− ϕ(ν, V )

V
+

∫ V ′

V

ϕ(ν, ξ)

ξ2
dξ.

Since ϕ is a characteristic function it is bounded by 1 and we can let V ′ tends to ∞ and obtain

(35)

∣∣∣∣∫ +∞

V

1

ξ

∂ϕ

∂ξ
dξ

∣∣∣∣ ≤ 2

V
.

We introduce

ψ(ν, ξ) := exp (iνE(Xλ(0))) exp

(
−λµ2(gM )

2
ν2

)
exp

(
−λµ2(∂1gM )

2
ξ2

)
,

the characteristic function of the Gaussian vector (Bλ(0), ∂1Bλ(0)) and note that we have

LPBλ(hν) = −
∫ +∞

0

1

ξ

∂ψ

∂ξ
(ν, ξ)dξ,

with similarly as (35) ∣∣∣∣∫ +∞

V

1

ξ

∂ψ

∂ξ
(ν, ξ)dξ

∣∣∣∣ ≤ 2

V
.

Moreover introducing S1(v) = λµ2(∂1gM )ξ we can write ∂ψ
∂ξ (ν, ξ) = −S1(ξ)ψ(ν, ξ). It follows that

∣∣LPXλ(hν)− LPBλ(hν)
∣∣ =

∣∣∣∣∫ +∞

0

1

ξ
S0(ν, ξ)ϕ(ν, ξ)dξ −

∫ +∞

0

1

ξ
S1(ξ)ψ(ν, ξ)dξ

∣∣∣∣
≤

∫ V

0

1

ξ
|S0(ν, ξ)ϕ(ν, ξ)− S1(ν, ξ)ψ(ν, ξ)|+ 4

V
.

Then we write

|S0(ν, ξ)ϕ(ν, ξ)− S1(ξ)ψ(ν, ξ)| ≤ |S0(ν, ξ)||ϕ(ν, ξ)− ψ(ν, ξ)|+ |S0(ν, ξ)− S1(ξ)||ψ(ν, ξ)|.

For the first term, we can write

ϕ(ν, ξ)− ψ(ν, ξ) = ψ(ν, ξ) [exp (z(ν, ξ))− 1] ,

where

z(ν, ξ) := λ

∫
ei[νgm+ξ∂1gm] − 1− i[νgm + ξ∂1gm]− [νgm + ξ∂1gm]2

2
F (dm)dx,

using the fact that, since ∂1gm is an odd function
∫
∂1gm = 0 and

∫
gm∂1gm = 0. Hence, using

finite increments inequality,

|ϕ(ν, ξ)− ψ(ν, ξ)| ≤ |ψ(ν, ξ)||z(ν, ξ)| exp(<(z(ν, ξ))),

where

<(z(ν, ξ)) := λ

∫
cos[νgm + ξ∂1gm]− 1− [νgm + ξ∂1gm]2

2
F (dm)dx.

Since 0 ≤ cos(s)−1+ s2

2 ≤
1
4!s

4 for all s ∈ R, we have 0 ≤ <(z(ν, ξ)) ≤ λ
4!

∫
[νgm+ξ∂1gm]4F (dm)dx.

Now let us choose V =
(
µ2(∂1gm)
µ4(∂1gm)

)1/2

and ν with |ν| ≤ C+
0 . Then it follows that

• ν2
∫
g4
m ≤ 6

∫
g2
m;

• ν2
∫
g2
m∂1g

2
m ≤ 5

6

∫
(∂1gm)2;

• V 2
∫

(∂1gm)4 ≤
∫

(∂1gm)2,
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where we used Cauchy-Schwarz inequality for the second inequality. It follows that for ξ ≤ V we
get ∫

[νgm + ξ∂1gm]4 = ν4

∫
g4
m + 6ξ2ν2

∫
g2
m∂1g

2
m + ξ4

∫
∂1g

4
m

≤ 6ν2

∫
g2
m + 5ξ2

∫
∂1g

2
m + ξ2

∫
∂1g

2
m

≤ 6

∫
[νgm + ξ∂1gm]2,

and therefore

0 ≤ <(z(ν, ξ)) ≤ λ

4

∫
[νgm + ξ∂1gm]2F (dm)dx.

Hence we have

|ψ(ν, ξ)| exp (<(z(ν, ξ))) ≤ exp

(
−λ

4
µ2(gm)ν2

)
exp

(
−λ

4
µ2(∂1gm)ξ2

)
.

Moreover we can simply bound

|z(ν, ξ)| ≤ λ

3!

∫
|νgm + ξ∂1gm|3 ≤

2λ

3
[|ν|3

∫
|gm|3 + |ξ|3

∫
|∂1gm|3]

and, since

(36) S0(ν, ξ) = λ

∫
eiugm∂1gm sin(ξ∂1gm)F (dm)dx,

we simply bound
|S0(ν, ξ)|

ξ
≤ λ

∫
(∂1gm)2.

It follows that∫ V

0

|S0(ν, ξ)|
ξ

|ϕ(ν, ξ)− ψ(ν, ξ)|dξ

≤ 2

3
λ2 exp

(
−λµ2(gM )

4
ν2

)
µ2(∂1gM )

∫ V

0

[|ν|3µ3(gM ) + ξ3µ3(∂1gM )] exp

(
−λµ2(∂1gM )

4
ξ2

)
dξ

≤ µ2(∂1gM )

[
c3λ

1/2 µ3(gM )

µ2(gM )3/2

∫ V

0

exp

(
−λµ2(∂1gM )

4
ξ2

)
dξ

+
2

3
λ2µ3(∂1gM )

∫ V

0

ξ3 exp

(
−λµ2(∂1gM )

4
ξ2

)
dξ

]
≤ µ2(∂1gM )

[
c3

µ3(gM )

µ2(gM )3/2µ2(∂1gM )1/2

√
π +

24

3

µ3(∂1gM )

µ2(∂1gM )2

]
≤

[
c3
µ3(gM )µ2(∂1gM )1/2

µ2(gM )3/2

√
π +

24

3

µ3(∂1gM )

µ2(∂1gM )

]
.

where c3 = 2
3 × 23 × sups∈R |s|3e−s

2

= 4
√

6e−3/2 if ν 6= 0 and c3 = 0 else.

Now let us focus on the second term and recall that S0(ν, ξ) = λ
∫
∂1gme

iνgm sin(ξ∂1gm)F (dm)dx
and S1(ξ) = λξ

∫
(∂1gm)2F (dm)dx so that we write

|S0(ν, ξ)− S1(ξ)| ≤ |S0(ν, ξ)− S0(0, ξ)|+ |S0(0, ξ)− S1(ξ)|

≤ λ|ξ|
[
|ν|
∫

(∂1gm)2|gm|+
ξ2

3!
µ4(∂1gM )

]
.

It follows that∫ V

0

|S0(ν, ξ)− S1(ξ)|
ξ

|ψ(ν, ξ)|dξ

≤
[
c1

√
π

2

∫
(∂1gm)2|gm|

µ2(gM )1/2µ2(∂1gM )1/2
+

µ4(∂1gM )1/2

3!µ2(∂1gM )1/2
min

(
λ−1/2

√
π

2

µ4(∂1gM )1/2

µ2(∂1gM )
, 1

)]
,
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using the fact that |ν| exp(− 1
2λµ2(gM )ν2) ≤ c1λ

−1/2µ2(gM )−1/2 with c1 = sups∈R |s|e−
1
2 s

2

=

e−1/2 if ν 6= 0 and c1 = 0 else,
√

π
2 =

∫ +∞
0

e−s
2/2ds =

∫ +∞
0

s2e−s
2/2ds and ξ ≤ V with∫ +∞

0
se−s

2/2ds = 1.

We get the result of upper bounds for C
+

1 and C
+

2 , combining previous inequalities with Cauchy-
Schwarz inequalities.

Appendix B. Proof of Theorem 2

Let ν ∈ R and write again

LPXλ(hν) =

∫ ∞
0

1

ξ
ϕ(ν, ξ)S0(ν, ξ)dξ.

Let V > 0 and remark that after using Fubini’s theorem, since µ2(∂1gm) < +∞, we can also
integrate by parts to obtain for V ′ > V∫ V ′

V

1

ξ
S0(ν, ξ)dξ = λ

∫
eiνgm

(
1− cos(V ′∂1gm)

V ′
− 1− cos(V ∂1gm)

V

+

∫ V ′

V

1− cos(ξ∂1gm)

ξ2
dξ

)
F (dm)dx.

It follows choosing β ∈ (0, 1) we can use that 1 − cos(s) = 2 sin2(s/2) ≤ 21−β |s|β for s ∈ R to
bound ∣∣∣∣∣

∫ V ′

V

1

ξ
S0(ν, ξ)dξ

∣∣∣∣∣ ≤ λ21−βµβ(∂1gm)
(
V ′−(1−β) + 2V −(1−β)

)
,

letting V ′ tends to infinity we obtain∣∣∣∣∫ +∞

V

1

ξ
S0(ν, ξ)dξ

∣∣∣∣ ≤ 2λC
−

β V
−(1−β),

with C
−

β = 21−βµβ(∂1gM ). Then we write

LPXλ(hν)− ϕ(ν, 0)

∫ +∞

0

1

ξ
S0(ν, ξ)dξ =

∫ V

0

1

ξ
S0(ν, ξ)(ϕ(ν, ξ)− ϕ(ν, 0))dξ

+

∫ +∞

V

1

ξ
S0(ν, ξ)ϕ(ν, ξ)dξ − ϕ(ν, 0)

∫ +∞

V

1

ξ
S0(ν, ξ)dξ.

Now we write

ϕ(ν, ξ)− ϕ(ν, 0) = ϕ(ν, 0)[exp(z̃(ν, ξ))− 1],

where

z̃(ν, ξ) := λ

∫
eiνgm

(
eiξ∂1gm − 1

)
F (dm)dx = −λ

∫
eiνgm2 sin2(ξ∂1gm/2)F (dm)dx.

Hence for β ∈ (0, 2]

|z̃(ν, ξ)| ≤ λC
−

β v
β ,

and for ξ ∈ [0, V ],

|ϕ(ν, ξ)− ϕ(ν, 0)| ≤ |z̃(ν, ξ)| exp(|z̃(ν, ξ)|)
≤ λC

−

β ξ
β exp(C

−

β λV
β)

Recall (36) but use that |S0(ν, ξ)| ≤ λµ1(∂1gM ) to get∣∣∣∣∣
∫ V

0

1

ξ
S0(ν, ξ)(ϕ(ν, ξ)− ϕ(ν, 0))dξ

∣∣∣∣∣ ≤ λ2µ1(∂1gM )C
−

β exp(C
−

β λV
β)
V β

β
.
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We choose V = λ−
2

1+β such that λV β = λ
1−β
1+β and λ2V β = V −1 = λ

2
1+β to obtain finally∣∣∣∣LPXλ(hν)− ϕ(ν, 0)

∫ +∞

0

1

ξ
S0(ν, ξ)dξ

∣∣∣∣ ≤ λ 2
1+β

C−β µ1(∂1gM ) exp(C
−

β λ
1−β
1+β )

β
+ 2 + 2C

−

β λ
1−β
1+β

 .

Now, to conclude the proof, it remains to prove the following Lemma.

Lemma 3. When g is a C1 function such that µ1(∂1gM ) < +∞ and µ2(∂1gM ) < +∞, we get for
S0(ν, ξ) given in 10,∫ ∞

0

1

ξ
S0(ν, ξ)dξ = λ

π

2

∫
R2

∫
R
|m∂1g(x)|eiνmg(x)F (dm)dx.

Proof. We follow the proof of Proposition 2 in [11]. Let V > 0 and recall that for y ∈ R we have∫ ∞
0

sin(ξy)

ξ
dξ := lim

V→+∞

∫ V

0

sin(ξy)

ξ
dξ =

π

2
sgn(y),

and C := supV >0

∣∣∣∫ V0 sin(ξ)
ξ dξ

∣∣∣ < +∞. Hence we obtain that for a.e x ∈ R2 and F a.e. m ∈ R,

m∂1g(x)eiνmg(x)

∫ V

0

sin (ξm∂1g(x))

ξ
dξ −→

V→+∞

π

2
|m∂1g(x)|eiνmg(x).

But for all V > 0 ∣∣∣∣∣m∂1g(x)eiνmg(x)

∫ V

0

sin (ξm∂1g(x))

ξ
dξ

∣∣∣∣∣ ≤ C |m∂1g(x)| ,

with ∫
R2

∫
R
|m∂1g(x)|F (dm)dx < +∞.

By Lebesgue’s theorem we can conclude that

lim
V→+∞

∫
R2

∫
R
m∂1g(x)eiνmg(x)

∫ V

0

sin (ξm∂1g(x))

ξ
dξF (dm)dx

=
π

2

∫
R2

∫
R
|m∂1g(x)|eiνmg(x)F (dm)dx.

Now it remains to justify that for all V > 0,∫ V

0

1

ξ
S0(ν, ξ)dξ =

∫
R2

∫
R
m∂1g(x)eiνmg(x)

∫ V

0

sin (ξm∂1g(x))

ξ
dξF (dm)dx.

But it simply follows from Fubini’s theorem once remarked that∣∣∣∣m∂1g(x)eiνmg(x) sin (ξm∂1g(x))

ξ

∣∣∣∣ ≤ |m∂1g(x)|2 .

�

Appendix C. Proof of Proposition 5

Let us check assumptions of Theorem 5 of [11] using their notations. Note that k
(n)
m,σ = mk

(n)
σ

is an elementary function with compact support in B(0, r
(n)
1 ) satisfying∫

R

∫
R2

|k(n)
m,σ(x)|dxFσ(dm) < +∞,

since
∫
R |m|Fσ(dm) < +∞. Moreover, by Corollary 2∫
R

TV(k(n)
m,σ)Fσ(dm) ≤

∫
R

TV(km,σ)Fσ(dm) =

∫
R2

‖∇kσ(x)‖dx×
∫
R
|m|Fσ(dm) < +∞,
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and, using [16] in Proposition 4 of [11],∫
R

LTaC(k(n)
m,σ)Fσ(dm) ≤ 2π ×

∫
R
|m|Fσ(dm) < +∞,

that finishes to prove [21]. Equation [22] simply follows from the fact that the supports do not
depend on m and again that

∫
R |m|Fσ(dm) < ∞. Now, let us note that all discontinuity points

are regular points, ensuring [24] while [25] comes from the fact that

(37) H0

(
R
k
(n)

m′,σ
∩ τxRk(n)

m,σ

)
≤ 2(n− 1)21I‖x‖≤2r

(n)
1
.

The last point [26] is obtained remarking that for almost all x ∈ R2 the regular sets can not

intersect in a tangency position. This allows to obtain the fact that X
(n)
λ,µ,σ is an elementary field

in T according to Theorem 4 of [11]. To conclude it only remains to check [31] of Theorem 5, that
follows from (37).

Appendix D. Illustration

Figure 4. Elementary approximation of a Gaussian function
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Figure 5. Perimeter and normalized perimeter of a Gaussian shot noise random
field with exponential marks. The paramaters are in the title. In red, the em-
pirical perimeter from a simulation on F = [0, 1000]2 and in green its theoretical

formula u 7→ Per(EX(u)) approximated by Algorithm 1. In blue and yellow, the

elementary asymptotic perimeter u 7→ Per(EX(u)) approximated by Algorithm 3
and 2.

Figure 6. Gaussian and shot noise random fields simulated on T = [0, 1000]2

with λ = 0.001, µ = 1
100 and σ = 10.

With Gaussian classification, all probabilities of choosing the C1 class of Gaussian fields are
greater than 0.5 : we find our first conclusion of figure 9, in this case we have 100% of correct
classification.
With shot noise classification, only half (approximately) of the probabilities of choosing the C1

class of Gaussian fields are greater than 0.5 : we find our second conclusion of figure 11, in this
case we have 50% of correct classification.
To resume, about half of the sample of Gaussian fields are classified as Gaussian fields by both
classifications, so there is no discussion to be had. For the other half of the sample, there is some
discussion as the two classifications do not give the same class. To properly identify them, we
sorted the sample so that this problematic half is clearly identifiable; it is the first half of the
sample. To classify these fields, we decided to retain the classification that maximizes the score.
We must then compare the probability of choosing the class of Gaussian fields by the Gaussian
classification (the blue curve) and the probability of choosing the class of shot noise fields (because
in this case, the field is classified as such) by the shot noise classification (which is given by 1 minus
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Figure 7. Gaussian and shot noise random fields simulated on T = [0, 1000]2

with λ = 0.001, µ = 1
100 and σ = 30.

Figure 8. Gaussian and shot noise random fields simulated on T = [0, 1000]2

with λ = 0.001, µ = 1
100 and σ = 50.

Figure 9. Results for the Gaussian classification. In red, a histogram of the
classifications score

(
SB1 (dB(f1,j))

)
j

obtained from a sample of M = 50 initial

Gaussian fields. In blue, the score
(
SB2 (dB(f2,j))

)
j

for M = 50 shot noise fields.

the red curve). In this sample of 50 initial Gaussian field, all the fields that posed debate are then
well classified as Gaussian fields.
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Figure 10. Gaussian and shot noise perimeter computed with (25) and Algo-
rithm 2. The parameters are λ = 0.001, µ = 1

100 and from top left to bottom
right σ = 10, 30, 50, 70.

Figure 11. Results for the shot noise classification. In red, a histogram of the
classifications score

(
SX1 (dX(f1,j))

)
j

obtained from a sample of M = 50 initial

Gaussian fields. In blue, the score
(
SX2 (dX(f2,j))

)
j

for a sample of M = 50 shot

noise fields. The samples are the same as in Figure 9.

Figure 12. The two scores SB1 (dB(f1,j))j and SX1 (dX(f1,j))j for a sample of size
50 of initial Gaussian random field f .
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Figure 13. The two scores SB2 (dB(f2,j))j and SX2 (dX(f2,j))j for a sample of size
50 of initial shot noise random field f .
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Appendix E. Algorithms

Algorithm 1: Calculate the mean perimeter function from smooth framework

Choose n1 the number of item of the vector ν ;

Choose νmax maximum of the vector ν ;

ν = −νmax2 + (0 : n1 − 1) νmaxn1−1 ;

Choose n2 the number of item of the vector v ;

Choose vmax the maximum of the vector v ;

v = (1 : n2) vmaxn2
;

Choose rmax the maximum in the integral of ϕ(ν, v) and S0(ν, v) ;

Choose n3 the number of item of the vector u ;

Choose umin and umax the minimum and maximum of the vector u ;

u = umin + (0 : n3 − 1)umax−uminn3
;

1: for k = 1 : n1 do
2: for l = 1 : n2 do
3: Approximate ϕ(ν(k), v(l)) by numerically integration of formula (15)
4: Approximate S0(ν(k), v(l)) by numerically integration of formula (16)
5: end for
6: end for
7: Approximate ν → E[LPX(hν , T )] from the formula (11)
8: Approximate u→ E[Per(EX(u), T )] by inverse fourier transform

Beyond the choice of precisions n1, n2 and n3; it is the choice of rmax, vmax andνmax that is
not easy since they depend on the parameters of the field. The choices of umin and umax can be
chosen with the minimum and maximum field.
Let σ = 20, µ = 1

100 and λ = 9.5e−4 which corresponds to an average of 1000 points over an obser-

vation window [0, 1024]2. We choose a good precision n1 = n2 = n3 = 210, and we recommend to
choose rmax = 200 and vmax = 6000. Using the tic toc command from Matlab, the algorithm lasts
1000 seconds or almost 3 hours. It is annoying for applications such as parameter applications or
classification. The green curve in Figure 5 comes from this algorithm.

Recall the formula (23) obtained in Proposition 9 :

Per(EXλ,µ,σ (u)) = λ2πσE
(
fλ,µ,σ(u−MσV )Mσ

√
−2ln(V )

)
,

with V , a random variable uniform on (0, 1] and independent from Mσ with distribution F (dm),
that is exponential distribution of parameter 2πσ2µ. Using Monte-Carlo approximation we can

approximate the function u 7→ λ2πσE
(
fλ,µ,σ(u−MσV )Mσ

√
−2ln(V )

)
by

λ2πσ

N

N∑
j

fλ,µ,σ(u−Mσ,jVj)
√
−2 ln(Vj)Mσ,j ,

choosing (Vj ,Mσ,j)1≤j≤N iid of same law than (V,Mσ) and N sufficiently large.

Algorithm 2: Calculate the mean perimeter function from elementary framework with
Monte Carlo

Choose n3 the number of item of the vector u ;

Choose umin and umax the minimum and maximum of the vector u ;

u = umin + (0 : n3 − 1)umax−uminn3
;

Choose N the number of repeats in the Monte Carlo method ;
1: Draw (Vj)1≤j≤N iid with uniform law on [0, 1]
2: Draw (Mσ,j)1≤j≤N iid with exponential law of parameter 2πσ2µ

3: Approximate u→ E[Per(EXλ,µ,σ (u), T )] by λ2πσ
N

∑N
j=1 fλ,µ,σ(u−Mσ,jVj)

√
−2 ln(Vj)Mσ,j
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Here there is no choice except for the precision n3 and the sample size N of the Monte Carlo
method, since umin and umax can be chosen experimentally. Let the same example with σ = 20,
µ = 1

100 and λ = 9.5e−4. We choose a good precision n3 = 210 and N = 2000. Using the tic
toc command from Matlab, the algorithm lasts 12 seconds. It is an excellent performance for
applications.

It is also possible to use the Fourier framework with the equation (24).

Algorithm 3: Calculate the mean perimeter function from elementary framework with
Fourier transform

Choose n1 the number of item of the vector ν ;

Choose νmax the maximum of the vector ν ;

ν = −νmax2 + (0 : n1 − 1)νmaxn1
;

Choose n3 the number of item of the vector u ;

Choose umin and umax the minimum and maximum of the vector u ;

u = umin + (0 : n3 − 1)umax−uminn3
;

1: Approximate ν → E[LPXλ,µ,σ (hν , T )] from the formula (24)
2: Approximate u→ E[Per(EXλ,µ,σ (u), T )] by inverse Fourier transform

Here there is no choice except for the precision n1 and n3, since νmax, umin and umax can be
chosen experimentally.
Let the same example with σ = 20, µ = 1

100 and λ = 9.5e−4. We choose a good precision

n1 = n3 = 210. Using the tic toc command from Matlab, the algorithm lasts 1 seconds. It is a
perfect performance for applications.
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