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Abstract—In the field of microgrids with a significant 

integration of Renewable Energy Sources, the efficient and 

practical power storage systems requirement is causing DC 

microgrids to gain increasing attention. However, uncertainties 

in power generation and load consumption along with the 

fluctuations of electricity prices require the design of a reliable 

control architecture and a robust energy management system 

for enhancing the power quality and its sustainability, while 

minimizing the associated costs. This paper presents a mixed 

approach illustrating both simulation and experimental results 

of a grid-connected DC microgrid which includes a photovoltaic 

power source and a battery storage system. Special emphasis is 

placed on the minimization of the total operating cost of the 

microgrid while considering the battery degradation cost and 

the electricity tariff. Thereby, an optimal energy management 

system is proposed for Energy Storage Systems scheduling and 

enabling the minimization of the electricity bill based on simple 

models. Simultaneously, the differences between simulation and 

laboratory performances are highlighted. 

Keywords—Microgrid, energy management system, 

optimization, linear programming, battery degradation 

I. INTRODUCTION 

With a considerable increase of Renewable Energy 
Sources (RESs) in electrical energy systems, the concept of 
Microgrids (MGs) has emerged a novel paradigm for active 
distribution networks contributing to the emergence of smart 
grids. The latter concept has been gaining increasing interest 
by the research community during the last 20 years [1]. MGs 
can be connected to the main electricity distribution grid in 
order to improve reliability of power production and reduce 
power losses due to the proximity between energy productions 
and consumptions as shown in Fig. 1. Nevertheless, they can 
also be operated in an islanded mode to improve the resilience, 
ensuring the power supply continuity in case of grid failure as 
they are potential solutions for electrification of off-grid 
islands, rural villages, and remote areas [2], [3]. Furthermore, 
in case of default of the utility grid, some MGs can collaborate 
with other MGs in the neighborhood. Nowadays, MGs can be 
fine-tuned so as to minimize their associated energy bills, 
while consuming more renewable energy and be better 
integrated in their environment. Moreover, technical 
adjustments enable to mitigate the control and coordination 
problems which can originate from inter-temporal operation 
of Energy Storage Systems (ESSs) and intermittent nature of 
RESs issues. Thus, an Energy Management System (EMS) 
becomes indispensable in order to explicitly handle 

constraints, energetics and economic criteria thereby enabling 
optimal scheduling of power resources and ESSs in MGs so 
as to achieve optimal supply-demand balance [4]. EMS is the 
tertiary layer of MG control operating hierarchically above the 
real-time control and the power management levels, which are 
the primary and secondary layers respectively [5]. 

 

Fig. 1. Schematic diagram of a generic MG. 

In the recent years, a number of research papers related to 
EMS dedicated to MGs have been published. In [6], a review 
of several optimization methods of energy management is 
presented. A controller for EMS called the Resilient Model 
Predictive Controller (RMPC) based on the Model Predictive 
Control (MPC) principles is developed in [7] for grid 
connected residential MG in order to minimize the electricity 
bill and load shedding. Furthermore, in [8] a Resilient Open 
Loop Feedback Controller (ROLFC) for EMS is developed 
using a multistage stochastic optimization (MSO) approach. 
In [9], a Linear Programming (LP) along with heuristic 
algorithm is proposed for minimization of operating cost of a 
grid connected MG. In [10], a heuristic approach for energy 
management of an alternating current (AC) MG is proposed 
which results in non-optimal solutions. A multi-objective 
predictive control strategy is proposed in [11] for grid-
connected photovoltaic (PV) and battery systems for 
residential buildings aiming to dynamically decrease the cost 
of electricity compared to traditional systems while reducing 
the CO2 emissions. In [12], an economic cost model is used 
for optimal management of MG Distributed Energy Resources 
(DERs), taking into account the degradation cost of the cyclic 
ageing of the battery. However, these EMSs have not been 



 

experimentally validated on facilities with actual devices or 
based on hardware-in-the-loop platforms. 

Concerning experimentally verified EMSs, an EMS for 
battery-based hybrid grid-connected MG is designed and 
experimentally tested in [13] which enables the scheduling of 
optimal power references for DERs and also allows to reduce 
cost in the MG over a 24-hour ahead forecast data. In [14], a 
Mixed-Integer Linear Programming (MILP) mathematical 
model is proposed in order to optimally schedule the power 
references of the DERs in a grid-connected hybrid PV-wind-
battery MG. In [15], an EMS is developed that optimally 
balances generation and demand with scheduled power 
generation of PV, wind, and tidal energy sources with the 
objectives of maximizing the utilization of RES for an 
islanded Direct Current (DC) MG. With reference to [15], the 
battery ageing cost is considered in detail taking into account 
several parameters such as temperature, operation and 
maintenance cost and residual value which the author obtained 
from the practical regression models of battery degradation 
developed in [16]. 

Moreover, a dynamic optimization model is proposed in 
[17] for power sharing among sources in an islanded DC MGs, 
but the battery degradation cost for sustainable battery lifetime 
is not taken into consideration. In [18], a MPC approach is 
applied for achieving economic efficiency in a grid-connected 
MG operation management. Thereby, three different 
experiments are executed with different planning horizons in 
order to assess the feasibility of the MPC–MILP control 
scheme. A predictive EMS is developed in [19] for an islanded 
PV-battery DC MG for preventing or reducing outage 
duration. In [20], a distributed control and non-optimal EMS 
is proposed for preventing State of Charge (SoC) violations of 
hybrid ESSs in islanded DC MGs, however optimization 
model for cost-effective MG operation is not included. 

Most of the aforementioned EMSs have focused on 
economic optimization and have been experimentally 
validated using hardware-in-the-loop platforms. However, the 
large majority of researches in the existing literature have 
ignored the battery degradation cost in the latter models. 
Nevertheless, relatively few studies [9], [12], [15], [16], [18] 
have considered the wear and tear cost of the battery. 
Moreover, the latter previous works have not explored the 
difference between simulation and experimental results. As a 
substantive contribution in the field of power distribution in 
MGs, this research not only considers the EMS for 
maximizing economic benefit and optimally scheduling of 
ESS but it also considers the battery degradation cost and 
investigates the discrepancy between prototype and real-life 
performance. Furthermore, this paper explicitly includes some 
details on the implementation architecture. 

In summary, considering all of the aforementioned 
limitations regarding previous studies on EMS of MG, the 
following contributions are made in this research: 

 An EMS strategy is developed, which performs 
economic dispatch for minimizing electricity cost of a 
grid-connected Low Voltage Direct Current (LVDC) 
MG while satisfying the user’s demand in terms of 
uninterrupted power supply. It takes into consideration 
the degradation cost of the ageing cycle of the battery 
in order to reflect the true operational cost of a MG. 

 The proposed EMS strategy is validated by an 
experimental set-up. Analyses are carried out to 

highlight the differences between simulation and 
experimental performances. 

 This paper is organized into five sections. Section II 
illustrates the case study of an LVDC grid-connected MG 
operation and also details the EMS mathematical modeling. 
Section III describes the set-up of the MG experimental 
platform. Section IV presents the simulation and experimental 
results of the proposed EMS strategy and finally, Section V 
presents the conclusion of the paper. 

II. CASE STUDY 

A. System description 

A grid-connected residential PV-battery LVDC MG with 
a dc-coupled architecture is studied in order to enable 
experimental validation, as illustrated in Fig. 2. It consists of 
a discrete time model of a PV system which includes a storage 
capacity for self-consumption by a user who is connected to 
the conventional grid. The system environment includes two 
input variables Ppv  which is the solar production potential 

and P𝑙𝑜𝑎𝑑 which is the power demand. The decision variable 
(Pst) is the power for charging/discharging the battery, the 
recourse variable (Pg) is the power exchange with the grid and 

(Pbatt) is the internal power of the battery. 

 

Fig. 2. Grid connected DC MG architecture. 

 An EMS is used for supervisory control and a day-ahead 
optimal power scheduling of the LVDC MG. The Microgrid 
Central Controller (MGCC) computes the inflow and outflow 
of the power profile offline, for each flexible entity, namely 
the storage units and the grid, in order to minimize the cost of 
electricity over a given day and to ensure power balance in the 
MG. It is assumed that the model is a deterministic one 
where Ppv and  P𝑙𝑜𝑎𝑑 of the household are already known in 

advance and also that the conventional grid is always 
available. 

B. Optimization problem 

The optimization problem for achieving the techno-
economical goals of the grid connected LVDC MG is 
mathematically modeled using LP formulation as in [21] 
instead of MILP algorithms. This choice of a LP in the control 
allows to face both storage and grid management constraints 
such as preventing simultaneous charging/discharging of the 
battery and purchase/selling of energy to/from the grid 
respectively which are guaranteed cost-wise without using 
binary variables. The latter variables would have transformed 
the problem into a MILP formulation that would involve using 
MILP solvers instead of LP solvers which may result in a 
longer computing time for larger-scale examples. Hence, in 
this study LP was preferred in the perspective of future work. 



 

All the variables at the bus level of this generic 
minimization problem are linked through the power balance 
relationship at time t which is given as follows: 

                   Pg(t) + Pst(t) + Ppv(t) = P𝑙𝑜𝑎𝑑(t)                (1) 

The recourse variable Pg and the decision variable Pst are 

separated into two components to fulfill the linearization of 
the system: 

                           Pg(t) = Pg
+(t) + Pg

−(t)                          (2) 

                         Pst(t) = Pst
𝑑𝑖𝑠(t) + Pst

𝑐ℎ(t)                         (3) 

Pg
+(t) is the power drawn from the grid whereas Pg

−(t) is 

the power sold to the grid. Pst
𝑑𝑖𝑠(t)  and Pst

𝑐ℎ(t)  are the 
discharging and charging power of the battery respectively. 

1) Objective function and Constraints 
The objective function that minimizes the cost of the 

electricity exchanged with the grid is given by (4). CE is the 
electricity cost to be minimized over the time horizon tday , 

which is sampled at the time interval ∆t. 

   min CE = min ∆t ∑ [cg
+(t)Pg

+(t) + cg
−Pg

−(t)        
  tday

t

                                                    + cstPst
𝑑𝑖𝑠(t) + cstPst

𝑐ℎ(t)]          (4) 

Where cg
+(t)  is the electricity purchase tariff at time t 

which can vary according to off- or on-peak energy prices. 
The costs which are constant over the time horizon are: cg

−, the 

selling price of energy to the grid and cst, the battery ageing 
unit cost associated with the charging/discharging decision 
variables. 

In parallel to (1), the following constraints must be 
satisfied at time t in order to achieve a feasible solution: 

                        Pgmax
  ≤ Pg(t) ≤ Pgmax

+                             (5) 

Where Pgmax
+  ≥ 0 and Pgmax

  ≤ 0 are defined by the 

contracted powers subscribed by the user.  

Consequently, Pbatt(t) is calculated linearly as follows: 

              Pbatt(t) = 
Pst

dis(t)

ηcvs

 + Pst
𝑐ℎ(t).η

cvs
. η

E
                      (6) 

Where η
cvs

 is the efficiency of the converter and η
E
 is the 

energy efficiency of the battery which is more precisely its 
round-trip efficiency considered at charging mode only. Thus, 
the boundary of the charging/discharging powers is: 

            Pbattchargemax ≤ Pbatt(t) ≤ Pbattdischargemax              (7) 

Where Pbattdischargemax ≥ 0 and Pbattchargemax ≤ 0 are related 

to the battery C-rate which is the measurement of current in 
which a battery is charged and discharged.  In addition, 

Pst
𝑑𝑖𝑠(t) and Pst

ch(t) are also bounded: 

                     0 ≤ Pst
𝑑𝑖𝑠(t) ≤ Pbattdischargemax.η

cvs
                      (8) 

                            
Pbattchargemax

ηcvs.ηE

 ≤ Pst
𝑐ℎ(t) ≤ 0                             (9) 

The power exchange with the battery is indirectly 
constrained through the energy stored in the ESS allowing the 
calculation of the State of Energy (SoE). The remaining and 
available energy of a battery is defined by the SoE indicator 
with reference to its nominal energy capacity and compared to 
the SoC which estimates what is left in the battery in terms of 

the amount of charge related to its nominal capacity [22]. The 
SoE is calculated as given below: 

            SoE(t+1) = SoE(t) —
Pst

dis(t)×∆t

ηcvs×Enom
—

Pst
ch(t).ηcvs.ηE×∆t

Enom
        (10) 

Where Enom is the nominal energy capacity of the battery. 
However, the battery has a limited storage capacity: 

                     SoEmin ≤ SoE(t) ≤ SoEmax                       (11) 

2) Ageing cost of the battery and grid cost 
The battery ageing unit cost (cst) is expressed as the cost 

of exchanging 1 kWh. Therefore, the total amount of energy 
that can be exchanged by the battery over its lifetime (Elifebatt), 

as derived from [23], is calculated as follows: 

                  Elifebatt= Enom× Ncycles× DoD                     (12) 

Where Ncycles is the number of cycles and DoD the Depth 

of Discharge of the battery. Knowing the battery’s price (cbatt), 
𝑐st can be calculated by the following equation: 

                               cst = 
1

2

cbatt

Elifebatt
                                   (13) 

A factor of 
1

2
 is used to account for both charging and 

discharging modes during a cycle [16]. This is a simple ageing 
model and the battery price is estimated at 85 €/kWh, leading 
to a cost of cst equal to 0.235 €/kWh. Moreover, according to 
the power subscription by the user and based on off- or on-
peak energy price in France (regulated tariffs), the actual 
purchase price of energy cg

+(𝑡) from the grid is 0.1360 €/kWh 

during off-peak hours and 0.1821 €/kWh  during on-peak 
ones. The selling price ( cg

 ) is constant and equal to 

0.10 €/kWh for a PV system ≤ 9 kWc. Nevertheless, as the 
electricity price has been increasing in the recent years, based 
on the evolution curve of the electricity tariff [24], [25], the 
hypothesis made in this study is that in the future, the purchase 
tariff for electrical power will be five-fold higher than the 
actual price and the selling price will increase only two-fold. 
This extrapolation is clearly hypothetical but the recent cost 
evolution of energy prices, especially the EPEX-SPOT tariff 
with selling prices of electricity varying from 0  to 
1000 €/MWh makes credible this assumption [25]. Therefore, 
the purchase electricity costs are considered as 0.68 €/kWh 
during off-peak and 0.9105 €/kWh during on-peak hours. The 
selling electricity rate is considered as 0.20 €/kWh. It is to be 
noted that off-peak hours can be consecutive or scattered 
within several time slots. There are 8 off-peak hours per day 
which are concentrated at different times of the day when 
demand is naturally less sustained. The 8 off-peak hours per 
day considered in this study is comprised between 12 am and 
8 am. 

III. SET-UP DESCRIPTION OF THE EXPERIMENTAL 

MICROGRID 

A test bench is developed at the “Laboratoire d'Analyse et 
d'Architecture des Systèmes” (LAAS) to emulate the 
operation of a laboratory scale LVDC MG platform as shown 
in Fig. 3. The latter bench includes a programmable power 
supply and a loading facility where both consist of integrated 
converters, thus enabling the emulation of PV production and 
load consumption respectively. The test bench consists of an 
ESS which is connected to the DC bus via a bidirectional 
current converter. Thus, the ESS and the associated converter 
can operate under real-life conditions involving actual 



 

constraints such as variation in the efficiency of the ESS and 
the converter, change of temperature at the location, etc.  

 

Fig. 3. Experiment platform of the LVDC MG. 

The MG is controlled using the DC Bus Signaling (DBS) 
which is a control strategy where each entity controls the bus 
voltage level according to the energy exchange in the LVDC 
MG in order to maintain its power balance [26]. Additionally, 
the above-mentioned bench is driven following a hierarchical 
control. The primary control is a decentralized structure used 
to control the converter as has been developed at LAAS [27]. 
The Local Controller (LC) present on the converter board 
ensures the above-mentioned primary control. The secondary 
and tertiary controls are centralized structures incorporated for 
ensuring the functions of Power Management System (PMS) 
by the DBS and the EMS respectively. The MGCC 
communicates via an Inter Integrated Circuit (I2C) 
communication bus with the LC for the converter associated 
with the ESS. The PV, load and bench instrumentation system 
communicates through General Purpose Interface Bus (GPIB) 
communication protocol.  

In this study, a pack of lead–acid battery is connected as 
the ESS of the MG. The battery rated energy capacity is 2.16 
kWh and the maximum power for charging and discharging is 
0.54 kW at 0.25 C-rate and 0.846 kW at 0.4 C-rate 

respectively [28]. The energy efficiency of the battery (η
E
) is 

83% and the converter efficiency (η
cvs

) is 96% [27]. The 

maximum and minimum limits of the battery SoE are defined 
as 95% and 5% respectively. The maximum power of Pg that 

can be drawn or transferred to the grid is taken as 0.9 kW. The 
voltage, current and power limit values of the DC bus are 
given below in Table I. 

TABLE I.  GENERAL CHARACTERISTICS OF THE LVDC MG 

Parameter Values and Units 

[V min
bus  ; V 𝑚𝑎𝑥

bus ] [50 ; 60] V 

[I min
bus  ; I 𝑚𝑎𝑥

bus ] [-20 ; 20] A 

𝑃 𝑚𝑎𝑥
bus  1 kW 

IV. RESULTS AND DISCUSSION 

The PV production and load consumption data for a 24-
hour ahead period used for the simulation and experimental 
set-up is extracted from the “Oahu Archive web site” and 
“IEEE PES Test Feeder” respectively. These latter values are 
scaled for the purpose of experimental validation. Fig. 4 shows 
the PV production, load consumption and net power (Pnet) 
which is the power difference between Ppv  and Pload  as 

expressed hereunder: 

                              Pnet = Ppv — Pload         (14) 

 

Fig. 4. PV production, load consumption and net power. 

A. Simulation results 

The simulation is carried out over a 24-hour prediction 
horizon. The power references for a LP based optimal 
scheduling are computed offline for a sampling rate of 10 
minutes (Δt = 10 minutes) by the MGCC. The model is 
developed in Python using the pyomo modeling language [29] 
and solved using the GUROBI solver. The proposed EMS is 
tested with an initial battery SoE maintained at 35% as shown 
in Fig. 5. It is underlined that for the simulation performed the 
global optimal solution is achieved, as described below. 

 

Fig. 5. Simulation results for an initial SoE of 35%. 

The optimal solution for a minimal cost is achieved by 
enabling the utilization of the grid during off-peak hours 
between 12 am and 8 am. The battery is charged between 1:30 
pm and 4:50 pm when Pnet > 0 starting with an initial SoE of 
35% to reach a required level of SoE of about 59% so as to be 
able to meet the user’s energy demand during peak hours 
without drawing power from the grid. It is pointed out that the 
battery is not charged to its maximum SoE as it is costly for 
charging and discharging. Also, an SoE of 59% is enough for 
the time horizon considered. Furthermore, the battery is 
discharged at the end of the day between 4:50 pm and 12 am 
so as to avoid drawing power from the grid during low PV 
production and peak hours. Consequently, the electricity bill 
is minimized while simultaneously considering the operating 
cost due to the battery degradation. The electricity cost over 
the time horizon for this simulation scenario is 0.27€ as per 
the objective function value. Thus, if the latter value is 
positive, the user need to pay the electricity bill (deficit) 
whereas, if the value is negative the user is on profit. 

B. Experimental results 

The proposed EMS has been experimentally tested at the 
lab-scale MG of LAAS. Fig. 6 shows the experimental results 
of the previous scenario for an initial SoE of 35% of the 
battery. The latter results allow to assess the validity of the 
offline optimization model used in simulation. Thus, the 
optimal trajectories obtained offline based on the LP and on 
the simple models of PV and battery devices are directly 



 

injected as the power references in the actual storage system. 
The PV production and load consumption are also supplied as 
power references to the test bench for experimental purposes. 

 

Fig. 6. Experimental results for an initial SoE of 35%. 

In Fig. 6, P𝑛𝑒𝑡
∗  is the power difference between the PV 

production and load consumption, Pg
𝑒𝑠𝑡 is the estimated power 

that is drawn and transmitted to the utility grid related to 
experimental measurement, SoEmax= 95%  and SoEmin= 5% 
are the maximum and minimum limits of the SoE of the 

battery respectively and SoE𝑠𝑖𝑚  is the resultant SoE of the 
battery with respect to the offline optimization during 

simulation. Regarding the experimentation process, Pbatt
𝑊  is 

the charging/discharging power of the battery measured by the 

wattmeters enabling the estimation of the battery’s SoEest, W. 

Fig. 7 is a close-up of the experimental results between 1 
pm and 12 am. It can be noticed that the experimental results 
slightly differ from the simulation results, especially the 
charging/discharging power of the battery. It can be 
specifically observed that between 1:30 pm and 3:30 pm, the 

power reference Pbatt
∗  and the measured power Pbatt

𝑊  are not the 

same. It is noted that Pbatt
𝑊  is unable to follow the power 

references of Pbatt
∗  during the charging of the battery. This is 

because the latter had reached its maximum voltage, thereby 
requiring to be charged at a constant voltage while 
simultaneously limiting its current according to the classic 
Constant Current-Constant Voltage (CC-CV) protocol for 
battery charging phase [30], [31]. Therefore, experimentally 
the battery is unable to charge as much as expected during 
simulation. It is also noted that during the experiment process, 
in the time range between 11 pm and 12 am, the battery is not 
fully discharged contrarily to simulation results. This is due to 
the fact that the actual battery is not charged adequately during 
the experimental process, contrarily to the charge process 
forecasted during the simulation. Thus, a proportion of the 
required energy must be drawn from the grid during on-peak 
hours to meet the user’s demand, causing an increase in the 
electricity bill. Thereby, for the identical scenario as in 
simulation, the electricity cost over the time horizon for the 
experimental set-up is 0.33€. Thus, the percentage error of the 
operation cost between simulation and experimental is 22.2%. 

 

Fig. 7. Close-up of the experimental results for an initial SoE of 35%. 

The above-mentioned discrepancy between laboratory 
experimentation and simulation can be explained by the lack 

of accuracy of the battery model. In this study, a simple 
Power-Energy (PE) model is considered for the battery 
modeling in conformity with most of the EMSs considering 
an optimization approach as outlined in the literature. This is 
especially because a linear model derivation must be achieved 
for LP. Nevertheless, in the existing battery literature, the SoC 
is the most common indicator used as it gives an accurate 
estimate of the battery state [31], [32]. Thus, SoC is mainly 
applied in the field of battery, whereas SoE is mostly 
employed in EMS optimization approach. However, SoC and 
SoE are significantly different indicators. Thus, in order to 

increase accuracy of the battery state, SoC𝑒𝑠𝑡,𝑊 is estimated in 
the test bench considering the current and the nominal 

capacity Cnom of the battery. On the other hand, the SoEest, W 
is estimated with respect to the current, the voltage and the 
nominal energy of the battery.  

The SoC gives the state of the battery in terms of capacity 
expressed in ampere hour (Ah) current-wise. Contrarily, the 
SoE gives the state of the battery in terms of energy expressed 
in watt-hour (Wh) power-wise. Thus, as neither the current nor 
the voltage of the battery are considered in the offline 
optimization model, the SoC cannot be calculated in 

simulation. Therefore, SoC𝑒𝑠𝑡,𝑊  and SoEest, W  are estimated 
[22], [31]–[33] using the values from the wattmeters in the 
above-mentioned experimental set-up, as follows: 

   SoC𝑒𝑠𝑡,𝑊(t+1) = SoC𝑒𝑠𝑡,𝑊(t) — 
Ibatt
ch (t).ηF×∆t

Cnom
— 

Ibatt
dis (t)×∆t

Cnom
  (15) 

    SoE
est, W

(t+1) = SoE
est, W

(t) — 
Ibatt
ch (t)×Vbatt(t) .ηF

×∆t

Enom

 — 
Ibatt
dis (t)×Vbatt(t)×∆t

Enom

   (16) 

The faradic efficiency of the battery (η
F
) is 96%; Ibatt

𝑐ℎ ≤ 0 

and Ibatt
𝑑𝑖𝑠 ≥ 0 are the charging and discharging currents of the 

battery respectively; Vbatt is the voltage of the battery. 

Fig. 8 shows the difference between the SoE of the battery 
in simulation and experimental results for the initial scenario 
of an SoE of 35%. The difference between SoE and SoC can 
also be observed. SoC𝑚𝑎𝑥 and SoC𝑚𝑖𝑛 are the maximum and 
minimum limits of the SoC for the battery 

respectively.  SoC𝑒𝑠𝑡,𝑊 is the estimated SoC of the battery 
during the experimentation process. 

 

Fig. 8. Comparison of the variations of SoE of 35% between simulation 

and experimental results relative to SoC limiting values. 

As shown in Fig. 8, the battery is unable to be discharged 
at the end of the process as it has reached its minimum SoC 
limit. It can also be observed that the approximate deviation 
of the SoE between simulation and experimental results is 
around 3.5% at the end of the test. The latter results and the 
percentage error of the operation cost confirm the major 
drawback of the PE battery model. Nevertheless, as per the 
results of this study, it can be concluded that the errors mainly 
due to the PE model of the battery are not significant over a 



 

24-hour time horizon. However, the accumulation of the 
aforementioned errors may have a significant impact for 
optimization studies based on a longer time horizon. In order 
to minimize this error, a more accurate battery model can be 
used which consider both the current and the voltage of the 
battery in the formulation of the optimization model. 
Furthermore, for the simulation and the optimization process 
of the MGCC, the SoE value must be updated in real time with 
reference to the monitoring system or by using a Battery 
Management System (BMS). 

V. CONCLUSION 

In this study, the total operating cost of a grid-connected 
DC MG is minimized by an EMS strategy. Emphasis is also 
put on the cost implication with regards to the battery lifetime. 
Both simulation and experimental studies are carried out in 
order to validate the performance of the proposed EMS 
strategy at a laboratory-scale MG. The results confirm the 
feasibility of the supervisory control and demonstrate the 
significant impact of the battery model on the cost function 
and also influence the SoE. It is highlighted that the 
percentage error between simulation and experimental results 
is 22.2% for the operation cost and around 3.5% for the 
deviation of the SoE. Thus, this study confirms the limitation 
of the PE battery model. This work can be further extended 
involving a more precise modeling of the battery. In the next 
stage of this research, the design of a decentralized controller 
by a Multi-Agent System (MAS) will be carried out for a more 
complex case study regarding a Multi-MG network. A real-
time optimization will also be implemented and further cases 
with stochastic description of grid failure will be investigated. 
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