
HAL Id: hal-03903281
https://hal.science/hal-03903281v1

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Foot-to-ground phases detection: a comparison of data
representation formatting methods with respect to

adaption of deep learning architectures
Youness El Marhraoui, Hamdi Amroun, Mehdi Boukallel, Margarita

Anastassova, Sylvie Lamy, Stéphane Bouilland, Mehdi Ammi

To cite this version:
Youness El Marhraoui, Hamdi Amroun, Mehdi Boukallel, Margarita Anastassova, Sylvie Lamy, et
al.. Foot-to-ground phases detection: a comparison of data representation formatting methods with
respect to adaption of deep learning architectures. Computers, 2022, 11 (5), pp.58. �10.3390/comput-
ers11050058�. �hal-03903281�

https://hal.science/hal-03903281v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


����������
�������

Citation: El Marhraoui, Y.; Amroun,

H.; Boukallel, M.; Anastassova, M.;

Lamy, S.; Bouilland, S; Ammi, M.

Foot-to-Ground Phases Detection: A

Comparison of Data Representation

Formatting Methods with Respect to

Adaption of Deep Learning

Architectures. Computers 2022, 11, 58.

https://doi.org/10.3390/

computers11050058

Academic Editors: Rytis Maskeliunas

and Robertas Damaševičius

Received: 1 February 2022

Accepted: 13 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Foot-to-Ground Phases Detection: A Comparison of Data
Representation Formatting Methods with Respect to Adaption
of Deep Learning Architectures

Youness El Marhraoui 1,*, Hamdi Amroun 1 , Mehdi Boukallel 2, Margarita Anastassova 2, Sylvie Lamy 2,
Stéphane Bouilland 3 and Mehdi Ammi 1

1 CLI Department, University of Paris 8, 93200 Saint-Denis, France; hamdi.amroun02@univ-paris8.fr (H.A.);
mehdi.ammi@univ-paris8.fr (M.A.)

2 CEA-LIST, 91191 Gif-sur-Yvette, France; mehdi.boukallel@cea.fr (M.B.); margarita.anastassova@cea.fr (M.A.);
sylvie.lamy@cea.fr (S.L.)

3 Fondation Hopale, 62608 Berck-sur-Mer, France; stephane.bouilland@fondationhopale.org
* Correspondence: youness.el-marhraoui@etud.univ-paris8.fr

Abstract: Identifying the foot stance and foot swing phases, also known as foot-to-ground (FTG)
detection, is a branch of Human Activity Recognition (HAR). Our study aims to detect two main
phases of the gait (i.e., foot-off and foot-contact) corresponding to the moments when each foot is
in contact with the ground or not. This will allow the medical professionals to characterize and
identify the different phases of the human gait and their respective patterns. This detection process is
paramount for extracting gait features (e.g., step width, stride width, gait speed, cadence, etc.) used by
medical experts to highlight gait anomalies, stance issues, or any other walking irregularities. It will
be used to assist health practitioners with patient monitoring, in addition to developing a full pipeline
for FTG detection that would help compute gait indicators. In this paper, a comparison of different
training configurations, including model architectures, data formatting, and pre-processing, was
conducted to select the parameters leading to the highest detection accuracy. This binary classification
provides a label for each timestamp informing whether the foot is in contact with the ground or
not. Models such as CNN, LSTM, and ConvLSTM were the best fits for this study. Yet, we did
not exclude DNNs and Machine Learning models, such as Random Forest and XGBoost from our
work in order to have a wide range of possible comparisons. As a result of our experiments, which
included 27 senior participants who had a stroke in the past wearing IMU sensors on their ankles, the
ConvLSTM model achieved a high accuracy of 97.01% for raw windowed data with a size of 3 frames
per window, and each window was formatted to have two superimposed channels (accelerometer
and gyroscope channels). The model was trained to have the best detection without any knowledge
of the participants’ personal information including age, gender, health condition, the type of activity,
or the used foot. In other words, the model’s input data only originated from IMU sensors. Overall,
in terms of FTG detection, the combination of the ConvLSTM model and the data representation
had an important impact in outperforming other start-of-the-art configurations; in addition, the
compromise between the model’s complexity and its accuracy is a major asset for deploying this
model and developing real-time solutions.

Keywords: foot-to-ground contact detection; human activity analysis; gait phase recognition; deep
learning; Internet of Things (IoT); inertial measurement units

1. Introduction

The walking process is an everyday task that people usually do without hardships.
Yet, it differs from one person to another [1], and it can be categorized by the way the
foot strikes the ground (i.e., Rearfoot, Midfoot, and Forefoot). There are other patterns
that characterize it, such as the gait speed, steps per meter, and swing time variability.
These indicators were given by [2] in order to compare a specific gait with another and

Computers 2022, 11, 58. https://doi.org/10.3390/computers11050058 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11050058
https://doi.org/10.3390/computers11050058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-2466-9078
https://doi.org/10.3390/computers11050058
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11050058?type=check_update&version=1


Computers 2022, 11, 58 2 of 26

have indicators that easily distinguish them, especially for elderly people; [3] shows that
this type of population is more likely to suffer from symptoms that heavily affect their
posture and more specifically their balance. Therefore, they are more likely to have gait
disturbance. In addition, based on the degree of disturbance, they might use crutches or
forked leg support to assist them when walking, which also has an effect on the way they
walk. In our case, the participants are distinguishable by two factors: first, the Berg score,
conveying to the ability of a person to walk and the degree of difficulty they may have,
as well as the use of assistance to walk. Based on these criteria, medical professionals
suggest adapted exercises to improve the patient’s gait. Although, for more personalized
recommendations, they require more gait-related indicators of a given patient. To meet this
need, we worked on detecting the two main phases of a gait (marked by foot touchdown
and foot takeoff) from which we can extract information such as stride width, walking
speed, swing time, etc.

Modeling this type of movement is more and more studied, and different methods
were applied in order to detect sequences where the foot touches the ground and where
it does not. This work is essential for tasks such as Human Activity Recognition (HAR)
and is widely used in the medical field with the aim to assess the evolution of gait [4–6].
The majority of the challenges that face this field of research are related to data [7]. For
instance, the type of sensors to use is primordial to the study; some works base their study
on image data and others base their study on sensory data. Therefore, a pre-processing
phase [8] was necessary to determine whether to complete, correct, rescale, and filter the
data or to extract features and patterns from those signals for further development. In
addition, formatting the data is also one of the major challenges for this study; the way each
timestamp is classified can differ from one method to another by bringing up the temporal
or spatial dependency, concatenating measures from different signals, or any other data
representation that may have meaning to the classifier [9].

To cover this use case, statistical methods and artificial intelligence approaches were
explored. The former is a rule-based procedure that computes thresholds based on statistical
indicators of the signals; it demands prior knowledge about the data and expertise in signal
processing to be held. The latter is data-oriented and does not necessarily require deepened
knowledge about the signals, since these supervised learning models gain knowledge from
the data and can be adapted to the furnished dataset. So, lately, these methods [7,9,10] are
often used to do the classification tasks, since they are more flexible and can be improved
through different means, that is, by processing the data, modifying the model’s architecture,
or tuning its hyperparameters.

In this work, we explore configurations of data transformations, input formatting, and
deep neural architectures that will allow us to achieve higher scores of accuracy in detecting
foot-to-ground contact sequences. Recent works highlight different architectures that are
adapted to temporal data such as Long Short-Term Memory (LSTM) and others that enable
extracting spatial patterns from signals, namely, Convolutional Neural Networks (CNN).
Hybrid solutions such as ConvLSTM models were also used for similar assignments, since
they benefit from both LSTM and CNN characteristics and allow more rich and valuable
information extraction from the data. Therefore, we are comparing different combinations
of our three parameters of interest: the trained model, signal discrete transformations,
and the size of windows of data that we create. All in order to study the impact of each
parameter and judge each model’s robustness and its capacity of learning on raw data
better than transformed data.

This paper will, firstly, identify the works in relation to our problematic through
the first section of related works. Second, we will demonstrate the pipeline and the
methodology that were applied to carry out this work. Third, we will unfold the results of
the different trained models that will be later discussed in a following section. Finally, the
paper will be concluded with a last section resuming the different elements of this article.



Computers 2022, 11, 58 3 of 26

2. Related Works
2.1. Context and Hypotheses

Within the vast applications of HAR, detecting foot-to-ground contact phases is fun-
damental to outline the characteristics of a person’s gait. Specific data to this task, such
as step width, cadence, gait irregularities, etc., can only be obtained by classifying each
timestamp of our signal into one class of gait analysis. While this task can have a multi-label
classification enabling the determination of phases of pre-swing, initial swing, mid-swing,
and terminal swing, we adopted the second form of gait cycle that is split into only two
primary phases: namely, stance phase and swing phase. Since our work is based on data
provided from IMU sensors, we are dealing with a timestamp-level classification process
for time series. In that case, many architectures were developed in order to achieve high
accuracies on this type of task. Recurrent Neural Network (RNN) architectures, including
its variants Gated Recurrent Unit (GRU) and LSTM, are suitable for this task. In addition,
architectures such as CNN made clear that they have a good ability in extracting spatial
patterns from signals, allowing a high performance on the assigned task.

2.2. Implementations

A multitude of works had an interest in classifying phases of gait, especially with
the use of Machine Learning and Deep Learning algorithms for sensor-based data [7,11].
Since this type of model architecture proven to be quite efficient on raw data, lesser studies
are using signal processing or feature engineering techniques to give the model more
informative and understandable data for its learning. Yet, many studies still apply these
approaches, such as [12] that used Hidden Markov Model (HMM) to classify the extracted
features into the four main phases of gait, but with this kind of configuration, the number of
generated parameters tends to be enormous, and a latency time of predicting is generated.
In terms of deep learning architecture, [13] introduced a CNN model that takes as an input
IMU data, and it is tasked to classify two phases of walking on different configurations and
activities with the aim of sidestepping the use of feature extraction. Another elaborated
method that used a hybrid combination of two models [14] by embedding a sub-model
of three dense layers into a HMM tried to classify six phases of gait, and this method
achieved results with high precision. The training process of this type of model can be
computationally expensive, but when deployed, it can be fast and robust. Methods based on
LSTM-DNN seem reasonably efficient on time-series data, yet they might have a limitation
of accuracy when used to detect two main phases of gait, which is the same as in [15].
This is contrary to [16], where a seq-to-seq method was applied to detect foot-contact and
foot-off phases, which helped enormously improve the accuracy of the model.

2.3. Limitations and Current Work

Through this work, many research aspects were addressed, including some limitations
to the state-of-the-art approaches. Indeed, our study is well-positioned to answer some
problematics such as finding data representations of IMU signals that fit the best to each
neural architecture, establishing a comparison between the impact of processing each signal
component independently in the model or providing the concatenated components to it,
analyzing and comparing a multitude of training scenarios and making conclusions about
the reproducibility of these experiences. In fact, this article gives an elaborate answer to
each of these aspects in the following sections. First, we give details about the data format
that we have chosen, their characteristics, and how each representation can be beneficial
to the corresponding learning model. Second, we built different model architectures to
match single input and multi-input data representations; thereby, we can deduce which
type of architecture is more advantageous. Third, by launching a series of experiments for
all the possible scenarios, we gathered enough data about the performance of the different
models for an in-depth analysis. Finally, the reproducibility of these results was a crucial
element for our developments. Therefore, we retrained from scratch our different models
for a fixed number of times and studied their confidence and stability. Moreover, this work



Computers 2022, 11, 58 4 of 26

also highlights the capacity of models to be data-agnostic, especially to some descriptive
data such as the type of activity, the used foot, and the personal information of the patient.
In other words, with only the IMU data, the model should be robust enough to detect the
FTG contacts regardless of the characteristics of the patient, the activity, or the used foot.

3. Method

In this section, we present the pipeline that we followed in order to hold this study.
First, we will start by giving insights about our dataset and the pre-processing that we
performed on it. Second, we will list the different neural architectures that we have chosen
for our study. Next, we will discuss the evaluation process that we used to compare the
performance of the different trained models. Finally, we will give more details about tuning
the model with the highest accuracy.

Before going through the steps of the development pipeline, we will introduce the
workflow that this project followed during the experimental phase. We adopted an iterative
and an adaptive life-cycle for this project in order to be able to improve constantly different
aspects of the study. We listed several of research focus points, such as data representation,
adapted model architectures, and evaluation process, to improve on each iteration. Figure 1
shows those focus points and pinpoints the major parameters and approaches that were
tested for the improvement process.

Figure 1. Flowchart of the project.

3.1. Pipeline

We held this study in accordance with a prepared and structured pipeline that allowed
us to cover the different aspects of tests and comparisons that we are aiming to get by the
end of the work. The first step was to explore the data in order to comprehend its structure
and its distribution. Second, we thought about the different pre-processing methods that



Computers 2022, 11, 58 5 of 26

can be compared to raw data and then filtered them to get only the most suited for temporal
data. Third, we selected different data representations that contain valuable patterns and
combinations of signal components for the models. Fourth, after reviewing the state-of-the-
art applied models for this use case, we selected different architectures that were adapted
for the type of the data as well as the selected representations. Most of these models have
the capacity of extracting spatial, temporal, or both patterns from the data. Finally, we
evaluate these different models in order to compare their performance. Then, the best
model receives further improvements by optimizing its hyperparameters. Figure 2 shows
these different steps by giving the different possibilities for each step of this pipeline that
were tested and compared.

Figure 2. Pipeline of the study.

Deep Neural Networks (DNN), Random Forest, and XGBoost models were also tested,
and they followed the same pipeline. Their only exception is that they do not accept two-
dimensional data for training. Instead, we used a dimension reduction algorithm, Principal
Component Analysis (PCA), in the data formatting phase in order to get a one-dimensional
array as an input for these models.

3.2. Data Preparation

In the course of this project, experts from CEA-LIST laboratory and Hopale foundation
carried out and supervised the proper conduct of the data collection. The process of
data curation abides by a specified protocol and an experimental setup that were defined
beforehand; these experts ensured proper progress of the experimental phase. Moreover,
they had to prepare a pipeline of collection where the data are secured and anonymized in
accordance with the French politics of General Data Protection Regulation (GDRP).

The collected data are given for 27 elderly patients, who had completed 4 to 9 different
activities; each recording has a mean duration of 2 min 50 s ± 4 min 8 s, these durations
depend on the type of activity that is being recorded (e.g., 6 min walk vs. one-foot balance).
Here, 16 men, 10 women, and 1 not identified person carried those experiences. The mean
age of this population is around 61 ± 12 years old, weighing 77 ± 17 kg and a mean height
of 171± 10 cm. Their capacity to walk varies from one person to another, and it is evaluated



Computers 2022, 11, 58 6 of 26

thanks to the Berg score; here, this score varies from 33 to 56 with a mean of 49 ± 5. The
lower this score, the harder walking can be for a person. Those patients suffer from a
post-stroke left or right hemiparesis, and most of them use support tools such as walking
sticks to do these exercises. Table 1 gives an overview of the composition of the dataset.

Table 1. Dataset indicators.

Indicator Dataset Composition

Total number of participants 27 participants
Number of activities 4 to 9 activities per participant

Number of trials 1 trial per activity
Mean duration ≈3 min

Sensors IMU (accelerometer and gyroscope)
Total observations 616,146 observations
Annotation type Based on computed thresholds

As mentioned in Table 1, the total number of observations is quite interesting with
consideration of the number of participants. Thus, we had a good amount of data to
elaborate this study. Thus, the fact that each participant performed one or more types
of activities enriches the distribution of the data. Furthermore, the target variable was
created based on calculus and other sources of data, such as pressure data originating from
connected soles. By analyzing these data and computing thresholds on data reflecting the
amount of force applied on the sole, the moment of contact between the foot and the ground
was assigned as a new variable to the dataset. It was then calibrated and post-processed in
order to denoise it and remove abnormal values.

During the recordings, two IMU sensors are placed around the participants’ ankles (on
both feet) measuring the acceleration and the angular velocity. The collected data result in
12 components, namely axial acceleration and angular velocity according to X-axis, Y-axis,
and Z-axis for both left and right feet. Figure 3 shows an example of these signals as well
as the foot-to-ground contact signal.

As an input to our models, we chose different configurations; the main one is based on
windowed data, where each window is of the size of WS × 6 where WS is the window size,
which is one of the parameters that we will try to optimize for our models. In their works,
ref. [17] used windowed data as well to perform training on a two-dimensional format
matrix. Related works such as [18,19] showed that the window size can be chosen based
on a compromise between the accuracy and the training time, and for smaller values of
the window size, we get a higher accuracy. The other configurations were proposed based
on the adopted neural architectures. In addition, they can be categorized by the way we
want to process the data during the training phase, whether to treat each axial component
individually, each type of signal (accelerometer and gyroscope data each visualized as a
channel), or the whole concatenated components and signals. Figure 4 illustrates these
different data formats.

In addition to formatting the input data of our models into windows, we had to apply
the same technique to the target variable, namely a binary class indicator that identifies
whether the foot is in contact with the ground or not for each timestamp. Doing so means
that in a single frame, we might have both of the classes, but since, in our case, we are
assigning a single label per window, we had to adopt the technique of the most frequent
label. In other words, we compute the maximum number of times that each class appears
in a single window of data; then, the class corresponding to the maximum is the new label
of the window.



Computers 2022, 11, 58 7 of 26

Figure 3. Example of input signals for a 6 min walk exercise.

(a) (b) (c)

Figure 4. Input formats: (a) concatenated components, (b) multi-input components, and (c) two
channels Acc × Gyro data.

The last aspect that this project is about is the necessity of processing the data. We have
also studied the impact of transforming the data by applying frequency domain transforms
such as FFT (Fast Fourier Transform) and DCT (Discrete Cosine Transform), similar works
such as [20–23] have shown the consistency of using these transforms on the data and their
efficiency in the training phase.

The used FFT formula is given by:

yk =
N−1

∑
n=0

e−2π j kn
N xn (1)



Computers 2022, 11, 58 8 of 26

Note: In our case, yk is the k-th output of the FFT transform, xn is the n-th element of
the input time series, and N is the length of the time series. Computing this formula will
require O(N2), since each k-th element of the N terms requires a sum of N elements.

In our case, we only take the real values of each component of this sequence. Whereas,
the formula of the DCT is written as follows:

yk = x0 + (−1)kxN−1 + 2
N−2

∑
n=1

xn cos
(

πkn
N − 1

)
(2)

Note: The same notations are applied for this formula, and the complexity is the same
as well O(N2).

3.3. Neural Architectures

In the context of detecting foot-to-ground contact, different types of approaches were
used to perform this detection based on different types of sensors. For instance, ref. [24],
where accelerometer data was used, held their study by running signal processing al-
gorithms and assumed their prediction based on peaks of frequency. In addition, [25]
compared different data acquisition systems, and they used a method of downward ve-
locity peaks for the IMU system comparable to the works of [26] using also the vertical
components of the signal for detection. Whereas, studies such as [27] were based on sta-
tistical calculus based on gyroscope and accelerometer data in order to detect stance and
swing phases for the feet.

On the other hand, Machine Learning and Deep Learning-based methods were also
developed for such a use case. Machine Learning models are often used with patterns and
features extracted from the input signals as presented in [28] as well as in [29], where two
types of features were extracted (time-domain and frequency-domain features) and then
were provided to models such as Decision Trees and Random Forest. Models such as Naive
Bayes were also used in the context of the study [30]. Hence, deep neural architectures
can be used whether for the same configuration or for pre-processed and raw signals,
especially CNN models that are commonly used and have shown their efficiency on raw
data through the works of [17]. Furthermore, CNN architectures can also be used on
sequential inputs by applying one-dimensional convolutional layers to each component of
the different signals; ref. [31] compared between considering the signals as a single input
or using each component as a separate input to the model. Since our work is focused on
signals that are also temporal data, Recurrent Neural Networks, as well as their variants,
are good candidates for extracting temporal patterns from our inputs to be used for the
classification problem. Refs. [15,16,32] used LSTMs as a training model to classify different
phases of gait, while [33,34] have used bidirectional LSTMs for the same purpose. Ref. [35]
presented a comparison between learning models from these two categories; it showed
that the LSTM model outperformed the Decision Tree model in detecting foot strike events
based on inertial measurements acquired from a smartphone, and ref. [36] did the same
comparison while using 1D Conv layers. Its results did not exceed the performance of SVM
models, but it gave remarkable results better than Decision Tree and Random Forest models.
Other hybrid configurations using both CNN and LSTM layers to create an architecture
that extracts temporal and spatial patterns from data were used by [37,38] for human
activity recognition.

Other surveys such as [7,10,11,39,40] made a review of the suited models and archi-
tectures for gait phases detection and more general on human activity recognition. They
discussed the common issues that can be faced when treating these subjects such as un-
balanced data, data formatting, parameters tuning, etc., and they give an overview of the
current challenges that the activity recognition field is facing. Furthermore, they gave an
exhaustive list of the works that have been made in the same field as well as their results.

In our case, we focused on a binary classification aiming to detect the moments where
each foot is in contact with the ground. In other words, we detect two phases of gait:
namely, stance and swing phases for each foot. Since our input data are composed of



Computers 2022, 11, 58 9 of 26

acceleration and angular velocity components of both feet at each time step, we figured that
the extraction of spatial and temporal patterns of these signals would be interesting, making
model architectures such as CNN and LSTM the best candidates to test. Furthermore, since
the convolutional architectures can also capture spatial dependencies not only between
each time step but also between the different signals and their respective axial components,
we added this type of architecture to the list of models to test. In addition, we have chosen
LSTMs instead of the traditional vanilla RNNs because of the vanishing gradient problem,
rendering it ineffective for extracting long-term temporal patterns.

For the sake of this study, we selected a few classic, yet performing, models to have a
complete scheme of comparison. Still, there are more architectures that were developed
and achieved high accuracies in HAR in general. Refs. [41,42] used an attention mechanism
aiming to detect human activities using sensors. Others [43] used autoencoders for a better
feature extraction, since it is best suited for learning complex data representations.

In order to evaluate these architectures, we created 6 different models. We also made
sure to have two models for each data representation that we discussed earlier. Next, we
will give details about each one of these architectures, including our new model, based on
the format of their inputs.

3.3.1. Concatenated Data

In that case, as explained earlier, we concatenate the 6 different components of our
signals side to side (AccX, AccY, AccZ, GyroX, GyroY, GyroZ) where Acc data are signals
acquired from the accelerometer, whereas Gyro data originated from the gyroscope. Then,
in terms of rows, we apply a windowing without overlapping to create small batches of data
as single inputs, which leaves us with each input of a size of a 2D matrix (window size× 6).
The window size is also one of the parameters we are studying for this specific set of data.

More importantly, our first model is based on a deep CNN architecture. It has three
consecutive blocks that are made from a 2D convolution layer and a batch normalization
layer followed by a ReLU activation layer. At the end of these three blocks, we use a 2D
global average pooling to provide an adapted input to the decision layer, as illustrated
in Figure 5. We have chosen this architecture for our study based on the works of [44]
that show that deep CNNs on concatenated data give the best predictions of gait phases
detection compared to machine learning models. Ref. [45] also used this data representation
in order to classify gait phases using a hybrid model composed of a CNN sub-model
followed by a couple of LSTM layers.

Figure 5. Deep CNN architecture.

The ReLU (Rectified Linear Unit) activation function was mainly used for the different
tested architectures. Its ability to avoid the vanishing gradient descent problem, especially
in deep neural architectures, made it the right choice for our developments. In addition,
compared to other activation functions, this one proved its efficiency in achieving higher
performance and its computational requirement is, nonetheless, simple and trivial. This is
due to the fact that it only requires computing a maximum between zero and a value, such
as Formula (3) of ReLU requests:

f (x) = max(0, x) (3)



Computers 2022, 11, 58 10 of 26

Note: x indicates the input data of the ReLU function.
The second architecture in this category is an LSTM model [46] that takes as an input

the whole window, then extracts temporal patterns and dependencies across horizontal and
verticals axes. This model also has a simple construction, since it is made of two consecutive
LSTM layers with their final output being flattened and given to the decision layer, as
visualized in Figure 6. The study [47] shows the impact of fusing multiple sources of data
and having an LSTM model train on them, which made us apply the same process for our
IMU data. Furthermore, ref. [48] held a comparison between several models, including
LSTM and CNN for concatenated data where they came second and third after a hybrid
CNN-LSTM model, showing their ability to learn relevant features to classify human
activities.

Figure 6. LSTM model architecture.

3.3.2. Multi-Input Data

The idea behind adopting this format is to treat each component separately inside
the model. Yet, they go through the same types of layers; then, the resulted outputs are
concatenated and furthermore processed. Instead of having a single input for this kind
of model, now we must give the model 6 separate inputs, where each input is of the size
of (window size ∗ 1). Works such as [49] have adopted the same process in order to extract
spatial patterns from each signal component and then concatenate all the resulted feature
maps. To do so, we adapted a first CNN model to have 6 different inputs, as observed in
Figure 7; then, each input is followed by two blocks of two 1D convolution layers and a 1D
max pooling layer. After these blocks, each of the six outputs are flattened and processed by
a Dense layer so that all the outputs of this latter are concatenated and then passed through
three series of Dropout and Dense layers, where the last Dense layer is the decision layer.

We applied the same technique for the LSTM model in order to capture the temporal
information from each component of the different signals and then concatenate them all
and apply Dense as well as Dropout layers for more processing of these temporal patterns.
Then finally comes the decision layer to compute the probability of belonging to which
category. Figure 8 shows the details of this architecture. This technique was also adopted
by [50] for detecting human activities using the spectrograms of signals.



Computers 2022, 11, 58 11 of 26

Figure 7. Multi-input CNN architecture.

Figure 8. Multi-input LSTM architecture.

3.3.3. Two-Channel Data

The last data representation is used as an analogy to computer vision problems, where
each image can be represented as a three-dimensional image corresponding to the RGB
channels. We adapted this format to our case by considering the channels as a type of data.
In this case, accelerometer data are the first channel data, and the gyroscope data are the
second channel data. Each channel is a matrix that has a size of (window size ∗ 3).

The adapted models for this case are a 2D CNN composed of 3 blocks of 2D convolu-
tion layer + batch normalization + ReLU activation followed by a global average pooling
layer and then a decision layer. This architecture can be visualized in Figure 9.



Computers 2022, 11, 58 12 of 26

Figure 9. Two-channel CNN architecture.

The proposed model (cf. Figure 10) that we are trying to compare with these clas-
sic architectures is mainly made of convolutional LSTM layers that were conceived and
developed by [51]; it has the ability to capture spatio-temporal patterns from signals. For-
mulas (4)–(8) are the key equations to compute the output of a ConvLSTM layer. We also
added a deconvolution layer that has the opposite effect of a convolution layer; thus, it
allows upsampling its input, resulting in a larger feature map as explained in [52]. These
layers form the architecture of our model, which is made of two blocks of a 2D convolu-
tional LSTM layer + batch normalization followed by a block of 2D deconvolution layer
+ batch normalization + ReLU activation, whose outputs are given to a global average
pooling layer then to the final decision layer. We used this architecture in order to combine
the strengths of the previous models with the advantages of deconvolution layers, which
attempt to recreate the inputs of the convolution layers after the ConvLSTM layers. It can
also be seen as an encoding–decoding process inside the model. Ref. [53] used this type of
layer to conduct their study of activity recognition using as well different sources of inputs;
we configured our model to take into account the data format we are adopting in this case.

it = σ(Wxi ~ Xt + Whi ~ Ht−1 + Wci � Ct−1 + bi) (4)

ft = σ
(

Wx f ~ Xt + Wh f ~ Ht−1 + Wc f � Ct−1 + b f

)
(5)

Ct = ft � Ct−1 + it � tanh(Wxc ~ Xt + Whc ~Ht−1 + bc) (6)

ot = σ(Wxo ~ Xt + Who ~Ht−1 + Wco � Ct + bo) (7)

Ht = ot � tanh(Ct) (8)

Note: Xt is the input vector, W and b are weight matrices and bias vectors to be
learned, Ht is the hidden state vector of the LSTM unit, Ct is the cell state vector, it is the
input or update gate’s activation vector, ft is the forget gate’s activation vector, and ot is the
output gate’s activation vector.

Figure 10. Two-channel ConvLSTM architecture.

3.3.4. Models Complexity

This section contains an overview of the complexity of the different neural networks
that were listed above. When manipulating deep learning models, computing the complex-
ity of a model is synonymous with counting the number of trainable parameters of this
model. Indeed, the higher the number of these parameters, the more complex the model



Computers 2022, 11, 58 13 of 26

would be considered. Figure 11 shows a comparison of the number of trainable parameters
for each model.

Figure 11. Number of trainable and non-trainable parameters per model.

As shown in this graphic, the multi-input CNN model counts the highest number of
parameters to train, whereas the simple LSTM model has the fewest number of them. Our
ConvLSTM model is ranked second in terms of models with lesser trainable parameters
(i.e., 13,825 parameters cf. Table 2). Accordingly, this model would be great a choice if
it achieves high scores in terms of accuracy. Therefore, the model would have a good
compromise between complexity and accuracy.

Table 2. Number of parameters of each model.

Model multi_cnn_model cnn_model_comp cnn_two_channels multi_lstm_model convlstm_deconv uni_lstm_model

trainable params 42,233 33,665 33,665 15,185 13,825 277
non trainable

params 0 384 384 0 96 0

3.4. LOSO Evaluation

Many possibilities are offered to evaluate the performance of our models. The most
common approach is by splitting the data into 70% for the training data and 30% for the test.
This split suggests that the model will use the first portion of data in order to compute its
new weights, and the remaining portion would not be seen by the model but only evaluated.
These ratios can change from one scenario to another depending on the size of the data. In
some configurations, another subset of the data, named the validation set, is also taken into
account to help the model find its best hyperparameters. The choice of which observations
to include in each set of data can be done in the given order of the original dataset, by
random sampling or any customized method, although it should respect the fact that the
distribution of data should be almost the same in these sub-datasets. Otherwise, the model
would be biased by this distribution, which may result in an overfitting phenomenon.
Cross-validation, on the other hand, is an iterative process that splits data into k parts, then
trains on k-1 of them, and then uses the last one for validation. The overall score is the
average of scores of each split. Finally, the bootstrap algorithm also runs for several times,
but for each process, it splits data randomly into training and validation sets, allowing the
model to test different distributions of data. The overall score is also based on the average
of the different iterations.

For a better understanding of how well our models perform on the data, we adopted
the LOSO (Leave One Subject Out) data split process for both validation and test sets as
proposed in the following studies [49,54,55]. We aim to keep the data as close as possible to
its initial state without shuffling or cropping parts of the data of each patient. In addition,
we are trying to evaluate the model’s performance for an individual and based on the



Computers 2022, 11, 58 14 of 26

different activities to test if the model is agnostic to data apart from accelerometer and
gyroscope data.

To do so, we split the data into three sets. The first one contains data from patients
1 to 25. Hence, the data corresponding to patient n° 26 are the validation data, and the
remaining data of patient n° 27 are given to the test set.

3.5. Training the Models

Considering that the different models reached a steady state in terms of learning
(evolution of Loss and Accuracy) for values of the number of “epochs” around 15, we
built an automated pipeline that trained the different models for 20 epochs and a batch
size of 800. Data corresponding to 25 individuals served as the training set, while the data
from the two remaining participants were used for validation and test, respectively, in
accordance with the LOSO split scheme. While the training data are used to fit the weights
and parameters of the model, the validation set is used to tune its hyperparameters, and
finally the test data, which remains unseen by the model during the training phase, is
used to assess the performance of the model. The training was made on a laptop with an
Intel(R) Core(TM) i5 with 2.71 GHz, 8 GB memory, and an NVIDIA GeForce GTX 950M
GPU. The whole pipeline of pre-processing and formatting the data, training the models,
and evaluating them was implemented using Python 3.8. We used pandas (version 1.2.4)
to read and merge the data, scipy (version 1.6.2) for pre-processing, numpy (version 1.19.0)
to format the data, and TensorFlow (version 2.4.1), Keras (version 2.4.3), and scikit-learn
(version 0.24.1) to create, train, and evaluate models.

3.6. Best Model Tuning

The hyperparameters tuning was only applied to the best scoring model during the
training phase; in our case, it is the proposed ConvLSTM model that achieved the highest
accuracy. In order to hold the optimization process, we used the hyper-opt [56] library. We
mainly used the “Choice” function to make the tuner choose from a set of values. This
choice process is random, although it helps define the next combination of parameters to
test based on the score. We applied this process on hyperparameters such as the different
kernel sizes, the learning rate, the batch size, and the number of epochs to train. We set the
number of evaluations at 50 so that the model tries 50 different combinations of hyperpa-
rameters before coming up with the configuration that led to the best scoring model. Other
possibilities were offered to optimize the model’s hyperparameters, but they can be very
costly, especially since this model contains a considerable amount of trainable hyperpa-
rameters and the set of possible values can be very large. Basic tuning algorithms such as
Grid-search or Random-search [57] can generate a set of hyperparameters configurations
based on each possible joint of their values or by a number of random combinations; then,
a model is trained for this configuration, and only the model with the best results is kept.

4. Results

Since we are following the LOSO evaluation protocol, every model will be evaluated
based on its performance in detecting the foot-to-ground contact for the same patient,
namely, patient n° 27, and for our best model, we will give more details about its perfor-
mance for different activities to see how well it is adapted to the different scenarios of
movements and test its agnostic capacity to descriptive data of the patients.

These results include scores (e.g., accuracy, precision, recall, etc.) for each tested
combination. Hence, 72 neural models were trained and evaluated and will be presented
in the first section of this part. We will also show detailed results of the best model in order
to have an overview of how well the model did for the different types of activities and for
each foot. Next, we will provide some graphic plots showing both the real values of our
target, that is the FTG sequences, and the model’s predictions.



Computers 2022, 11, 58 15 of 26

4.1. Models Comparison

To verify whether the multi-input architecture is effective or not, we trained several
models from each category, and we also used different data transformations in order
to measure the impact of processing the data. Then, we selected a number of metrics
to compare them, such as Accuracy, F1-score, Recall, Precision, and Specificity. Table 3
contains these scores for each trained model.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F1 =
TP

TP + 1
2 (FP + FN)

= 2 · precision · recall
precision + recall

(12)

Speci f icity =
TN

TN + FP
(13)

Note: TP, TN, FP, and FN stand, respectively, for True Positives, True Negatives, False
Positives, and False Negatives.

Taking into account the accuracy of the different architectures, our model made of
ConvLSTM layers and a deconvolution layer achieved better results than the rest of the
models. This shows that this model is adapted to learn on raw data, since the performance
drops easily when a transformation is applied, and it also benefits from extracting spatial
and temporal patterns between signals as well as between each time step of each signal.
The data representation is also a special asset that draws out correlations between the two
types of signals (Accelerometer and Gyroscope data). The rest of the scores shows that for
other window sizes, our model and the multi-input LSTM are the best models, and the
latter could surpass the ConvLSTM model. It has also achieved the same best score using
DCT transformed data, but since the point is to create a model that trains well on raw data,
our model remains the best in this category.

Table 3. Table of scores for the different configurations.

WS Transformation Architecture Acc F1 Rec Pre Spe

3

None

ConvLSTM-Deconv 97.01% 0.965 0.969 0.961 0.971
Multi-input LSTM 96.97% 0.964 0.968 0.961 0.970
Multi-input CNN 96.95% 0.964 0.968 0.961 0.970

Two-channel CNN 96.91% 0.964 0.974 0.954 0.965
Deep CNN 96.87% 0.964 0.978 0.950 0.961

LSTM 96.62% 0.960 0.965 0.956 0.967

DCT

Multi-input LSTM 97.01% 0.965 0.965 0.965 0.973
Multi-input CNN 96.89% 0.964 0.970 0.957 0.967

LSTM 96.67% 0.961 0.972 0.951 0.962
Two-channel CNN 96.59% 0.961 0.980 0.942 0.955

ConvLSTM-Deconv 96.56% 0.960 0.971 0.949 0.961
Deep CNN 95.32% 0.947 0.992 0.907 0.923

FFT

Multi-input LSTM 96.88% 0.963 0.971 0.956 0.967
ConvLSTM-Deconv 96.87% 0.963 0.968 0.958 0.968
Two-channel CNN 96.82% 0.963 0.966 0.959 0.969
Multi-input CNN 96.79% 0.963 0.973 0.952 0.963

Deep CNN 96.73% 0.962 0.977 0.948 0.959
LSTM 96.66% 0.961 0.974 0.949 0.961



Computers 2022, 11, 58 16 of 26

Table 3. Cont.

WS Transformation Architecture Acc F1 Rec Pre Spe

4

None

Deep CNN 96.59% 0.960 0.968 0.952 0.963
Two-channel CNN 96.54% 0.959 0.957 0.961 0.971
Multi-input CNN 96.53% 0.959 0.953 0.964 0.973
Multi-input LSTM 96.50% 0.958 0.945 0.972 0.979

ConvLSTM-Deconv 96.46% 0.958 0.942 0.974 0.981
LSTM 96.22% 0.956 0.962 0.950 0.961

dct

Deep CNN 96.46% 0.958 0.958 0.959 0.969
Multi-input LSTM 96.41% 0.958 0.955 0.960 0.970
Multi-input CNN 96.37% 0.957 0.950 0.964 0.973

ConvLSTM-Deconv 96.36% 0.957 0.946 0.968 0.976
LSTM 96.20% 0.955 0.959 0.952 0.963

Two-channel CNN 96.04% 0.954 0.972 0.937 0.951

fft

Deep CNN 96.40% 0.958 0.961 0.955 0.966
Two-channel CNN 96.40% 0.958 0.961 0.955 0.966
Multi-input CNN 96.40% 0.958 0.963 0.953 0.964
Multi-input LSTM 96.29% 0.956 0.948 0.964 0.973

ConvLSTM-Deconv 96.27% 0.956 0.959 0.954 0.965
LSTM 96.12% 0.954 0.954 0.954 0.966

5

None

Multi-input CNN 96.05% 0.954 0.959 0.949 0.961
ConvLSTM-Deconv 95.98% 0.953 0.956 0.950 0.962

Deep CNN 95.96% 0.953 0.968 0.939 0.953
Two-channel CNN 95.90% 0.952 0.958 0.947 0.959
Multi-input LSTM 95.87% 0.952 0.958 0.946 0.958

LSTM 95.59% 0.949 0.958 0.939 0.953

dct

Multi-input LSTM 95.93% 0.953 0.962 0.943 0.956
Multi-input CNN 95.86% 0.951 0.954 0.949 0.961

Two-channel CNN 95.79% 0.951 0.956 0.946 0.959
ConvLSTM-Deconv 95.77% 0.951 0.956 0.946 0.959

Deep CNN 95.76% 0.950 0.948 0.952 0.964
LSTM 95.47% 0.947 0.961 0.934 0.949

fft

Deep CNN 95.66% 0.950 0.963 0.937 0.951
Multi-input CNN 95.65% 0.949 0.960 0.939 0.953

Two-channel CNN 95.58% 0.949 0.956 0.941 0.955
Multi-input LSTM 95.58% 0.949 0.965 0.933 0.948

LSTM 95.52% 0.948 0.951 0.944 0.958
ConvLSTM-Deconv 95.45% 0.947 0.961 0.934 0.949

6

None

Multi-input CNN 95.45% 0.946 0.935 0.957 0.968
ConvLSTM-Deconv 95.43% 0.946 0.931 0.961 0.971
Multi-input LSTM 95.40% 0.946 0.953 0.940 0.954
Two-channel CNN 95.25% 0.945 0.961 0.930 0.945

LSTM 95.05% 0.942 0.943 0.941 0.956
Deep CNN 94.74% 0.940 0.974 0.909 0.926

dct

Multi-input LSTM 95.40% 0.946 0.945 0.947 0.960
ConvLSTM-Deconv 95.27% 0.944 0.940 0.948 0.961

Multi-input CNN 95.22% 0.943 0.932 0.955 0.967
Two-channel CNN 94.84% 0.938 0.915 0.962 0.973

Deep CNN 94.83% 0.941 0.970 0.914 0.931
LSTM 94.80% 0.939 0.937 0.941 0.956

fft

Multi-input CNN 95.12% 0.942 0.937 0.947 0.961
Two-channel CNN 95.06% 0.941 0.927 0.956 0.968

ConvLSTM-Deconv 95.05% 0.943 0.958 0.928 0.944
Multi-input LSTM 95.00% 0.941 0.940 0.943 0.957

Deep CNN 94.93% 0.942 0.961 0.923 0.940
LSTM 94.87% 0.940 0.937 0.942 0.957



Computers 2022, 11, 58 17 of 26

Other neural architectures that are based on LSTM layers [15,32,47] have also per-
formed very well on our dataset, such as the multi-input LSTM followed by the DNN
layers. Other than the configurations with FFT transforms, this model had a high ranking
in most of the cases. Indeed, this architecture is actually the most suited for time series,
especially if we are treating multiple dependent time series. The model learns temporal
patterns from each signal by treating each one of them independently; then, the outputs
of the LSTM layers are flattened and concatenated, and the resulting vector benefits from
further learning by the dense layers.

We can, also, observe that the smaller the window size gets, the more accurate the
models get. This is mostly due to the fact that the window size plays a major role in creating
more or fewer accurate targets [17,18]. Since we are reducing the size of the window, we are
also reducing the margin of error by having fewer values to choose from in a single window
of the target variable, allowing the model to learn patterns of different slices of the signal
that contain fewer contradictions. Those contradictions may result from having similar or
very close slices of data, but due to the frequency condition, the targets may have different
values. Therefore, the model increases its performance with the increase of granularity of
the data by getting a label for smaller windows of data. However, there is a compromise to
take into account when running this type of approach. In terms of computational effort
and time, while decreasing the window size, this process may demand more resources and
time to run, whether it is for data formatting, model training, and predicting. So, based on
the available resources and time needed, we will have to choose an adapted window size
while making sure that the corresponding accuracy remains acceptable.

4.2. Machine Learning and DNN Models

In addition to the trained Deep Learning models, we have also trained Random Forest
and XGBoost classifiers for large-scale comparison. Those models were also trained on
windowed data (raw, transformed with FFT and DCT) and with different values of window
size. Yet, these models do not accept 2D matrices as a single input, so we used PCA
(Principal Component Analysis) to reduce the dimension of the input matrix and get a
single dimension vector. While training the RF and the XGBoost models for the different
sets of configurations, we noticed the same behavior as the neural network models, which
is that the accuracy of detecting FTG contact phases increased while lowering the window
size value. Yet, this progress reached a limit for values lower than 6, the accuracy has no
longer been improving, and the recorded highest accuracy score was 95.43%. The same
applies to the DNN model that we conceived for the same data representation and which
we tested for the same different transformations and values of window size; it has also
stagnated with a best accuracy of 94.46%.

4.3. Best Model Performance

Knowing that the data set that we used for our study includes recordings for different
types of activities, we have chosen to run the evaluation process for each activity and each
foot in order to have a better idea of how the model performs in different circumstances.
Figure 12 shows some examples of detection for different activities for both right and
left feet. In addition, Table 4 shows values of the chosen metrics for each one of these
configurations.



Computers 2022, 11, 58 18 of 26

Table 4. Table of scores of the best model for the different activities.

Activity Foot Acc F1 Rec Pre Spe

6MinWalk
Left 96.18% 0.973 0.974 0.972 0.929

Right 94.78% 0.965 0. 9.8 0.961 0.879

GetUpAndGo
Left 94.87% 0.895 0.907 0.883 0.961

Right 94.62% 0.906 0.931 0.882 0.951

Step
Left 97.00% 0.937 0.915 0.959 0.987

Right 95.95% 0.905 0.919 0.891 0.970

1MinJoint
Left 99.65% 0.727 0.666 0.800 0.998

Right 99.39% 0.764 0.896 0.666 0.995

1FootBalance
Left 99.15% 0.700 0.736 0.666 0.994

Right 98.79% 0.451 0.700 0.333 0.990

2MinPelvis
Left 99.98% 0.800 1.000 0.666 0.999

Right 99.82% NaN NaN NaN 0.998

This table reflects the model’s performance in each type of activity. Some of these
activities have unbalanced data due to the nature of the exercise to practice, which can
heavily influence the scores. On the other hand, the first three exercises are more likely to
occur in real life, since they include walking or at least alternating between left and right
feet. In addition, for the last activity, the person keeps both feet on the ground the whole
time (except when losing balance), so we get only one class most of the time which is “0”;
thus, we cannot compute some metrics due to the absence of true positives and sometimes
false positives as well. Furthermore, for the three main activities, these additional scores
are quite similar to the overall ones, and they do not drop for one major activity or another.
Now, we will visualize, through Figure 12, how well the model is actually predicting the
foot-to-ground contact for those three activities.

(a)

(b)

(c)

Figure 12. Real values and predictions: (a) get up and go activity, (b) step activity, and (c) 6 min
walk activity.



Computers 2022, 11, 58 19 of 26

4.4. Confidence Intervals and Reproducibility

Another important aspect of this study is analyzing the confidence intervals of our
models based on the different adopted configurations. On one hand, it will allow us to
study how certain the predictions of the different models are. On the other hand, this
will give us an idea about the consistency of each model and the degree of reproducibility
for every configuration. For that, we run a new set of experiments where each model
was trained five times for each single configuration. Although we have limited our scope
of experiments to a window size of 3, since the window size is a major asset for better
predictions. Figure 13 shows intervals of obtained scores for different configurations.

Figure 13 contains boxplots of a certain metric (respectively, Accuracy, F1-Score, Recall,
Precision, and Specificity). These graphs have one thing in common: that is, for raw data,
the confidence interval is so small, which means that training the same model on the same
configuration multiple times results in the same outcome. The scores do not drop from one
experiment to another, leading to a reproducible model with high confidence of getting
the right output. In other cases, where FFT and DCT transforms were applied to the input
data, all the scores have wide margin errors, rendering the model less confident of its
outputs and not likely to reproduce the same results if it is trained a new time. We have
also added Table 5 for more details about the given scores; this table includes statistics
about the scores (mean, minimum, maximum, and standard deviation). Based on these
numbers, models such as the ConvLSTM and the multi-channel LSTM attained the highest
scores while achieving high levels of confidence. In addition, they usually have the lowest
standard deviation based on the different trials. Whereas, CNN-based models seem to be
more compatible with the FFT transform and achieve high rankings in this configuration.

(a) (b)

(c) (d)

(e)

Figure 13. Confidence intervals for each model and data format: (a) Accuracy, (b) F1-score, (c) Recall,
(d) Precision, and (e) Specificity.



Computers 2022, 11, 58 20 of 26

Table 5. Statistics of scores aggregated on the number of trials.

Transform Model_NAME Acc f1 Rec Pre Spe
Mean Min Max Std Mean Min Max Std Mean Min Max Std Mean Min Max Std Mean Min Max Std

None multi_lstm_model 0.973 0.972 0.973 0.000 0.968 0.968 0.969 0.000 0.971 0.969 0.973 0.002 0.966 0.963 0.968 0.002 0.974 0.972 0.976 0.002
convlstm_deconv_model 0.972 0.971 0.973 0.001 0.968 0.967 0.969 0.000 0.971 0.964 0.979 0.006 0.964 0.956 0.972 0.006 0.973 0.966 0.979 0.005
multi_cnn_model 0.972 0.972 0.972 0.000 0.967 0.967 0.968 0.000 0.971 0.968 0.973 0.002 0.964 0.962 0.967 0.002 0.972 0.971 0.975 0.002
cnn_two_channels_model 0.971 0.971 0.972 0.000 0.967 0.967 0.968 0.000 0.970 0.964 0.976 0.005 0.964 0.958 0.970 0.004 0.973 0.968 0.977 0.003
cnn_model_comp 0.971 0.970 0.972 0.001 0.967 0.966 0.968 0.001 0.976 0.965 0.981 0.007 0.958 0.951 0.971 0.008 0.968 0.962 0.979 0.007
uni_lstm_model 0.968 0.967 0.970 0.001 0.964 0.962 0.966 0.002 0.973 0.970 0.976 0.002 0.954 0.950 0.960 0.004 0.965 0.961 0.969 0.003

dct multi_lstm_model 0.948 0.899 0.973 0.030 0.940 0.888 0.968 0.034 0.945 0.850 0.979 0.051 0.938 0.820 0.992 0.053 0.950 0.837 0.995 0.048
convlstm_deconv_model 0.915 0.783 0.971 0.067 0.887 0.665 0.967 0.103 0.845 0.499 0.981 0.174 0.960 0.851 0.998 0.042 0.969 0.875 0.999 0.036
multi_cnn_model 0.880 0.764 0.972 0.099 0.820 0.623 0.968 0.159 0.739 0.453 0.971 0.246 0.982 0.963 0.999 0.017 0.987 0.972 1.000 0.013
uni_lstm_model 0.842 0.434 0.970 0.187 0.843 0.590 0.966 0.149 0.870 0.597 0.976 0.148 0.861 0.429 0.995 0.207 0.822 0.046 0.998 0.326
cnn_two_channels_model 0.827 0.649 0.971 0.150 0.693 0.314 0.967 0.290 0.624 0.186 0.984 0.374 0.974 0.939 0.997 0.026 0.981 0.951 0.999 0.021
cnn_model_comp 0.826 0.637 0.971 0.153 0.688 0.274 0.967 0.303 0.625 0.159 0.986 0.383 0.969 0.938 0.994 0.026 0.978 0.951 0.999 0.023

fft multi_cnn_model 0.950 0.909 0.972 0.027 0.944 0.902 0.967 0.028 0.970 0.966 0.973 0.002 0.920 0.843 0.966 0.051 0.934 0.863 0.974 0.046
cnn_model_comp 0.941 0.866 0.971 0.035 0.929 0.824 0.966 0.046 0.924 0.728 0.985 0.080 0.938 0.875 0.965 0.026 0.953 0.900 0.973 0.022
cnn_two_channels_model 0.937 0.860 0.970 0.038 0.922 0.810 0.966 0.053 0.893 0.689 0.981 0.103 0.960 0.943 0.981 0.014 0.971 0.956 0.990 0.013
multi_lstm_model 0.923 0.832 0.972 0.056 0.920 0.837 0.968 0.053 0.982 0.970 0.998 0.012 0.872 0.720 0.965 0.102 0.879 0.706 0.973 0.107
convlstm_deconv_model 0.855 0.435 0.971 0.187 0.877 0.604 0.966 0.135 0.976 0.965 0.998 0.011 0.821 0.433 0.961 0.204 0.764 0.007 0.970 0.335
uni_lstm_model 0.794 0.414 0.969 0.256 0.841 0.583 0.964 0.172 0.964 0.862 0.998 0.039 0.786 0.421 0.987 0.252 0.665 0.001 0.991 0.459



Computers 2022, 11, 58 21 of 26

5. Discussion
5.1. Results Overview

After training different architectures for different data configurations, we successfully
created an efficient model well adapted to raw data; it achieved a high accuracy of 97% using
a ConvLSTM model without any need for data transformation with the use of windowed
data (window size of three observations). Most of the time, all the models achieved quite
similar scores for each value of the window size with a difference of ±0.19%, which made
the comparison between the different models quite difficult; thus, the window size had the
most important impact on the results. On the other hand, discrete transformations such
as DCT and FFT made the accuracy drop a little in most of the cases, meaning that our
models are more effective on raw data. In addition, for the best model, scores of accuracy
varied from 94% to nearly 100% depending on the activity. Above all, using accelerometer
and gyroscope data extracted from IMU sensors, that were placed on the ankles of the
participants, with an adequate format, in our case, two superimposed 2D matrices (one for
each type of signal) made the proposed ConvLSTM model learn spatio-temporal patterns
from these signals and leading to good foot-to-ground contact detection.

5.2. Comparison with the State-of-the-Art

Compared to the works of [35] based on a confrontation of LSTM and Decision
Tree approaches that resulted in initial and corrected results, our proposed configuration
surpassed the output of their LSTM model in terms of the overall accuracy (95.7%). Yet,
after adding some corrections to the data, their LSTM model made significant progress
and attained an overall accuracy of 99.0%. Since our target variable is annotated based on
computed thresholds, it may be one reason leading the model to errors besides inaccuracy
in data acquisition from the IMU sensors. For other works that were based on local minima
for motion data such as [58], our model surpassed this method in terms of accuracy of
detection. In addition, ref. [45] used a CNN-LSTM model to detect different phases of
the gait process, and it achieved an accuracy of 92%, which is lower than this study’s
best score. Our results are comparable to those of [30] except for the cases where the
model is reprocessed on personal historical data, making the model more adjustable to
each participant. Since we are seeking an agnostic model for this type of data and are
able to detect the foot-to ground contact only based on the IMU sensors data, we have
not tried similar approaches. Nevertheless, our best model underperformed the FootNet
developed by [59] that achieved 99.23% accuracy using an LSTM model on the kinematic
data of a large dataset. In addition, ref. [33] showed that with an LSTM model, they could
precisely predict the moments of foot strike as well as the moments of foot-off with an
accuracy of 99%. We can deduce that until now, LSTM models have the best performance
for detecting foot-to-ground contact moments, since they are well suited for temporal
signals. Furthermore, ref. [17] achieved 99.8% accuracy in detecting foot-to-ground contact
phases, which is higher than what our model could attain, but the validation accuracy was
nearly 85%.

The main difference between this study and the other comparable methods is the
data preprocessing. Many other studies (e.g., [17,28,33,34,60], etc.) used resampling, filters,
dimension reduction, and many other types of pre-processing approaches to their data
before providing it to the learning model. For our study, we tried to keep the data as raw
as possible; the only transformations that we applied were the DCT and FFT with the aim
of comparing the resulted predictions for each case. Yet, studying our data deeper and
allowing further data pre-processing could open up more possibilities and improvements
in our results. Post-processing, as applied by [30,35], is also a huge opportunity to help the
model increase its accuracy.

5.3. Future Works

For further developments, we would be targeting other model architectures and data
representations, allowing higher accuracies and more precision in detecting the sequences



Computers 2022, 11, 58 22 of 26

of foot-to-ground contact. Having a model that gives a prediction for each time step
would certainly increase the accuracy of our predictions, although we kept the window
representation in order to compare those specific architectures and go as low as possible
in terms of kernel sizes that are allowed to perform on 2D data. In addition, trying the
overlapping windows approach would help to increase the granularity of the decisions
made by the models while using sufficiently big windows. In that case, there would still be
a compromise to establish between the values of the window size and the size of skipped
frames. This approach was one of the aspects of comparison to our models, but due to
the lack of memory resources, we had to postpone it for further development. These
future works would open many possibilities of use cases such as developing a real-time
system [16,30,34] allowing to detect the contacts between each foot and the ground. We
can also change our problematic from classifying the existing signal to predicting the
possibility of the foot-to-ground contact occurring in the near future. Those use cases may
require larger amounts of data for better precision, and for that purpose, we intend to
use data augmentation techniques to generate similar data with the same distribution but
slightly different from the original one. Approaches such as noise adding [61], signal-based
transformations [62], GANs [11], and Auto-Encoders [63] are commonly used for that
purpose and can easily generate high-quality signals with the right parameters.

6. Conclusions

Throughout this work, we are trying to compare different methods in order to achieve
the highest accuracy in detecting foot-to-ground sequences. These methods are focusing on
three major aspects: namely, the input data representation, the impact of applying discrete
transformations to the signal, and the different adapted architectures for our use case. In
addition, the model will be trained on the IMU sensors data only without any descriptive
data about the patients or the type of feet the signal belongs to. This helped us test how
independent the model is from these descriptive data.

Starting with the data formatting, we used three data representations; for each one
of these representations, two models were adapted and able to train on. We applied
windowing on data in order to have a classification value for each window. The window
size is also one parameter of comparison. Various studies fix that value on 5, but we went
further and tried lesser values, since our models were adapted for this case. The first
data representation is the most basic one; it involves concatenating all the signals’ axial
components, which results in a 2D matrix (window size ∗ 6). The second representation gives
to the model six distinct inputs of size (window size ∗ 1), which corresponds to six different
1D arrays. Finally, the last representation separates acceleration data from angular velocity
data, in which case, we end up with two superimposed 2D matrices, and the overall size is
(windows size, 3, 2).

For these different data representations, we trained two models for each type of
format: starting from a basic 2D CNN and LSTM, then multi-input CNN and LSTM, and
finally, a 2D CNN and a ConvLSTM model. Currently, the best results were achieved
for the ConvLSTM model for a window size of three time steps, without any discrete
transformation, reaching an accuracy of 97.01%.

After experimenting different models with diverse input formats, each configuration
showed assets and liabilities. Therefore, a margin of improvement remains. Using novel
architectures such as transforms might be a solution to divert the limitations of RNN-
based models. In fact, the self-attention mechanism allows for learning the similarities
between sequences of the signals. In addition, the data are treated as a whole rather than
frame by frame. This approach is one of several prospective enhancements for our future
works; we would like to ensure a more reliable predictive system by using more complex
architectures that can extract more informative and rich patterns. In addition, working
on more developed data representations would be valuable for our development. Indeed,
generating data embedding generated by Deep Learning models might be a way to extract
more interesting features. With these improvements, and in addition to developing a



Computers 2022, 11, 58 23 of 26

real-time detection system, many use cases can be derived from the main one, such as
detecting more activities with different granularity; these use cases can benefit from prior
learning by using transfer learning techniques.

On the experimental level, these results were very welcomed by the medical experts,
since they were sufficient to extract other descriptive gait patterns, such as the cadence and
the stride length, that are needed for judging the quality of the different walking phases.
Compared to the ground truth labels that were generated by computed thresholds that are
specific to each patient, our models are considered agnostic to patients profiles and can
make predictions for different individuals from different populations without running an
in-depth analysis of each one of them. These advantages will allow medical professionals
to run fast and automated analyses and obtain accurate information about their patients.

The obtained results were clearly efficient and very close to the real target. However,
in comparison with the approach of computing thresholds, our model has the superiority
of adapting to all individuals and does not require any specific knowledge about them. In
addition, the process of predicting is fast yet not applicable for real-time predictions. This
solution can also benefit from further learning from future data by using incremental or
active learning techniques. To summarize, the proposed model offers adaptive and flexible
advantages compared to analytical methods. Plus, its predictions have proven a high level
of accuracy and robustness when tested on different subjects.

Author Contributions: Conceptualization, M.B., M.A. (Margarita Anastassova) and S.L.; Data curation
S.L. and S.B.; Investigation, M.B., M.A. (Margarita Anastassova), S.L., S.B. and Y.E.M.; Methodology
and formal analysis, Y.E.M. and H.A.; Software, Y.E.M.; Visualization, Y.E.M.; Validation, H.A. and
M.A. (Mehdi Ammi); Writing–original draft, Y.E.M.; Editing, H.A., M.A. (Mehdi Ammi) and Y.E.M.;
Supervision, H.A. and M.A. (Mehdi Ammi); Project administration, M.A. (Margarita Anastassova) and
M.A. (Mehdi Ammi). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that were used in this project can be found in the following
drive: https://drive.google.com/drive/folders/1dWjOwrN1IAY7aRxPlRVoE8LFMApfmJm9?usp=
sharing (accessed on 12 April 2022). In addition, the code has been structured in a way to launch
all the discussed experiences in an automated way; it also can be found this Github repository:
https://github.com/YounessElMarhraoui/CEA_Data/tree/master (accessed on 12 April 2022).

Acknowledgments: We would like to express our sincere gratitude and appreciation to the reviewers
for assessing our manuscript, especially for dedicating their valuable time and efforts to such a
diligent task. In addition, we would like to thank Alice Douchet and Mathilde André from Fondation
Hopale for their diligent work and assistance in carrying out and supervising the clinical trials and
collecting the data; their expertise and professionalism were reflected in the quality of data that were
acquired thanks to their commitment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Matias, A.; Taddei, U.; Leardini, A.; Sacco, I. Rearfoot, Midfoot, and Forefoot Motion in Naturally Forefoot and Rearfoot Strike

Runners during Treadmill Running. Appl. Sci. 2020, 10, 7811. [CrossRef]
2. Decock, A.; Fransen, E.; Perkisas, S.; Verhoeven, V.; Beauchet, O.; Remmen, R.; Vandewoude, M. Gait characteristics under

different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people. PLoS
ONE 2017, 12, e0178566. [CrossRef]

3. Taguchi, C.; Teixeira, J.; Alves, L.; Oliveira, P.; Raposo, O. Quality of Life and Gait in Elderly Group. Int. Arch. Otorhinolaryngol.
2015, 20, 235–240. [CrossRef] [PubMed]

4. Beausoleil, S.; Miramand, L.; Turcot, K. Evolution of Gait Parameters in Individuals with a Lower-Limb Amputation during a
Six-Minute Walk Test. Gait Posture 2019, 72, 40–45. [CrossRef]

5. Gandhi, V.; Singh, J. Gait Adaptive Duty Cycle: Optimize the QoS of WBSN-HAR. Wirel. Pers. Commun. 2022, 123, 1967–1985.
[CrossRef]

https://drive.google.com/drive/folders/1dWjOwrN1IAY7aRxPlRVoE8LFMApfmJm9?usp=sharing
https://drive.google.com/drive/folders/1dWjOwrN1IAY7aRxPlRVoE8LFMApfmJm9?usp=sharing
https://github.com/YounessElMarhraoui/CEA_Data/tree/master
http://doi.org/10.3390/app10217811
http://dx.doi.org/10.1371/journal.pone.0178566
http://dx.doi.org/10.1055/s-0035-1570313
http://www.ncbi.nlm.nih.gov/pubmed/27413405
http://dx.doi.org/10.1016/j.gaitpost.2019.05.022
http://dx.doi.org/10.1007/s11277-021-09224-2


Computers 2022, 11, 58 24 of 26

6. Setiawan, F. Development of a Deep Learning Gait Classification Algorithmic Using Time-Frequency Features and Its Verification
on Neuro-Degenerative Diseases’ Gait Classification. Ph.D. Thesis, National Cheng Kung University, Tainan City, Taiwan, 2019.
[CrossRef]

7. Sun, Z.; Liu, J.; Ke, Q.; Rahmani, H.; Bennamoun, M.; Wang, G. Human Action Recognition from Various Data Modalities:
A Review. arXiv 2020, arXiv:2012.11866. [CrossRef]

8. Figo, D.; Diniz, P.; Ferreira, D.; Cardoso, J. Preprocessing techniques for context recognition from accelerometer data. Pers.
Ubiquitous Comput. 2010, 14, 645–662. [CrossRef]

9. Bouchabou, D.; Nguyen, S.M.; Lohr, C.; Leduc, B.; Kanellos, I. A Survey of Human Activity Recognition in Smart Homes Based
on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning. Sensors 2021, 21, 6037. [CrossRef]

10. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep Learning for Sensor-based Activity Recognition: A Survey. Pattern Recognit.
Lett. 2017, 119, 3–11. [CrossRef]

11. Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities. ACM Comput. Surv. 2020, 54, 77. [CrossRef]

12. Sánchez Manchola, M.D.; Bernal, M.J.P.; Munera, M.; Cifuentes, C.A. Gait Phase Detection for Lower-Limb Exoskeletons using
Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sensors 2019, 19, 2988. [CrossRef]
[PubMed]

13. Su, B.; Wang, J.; Liu, S.Q.; Sheng, M.; Jiang, J.; Xiang, K. A CNN-Based Method for Intent Recognition Using Inertial Measurement
Units and Intelligent Lower Limb Prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1032–1042. [CrossRef] [PubMed]

14. Zhao, H.; Wang, Z.; Qiu, S.; Wang, J.; Xu, F.; Wang, Z.; Shen, Y. Adaptive gait detection based on foot-mounted inertial sensors
and multi-sensor fusion. Inf. Fusion 2019, 52, 157–166. [CrossRef]

15. Zhen, T.; Yan, L.; Yuan, P. Walking Gait Phase Detection Based on Acceleration Signals Using LSTM-DNN Algorithm. Algorithms
2019, 12, 253. [CrossRef]

16. Kidziński, Ł.; Delp, S.; Schwartz, M. Automatic real-time gait event detection in children using deep neural networks. PLoS ONE
2019, 14, e0211466. [CrossRef]

17. Jeon, H.; Kim, S.; Kim, S.; Lee, D. Fast Wearable Sensor-Based Foot-Ground Contact Phase Classification Using a Convolutional
Neural Network with Sliding-Window Label Overlapping. Sensors 2020, 20, 4996. [CrossRef]

18. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014,
14, 6474–6499. [CrossRef]

19. Yala, N.; Fergani, B.; Fleury, A. Feature extraction for human activity recognition on streaming data. In Proceedings of the 2015
International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Madrid, Spain, 2–4 September 2015;
pp. 1–6. [CrossRef]

20. He, Z.; Jin, L. Activity recognition from acceleration data based on discrete consine transform and SVM. In Proceedings of the
2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 5041–5044.
[CrossRef]

21. Sani, S.; Massie, S.; Wiratunga, N.; Cooper, K. Learning Deep and Shallow Features for Human Activity Recognition. In Knowledge
Science, Engineering and Management KSEM 2017; Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M., Eds.; Springer: Cham,
Switzerland, 2017; pp. 469–482. [CrossRef]

22. Khatun, A.; Hossain, S.G.S. A Fourier Domain Feature Approach for Human Activity Recognition & Fall Detection. arXiv 2020,
arXiv:2003.05209. [CrossRef]

23. Zhang, Y.; An, H.; Ma, H.; Wei, Q.; Wang, J. Human Activity Recognition with Discrete Cosine Transform in Lower Extremity
Exoskeleton. In Proceedings of the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Shenyang,
China, 24–27 August 2018; pp. 309–312. [CrossRef]

24. Gurchiek, R.D.; Garabed, C.P.; McGinnis, R.S. Gait event detection using a thigh-worn accelerometer. Gait Posture 2020,
80, 214–216. [CrossRef]

25. Reenalda, J.; Zandbergen, M.A.; Harbers, J.H.; Paquette, M.R.; Milner, C.E. Detection of foot contact in treadmill running with
inertial and optical measurement systems. J. Biomech. 2021, 121, 110419. [CrossRef]

26. O’Connor, C.; Thorpe, S.; O’Malley, M.; Vaughan, C. Automatic detection of gait events using kinematic data. Gait Posture 2007,
25, 469–474. [CrossRef] [PubMed]

27. Jao, C.S.; Wang, Y.; Shkel, A.M. A Zero Velocity Detector for Foot-mounted Inertial Navigation Systems Aided by Downward-
facing Range Sensor. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4.
[CrossRef]

28. O’Brien, M.; Shawen, N.; Mummidisetty, C.; Kaur, S.; Bo, X.; Poellabauer, C.; Kording, K.; Jayaraman, A. Activity Recognition for
Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting. J. Med. Internet Res.
2017, 19, e184. [CrossRef] [PubMed]

29. Açıcı, K.; Erdaş, Ç.; Aşuroğlu, T.; Kılınç Toprak, M.; Erdem, H.; Oğul, H. A Random Forest Method to Detect Parkinson’s Disease
via Gait Analysis. In Engineering Applications of Neural Networks. EANN 2017; Boracchi, G., Iliadis, L., Jayne, C., Likas, A., Eds.;
Springer: Cham, Switzerland, 2017; pp. 609–619. [CrossRef]

30. Ma, H.; Yan, W.; Yang, Z.; Liu, H. Real-Time Foot-Ground Contact Detection for Inertial Motion Capture Based on an Adaptive
Weighted Naive Bayes Model. IEEE Access 2019, 7, 130312–130326. [CrossRef]

http://dx.doi.org/10.6844/NCKU201901644
http://dx.doi.org/10.36227/techrxiv.13708270.v1
http://dx.doi.org/10.1007/s00779-010-0293-9
http://dx.doi.org/10.3390/s21186037
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1145/3447744
http://dx.doi.org/10.3390/s19132988
http://www.ncbi.nlm.nih.gov/pubmed/31284619
http://dx.doi.org/10.1109/TNSRE.2019.2909585
http://www.ncbi.nlm.nih.gov/pubmed/30969928
http://dx.doi.org/10.1016/j.inffus.2019.03.002
http://dx.doi.org/10.3390/a12120253
http://dx.doi.org/10.1371/journal.pone.0211466
http://dx.doi.org/10.3390/s20174996
http://dx.doi.org/10.3390/s140406474
http://dx.doi.org/10.1109/INISTA.2015.7276759
http://dx.doi.org/10.1109/ICSMC.2009.5346042
http://dx.doi.org/10.1007/978-3-319-63558-3_40
https://doi.org/10.48550/arxiv.2003.05209
http://dx.doi.org/10.1109/IISR.2018.8535705
http://dx.doi.org/10.1016/j.gaitpost.2020.06.004
http://dx.doi.org/10.1016/j.jbiomech.2021.110419
http://dx.doi.org/10.1016/j.gaitpost.2006.05.016
http://www.ncbi.nlm.nih.gov/pubmed/16876414
http://dx.doi.org/10.1109/SENSORS47125.2020.9278755
http://dx.doi.org/10.2196/jmir.7385
http://www.ncbi.nlm.nih.gov/pubmed/28546137
http://dx.doi.org/10.1007/978-3-319-65172-9_51
http://dx.doi.org/10.1109/ACCESS.2019.2939839


Computers 2022, 11, 58 25 of 26

31. Hannink, J.; Kautz, T.; Pasluosta, C.F.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Sensor-Based Gait Parameter Extraction With Deep
Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2017, 21, 85–93. [CrossRef] [PubMed]

32. Sarshar, M.; Potluri, S.; Schega, L. Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis-Proof of Concept. Sensors
2021, 21, 5749. [CrossRef] [PubMed]

33. Lempereur, M.; Rousseau, F.; Rémy-Néris, O.; Pons, C.; Houx, L.; Quellec, G.; Brochard, S. A new deep learning-based method for
the detection of gait events in children with gait disorders: Proof-of-concept and concurrent validity. J. Biomech. 2019, 98, 109490.
[CrossRef] [PubMed]

34. Feigl, T.; Gruner, L.; Mutschler, C.; Roth, D. Real-Time Gait Reconstruction For Virtual Reality Using a Single Sensor. In
Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Recife,
Brazil, 9–13 November 2020. [CrossRef]

35. Juneau, P.; Baddour, N.; Burger, H.; Bavec, A.; Lemaire, E.D. Comparison of Decision Tree and Long Short-Term Memory
Approaches for Automated Foot Strike Detection in Lower Extremity Amputee Populations. Sensors 2021, 21, 6974. [CrossRef]

36. K, M.; Ramesh, A.; G, R.; Prem, S.; A A, R.; Gopinath, D.M. 1D Convolution approach to human activity recognition using sensor
data and comparison with machine learning algorithms. Int. J. Cogn. Comput. Eng. 2021, 2, 130–143. [CrossRef]

37. Xia, K.; Huang, J.; Wang, H. LSTM-CNN Architecture for Human Activity Recognition. IEEE Access 2020, 8, 56855–56866.
[CrossRef]

38. Mutegeki, R.; Han, D. A CNN-LSTM Approach to Human Activity Recognition. In Proceedings of the 2020 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020;
pp. 362–366. [CrossRef]

39. Vu, H.T.T.; Dong, D.; Cao, H.L.; Verstraten, T.; Lefeber, D.; Vanderborght, B.; Geeroms, J. A Review of Gait Phase Detection
Algorithms for Lower Limb Prostheses. Sensors 2020, 20, 3972. [CrossRef]

40. Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.; Hastie, T.; Delp, S. Machine Learning in Human Movement Biomechanics: Best
Practices, Common Pitfalls, and New Opportunities. J. Biomech. 2018, 81, 1–11. [CrossRef] [PubMed]

41. Buffelli, D.; Vandin, F. Attention-Based Deep Learning Framework for Human Activity Recognition With User Adaptation. IEEE
Sens. J. 2021, 21, 13474–13483. [CrossRef]

42. Mahmud, S.; Tonmoy, M.T.H.; Bhaumik, K.; Rahman, A.; Amin, M.A.; Shoyaib, M.; Khan, M.; Ali, A. Human Activity Recognition from
Wearable Sensor Data Using Self-Attention; IOS Press: Santiago de Compostela, Spain, 2020. [CrossRef]

43. Garcia, K.D.; de Sá, C.R.; Poel, M.; Carvalho, T.; Mendes-Moreira, J.; Cardoso, J.M.; de Carvalho, A.C.; Kok, J.N. An ensemble of
autonomous auto-encoders for human activity recognition. Neurocomputing 2021, 439, 271–280. [CrossRef]

44. Su, B.; Smith, C.; Gutierrez-Farewik, E. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial
Measurement Units. Biosensors 2020, 10, 109. [CrossRef]

45. Kreuzer, D.; Munz, M. Deep Convolutional and LSTM Networks on Multi-Channel Time Series Data for Gait Phase Recognition.
Sensors 2021, 21, 789. [CrossRef]

46. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
47. Xingxing, G.; Gao, Y.; Pan, L.; Li, G. IMU Data and GPS Position Information Direct Fusion Based on LSTM. Sensors 2021, 21, 2500.

[CrossRef]
48. Li, F.; Shirahama, K.; Nisar, M.; Köping, L.; Grzegorzek, M. Comparison of Feature Learning Methods for Human Activity

Recognition Using Wearable Sensors. Sensors 2018, 18, 679. [CrossRef]
49. Gil-Martín, M.; San-Segundo, R.; Fernández-Martínez, F.; Ferreiros-López, J. Improving physical activity recognition using a new

deep learning architecture and post-processing techniques. Eng. Appl. Artif. Intell. 2020, 92, 103679. [CrossRef]
50. Congzhang, D.; Jia, Y.; Cui, G.; Chen, C.; Zhong, X.; Guo, Y. Continuous Human Activity Recognition through Parallelism LSTM

with Multi-Frequency Spectrograms. Remote Sens. 2021, 13, 4264. [CrossRef]
51. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.c. Convolutional LSTM Network: A Machine Learning Approach

for Precipitation Nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems
(NIPS’15), Montreal, QC, Canada, 7–12 December 2015.

52. Shi, W.; Caballero, J.; Theis, L.; Huszar, F.; Aitken, A.; Ledig, C.; Wang, Z. Is the deconvolution layer the same as a convolutional
layer? arXiv 2016, arXiv:1609.07009.

53. Ordóñez, F.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 2016, 16, 115. [CrossRef] [PubMed]

54. San-Segundo, R.; Navarro-Hellín, H.; Torres-Sánchez, R.; Hodgins, J.; De la Torre, F. Increasing Robustness in the Detection of
Freezing of Gait in Parkinson’s Disease. Electronics 2019, 8, 119. [CrossRef]

55. Bikias, T.; Iakovakis, D.; Hadjidimitriou, S.; Charisis, V.; Hadjileontiadis, L. DeepFoG: An IMU-Based Detection of Freezing of
Gait Episodes in Parkinson’s Disease Patients via Deep Learning. Front. Robot. AI 2021, 8. [CrossRef]

56. Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D. Hyperopt: A Python library for model selection and hyperparameter
optimization. Comput. Sci. Discov. 2015, 8, 014008. [CrossRef]

57. Liashchynskyi, P.B.; Liashchynskyi, P.B. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv
2019, arXiv:1912.06059.

58. King, D.L.; McCartney, M.; Trihy, E. Initial contact and toe off event identification for rearfoot and non-rearfoot strike pattern
treadmill running at different speeds. J. Biomech. 2019, 90, 119–122. [CrossRef]

http://dx.doi.org/10.1109/JBHI.2016.2636456
http://www.ncbi.nlm.nih.gov/pubmed/28103196
http://dx.doi.org/10.3390/s21175749
http://www.ncbi.nlm.nih.gov/pubmed/34502640
http://dx.doi.org/10.1016/j.jbiomech.2019.109490
http://www.ncbi.nlm.nih.gov/pubmed/31740015
http://dx.doi.org/10.1109/ISMAR-Adjunct51615.2020.00037
http://dx.doi.org/10.3390/s21216974
http://dx.doi.org/10.1016/j.ijcce.2021.09.001
http://dx.doi.org/10.1109/ACCESS.2020.2982225
http://dx.doi.org/10.1109/ICAIIC48513.2020.9065078
http://dx.doi.org/10.3390/s20143972
http://dx.doi.org/10.1016/j.jbiomech.2018.09.009
http://www.ncbi.nlm.nih.gov/pubmed/30279002
http://dx.doi.org/10.1109/JSEN.2021.3067690
http://dx.doi.org/10.3233/FAIA200236
http://dx.doi.org/10.1016/j.neucom.2020.01.125
http://dx.doi.org/10.3390/bios10090109
http://dx.doi.org/10.3390/s21030789
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3390/s21072500
http://dx.doi.org/10.3390/s18020679
http://dx.doi.org/10.1016/j.engappai.2020.103679
http://dx.doi.org/10.3390/rs13214264
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.3390/electronics8020119
http://dx.doi.org/10.3389/frobt.2021.537384
http://dx.doi.org/10.1088/1749-4699/8/1/014008
http://dx.doi.org/10.1016/j.jbiomech.2019.04.023


Computers 2022, 11, 58 26 of 26

59. Rodriguez Rivadulla, A.; Chen, X.; Weir, G.; Cazzola, D.; Trewartha, G.; Hamill, J.; Preatoni, E. Development and validation
of FootNet; a new kinematic algorithm to improve foot-strike and toe-off detection in treadmill running. PLoS ONE 2021,
16, e0248608. [CrossRef]

60. Qian, H.; Pan, S.; Da, B.; Miao, C. A Novel Distribution-Embedded Neural Network for Sensor-Based Activity Recognition. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019;
pp. 5614–5620. [CrossRef]

61. Delgado-Escaño, R.; Castro, F.M.; Cózar, J.R.; Marín-Jiménez, M.J.; Guil, N. An End-to-End Multi-Task and Fusion CNN for
Inertial-Based Gait Recognition. IEEE Access 2019, 7, 1897–1908. [CrossRef]

62. Tran, L.; Choi, D. Data Augmentation for Inertial Sensor-Based Gait Deep Neural Network. IEEE Access 2020, 8, 12364–12378.
[CrossRef]

63. Demir, S.; Mincev, K.; Kok, K.; Paterakis, N.G. Data augmentation for time series regression: Applying transformations,
autoencoders and adversarial networks to electricity price forecasting. Appl. Energy 2021, 304, 117695. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0248608
http://dx.doi.org/10.24963/ijcai.2019/779
http://dx.doi.org/10.1109/ACCESS.2018.2886899
http://dx.doi.org/10.1109/ACCESS.2020.2966142
http://dx.doi.org/10.1016/j.apenergy.2021.117695

	Introduction
	Related Works
	Context and Hypotheses
	Implementations
	Limitations and Current Work

	Method
	Pipeline
	Data Preparation
	Neural Architectures
	Concatenated Data
	Multi-Input Data
	Two-Channel Data
	Models Complexity

	LOSO Evaluation
	Training the Models
	Best Model Tuning

	Results
	Models Comparison
	Machine Learning and DNN Models
	Best Model Performance
	Confidence Intervals and Reproducibility

	Discussion
	Results Overview
	Comparison with the State-of-the-Art
	Future Works

	Conclusions
	References

