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Differentiability and Regularization
of Parametric Convex Value Functions
in Stochastic Multistage Optimization

Adrien Le Franc*  Pierre Carpentier!  Jean-Philippe Chancelier®
Michel De Lara

January 11, 2023

Abstract

In multistage decision problems, it is often the case that an initial strategic de-
cision (such as investment) is followed by many operational ones (operating the in-
vestment). Such initial strategic decision can be seen as a parameter affecting a
multistage decision problem. More generally, we study in this paper a standard
multistage stochastic optimization problem depending on a parameter. When the
parameter is fixed, Stochastic Dynamic Programming provides a way to compute the
optimal value of the problem. Thus, the value function depends both on the state (as
usual) and on the parameter. Our aim is to investigate on the possibility to efficiently
compute gradients of the value function with respect to the parameter, when these
objects exist. When nondifferentiable, we propose a regularization method based on
the Moreau-Yosida envelope. We present a numerical test case from day-ahead power
scheduling.

Keywords Stochastic multistage optimization - Dynamic Programming - Marginal
function - Differentiability - Moreau-Yosida regularization

1 Introduction

We consider optimization problems where an upstream decision is made in the first place,
which stands for a parameter for a downstream multistage stochastic optimization problem.
Our work is motivated by applications in the field of energy planning, where such decision
structure arises naturally. As a typical example, the regulatory rules considered in [14]
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241 27] impose renewable power plants to commit a day-ahead power production profile,
upstream to the intraday management phase where costs are subject to uncertainties arising
from power production. Another important application arises when dealing with large-
scale stochastic multistage optimization problems. In many cases, dualizing some coupling
constraint allows for decomposition into subproblems, each corresponding to a “small”
stochastic multistage optimization problem. The Lagrange multiplier associated with the
coupling constraint has then to be optimized, and can be interpreted as a parameter for
the multistage stochastic optimization subproblems (see [10, [12] for details).

In this article, we propose a standard formulation for parametric multistage stochastic
optimization problems (PMSOP). In the formulation we outline, the parameter does not
affect the dynamics but affects all instantaneous (and final) costs at all periods, and also
possibly the admissible control sets; due to this structure, the parameter cannot be iden-
tified with the initial decision of a multistage stochastic optimization problem. When the
value of the parameter is fixed, Stochastic Dynamic Programming (see e.g. [7,29]) is a way
to obtain the value of the downstream problem by computing the value functions given
by the Bellman equation. Thus, the value functions now depend both on the state (as
usual) and on the parameter. On top of that, we investigate on the possibility to efficiently
compute additional first-order information, e.g. gradients of the value functions with re-
spect to the parameter, when these objects exist. Our end goal is to formulate first-order
oracles which let us enter the world of (primal) first-order optimization methods (see [3]
for a recent survey) to solve PMSOPs, that is, to perform optimization with respect to the
parameter.

Of course, the interest in such kinds of problems is not new. The reference textbook of
Bonnans and Shapiro [9] gathers numerous results on the value functions of a parameterized
optimization problem. In the context of multistage stochastic programming, the sensitivity
analysis of the value of a downstream problem with respect to some model parameters has
been already studied in [13, 19, B4]. These works mainly focus on the computation of
directional derivatives of the value function, in the case where the stage cost functions
of the problem are affine. In [I3], the authors further argue that — since Danskin’s
Theorem tells us that the value function is locally Lipschitz continuous — the value function
is differentiable almost everywhere by Rademacher’s Theorem. A similar conclusion is
drawn in [34], and formulas to compute the gradient at points where the value function
is differentiable are given in both references. However, employing smooth optimization
methods to minimize nondifferentiable functions can yield suboptimal solutions, even in
the convex case, as illustrated by the example discussed in [3], §8.1.2].

Thus, our work differs from the above references in at least two points: (i) we study the
existence and provide formulas for the gradient of a parametric value function, whereas
previous works concentrate on directional derivatives; (i7) we consider convex nonlinear
stage costs and constraints, going beyond the usual linear multistage stochastic program-
ming framework. Also, to cover cases where the parametric value functions are convex but
nondifferentiable, we propose a regularization method based on the Moreau-Yosida enve-
lope [23, 35]. We study the convergence properties of both the regularized value functions
that we introduce, and of the parameter solutions of a PMSOP, as our regularization coeffi-



cient tends to zero. Although Moreau-Yosida regularization has been previously employed
in optimal control problems (see e.g. [9]), few anterior studies concentrate on stochastic
problems, except recently in [25], where the authors examine the case of a discounted infi-
nite horizon Markov decision process. We share common interests with the latter reference,
but our finite horizon context leads us to follow a different path. Finally, we propose a
concurrent method and an assessment technique to evaluate the quality of a parameter as
a solution to a PMSOP. For both purposes, we rely on the stochastic dual dynamic pro-
gramming algorithm (SDDP), introduced by Pereira and Pinto [26], and analyzed further
by Shapiro [32] and Philpott [28], 1§].

The paper is organized as follows. First, in Sect. [2| we introduce the definition of a
PMSOP and of parametric value functions. Second, in Sect. |3 we introduce Bellman-like
equations to compute the gradient of differentiable convex value functions with respect to
their parameter argument. To extend the method to convex nondifferentiable parametric
value functions, we propose a regularization scheme, and study the convergence properties
of resulting regularized parametric value functions. Finally, in Sect. 4] we present a numer-
ical test case inspired from day-ahead power scheduling. Our assessment method aims at
evaluating the efficiency of first-order oracles based on the gradient computation technique
introduced in this work.

Background notions and notations

Natural numbers. We use the notation [[i, j] = {i,i 4+ 1,...,7 — 1, j} for any pair of natural
numbers such that ¢ < j.

Probability. Let (2, F,P) be a probability space. We use bold capital letters, e.g. Z, to
denote random variables, and denote by o(Z) the o-algebra on Q (o(Z) C F) generated by
the random variable Z and, when the random variable Z takes a finite number of values, by
supp(Z) the support of Z, that is, the set of possible values of Z with positive probabilty.
Besides, for a topological space X, we denote by B(X) its Borel o-field.

Functional analysis and topology. We introduce the extended real line R = [—o0, +oc], and
we denote R, = [0, +00[ and R%. = ]0,+00[. Let f: X — R be a function. The effective
domain domf is the set {:B eX ‘ flx) < +oo}, and the function f is said to be proper
if f > —oo0 and domf # (. For any subset X C X, dx : X — R denotes the indicator
function of the set X: dx(x) =0if z € X, and dx(x) = 400 if z & X. For a topological
space X and X C X, we recall that the interior int(X) is defined as the largest open set
contained in X.

2 Parametric multistage stochastic optimization prob-
lems

In §2.1] we introduce a standard formulation for PMSOPs. Then, in §2.2) we introduce
parametric value functions defined by the Bellman equations, and we discuss the specific
role of the parameter.



2.1 Problem formulation

We are interested in solving problems of the form
min ¢ 1
p€71311;ld ®) (1a)

in the case where the objective function ® in is the value of the following parametric
multistage stochastic optimization problem (PMSOP):

T-1

O(p) =, inf  E[Y Li(Xy Ui Wiat,p) + K(Xr.p)] (1b)
yeey T —1 =0

XO =X, (16)

Xip1 = fiXy, Uy, Wyy) , VE€ [0, —1], (1d)

o(Uy) Co(Wyq,...,W,), Vte[0,T—1]. (le)

We now comment on all terms in Problem , and we discuss assumptions ensuring
that the expected value in (Lb)) is well defined. We consider a discrete time span

[0, 7] ={0,1,...., T - 1,T}, (2)
with horizon a natural number T" € N*. Concerning the upstream problem , the variable
pER™, (3)

where n, € N*, is a parameter which may be chosen in the parameter set
Paa CR™ . (4)

The parameter p in (3|) affects the multistage Problem —. Concerning the
downstream problem f, we introduce the random variables
X, (Q,F,P) — (R™,B(R™)), Vte[0,1],

U;: (2, F,P) — (R”“,B(R”“)) , Vte[o,T—-1],

W, : (Q,F,P) — (R™,BR"™)), Vte[1,T], (5¢)

which denote respectively the state, control and noise variables of Problem (({Lb))—(lé)),

taking values in real Euclidean spaces of respective finite dimensions (1, 7, n,) € N*3,
The state variables are initialized by xq € R™ and evolve in (1d)) according to the dynamics

fiiR™ X R™ x R™ - R™ |Vt e[0,T—1]. (6)

Note that the parameter p does not affect the dynamics f;, and that the constraints ([1c|)—
are almost sure (a.s.) constraints. The control variables are constrained by the nonan-
ticipativity constraints . Last, the criterion to be minimized in is the expected
value of the sum of the parametric stage costs

Lt . Rnx X Rnu X Rnw X Rnp — ]—OO, +OO] , vt [ [[O’T — ]_]] s (73)



with a parametric final cost
K :R"™ x R" — |—00, +0] . (7b)

Remark 2.1 The cost functions can take values in |—o0, +00| to offer the possibility to
implicitly encode constraints through effective domains. In practice, explicit constraints of
the form Uy € Uy(Xy,p) a.s. — with set-valued mappings Uy : R™ x R™ = R™ for all
t € [0,7—1] — can be added in Problem (see the example in Sect. []).

In what follows, we provide assumptions which ensure that the mathematical expec-
tation is well defined. For this purpose, we have considered proper cost functions
— that never take the value —oo — and we will consider discrete noise variables
— so that the expectation ({Ib)) is well defined. Indeed, when noise variables take a
finite number of values, then so do the control variables by — because, by Doob
Theorem (see [16, Chap. 1, p. 18]), the random variable U, is a function of the random
variables Wy, ..., W;. Then all the state variables also take a finite number of values
by the dynamics . Finally, the mathematical expectation reduces to a finite sum
of numbers that belong to |—o0, +0o0], hence is well defined as an element of |—o0, +00].
Questioning whether our results extend to continuous noise variables could be the subject
of a following research work.

Remark 2.2 The formulation of the nonanticipativity constraint in corresponds to
problems which formulate naturally in the decision-hazard information structure. In par-
ticular, the first decision is deterministic, with o(Ug) = {0, Q}.

2.2 Parametric value functions

First, we introduce parametric value functions, defined by the Bellman equations. Second,
we discuss the role of the parameter in a PMSOP.

The Bellman equations. As mentioned in §2.1, we consider discrete random vari-

ables in Problem (I]). Besides, we make the following (discrete) white noise assump-
tion.

Assumption 1 (discrete white noise) The sequence {W},; 1) of noise variables in
18 stagewise independent, and each noise variable W, has a finite support.

The above assumption has a direct consequence on the solutions of the multistage Prob-
lem —. Indeed, if we consider a fixed value of the parameter p € R"™ in (3)), we
retrieve a standard multistage stochastic optimization problem. Therefore, Stochastic Dy-
namic Programming gives us a method for computing the optimal solution of the multistage

Problem (Ib)-(Le), and thus to evaluate ®(p) in (Lal).



Under finite support of the noises in Assumption each of the random variables

Wi, ..., Wy takes a finite number of values, so that the following Bellman equations
Vr(z,p) = K(z,p), ¥(z,p) € R™ xR™ | (8a)
‘/t(xap> :uéﬁguE[Lt(xauth-‘rhp) +‘/t+1<ft<x7uawt+l)7p):| ) (8b)

V(z,p) e R™ x R™ | Vt e [0,T —1]

are well defined and yield, by backward induction, the sequence {V;f}te[[QT]] of parametric
value functions. Under stagewise independence of the noises in Assumption (1}, the value
functions {Vt}te[[o,T]] in give the optimal value of the multistage Problem (1b)-(Le]), in
the sense that

®(p) = Vo(wo,p) , Yp € R™ . (9)

We refer to Bertsekas [7] and Puterman [29] for a comprehensive presentation of the
Stochastic Dynamic Programming method.

Since parametric value functions are defined as the infimum of a certain criterion in the
Bellman equations, they are “marginal functions”, a class of function of rich properties [9].
To ease applications to our context, we introduce the (parametric) Q-functions

Qi(w,u,p) = E[Lﬁ(% u, Wii1,p) + Vi (ft(xa U7Wt+1)7p)} ) (10a)
V(z,u,p) € R™ x R™ x R"™ | Vte[0,T—1],

so that the parametric value functions {Vt}te[[o 717 formulate explicitly as marginal func-
tions:

Vi(z,p) = inf Qi(z,u,p), V(z,p) e R™ xR™, vte[0,T-1]. (10b)

uER™u

For the same reason, we also introduce the (possibly empty) parametric solution sets

Uy (z,p) = argmin Q(z, u,p) , V(z,p) € R™ xR™ , vt € [0,T—1]. (11)

u€ER

The role of the parameter. The parameter p, as well as the control ug, can be seen
as an initial decision as they are both constant. However, whereas uy only appears at
time t = 0, p appears in the cost functions at all times. This is why the parameter p can
not be seen as an initial control variable in a stochastic control formulation, amenable to
dynamic programming.

By contrast, it is clear from the definitions of Problem and of the parametric value
functions {V;f}te[[o,T—l}] in that the parameter p in could be treated as a state, by
introducing a new state variable as

X, = (X,.p), Vte[0,T]. (12)



However, we wish to avoid this strategy, due to the exponential growth of Stochastic Dy-
namic Programming’s complexity with respect to the dimension of the state space (termed
curse of dimensionality: see [4]). Therefore, rather than computing a global approximation
of the objective function ® in Problem , we intend to build an efficient first-order oracle,
defined as a mapping

p (2(p), VO(p)) - (13)

This mapping returns the value of the objective function ® together with the value of the
gradient of the objective (when it exists) to apply iterative optimization steps with respect
to the parameter p. For this reason, we intentionally keep the parameter apart from the
state variables[]

3 Gradient of a convex parametric value function

We recall that the properties of the objective function ® in are inherited from those of
the parametric value functions {V; }1epo. 7y defined in (§)) through ® = Vy(z, -) in (9)), under
the discrete white noise Assumption [I}

First, in , we provide sufficient conditions for the gradients {V,Vi}icpory to be
well-defined, and introduce a method to compute such gradients by backward induction.
Second, in §3.2] we propose a regularization method to handle cases where the parametric
value functions {V;}icpo,r are nondifferentiable with respect to the parameter p. Third,
in §3.3 we study the convergence properties of such regularized value functions.

In this section, we consider two different situations.

e In §3.1] the effective domain of the function ® in (1)), named P, is derived from
the data of the parametric multistage stochastic optimization problem — and
the function ® is shown to be differentiable on int P when assuming differentiability
properties on the data of the problem. Thus, for a closed convex subset P,q C
int P, the upstream optimization problem ([1a)) is a convex differentiable optimization
problem.

e In §3.2] we drop the differentiability properties made on the data of the parametric
multistage stochastic optimization problem f. By a regularization procedure
using the Moreau envelope, we build a convex differentiable parametric multistage
stochastic optimization problem over R™ which approximates Problem —.
Thus, using the same steps as in §3.1], we obtain that, for any closed convex subset
Paa C R™ the regularized upstream optimization problem is a convex differentiable
optimization problem.

ISee however §4.1| where a first-order oracle is computed thanks to SDDP with the extended state
variable (z, p).



3.1 Differentiability and gradient computation by backward in-
duction

We provide assumptions on the data of the optimization problem (|1} to enforce the differen-
tiability of the corresponding value function ®, from the differentiability of the parametric
value functions {Vt}te[[oﬂ in . In our main result, we also introduce a Bellman-like
backward recursion to compute the gradients {V,V;}icfo,r7, and thus the gradient V& of
the objective function ® defined in Equation (|la)).

Parametric differentiability is preserved by the Bellman equation. We start with
a lemma that gives sufficient conditions to propagate convexity and parametric differen-
tiability properties through the Bellman equations. We introduce three definitions.

Definition 3.1 (I') For an Euclidean space Y, we denote by T'[Y,R"] the set of lower
semicontinuous (lsc) conver functions v : Y x R™ — |—o0, +0o0].

Definition 3.2 (©) For an Euclidean space Y and a set P C R™, we denote by O[Y, P]
the subset of functions 6 in T[Y,R"] satisfying

1. the effective domain of 0 is a (possibly empty) product set: domf = Yy x P C Y x R",

2. for all y € Yy, the function 0(y,-) is differentiable on int P.

We recall that, in the context of Definition [3.2] the notions of Fréchet and Gateaux dif-
ferentiability coincide |2, Corollary 17.44]. To handle marginal functions, we are interested
in compacity properties when minimizing with respect to controls u € R™.

Definition 3.3 (I'x, Ok, compacity) We denote by I'x[R™ x R"™ R™]| the subset of
functions ~ in T[R™ x R™ R"] for which there exists a compact set K, C R™ such
that

V(z,p) € R"™xR" , dom~y(zx,-,p) C K, . (14a)
We also introduce the set
Oc[R™ x R™ P] = O[R™ x R™ P|NTx[R" x R™ R"], (14b)

for a given set P C R".

In the next theorem, we show that the set O[R"* P] of functions in Definition is
stable by the Bellman operator, and we give a formula to propagate gradients.

Theorem 3.4 Let W be a random variable taking a finite number of values. Given a
function L : R™ xR"™ xR"™ xR" — |—00, +00] and a mapping f : R™ xR™ xR™ — R"
we consider the Bellman operator B defined, for any function ¢ : R™ x R™ — |—o00, +00],
by

B(¢)(z,p) = inf E L(w7u,W7p)+<p(f(x,u,W),p)] , V(z,p) eR™ xR™ . (15)

u€ER™u

Assume that the mapping f is affine in (x,u). For any w in the (finite) support of the
random variable W, we denote L, = L(-,-,w,-). We have that,

8



1. if { Ly fwesuppw) C Tic[R™ x R™ R"™], then the Bellman operator B is an endomor-
phism on I'[R™ R"],

2. if {Luw}wesuppw) C Ok[R™ x R™ P] for a given set P C R", then the Bellman
operator B is an endomorphism on O[R™ , P|. Moreover, for all (z,p) € dom(B(y))
with p € int P, the gradient of the function B(p)(x,-) at p is given by

V,B(¢)(@.p) = E|V,Lia, ', W.p) + Vyp(flaw , W)p) |, (16)

for any u* € R™ in the nonempty argmin set of .

Proof. We concentrate on the proof of claim (2.).
(1) To begin with, for any function ¢ : R™ x R" — ]—o0, +00|, we define

Q) : (2.u.p) = E[Liw,u, W, p) + o(f(,u, W), )] ()

— that is, Equation before taking the infimum — and, assuming that ¢ € ©[R" P] and

{Lw }wesupp(w) C Ok [R"* x R™, P], we prove that the function Q() belongs to O [R"= x R"« P].
First, we consider the function Q; = E [L(-7 W, )} : R x R™ x R™ — |—00,+00]. As, by

assumption, L,, € O[R" x R™ P] for all w in the support of W, we get that @1, is convex lsc,

with domZL,, = Y, x P for some Y7, C R™ x R"™. We deduce that the effective domain of the
function @y, is given by

domQr = ) domQLw:< N YLw>><73:YQL><73,

wesupp(W) wesupp(W)

with Yo, = yesupp(w) YL, For any (z,u) € Yg, , the differentiability of the function Qr(z, u, ")
is a straightforward consequence of the assumption that L, € Ox[R™ x R™ P]| for all w €
supp(W). Indeed, the function Qr,(x, u, -) is a finite convex combination of the functions L, (x, u, -),
that are differentiable in int P. We thus obtain that @y € O[R™ x R™ P]|. Moreover, with the
notations of Definition as Ly € Ox[R™ x R™ P] for all w € supp(W), we have that

{u e R™|3(z,u,p) € Yo, x P} C ﬂ {u e R"™ |3(z,u,p) € Y1, Xx P},
wesupp(W)

C ﬂ ICLw s

wesupp(W)

which implies that the function @1, belongs to Ox[R"* x R™, P].
Second, we consider the function @, = E [cp(f(, W), )] i R x R™ x R™ — |—o00, +00].
From the assumptions that ¢ € ©[R™*,P] and f is affine, we get that the function @, is convex

Isc and that its effective domain is a Cartesian producﬂ The differentiability of the function @,
with respect to p is straightforward.

2Had the mapping f depended on the parameter p, we could not have concluded that the effective
domain of the function @, be a Cartesian product.



Gathering the results obtained for Qr, and @, since Q(¢) = Qr + Q, and using the fact that
dom(Qr + Qy) C dom@Q)r,, we obtain that Q(¢) belongs to O [R™ x R™, P].

(7i) We have just proven that the function Q(p) belongs to Ox[R"* x R™ P| when ¢ €
O[R", P| and { Ly }wesupp(w) C Ox[R™ x R™,P]. Now, there remains to prove that the func-
tion B(y) belongs to O[R™ P].

First, we prove that the function B(¢p) is convex Isc. Since, by definition,

Blp)(z,p) = if Q)(z,u.p), V(z,u) € R™ xR™, (18)
u€eR™u
we deduce that the function B(y) is convex as the marginal of a convex function. Then, let
Kg(p) € R™ be the compact set associated with Q(¢) as in Definition For all (z,u) €
R" x R™ we have that

B T,p) = inf x,u,p) = inf T,U,P) . 19

Pw.p)= nf Q@)D et Q(p)(x, u, p) (19)

Using the last expression in Equation and [2 Lemma 1.30], we get that the function B(y) is

Isc. Moreover, we obtain that the infimum above — hence in — is attained, and we deduce
that

V(z,p) e R" x P, Fu* € R"™ | B(p)(z,p) = Qp)(z,u",p) . (20)

As a consequence, the function B(¢) never takes the value —oo (as so does Q(¢)).

Second, we prove the effective domain rectangular property (in Definition of the func-
tion B(y). If dom(B(p)) = 0, the effective domain is rectangular. We now consider the case where
dom(B(p)) # 0. Let (z,p) € dom(B(y)) and u* € R™ be a minimizer of at (z,p). Then,
by (20)), we get that Q(p)(z,u*, p) = B(p)(x,p) < 400 since (z,p) € dom(B(p)), hence we deduce
that (z,u*,p) € domQ(¢). Now, using the fact that Q(¢) € O[R™ x R™ P], we also have that
dom@Q(¢p) is a product and moreover, as just seen, the product is nonempty. Consider now p’ € P.
By the product property of the effective domain of Q(¢), we have that (z,u*,p’) € domQ(y).
Using the fact that B(p)(z,p') < Q(p)(z,u*,p') < 400, we obtain that p’ € dom(B(¢)(z, ")),
finally giving that dom(B(¢)(z,-)) = P. This proves that dom(B(p)) = X x P, for some set
X C R",

Third, we turn to the parametric differentiability of the function B(yp) : R™ x R™ —
]—00,+00]. The only relevant case is when dom(B(y)) # 0. For this purpose, we consider a
fixed 2 € X (where dom(B(¢)) = X x P), and we introduce the two functions

Yy = B(‘P)(x7 ) and W, = Q(@)(wv ) ) : (21)

Now, the parametric differentiability of the function B(y) boils down to that of the function 1),.
As a preliminary result, we show that 0, ¥, (u,p) = {V, V¥, (u,p)} for any (u,p) € R™ xint P such
that (z,u,p) € domQ(y). Indeed, as the function Q(y) belongs to the set O [R™ x R™ P], we
obtain two results: on the one hand, the function ¥, : R" x R" — |—o00,400] is differentiable
with respect to its second argument p € int P; on the other hand, as the function ¥, : R™ xR"™ —
|—00,400] is proper, convex and lsc, we deduce that it is subdifferentiable with respect to its
second argument p € intP, by [2, Proposition 16.27]. Thus, by [2 Proposition 17.31 (i)], we
conclude that 0,V (u,p) = {Vp\Ilz(u,p)}, where both objects are well-defined for any (u,p) €
R™ x int P such that (x,u,p) € domQ(p). Now, as said above, we study the differentiabilty of

10



the function v,. For this purpose, we consider p € int P and u* € R™ a minimizer as in . By
[22, Corollary 2.63], we get that the function 1), is is proper, convex, lsc, subdifferentiable and
that 91, (p) = {s € R™ | (0,5) € d¥,(u*,p)}. It is easily proved that the projection of d¥,(u*, p)
on its second component is included in 9,¥,(u*,p). As we have just proven that 9,¥,(u*,p) =
{Vp‘llz(u*,p)}, we deduce that the nonempty set 91, (p) is a singleton. By [2, Proposition 17.31
(ii)], we conclude that the function 1, is differentiable at p and that Vi, (p) = V,¥,(u*, p), that
is,

VuB(2)(@,p) = V,E [L(w,u, W,p) + (f (2, u", W), )] (22)

This finally proves that B(¢) € ©[R™, P], that is, the Bellman operator B is an endomorphism
on O[R™ P]. Moreover, since the support of W is a finite set, exchanging the derivation and
expectation operators in is trivial, so that holds true.

As for claim (1.), when { Ly }yesupp(w) C Tc[R™ x R™ R™] and ¢ € T'[R", R"?], we obtain
with analogous arguments that (i) the function Q(¢) belongs to the set I'c[R"* x R™ R"], (1)
the function B(y) belongs to the set I'[R"*, R"]. O

Figure (1] illustrates the links induced by the Bellman operator B between the different
subsets of functions, as revealed by Theorem The operator () is defined in and
corresponds to the operator B before taking the infimum in w.

B
Ok [R™ xR™, P O[R™, P
R T € O [R™ xR™,R™]) | ]

min,,

O[R™, P

B
(Lw € Tx|R™ xR™ , R™])

T[R™,R™] 0% Ty [RP% xR, P

F [RHI , RTLP}

Figure 1: Stability of the classes of functions © and I' by the Bellman operator B.

Application to parametric value functions. We introduce assumptions on the data of
Problem to enforce the convexity and the parametric differentiability of the parametric

value functions {V; }icpo.r7 in .
Assumption 2 (convex multistage problem) We assume that
1. Problem 18 feasible,
2. the dynamics { fi}iepor—1) in (6) are affine with respect to their arguments (z,u),

3. for all t € [0,T—1], the functions {L(-,-,w, ") }wesupp(w,) —defined after the stage
cost Ly in ([Ta)) — belong to Tic[R™ x R™ R"™],

4. the final cost K in belongs to I'[R"* R"].

11



Assumption [2 puts us in a standard context for convex stochastic multistage optimiza-
tion problems (see e.g. [18 assumption H;]). By assuming that Problem (1)) is feasible, we
obtain that the function V; is proper — as ® = Vj(zo, -) — and therefore that all paramet-
ric value functions {V;},cp07 are proper — due to the Bellman equations . At a lower
level of detail, this can also be enforced by a “relatively complete recourse” assumption
(see e.g [18, 21]).

We make a second assumption to handle parametric differentiability.

Assumption 3 (parametric differentiability) Let P be a given subset of R". We
assume that

1. for all t € [0,T—1], the functions {L:(-,-,w, ") }wesupp(w,) —defined after the stage
cost L; in — belong to O [R™ x R™ P],

2. the final cost K in belongs to O[R™  P].

We now state our main result regarding the differentiability of the parametric value
functions {V;}ieqo17-

Theorem 3.5 Under the discrete white noise Assumption |1 and the conver multistage
problem Assumption we have that the parametric value functions {Vt}te[[o,T]] defined
in (8)) are proper and belong to T[R™ R™].

Moreover, under the parametric differentiability Assumption[3, we have that

e the parametric value functions {Vt}te[[o,T]] belong to O[R™ P| and, for all p € int P,
their gradients can be computed by backward induction, with, at final stage T,

V,Vr(z,p) = V,K(x,p), Yo € domVr(-,p), (23a)

and, at any stage t € [0,T — 1] and for all x € domV,(-, p),

Vzﬂé(xvp)::]E VGJ%($,U*,‘AQ+1LP)+‘Vﬁﬂé+1(ﬁ($,u*,VVE+1%]ﬁ] ) (23b)

where the control u* is any control in the solution set U (x,p) defined in ,

e for any closed convexr subset P,y C P, the upstream optimization problem s a
convex differentiable optimization problem.

Proof. For each time t € [0,7T], we consider the Bellman operator B; defined, for any
function ¢ : R™ x R™ — |—00,+o0] and any for all (z,p) € R™ x R", by

Bi(¢)(w.p) = inf E|Li(e,u, W,p) + o (f(w,u, W),p)]

uER"u

Thus, the value functions {Vi},cfo 1y defined in satisfy Vo = K and for all ¢t € [0,T—1],
Vi = Bi(Vi+1). The proof follows by applying backward in time Theorem to the Bellman
operator B; and the value function Vi41. O

12



Remark 3.6 In the case where Problem f has explicit constraints of the form
U; € U(Xy,p), at each time t, the parametric stage cost Ly in incorporates the
indicator function Oy, (.p) (See Remark . Then, a fairly natural condition to ensure the
differentiability of L, with respect to the parameter p is that the set-valued function U; does
not depend p.

3.2 Regularization of convex nondifferentiable parametric value
functions

We now turn to the nondifferentiable case, that is, we do not assume anymore that the func-
tions {L}ieqor—17 and K are differentiable with respect to the parameter p. To overcome
this drawback and go back to the differentiable situation, we appeal to the Morean-Yosida
regularization. We recall the definition of the Moreau envelope [23], 35].

Definition 3.7 Let n € N*, f : R® — R be a function and p € R% be a regularization
coefficient. The Moreau envelope of f is the function

oo, n ™ . / i ] 2)
M R"=>R, z»—>zllé1ﬁ£n <f(z)—i—2'u|\z Z5) - (24)

We refer to [30, Chapter 1, §G| and [2, Chapter 12, §4] for a review of the properties
of the Moreau envelope. Given values of (z,u, w) € R™ x R™ x R™ and a regularization
coefficient p € R?, we introduce the parametric Moreau envelopes {Li (x,u,w, )} cpor-1]
and K*(z,-) of the parametric cost functions {L;}eor—1) in and K in (7b]), with
respect to the parameter p in , defined as

1
LY (z,u,w,p) = inf <Lt(x,u,w,p') + ﬂ||p—p’||§> , Vte[0,T—1], VpeR™ |

pleRnp
(25a)
. 1 n
K(e.p) = inf (K(er)+ 5 lp=pIE) . Ve R (25b)

In order to ensure that the regularized parametric cost functions {L} };cpor—1j and K*
are Isc, we introduce the following parametric compacity assumption.

Assumption 4 (parametric compacity) We suppose that the discrete white noise As-

sumption |1 holds true, and that there exists a compact set P C R™ such that for all
t € [0,T—1] and for all w € supp(Wy), the stage costs Ly in (7a)) satisfy

V(xz,u) € R"™xR"™ | domL;(z,u,w, ) CP, (26a)
and the final cost K in satisfies
Ve e R"™ | domK(z,-) CP. (26Db)

13



Lemma 3.8 Let pn > 0. Under the parametric compacity Assumption[{], we have that

1. for allt € [0,T—1] and all w € supp(W,), if Li(+, -, w,-) € Tc[R™ x R™ R™], then
L?(a 5 W, ) € @K[an X Rnu7RnP]7

2. if K € T[R" R™], then K" € O[R"™ R"™].

Proof. Let w € supp(W,) be given and consider the function L(-,-,w,-) and its parametric
Moreau envelope LY (-, -, w,) defined by (25).

First, we prove that L}'(-, -, w,-) € Tc[R™ x R™ R"]. As the marginal of a convex function,
the function L}'(-,-,w,-) is convex. The infimum in can be taken equivalently over the fixed
compact set P C R™ given in Assumption As Li(-,-,w, ) € T[R™ x R™ R"] is lsc, we
deduce that the marginal function LY (-, -, w,-) is also Isc, and that the infimum in is attained
[2) Lemma 1.30]. It follows that L{'(-, -, w,-) takes values in ]—oco, +00] — as so does Ly(-,-,w, )
— and therefore that L{'(-,-,w,-) € T[R™ x R™ R"™]. Now, let u € R™ be such that there
exists (x,p) € R"™ x R™ so that (z,u,p) € domL{(-,-,w,-). As we have just seen, there exists a
minimizer p* € R™ such that

* 1 *
LY (z,u, w,p) = Ly(2,u,w,p )+5Hp—p 115 - (27)

Necessary, (z,u,p*) € domLy(:,-,w,-), which proves that u € Kp,(...., ), following Definition
We deduce that Li'(-, -, w,-) € D[R x R™ R"].

Second, we prove that Li'(-,-,w,-) € Og[R™ x R™ R"™]. Following Definition we
only need to prove that LY(-,-,w,-) € O[R"™ x R™ R"]. Let us consider again (x,u,p) €
domZ}(+,-,w,-). The function L;(z,u,w,-) is convex, lsc, never takes the value —oo (by assump-
tion) and its domain is nonempty (by (27)). It follows that its Moreau envelope L} (z,u,w,")
is finite valued everywhere on R™ ([2, Proposition 12.15]) and differentiable on R" (]2, Propo-
sition 12.30]). We deduce that L}'(-,-,w, ) € O[R" x R™ R"] and finally that L}'(-,-,w,-) €
Oxc[R™ x R, R™].

The proof that K* € ©x[R"= R"] is analogous. O

We are now ready to introduce the lower smooth parametric value functions. For any
regularization coefficient ;1 € R, we define

Vi (x,p) = K*(x,p), Y(z,p) € R™ x R™ | (28a)
Mﬂ(x,p) = uglg;u ]E[Lf([)’}, u7Wt+17p) +Mi1 (ft(x)uuwt+l)7p)] )
V(z,p) e R™ x R™ , Vte[0,T—1]. (28Db)

The lower smooth parametric value functions {V} }te[[o ol have several interesting proper-
ties, which we gather in Theorem [3.9

Theorem 3.9 Let u € R be a reqularization coefficient, and let {Ytu}te[[o,T]] be the lower
smooth parametric value functions defined in . Under the discrete white noise As-
sumption [1, the convexr multistage problem Assumption 3, and the parametric compacity
Assumption [},
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1. the functions {V/'},c [0y provide lower bounds on the value functions {Vi},cpopy de-

fined in , that is,
Vi<V, vtelo,17], (29)

2. the functions {V}' }te[[o,T]] are proper and belong to @[R”w,R”P],ﬂ and their gradients
can be computed by backward induction, with, at final stage T,

VPY#(xvp) = VpKM(,I"p) ) (30&)

and, at any stage t € [0,T — 1],
VPMM(ZE,]?) =E [VPLQL(ZE’ U*v Wt+17p> + Vpl{;flj-l (ft(m7 U*a Wt+1)7p)i| ) (30b)

for any u* in the nonempty solution set U, (x,p) of Problem (28b))

Proof. First, we prove Inequality proceeding by backward induction. By the properties
of the Moreau envelope, we have that V' = K* < K = Vp [2, Proposition 12.9]. Let ¢ €
[0, T — 1] and let us assume that holds true at stage t + 1. Consequently, by application of
[2, Proposition 12.9], we have that for any (z,u,p) € R™ x R™ x R™ and w € supp(W¢41),

Lé”(x,u,w,p) +l/tﬁ_1 (ft(xaua w)7p) < Lt(:v,u,w,p) + W—I—l (ft(xa uvw)vp) )

from which we deduce that, for any (z,p) € R™ x R",

l/;u(l‘,p) = ué%flu E[Lf($7uawt+1ap) +l{;€i1 (ft(:l"a U,Wt+1),p):| )

< ué%flu E[Lt(‘/nv uaWtJrl?p) + ‘/t+1 (ft(xauawt+1)7p)i| ’

= V;f(x>p) )

so that Inequality holds true.

Second, we apply Theorem To do this, we observe that the parametric value functions
{v }Hepo,ry are the value functions of the new PMSOP minpep,, ®(p), whose definition follows
the one of the original PMSOP ({I]), except that the data of the problem ({ft}te[[o,T—l]] , {Lt}te[[O,T—l]] , K)
is replaced by ({ft}te[[o,T—l]] ) {L#}te[[O,Tfl}] JKH). Lem tells us that the new components
of this data triplet satisfies the conditions of Theorem [3.5] so that we only need to prove that
the new PMSOP miny,ecp,, ®#(p) is feasible (to fulfill Assumption . Again, under the white
noise Assumption |1} we have from the dynamic programming principle that ®* = V}'(zo, ).
By definition of the functions {V/*}icforp in ([8), and by the properties of the cost func-
tions {L}' Hefo,r—17 @and K* in Lemma we obtain that all functions in {V/*},cfo,r7 belong
to I'[R™ R™] (applying Theorem backward in time). It follows that V{' takes values in
|—00, +00]. Now, as the original PMSOP (/1)) is feasible, taking p € dom® N P,q, we have that
ot (p) = Vi (w0, p) < Vo(xo, p) = ®(p) < +o0, which proves that the problem min,ep, , ®#(p) is
feasible too. Therefore, we can apply Theorem This concludes the proof. O

3and therefore to I'[R™=, R™] D> O[R"=, R"] by Definition
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To summarize, in the nondifferentiable case, we have obtained differentiable value func-
tions by Theorem that are lower bounds of the original value functions. The gradients
of these differentiable value functions can be computed by backward induction as stated

by Theorem

3.3 Convergence properties of regularized convex parametric value
functions

Finally, we prove some convergence properties of the lower smooth parametric value func-
tions {l/tu}te[[oﬂ defined in (28], which show that they are suitable candidates to approx-
imate the original value functions {V;},.po 4y in (§) for solving Problem (). We refer the

reader to the definition of pointwise convergence in [30, §7.A], denoted by “=”, and to the
definition of epiconvergence in [30, §7.B] denoted by “=”.

Proposition 3.10 We suppose that the discrete white noise Assumption [1| holds true.
Let {pn}tnen € (RL)N be a nonincreasing sequence of positive real numbers such that
lim, s 100 ptn, = 0, let {,‘ﬂ“”}te[{o,T]],neN be lower smooth parametric value functions as de-
fined in , and let {Vi}ieporp be the parametric value functions defined in .

Under the discrete white noise Assumption 1|, the convex multistage problem Assump-
tion [4 and the parameteric compacity Assumption [f, we have the following convergence
property for all t € [0,T]:

Vi V. (31)
n—-+oo

Proof. We know by Theorem that, for any n € N, the functions {V}* " beefo,r) are lsc.
Moreover, for each t € [0, T, {V/" }nen is a nondecreasing sequence of functions since {p, tnen is
a nonincreasing sequence of positive real numbers. This ensures the equivalence between pointwise
convergence and epiconvergence for the sequence {V}*" },,en by [30, Proposition 7.4(d)], so that
it is sufficient to prove the pointwise convergence of the sequence {V/'" },,en to obtain :

Vi —=V, (32)
n—-+0o

We proceed by backward induction.

e We start by proving at stage T'. From , Vy" = Kt for all n € N, where for
x € R"™ KHn(x,-) is defined in as the Moreau envelope of K (z,-). By Assumption [2, the
function K is proper and belongs to I'[R"*, R"]. We consider two cases. Either K(z, ) = 400
, in which case V" (z,-) = K#n(z,-) = +oo for all n € N and obviously pointwise converges
to K(z,-). Or K(z,-) is proper, in which case V)" (z,-) = KF»(z,-) converges pointwise to
K(z,-) and is a nondecreasing sequence, from the properties of the Moreau envelope (see [2,
Proposition 12.33]). This proves at final stage T

e Now, fix t € [0,T — 1], and assume that the statement holds true at stage t+1. For
any n € N and for any (z,u,p) € R" x R™ x R"_  we define the lower smooth Q-function Qf "
by

an(x,u’p) = E[Lfn(mauawﬂrlvp) +l{;€‘inl (ft(x)uawt+1)vp)] :
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As a first step, we show that the sequence of functions {Q}"(z,-,p)}nen epiconverges to
Q¢(x,-,p), with Q; defined in . From the properties of the Moreau envelope, the sequence
{L}"}pen in is nondecreasing and, from Lemma for any w € supp(Wy41), each function
L™ (-, - w,-) is lsc. Similarly, by assumption, the sequence {Kiﬁ}nel\l is nondecreasing and,
from Theorem each function V/}" is Isc. It follows that {Qé‘ "(x,+,p) tnen is a nondecreasing
sequence and that each function ;" is Isc, since the expectation above is a finite sum. Therefore,
from [30, Proposition 7.4(d)], we obtain the epiconvergence

Qtn($7 7p) % sup (ISC(Qtn)(xa 7p)) = sup (Qtn($7 )p)) .
n=+00 peN neN

Moreover, the nondecreasing sequences {L}" },en and {V/} }nen of functions converge pointwise
respectively to the function L;, using the properties of the Moreau envelope (see [2, Proposi-
tion 12.33(ii)]), and to Vi1, using the backward induction assumption on {V/\" }nen. It follows
that SUPpeN (an (l‘, '7p)) = Qt(wv '7p)'

As a second step, we show that holds at stage t. For that purpose we fix (z,p) €
R™ xR" and consider the sequence of mappings {Q}"(x,-,p) nen. Since dom(Q;"(x,-,p)) C
Nwesupp(Wey ) dom L™ (z, -, w, p) — where dom L™ (z,-,w,p) is bounded as L (-, -, w, -) € T [R™ x
R™ R"™] — the sequence {Q} " (x,-,p) tnen of functions is eventually level-bounded (see [30, Ex-
ercice 7.32(a)]). Therefore, by application of [30, Theorem 7.33], we obtain the convergence of
the infima, that is,

. “’VL .
uéﬁiu Q4 (z,u,p) m uéﬁfm Qi(z,u,p) .

Thus, we obtain the pointwise convergence of the sequence {V/™},cn as, for any fixed value
(z,p) € R™ x R™ we have that
l/t (x,p) uéﬁ”u Qt (:E7 u,p) m ué%nu Qt(:Ea U,p) ‘/t(xap)

Moreover, for all n € N, we have that V/™ < V"' since the sequence {Q}"(z,,p)}nen is
nondecreasing. We conclude that the statement holds at time t. This ends the proof. U

As a consequence, we obtain the following corollary.

Corollary 3.11 Under the assumptions of Proposition let xoy be the initial state
m , let the set Paq be compact, and let ®* = inf,ep,, P(p) be the optimal value of
Problem . Then, we have that

inf Vi (zo,p) < ®*, Vne N, and inf V" (xg,p) —— P (33)

PEPad PEPud n—+oo

Proof. From Proposition the sequence {1/0“ " }nen of functions converges pointwise and
epiconverges to Vj in . Moreover, the function dg,yxp,, is Isc. It follows from [30, Proposi-
tion 7.46] that the sequence {V§"™ + Ofz0}xPaq Jnen Of functions epiconverges to Vo + 0401 xp,-
Then, as the effective domain dom(Vy"™ + (zo1xp.y) € {#0} X Pad is bounded, the sequence
{V5"™ 4 020} xPoy Inen is eventually level-bounded (see [30, Exercice 7.32(a)]). Therefore, by ap-
plication of [30, Theorem 7.33], we obtain the convergence of the infimum

inf V¥ (x ——— inf Vy(z = * .
pGPadNO ( Oap) n—to0 pEPuy 0( Ovp)
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Then, for any n € N, the inequality inf,ep,, V4" (20, p) < ®* follows from V4" < V3" as shown
in the proof of Proposition O

Remark 3.12 In Corollary by application of [30, Theorem 7.33], we also obtain
that all accumulation points of a sequence {pn}nen satisfying p, € argmin,p V5" (2o, p)
for n € N is a solution of inf,cp, , P(p) in . In particular, if Problem has a unique
solution p* € Pyq, then p, — p*.

n—-+4o0o

4 A numerical example in day-ahead power schedul-
ing

We now consider a numerical example for the purpose of testing solutions of Problem
with the differentiability and regularization methods introduced in Sect. [3]

First, in §4.1, we present our experimental assessment method that is based on the
SDDP algorithm. Second, in §4.2| we introduce a parametric multistage stochastic opti-
mization problem that represents the minimization of the expected intraday management
cost of a solar plant. Third, in we showcase the numerical results obtained.

4.1 Experimental assessment method based on SDDP

The principle of the Stochastic Dual Dynamic Programming (SDDP) algorithm [26] is to
run a sequence of k € N forward and backward passes in order to compute lower polyhedral
value functions {Kf }iepo,r) which approximate the original value functions of a multistage
convex stochastic optimization problem. At each pass i € [1,k — 1] of SDDP, the current
approximation V! is refined with a new cut (affine minorant), giving

Kf;“ = sup {Ké , 0+ < — i ,)\i>} , (34)

where, denoting by 7 the state variable, 7! is a state value computed during the i*" forward
pass, and (0, \!) are the cut parameters computed during the i® backward pass.
In our experiment, we use SDDP for two different purposes.

Approximate first-order oracle. In order to solve Problem , Wwe propose an approx-
imate first-order oracle based on SDDP. We compute a lower polyhedral approximation
KIS of the parametric value function V4 in by running k € N forward-backward passes
of SDDP. In that case, the state variable is extended to Z = (z,p) in together with a
trivial stationary dynamics for its parameter component p. Then, we can build a (k)-oracle

p— (VE((z0,p)). q € 0,VE((z0,p))) (35)

computing an approximate value and an approximate subgradient of the value function V
by linear programming. Due to the convergence properties of SDDP [I§], this approach
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lets us approximate the original value function V; at (z, p) as closely as desired, provided
we run SDDP long enough. We refer to [20] for an analysis of the convergence rate of the
SDDP algorithm.

Such convergence properties make this SDDP-based oracle a competitive alternative to
the first-order oracle p — (Vo(xo, p), V,Vo(xo, p)) which is based on the backward induc-
tion introduced in Theorem — and to its regularized counterpart with Vi, following

naturally from Theorem [3.9]

Estimation of ®(p*). Given a candidate optimal solution p* € P,q for Problem (|1a)),
we compute an estimation of ®(p*) with the SDDP algorithm. At this evaluation stage,
the parameter p is no longer considered as a component of the state, but as a parameter
with fixed value p*. We highlight this point by using the notation (-;p*) in the arguments
of ad hoc value functions, given by

Volzip?) = K(z) , ¥z € R™ (36a)
Kt(x7p*) = uell{’{lf(‘x)E Lt<x7u7wt+17p*) + Kt—i—l (ft('ra u7Wt+1>;p*)i| ’ (36b)

Vo eR™ | Vte [0,T 1],

where the state variable is reduced to & = z in (34)). Once obtained the value functions V,
by SDDP, we use the resulting policy

Wt(xap*) € arg H(ll)nE Lt(xa u7Wt+17p*) + KH»I (ft(xa u7Wt+1);p*):| ) (37)
u€U (x

Vo e R™ , Vte [0,T 1],

to compute the expected simulation cost

T-1

Vo(wo) = E[Z Ly (Xtyﬂ-t<Xt;p*)7Wt+17p*) + K(XT)} : (38)

t=0

Since SDDP provides polyhedral lower estimate functions {V,}icporg of the true value
functions {Vi(-, p*) }epo,rp defined by , and since {7 }ieqo,r—17 in (37) is a suboptimal
policy for Problem , we have the inequality

Vo(zo; p*) < @(p*) < Vio(zo;p*) - (39)

In practice, we compute {V,}icpory by running & € N forward-backward passes of
the SDDP algorithm, and the expectation in (38) is computed by Monte-Carlo simula-
tion, generating scenarios with the discrete probability distributions of the noise variables

{Wiktiepr in Bd.
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4.2 Problem statement

We introduce a PMSOP as defined in for the daily management of a solar plant. Our
example is inspired by the French regulation for day-ahead power scheduling of renewable
units in islanded and overseas territories [15].

The schematic organization of the solar plant is given in Figure The main com-
ponents of the power unit are a DC/AC inverter, a solar panel of installed peak power
g € R (MW), and a lithium-ion battery characterized by the coefficients (k,u, @, pe, pa)
referring respectively to the battery’s capacity (MWh), minimum load (MW), maximum
load (MW), charge and discharge efficiency coefficients.

1000
800

600

power (kW)

400

200 +

24
time (hour)

(a) Example of daily generated power scenarios (b) Schematic power plant

Figure 2: Description of the solar power plant: (a) examples of daily generated power
scenarios (data from [1]) and (b) schematic organization

We consider the time span of one operating day, with time intervals of length A; = 30
minutes, hence a problem horizon of T' = 48. We now introduce all components of a
dynamical system to formalize our management problem.

Variables and parameter. We introduce the state variable

:ES

xt—( ;)ERQ,WE[[O,T]], (40)
Ly

where x5 € [0, 1] is the state of charge of the battery and zf € [0,q| is the generated power

of the solar panels, both observed at stage t € [0,7]. The control
u € [u,u), Vtel[0,T—1], (41)

taken at the beginning of every time interval [t,¢ + 1[, accounts for the charging power
(uy > 0) or discharging power (u; < 0) applied to the battery during [¢,t + 1[. Lastly, we
introduce the noise variable

wy € R, Ve [1,T], (42)
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to represent uncertainties in the evolution of the generated power zf. All in all, the two
dimensional state x; evolves according to the dynamicsﬂ

xs
Zo = ( 00 ) s Teyr = fil@g, u, we) , VEE[0,T = 1], (43a)

whose components are given by

_ f(l‘s,u) 2 .
fi(z, u,w) = ( onzd + G+ w ) V(z,u,w) eER*xRxR, Vte [0,T—1], (43b)
1 A
s N 8 + -\ = s 1] xR 4
f(@®u)==x +<pcu pdu ) — V(z®,u) € [0,1] xR, (43c)

where v = max(0,u) and v~ = max(0, —u); f in is the dynamics of the state
of charge of the battery; (a4, 8;) in are the weights of the linear dynamics (AR(1)
model) of the generated power at stage t € [0,7 — 1].

We model the uncertainty of the noise variable w; in (42)) with a stochastic noise
process W = {W,}iepir as in (B, that we assume to be stagewise independent with
finitely supported random variables Wy, ¢ € [1,T] — in line with the discrete white noise
Assumption and also introduce a state process X = {X;}+c[o,r7 as in (5a)) and a control
process U = {Uy}cpo,r-17 as in (5b))

Lastly, for each time interval [t,¢ + 1], the solar plant is engaged to deliver a certain
value of committed power p; € R, composing all together the parameter

p=A{pttieor-1 €R". (44)
Constraints and costs. Controls are constrained by the admissibility sets
Uz)={ueR|u<u<u and 0< f(z*,u) <1}, Vo eR*, Ve [0,T—1]. (45)

Besides, given the stagewise independence assumption on noises and the expression of
the state variable x; in , the nonanticipativity constraint in ((le) can be reformulated
without loss of optimality [11], §4.4] as

o(Uy) Co(Xy), VE€[0,T—1]. (46)
Stage costs depend on the delivered power r;, 1 over the interval [t,¢ + 1], given by

Teo1 =2 —w = o] + B +wp —u, €R, VE€[0,T —1] . (47)

4The initial value 2§ = 0 reflects the absence of sun at midnight in our use case.

5Later, by means of constraints on the control, we will ensure that the dynamics below preserve
the state constraint zf € [0, 1] for all time ¢. With the second part of the dynamics f; in , we cannot
ensure that z{ € [0,9] for all time ¢ because the uncertainty w is additive. In numerical practice, we round
values z9 ¢ [0, | by projecting them to [0,q].
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Thus, for t € [0,T — 1] and (z,u,w,p;) € R*> x R x R x R, we define stage costs as
Li(z,u,w,p) = Li(cx? + By + w — u) + Li (wz? + By +w — u, py) (48a)
with the energy cost L¢ and the penalty cost L} given by

Ly(re41) = —cDyrega (48b)
L?(Tt+17pt) = )\CtAt|7’t+1 - pt| ) (48C)

where ¢; is the (deterministic) energy price, expressed in €/MWh, for t € [0,7] and A > 1
is a penalty coefficient. The final cost is then defined as

K(z) = —cpair , Vo € R%. (49)

The cost structure defined by ([48)-(49) reflects the original formulation in [15], except for
the penalty cost LY in (48| that we have simplified for this illustrative example.

Optimization problem. Gathering all components introduced above, we define the
intraday value function ® as the value of the PMSOP defined by . Finally, we introduce
the set of admissible parameter profiles

Pad = [0>G]T ) (50)

and we consider the day-ahead optimization of the expected management cost in (48al)
with respect to the commitment profile p € P,q, that is, we want to solve

min O(p) . (51)

pepad

4.3 Numerical experiments

We perform numerical experiments with a single computer equipped with 4 Intel Core
i7-7700K CPU and 15 GB of RAM. We use the package SDDP. j1 [17] for SDDP together
with the LP solver of CPLEX 12.9. Apart from the solver, all our code is implemented
with the Julia language [§]. Further implementation details are provided in Appendix

First, we describe our experimental protocol, where we introduce two candidate meth-
ods to address Problem (51f). Second, we comment on the results of the two methods
separately, before finally confronting the results of both methods.

Experimental protocol. Our goal is to evaluate optimization methods for solving Prob-
lem (51)). The objective function ® = Vj(zo, -) is convex (see Theorem and polyhedral

(due to the polyhedral penalty L} in (48c) and other affine constraints, see e.g. arguments
in [33, §3.2.1]), hence nondifferentiable. We consider two methods.
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e uSDP: we address Problem by solving

Jin Vy'(zo,p) , (52)
where the lower smooth value function V{' is defined by . In this method, we
embed the first order oracle p — (V{'(xo, p), V, V¢ (%0, p)) within a projected gradi-
ent descent algorithm [6]. We evaluate the function Vi‘(zo, ) in by Stochastic
Dynamic Programming (SDP) and the gradient V,Vi'(zo, ) using the Bellman-like
induction of Theorem . We use a constant value for the regularization coef-
ficient, namely, = 0.1.

e ESDDP: we address Problem by solving

min V& (zo,p) , (53)

PEPad

where the lower polyhedral value function V§ is defined by (34) with & = (z,p).
In this method, we embed the first order oracle p — (K’g((xg,p)) ,q € 8ng((xo,p)))
within a projected subgradient algorithm [3 §8.2]. We evaluate the function V§ ((zo,-))
and an element of the subdifferential 81,[’8((%, -)) after running k& € N forward-
backward passes of the SDDP algorithm, following the method developed in

For both methods, we consider several implementations, playing on the coefficients that
affect the precision in the approximation of the objective function ® and the computing
time. For uSDP, we have 12 implementations, characterized by the size of the discrete grids
for state and control variablesﬁ For KSDDP, we have 9 implementations, characterized
by the number of forward-backward passes & € N run by the SDDP algorithm. FEach
implementation of a method is processed as follows.

(1) First, we compute a commitment profile p* € P,q as a solution of or (53). We
initialize py = 0 € RT and use a dynamic step size of 7; = 10%/i for both methods uSDP
and kSDDP. Note that is a smooth problem, and we could expect better performance
with line search. Yet, we keep the same step size for both methods to focus the experiment
on the performance of the oracles. As for our stopping rule, we stop the computation if
we exceed 100 iterations, or if the progress of the objective value is not larger than +0.5%
for 5 consecutive iterations. We report time performance for computing p*, both in term
of overall computing time (Figure [3] X-axis in log scale, the lower the better) and in term
of average time per oracle call (Figure [d] idem).

(17) Second, we compute an estimation of the optimal value ®(p*) with SDDP, fol-
lowing the method introduced in §4.1] In Figure [3] and Figure [d, we report cost per-
formance (Y-axis, the lower the better), where the height of a marker spans over the
interval [V, (xo; p*), Vo(zo; p*)] on the Y-axis, representing an estimation of the intraday
value ®(p*), from the inequality . We report that, for each implementation, the gap be-
tween the lower bound V(xg; p*) in (36) — computed by running 2,000 forward-backward

6We recall that the regularization coefficient y is fixed and equal to 0.1 for all 12 implementations.
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passes of SDDP— and the expected simulation cost V(z;p*) in — computed by
Monte-Carlo simulation, sampling 25,000 scenarios — is lower than 1.7%.
Further detailed results are available in Appendix
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10" 107 10° 10 10°

overall computing time (second)

Figure 3: Estimate of ®(p*) € [V(20), Vo(zo)] in (39) (marker span on the Y-axis) for
implementations of uSDP (in blue) and ASDDP (in orange); and overall computing time
for the computation of p* (X-axis in log scale). For both axis, the lower the values the
better.

Results of uSDP. We comment on the results of implementations of uSDP, represented
by blue markers on Figure [3] and Figure [ The performance for this method is related
to the size of the discrete grid introduced for the state and control variables (z,u) in (40)
and . In this experiment, we use 12 grid sizes ranging from (5x5, 11) points to
(101x101, 201) points.

We expect that the finer the grid discretization, the more accurate the computation of
the value function Vi* and of the gradient V,V{", but also the longer the computing time
per oracle call. Indeed, the worst cost performance (highest estimated value of ®(p*) on the
Y-axis of Figure|3|and Figure|4)) is obtained with the coarsest grid discretization. Although
this implementation has the shortest average oracle time (lowest value on the X-axis of
Figure [4)), it requires more iterations of the projected gradient method to stabilize, and is
not the fastest implementation in term of overall computing time (second lowest value on
the X-axis of Figure . More surprisingly, we find that the cost performance is greatly
improved by only adding one grid point to the state space of the worst cost-performing
implementation (marker with the second lowest value on the X-axis of Figure {4)), and that
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Figure 4: Estimate of ®(p*) € [V, (w0), Vo(zo)] in (39) (marker span on the Y-axis) for
implementations of uSDP (in blue) and ASDDP (in orange); and average computing time
per oracle call for the computation of p* (X-axis in log scale). For both axis, the lower the
values the better.
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cost performance stabilizes for further refinements of the grid despite longer average oracle
times (third to twelfth markers on the same axis).

Results of ESDDP. We comment on the results of implementations of £KSDDP, repre-
sented by orange markers on Figure[3|and Figure[d The performance of these implementa-
tions is related to the number k£ € N* of forward-backward passes performed by the SDDP
algorithm at each iteration of the subgradient method. We report results for a total of 9
implementations, with k € {10, 20,40, 80, 150, 250, 500, 750, 1000} .

As expected, we observe that the more forward-backward passes of the SDDP algorithm
we run, the more accurate the approximations of the value function Vg by z’g and of the
subdifferential 0,V by 61,[’5. This phenomenon is well illustrated by Figure , where
better cost performances, corresponding to lower values on the Y-axis, are obtained with
longer computing time per oracle call, characterized by higher values on the X-axis (where
the higher the value of k, the higher the position of the marker for implementations of
kSDDP). In general, we also report that low values of k increase the noise of the oracle.
Indeed, for implementations of kSDDP with & € {40, 80,150}, the values of V&(xo,-) do
not stabilize after 100 iterations of the subgradient method, whereas implementations with
k € {250, 500,750,1000} reach convergence in respectively {34, 15,16,12} iterations. As
for k € {10,20}, the SDDP algorithm only samples a few scenarios in these cases, and
seems to fail to obtain accurate representations of the value function V4. Observations on
oracle stability are backed by more detailed results available in Appendix [A.2]

Cross-method comparison. We compare the results obtained with uSDP versus the
ones obtained with ASDDP. We observe in Figures 3| and {4 that uSDP (blue markers)
almost attains its best cost performance with a value of the expected simulation cost V()
in of -648 € (upper value of the span of the markers on the Y-axis) with only 0.25
seconds spent per oracle call (Figure , X-axis) and only 17 seconds of overall computing
time (Figure[3| X-axis). Comparatively, for KSSDDP implementations (orange markers), we
need to perform at least k£ = 80 forward-backward passes of the SDDP algorithm to attain
Vo(xg)= -646 € (upper value of the span of the markers on the Y-axis). For this value
of k, we spend on average 10.2 seconds per oracle call (Figure , X-axis), and the overall
computing time is of 1,061 seconds (Figure , X-axis). We conclude that the uSDP method
performs better than £SDDP in our experiments, both in term of time performance and in
term of cost performance. In particular, we argue that this result illustrates the pertinence
of treating the parameter p in apart from the state variables to address Problem ,
especially when the parameter space R™ is of much larger dimension than the state space
R"™ (see the discussion at the end of §2.2).

5 Conclusion

We have studied the differentiability properties of a class of parametric multistage stochas-
tic optimization problems. Our main finding is that, under differentiability and convexity
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assumptions, we manage to compute the gradient of the value function of the problem with
respect to the parameter by backward induction.

In the case where the differentiability assumption is not fulfilled, we have proposed a
method for obtaining lower approximations of the original parametric value functions by
regularization. We have also shown that such approximations let us approach the value
and a solution of the original problem as closely as desired — provided the regularization
coefficient is sufficiently small.

A numerical test case inspired from power scheduling reveals that our gradient compu-
tation technique is efficient to formulate first-order oracles in convex parametric multistage
stochastic optimization.

In particular, we report that treating the parameter apart from the state variables
— as proposed in our backward induction for gradients — can be advantageous in term
of computing time performance, especially when the problem is structured with a large
parameter space.

A Appendix to numerical experiments

A.1 Data and implementation details

First, we detail the implementation of the probabilistic model introduced in We use
one year of historical photovoltaic power data from the public platform of the Australian
transmission system operator Ausgrid [I]. We scale the generated power data to simulate
the operating of a solar power plant with an installed peak power ¢ = 1 MW. Then, we use
a standard linear regression to calibrate the weights of the linear model in (43b)), and we
perform a quantization of the support of the error noise process {Wt}te[[l,:r]] with the K-
means algorithm. This latter technique lets us compute discrete probability distributions
for each random variable in {W,},; . We refer the reader to [31] for the theoretical
motivations of this quantization scheme.

Second, we provide implementation details for the oracles of the two methods introduced
in . For the oracle of the uSDP method, we implement the backward recursions in ([28))
(for value functions) and in (for gradients) by parallelizing computations across a
discrete grid of states. We also use a discrete grid for controls. As for the oracle of the
ESDDP method, we use the built-in parallelization scheme of SDDP.jl to run forward-
backward passes in asynchronous mode.

Lastly, concerning other parameters, we take Kk = 1 MWh, = = —u = 1 MW, and
pe = pa = 0.95 for the battery parameters; ¢; = 0.4 € for the off-peak energy price and
¢; = 0.6 € for the on-peak energy price, with a 2-hours peak spanning over [19:00, 21:00];
and A = 2 for the penalty cost in (48c]).
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A.2 Detailed results for all implementations

We provide additional details on the numerical results of each implementations of the pSDP
and kSDDP methods considered in the experiments of §1.3

(xz,u) Iterative O\ferall Avg. time / .KO(wO) Yo($o) Gap
rid size stens time oracle call in (36) in (38 (%)
g P (seconds) (seconds) (€) (€) ’
5%5, 11 97 16 0.16 -613.6 -609.6 0.7
5x6, 11 78 14 0.19 -648.5 -642.4 0.9
6x6, 11 69 14 0.20 -648.8 -643.6 0.8
6x6, 21 66 17 0.25 -651.0 -647.7 0.5
6211’ 63 25 0.40 -653.1 -647.5 0.9
11;(111’ 54 41 0.67 -653.1 -648.9 0.6
11:111’ 93 87 0.94 6394  -6334 0.9
11;(1217 72 121 1.7 -649.7 -649.1 0.1
21;(121’ 54 168 31 6471  -638.7 1.3
21;8%1’ 42 442 105 6523  -638.7 1.3
21501101’ 42 2092 49.8 -654.2 -651.5 0.4
101;8101’ 41 10781 263.4 -650.4 -643.5 1.0

Table 1: Detailed numerical performances for implementations of the uSDP method, char-
acterized by the size of the discrete grids for state and control variables in the first column.
Other columns report the number of iterations performed (second column), time perfor-
mances (third and fourth columns), together with the lower bound V(o) in (36) (fifth
column), the expected simulation cost V(xo) in (38)) (sixth column), and the estimation
gap (seventh column) expressed as a percentage of V(). For columns 2-6, the lower the
values the better the performance of the instance.
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Iterative O\{erall Avg. time / .ZO(:BO) Yo(wo) Gap

k steps time oracle call in (36) in (38) (%)
(seconds) (seconds) (€) (€)

10 7 11 1.5 -440.0 -438.1 0.4
20 60 155 2.6 -575.4 -566.7 1.5
40 100 504 5.0 -643.5 -642.9 0.1
80 100 1061 10.6 -654.2 -646.4 1.2
150 100 2173 21.7 -658.7 -652.9 0.8
250 34 1428 42.0 -655.1 -644.1 1.7
500 15 1622 108.2 -653.4 -648.0 0.8
750 16 3448 216.9 -653.7 -644.5 1.4
1000 12 3912 323.4 -651.6 -645.0 1.0

Table 2: Detailed numerical performances for implementations of the KSDDP method,
characterized by k in the first column. Other columns report the number of iterations
performed (second column), time performances (third and fourth columns), together with
the lower bound V(zo) in (36]) (fifth column), the expected simulation cost V(zg) in
(38) (sixth column), and the estimation gap (seventh column) expressed as a percentage of
V(xp). For columns 2-6, the lower the values the better the performance of the instance
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