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Extending the laws of thermodynamics for autonomous, arbitrary quantum systems

Cyril Elouard∗ 1, † and Camille Lombard Latune∗ 2, ‡

1Inria, ENS Lyon, LIP, F-69342, Lyon Cedex 07, France
2ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France

Originally formulated for macroscopic machines, the laws of thermodynamics were recently shown
to hold for quantum systems coupled to ideal sources of work (external classical fields) and heat
(systems at equilibrium). Ongoing efforts have been focusing on extending the validity of ther-
modynamic laws to more realistic, non-ideal energy sources. Here, we go beyond these extensions
and show that energy exchanges between arbitrary quantum systems are structured by the laws
of thermodynamics. We first generalize the second law and identify the associated work and heat
exchanges. After recovering known results from ideal work and heat sources, we analyze some
consequences of hybrid work and heat sources. We illustrate our general laws with microscopic ma-
chines realizing thermodynamic tasks in which the roles of heat and work sources are simultaneously
played by elementary quantum systems. Our results open perspectives to understand and optimize
the energetic performances of realistic quantum devices, at any scale.

I. INTRODUCTION

The laws of thermodynamics have been formalized cen-
turies ago to predict the performances of macroscopic
machines, composed of large systems exchanging work
and heat. While the first law of thermodynamics defines
the splitting of the energy exchanges between heat and
work, the second law states their different nature by ex-
pressing the fundamental constraints they obey due to
the arrow of time. In the last two decades, the appli-
cation domain of these concepts has been dramatically
expanded, as similar laws were found to rule the average
energy flows received by a single nanoscopic classical [1–
4], or quantum system [5–12], far from equilibrium and
from the so-called thermodynamic limit. Importantly,
the second law was shown to emerge universally from
the Schrödinger equation ruling the dynamics of a quan-
tum system of interest coupled on the one hand to a
heat bath – a quantum system initially at thermal equi-
librium and identified with a pure source of heat – and
on the other hand to a pure source of work [8] – mod-
eled as a time-dependence in the system’s Hamiltonian.
Recent advances in the analysis of quantum effects in
heat engines has however motivated to look further into
full quantum description of sources of heat and work
[12–22]. Indeed, time-dependent Hamiltonians can be
considered as effective semi-classical models. One could
expect that work exchanges should emerge from a fully
autonomous scenario, where the system, the sources of
work, and the sources of heat are described by a global
time-independent Hamiltonian. In such scenarios, the
division between heat and work becomes fuzzy, rising
doubt whether a consistent thermodynamic framework
can be built at this level. Some noticeable progresses
in that direction include the introduction of the notion
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of ergotropy [23, 24] as work contribution in fully au-
tonomous systems [13, 19, 25–29] and extensions of the
traditional frameworks to non-thermal baths [20, 30–34].
In parallel to these developments, it has been noticed
that energy exchanges with a large quantum system ini-
tially at thermal equilibrium, which would traditionally
be regarded as heat source, can also contain coherent,
deterministic contributions, exhibiting the properties of
work [28, 35, 36]. As a matter of fact, in several im-
plementations of quantum heat engines, the very same
physical devices can often be used to provide either work
or heat (e.g. a microwave transmission line can both in-
duce thermalization or convey a driving field performing
work on a superconducting qubit [37]), reinforcing the
need to describe hybrid quantum energy sources provid-
ing both work-like and heat-like energy. All the above
efforts contributed to build fundamental definitions of
work and heat in the quantum regime which do not pre-
suppose the role of work or heat sources for each device,
but relate directly to the properties of the exchanged en-
ergy [38–40].

Our motivation here is to go beyond the dichotomy of
pure heat and work sources/storages used in many frame-
works [8, 12, 14, 17, 41, 42], and rather describe each
quantum system on equal footing as an hybrid source
of heat and work. Building on the above studies, we
introduce an expression of the second law of thermody-
namics valid for arbitrary set of interacting quantum sys-
tems, which leads us to identify consistent definitions for
heat and work. We show that the emerging notion of
work corresponds to a generalization of the concept of
ergotropy, the latter being in general insufficient to fully
quantify energetic resources that can be consumed to de-
crease entropy, as we show on specific examples. On the
other hand, the notion of heat which naturally emerges
is the variation of complete passivity [20, 33, 43], which,
interestingly, sets an intrinsic notion of temperature as
developed in [20, 33, 34].

As an illustrative application of the suggested frame-
work, we show that sets of quantum systems as small as
two interacting qubits can behave as autonomous ther-
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FIG. 1. a: Recent formulations of the laws of thermodynamics apply to a system A (which can be microscopic and/or quantum),
coupled to ideal (macroscopic) sources of heat Q and of work W . b: We demonstrate the laws of thermodynamics for two or
more quantum systems, that can be of any scale and initialized in any arbitrary uncorrelated state. Each system can in general
behave as both a source of work and heat to the other system. Note that the heat (respectively work) provided by system A
does not necessarily equals the heat (work) received by system B as some energy Eint can be stored in the coupling between
the systems and as one kind of energy can be consumed to the profit of the other one.

mal machines, where work is consumed to cool down one
of the qubit (refrigerator), or conversely, where work is
produced out of initial temperature gradient between the
two qubits (engine). We show that the efficiencies of both
operations are limited by the same upper bounds as clas-
sical macroscopic thermal machines, namely the Carnot
bounds. Finally, we explain how to use this framework
to analyze more complex autonomous machines, includ-
ing N interacting systems, with autonomous switching of
couplings Hamiltonians.

II. BACKGROUND: SECOND LAW FOR A
QUANTUM SYSTEM COUPLED TO IDEAL

HEAT AND WORK SOURCES

Before stating our results, we recall one of the most
general settings demonstrating the emergence of the sec-
ond law from unitary global evolution. We consider a
quantum system A that is externally driven and interacts
with a heat bath, modeled by a global Hamiltonian of the
form H(t) = HA(t)+V (t)+HB , where V (t) contains the
system-bath interaction terms. The action of the drive is
captured semi-classically by the time-variation of H(t).
We assume that at time t = 0, the system A and the
bath B are in a factorized state ρS(0) ⊗ wB [βB ], where
wB [βB ] = e−βBHB/ZB denotes the thermal equilibrium
state at inverse temperature β, ZB being the partition
function. At times t > 0, the joint dynamics of the
two systems generates a correlated state of both systems
ρAB(t), exhibiting in general a non-zero mutual infor-
mation, which can be associated with a production of
entropy. More precisely, the following equality has been
derived [8]:

σ0(t) = ∆SA(t) + βB∆EB(t)

= ISB(t) +D(ρB(t)|ρeq
B ). (1)

Here, ∆X(t) = X(t) −X(0) for any quantity X. More-
over, SA = S[ρA(t)] denotes the Von Neumann en-
tropy of system A, with S[ρ] = −Tr{ρ log ρ}, and

D(ρ1||ρ2) = Tr{ρ1(log ρ1 − log ρ2)} denotes the rela-
tive entropy of states ρ1 and ρ2. Throughout the arti-
cle, we use natural units such that kB = ~ = 1. We
have also introduced the partial states of the system
ρA = TrB{ρAB(t)} and the bath ρB = TrA{ρAB(t)}. In
addition IAB(t) = D(ρAB(t)||ρA(t) ⊗ ρB(t)) is the mu-
tual information of A and B that built up during their
joint evolution (IAB(0) = 0). As the mutual informa-
tion and the relative entropy are positive quantities, so
is the right-hand side of Eq. (1). As a consequence,
σ0 is often interpreted as the second law of thermody-
namics for quantum systems [3, 44–47], and the energy
change of the reservoir is usually categorized as heat (in-
terpreting −βB∆EB as the entropy exchanged with the
reservoir). Introducing the work performed by the ex-
ternal drive as the change of energy of the total sys-

tem A + B, namely Wdr(t) =
∫ t

0
dt′Tr{Ḣ(t′)ρAB(t′)},

and defining the nonequilibrium free energy of system A,
namely FA(t) = EA(t)− SA(t)/βB , one can also rewrite
Eq. (1) as:

Wdr(t) ≥ ∆FA + ∆Eint, (2)

with Eint(t) = 〈V (t)〉 the energy stored in the coupling.
We recover in this way a usual statement of the second
law for an isothermal transformation leading to a change
of free energy ∆FA, which takes into account the
role of the interaction energy when the latter cannot
be neglected (as it is often the case for nanoscale
systems). Finally, we stress that in this paradigm,
the irreversibility of an evolution, as quantified by the
entropy production, is ultimately related to lack or loss
of information occurring when tracing out the bath B.

III. SECOND LAW FOR TWO ARBITRARY
QUANTUM SYSTEMS

We now present our framework allowing to extend the
second law to two arbitrary quantum systems A and B
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initially in arbitrary local states (i.e. an arbitrary un-
correlated state ρA(0) ⊗ ρB(0) of the joint system), and
which can then be sources of both work and heat. The
difference with the above setup is therefore that we now
allow the state of B to be initially not in a thermal state.
For the sake of completeness and pedagogy, we still allow
for the Hamiltonian of system A to be explicitly time-
dependant in Sections III-IV, but our final goal is to con-
sider time-independent Hamiltonians, and show the au-
tonomous emergence of the notion of work. Moreover, we
wish to separate the energy exchanges between the sys-
tems into in heat-like contributions that will be related
to entropy and a work-like part that can be considered as
a resource for instance to decrease entropy, consistently
with the expression of the second law.

This splitting can be introduced by comparing the
state ρB(t) of system B at any time t to the thermal state
wB [βB(t)] = e−βB(t)HB/ZB(t) which is chosen to have
the same entropy as ρB(t). Here ZB(t) = Tr{e−βB(t)HB}
is the associated partition function. Namely, the effective
inverse temperature βB(t) is defined via the equation:

S[wB [βB(t)]] = S[ρB(t)], (3)

where the left-hand term is a function of βB(t) only
S[wB [βB(t)]] = βB(t)Tr{HBwB [βB(t)]} + logZB(t). As
S[wB [βB(t)] is a monotonously decreasing function of
βB(t) spanning the interval [0, log dB ] of all the possible
values taken by S[ρB(t)] (dB ∈ [2; +∞) is the dimension
of the Hilbert space of B), this equation always admits
a unique solution, defining uniquely the thermal state
wB [βB(t)]. Note that this appealing intrinsic notion of
temperature was extensively analyzed in [20, 33, 34]. We
now introduce the quantity [20, 34]:

Eth
B (t) = Tr{HBwB [βB(t)]}, (4)

that we refer to in the following as the thermal energy of
B, so as to state our central result:

σA ≡ ∆SA(t)− βB(0)QB(t)

= IAB(t) +D(wB [βB(t)]||wB [βB(0)]) ≥ 0, (5)

with

QB(t) = −∆Eth
B (t). (6)

Proof – Using that the unitary evolution of A and B
preserves the total Von Neumann entropy, we can write:

∆SA = IAB(t)−∆SB . (7)

Adding on both sides βB(0)∆Eth
B and using that

βB(0)∆Eth
B −∆SB

= −Tr{(wB [βB(t)]− wB [βB(0)]) logwB [βB(0)]}
−S[wB [βB(t)]] + S[wB [βB(0)]]

= D(wB [βB(t)]‖wB [βB(0)]]), (8)

where to go to the second line we have used that by
definition S[wB [βB(t)]] = SB(t), we finally obtain

Eq. (5) �

We interpret Eq. (5) as the second law of thermody-
namics for a transformation of system A caused by the in-
teraction with system B. By comparing with Eq. (1), we
identify QB(t) as the heat provided by system B during
the transformation of A (with positive sign when the heat
exits system B). In addition, we observe the emergence
of an effective inverse temperature βB(0) associated with
the initial entropy of system B, which sets constraints
on this heat flow via Eq (5). We stress that system B
itself is not in thermal equilibrium (and a consequence
will be that it can also provide work), but the definition
of heat compatible with Eq. (5) is the energy difference
between the two “thermal backgrounds” wB [βB(t)] and
wB [βB(0)] associated with ρB(t) and ρB(0). Thus, QB(t)
corresponds to an energy exchange intrinsically linked to
entropy change, verifying notably

ṠB(t) = −βB(t)Q̇B(t). (9)

We note that the second law for system A, Eq. (5),
involves the initial effective temperature of B. As it
can be inferred from Eq. (9), this effective temperature
will change in general during the process. We show in
Section X that a tighter bound on ∆SA can be found
when keeping track of this time-dependence.

IV. PROPERTIES OF WORK

Simultaneously to behaving as a heat source, system
B also behaves as a source of work for A. The quantity,

WB = −∆EB −QB , (10)

plays the role of the work performed by system B. This
can be illustrated by introducing the nonequilibrium
free energy of system A at temperature βB(0), namely
FA[βB(0)] = EA(t)− SA/βB(0), to obtain from Eq. (5):

Wdr(t) +WB ≥ ∆FA[βB(0)] + ∆Eint(t). (11)

We see that WB and the external driving work Wdr(t)
appear on an equal footing in Eq. (11) as resources
that can be consumed to vary the system’s free energy.
Moreover, in the absence of external driving (i.e. a fully
autonomous machine described by a time-independent
Hamiltonian), one can identify the work WB spent
by system B without resorting to a semi-classical
description. In what follows, we will always assume a
time-independent total Hamiltonian such that Wdr = 0.
We also stress that during a transformation where
∆SB = 0, WB corresponds to the whole energy variation
of system B, as expected. This justifies the intuition
that work is the iso-entropic part of the energy exchange.

Finally, we emphasize that the quantities QB and WB

only depend on the initial and final states of system B,
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not on its whole trajectory. Nevertheless, these quanti-
ties depend on the trajectory of A. Indeed, in an au-
tonomous scenario where the total Hamiltonian is time-
independent, the trajectory of A can be varied only by
selecting different parameters for B (varying HB , V or
ρB(0)), which in general will affect the final state of
B and therefore the value of QB and WB . We there-
fore retrieve the expected properties from standard non-
autonomous machines, namely that the heat and work
provided by the sources depend on the trajectory of A.
An infamous consequence is that less work can be ex-
tracted in a stroke if the transformation is performed
faster. This point is illustrated within our formalism on
the case of a two-qubit engine (see Section VIII C).

V. WORK-LIKE RESOURCES BEYOND
EROGTROPY

It is interesting to note that the definition of work
WB which emerges from our formalism is connected to
the concept of ergotropy, often considered as the ade-
quate notion of work when energy sources are described
quantum-mechanically [13, 19, 23–25, 32]. The ergotropy
EB of system B with Hamiltonian HB is defined as the
maximum amount of energy that can be extracted via
a unitary transformation on B. There is an extended
notion of ergotropy, defined as E∞B = EB − Eth

B , which
was introduced as the maximal amount of energy which
can be extracted from an infinite number of copies of the
system via global unitary operations on all the copies
[43] (see [33] for alternative extraction protocol). The
notion of work emerging from the second law Eq. (5)
is precisely the variation of E∞B . This quantity E∞B
also bears two other important physical interpretations
[20]: (i) it is the minimum amount of work one needs
to pay to prepare the nonequilibrium state of B from
thermal equilibrium, with the help of a thermal bath
(see Appendix A) and (ii) it is the maximum amount of
energy that can be extracted during a transformation
preserving the entropy.

The inequality E∞B ≥ EB [43] implies that there exist
other resources than the ergotropy which can be con-
sumed to obtain effects similar to a work expense (that
is, e.g. inducing a heat flow from a cold to a hot system,
or reducing a system’s entropy). This result can be made
intuitive by noting that a state with zero ergotropy – a
so-called passive state – is diagonal in the energy eigenba-
sis, with populations decreasing as a function of energy.
When this state is not a thermal state, the ratio of these
populations takes the form pk+1/pk = e−βk(Ek+1−Ek) as
a function of the energies Ek with positive numbers βk
which depend on k. These numbers can be interpreted
as local temperatures, whose biases can be exploited to
perform work, provided one can access such state locally
in energy, i.e. couple selectively to its level transitions
exhibiting different values of βk. This mechanism is il-

lustrated in Section VIII D.
Reciprocally, using the variation of ergotropy instead

of the variation of E∞B would lead to breaking down the
positivity of the entropy production in some cases. In
Appendix B, we show a concrete example based of two
qutrits, demonstrating the need to identify the variation
of E∞B as work rather than the variation of EB . A nec-
essary condition to obtain such a positivity violation is
to choose an initial state verifying E∞B 6= EB , which is
possible only in dimension greater than 2.

VI. GENERAL CONSEQUENCES OF EQ. (5)

A. A tighter bound for a bath starting at
equilibrium

First, we consider the case where system B is initially
in a thermal state wB [βB(0)] (which is when Eq. (1) ap-
plies). In this case, σA still differs from σ0 as our ap-
proach identifies a work contribution to the variation of
the energy of B when its final state is out-of-equilibrium.
As EB(t) ≥ Eth

B (t), we have σA ≤ σ0, meaning that
Eqs. (5) and (11) correspond to tighter constraints than
Eq. (1)-(2) on the entropy variation of A and on the work
cost required to perform a given transformation (associ-
ated with a given free energy variation).

B. A fully symmetric description

A second important consequence of our formulation is
that system A and B can be treated on an equal footing.
We define the entropy production σB from the point of
view of system B by swapping the roles of A and B in
Eq. (5). In general σA 6= σB , reflecting the fact that
tracing over one or the other system does not lead to the
same information loss. We can yet obtain an expression
emphasizing the symmetric roles of the two systems by
rewriting in Eq. (5) the entropy variation of system A as
∆SA = −βA(0)QA(t)−D(wA[βA(t)]‖wA[βA(0)]), leading
to (see Appendix C):

−βB(0)QB(t)− βA(0)QA(t) ≥ 0. (12)

Eq. (12) holds even though each system also may also
provide an amount of work Wi(t) = −∆Ei(t) + ∆Eth

i (t).
It therefore expresses a universal constraint on the ther-
mal part of the energy exchanges between systems A and
B which is especially precious to express the limitations
on nanoscale machine performances (see e.g. Section
VIII). Eq. (12) bears similarities with the results pre-
sented in [32], obtained by focusing on the dynamics of
the system only, and for the special case where B is a
bath initially in a state unitarily related to a thermal
state. By including explicitly the system playing the role
of heat and work source, we were able to reach a more
general law applicable at any scale.
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C. Accessing the effective temperature

The price to pay to encompass any initial state of the
systems and quantify any work-like resource is that more
details about the reduced dynamics must be tracked to
express Eq. (5) than Eq. (1). Specifically, the initial
and final effective temperatures of system B need to be
known, which requires the ability to either determine its
von Neumann entropy (e.g. from a tomography protocol)
or to simulate its evolution. While this may be challeng-
ing for large systems, it is possible with some theoretical
methods [48] or experimental setups [49], e.g. allowing
to track the Husimi function of a bath and therefore re-
construct its state [50, 51].

We mention that a different notion of nonequilibrium
temperature has been proposed, based on the thermal
state which shares the same energy as ρB(t); explicitly,
it corresponds to the inverse temperature β∗B(t) verifying
Tr{HBwB [β∗B(t)]} = Tr{HBρB(t)} [12]. Contrary to the
entropy-based temperature we employ here, β∗B(t) can
be negative for finite systems in non-passive states. Note
also that the entropy-based inverse temperature βB(t)
is always smaller than |β∗B(t)|. Instead of identifying
resources able to produce work in the state of B, the
energy-based temperature treats all its energy changes
as heat. On an operational level, the energy-based tem-
perature suggested in [12] assumes that one has one has
absolutely no control on systems B and that the sys-
tems interacting with it will not be sensitive to the non-
thermal features of B. Going beyond this assumption
to investigate how nonequilibrium properties in B can
be used as resources is precisely a motivation of our ap-
proach.

Finally, one can actually consider intermediate situa-
tions where the experimentalist (or ar system) can only
access some of the nonequilibrium resources stored in the
state of B (e.g. it can only extract work by inducing co-
herent displacements of a bosonic system B [40]). In
appendix D, we derive an effective second law consis-
tent with treating only those accessible resources as work,
which holds provided the initial state of B does not con-
tain any of the other (inaccessible) resources. This for-
mulation has the operational advantage to need to track
only the variation of the accessible resources, not the full
state of B.

VII. RETRIEVING IDEAL SOURCES OF
WORK AND HEAT

Our formalism defines work and heat exchanges be-
tween two arbitrary systems, and allows us to derive con-
sistent expressions of the laws of thermodynamics. We
finally show which limits leads to retrieve the usual cases
where one of the systems is an ideal heat or work source.
We first assume that system B is at any time in a ther-
mal state, namely ρB(t) = wB [βB(t)] (with a possibly
time-dependent temperature). Then, by our definitions

WB = 0, meaning that B is a source of heat only. Note
that this condition implies ĖB(t) = −β(t)Ṡ(t), which is
consistent with a definition of ideal heat source emerg-
ing in the context of repeated interaction with units [52].
In this case, the heat can be computed from the energy
variation of B, namely QB = −∆EB as proposed in [8].
Conversely, a perfect work source is obtained when as-
suming that system B does not become correlated with
system A, i.e. IAB(t) = 0 at any time t or equivalently
ρAB(t) = ρA(t) ⊗ ρB(t). It is then easy to show that
system B follows a unitary evolution, along which nei-
ther its entropy nor its effective temperature βB(t) vary,
leading to QB(t) = 0 and WB(t) = −∆EB(t) (see Ap-
pendix E). Moreover, system A evolves under the action
of effective Hamiltonian Heff

A (t) = HA+Tr{ρB(t)V }, and
the work can be computed according to the broadly used

formula ẆB = Tr

{
ρA(t)

∂

∂t
Heff
A (t)

}
. The internal dy-

namics of B is then responsible for the emergence of a
time-dependent Hamiltonian for A, often considered to
model a work source.

One motivation of our formalism is precisely to interpo-
late between these two extremes situations and consider
deviations from ideality that naturally emerge in realistic
setups.

VIII. BI-PARTITE MACHINES

A. Carnot Bounds

We now turn to more specific scenarios. If we first
consider that we put in contact two systems which have
initially the same effective temperature, i.e. βA(0) =
βB(0) = β. Then, by energy conservation ∆EA+∆EB+
∆Eint = 0, Eq.(12) implies:

WA +WB −∆Eint(t) ≤ 0, (13)

namely, the total amount of non-thermal energy in the
systems, which as seen earlier can be treated as a re-
serve of work, tends to decrease (up to the energy −∆Eint

which is paid when decoupling the two systems), prevent-
ing us, as expected, from building a heat engine work-
ing with a single temperature. On the other hand, if
βA 6= βB , one can examine the conditions to build an au-
tonomous, microscopic engine. Let us focus on the case
of a refrigerator aiming at cooling down system A, i.e.
βA > βB and QA ≥ 0. Eq. (12) implies:

0 ≤ (βA(0)− βB(0))QA ≤ βB(0) (WA +WB −∆Eint(t)) .

(14)

In the line of macroscopic thermodynamics, we see that
such process is only possible if some resource is con-
sumed: either system A or B provides work by reduc-
ing their energy of non-thermal nature, either energy is
provided by a decrease of the coupling energy, which in
turn will require an amount of work −∆Eint(t) ≥ 0 to
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couple and then decouple the systems. The efficiency of
conversion of those resources into cooling power QA is
upper bounded by the Carnot coefficient of performance
ηCOP

Carnot = βB(0)/(βA(0)−βB(0)). The striking novelty is
that the macroscopic principles ruling the performances
of a refrigerator are here extended for two arbitrary quan-
tum systems, in the absence of macroscopic thermal bath
and of external work source. This is exemplified below on
the case of two qubits, where it is shown that the role of
the hot bath (the entropy sink) and the work source can
be both played by one of the two qubits so as to cool down
the other. Conversely, one can also consider elementary
engines, where work is generated within A or B out of a
temperature gradient between the thermal backgrounds
of A and B. The efficiency of the engine is upper bounded
by the Carnot efficiency (βA(0) − βB(0))/βA(0) ≤ 1 for
βA(0) ≥ βB(0) (see plots in examples below).

B. Example: a refrigerator composed of two qubits

We consider two qubits of Hamiltonians Hj =
(ωj/2)σjz, with j = A,B and σjx,y,z are the Pauli ma-
trices in the Hilbert space of j. Initially, the qubit A is
in a thermal state ρA(0) = wA[βA(0)] at smaller tem-
perature than B, i.e. βA(0) ≥ βB(0). The goal of the
refrigerator is to extract heat from qubit A and reject
it into qubit B. While in a traditional refrigerator this
would be obtained by spending work from an external
drive, it can be seen from Eq. (14) that one can also
consume non-thermal energy initially present in qubit
B. The latter then plays the role of both the hot bath
and the work source needed to build a generic heat en-
gine. To be specific, we assume that the initial state of

qubit B is ρB(0) = e−iφσ
B
x wB [βB(0)]eiφσ

B
x , i.e., depend-

ing on the value of φ, a state with coherences and/or
inverted-population in the energy eigenbasis. We also
consider that the two qubits are coupled via the Hamil-
tonian V = gσA+ ⊗ σB−/2 + h.c., where σ± := σx ± iσy
are the raising and lowering qubit operators. From the
solution of the Schrödinger equation for the two qubits,
we computed analytically the heat flow QA(t) provided
by the qubit A, the work WB(t) provided by the qubit
B, and the variation of the internal energy. Their expres-
sions are given in Appendix F and are plotted in Fig. 2a,
showing that refrigeration indeed occurs at all times ex-
cept for t equal to a multiple of 2π/

√
g2 + (ωB − ωA)2.

Note that for the chosen parameters, the energy of A is
almost constant since work is stored within A simultane-
ously with heat being released to B. The refrigeration is
thus characterized by a net decrease of the entropy of A.
We also plot on panel b the coefficient of performance of
the refrigerator η(t) together with Carnot’s bound. The
relative low performance of the refrigerator observed in
Fig. 2b is due to the generation of correlations between
A and B as well as the increase of the thermal distances
D(wB [βB(t)]‖wB [βB(0)]) and D(wA[βA(t)]‖wA[βA(0)]),
that is a consequence of the extreme smallness of the

heat sources.

C. Example: an engine composed of two qubits

The complementary operation consists in converting
heat from the hotter system into work or coupling en-
ergy. To achieve this we consider the same two qubits A
and B, but this time initialized in thermal states at tem-
peratures βA(0) > βB(0). The qubits are now coupled
via Hamiltonian V = gxσ

A
x σ

B
x /2 + gyσ

A
y σ

B
y /2. As shown

in Fig.3, we found parameters allowing such engine to
store work only in one of the two qubits (namely qubit
A). However, part of the thermal bias is used to gener-
ate interaction energy. The efficiency of the process is
plotted in Fig.4(b). Note that the expected trade-off be-
tween work extraction and efficiency can also be retrieved
in such machine: by changing the coupling strength, one
can control the speed of the work extraction stroke (i.e.
move the time at which the first peak of efficiency in
Fig.4(b) occurs). As numerically shown in Appendix G,
a shorter stroke results in lower efficiency of conversion.

D. Example: exploiting passive non-thermal states

The two-qubit engine above can be extended to demon-
strate the possibility to extract work from the non-
thermal energy of passive states (i.e. states with zero
ergotropy). To do so, we replace qubit B with a (d+ 2)-
level qudit chosen to have the following properties: (i)
The ground and first-excited levels are separated by the
frequency ωB , and are coupled to qubit A with the
same coupling Hamiltonian as in Section VIII C ; (ii)
The other d-levels are assumed for simplicity to have all
the same energy ω2 > ωB and to be uncoupled with
qubit A; (iii) The qudit is initially in a passive state

ρB(0) =
∑d
k=0 pk|Ek〉B〈Ek|, with p1/p0 = e−βB(0)ωB for

βB(0) < βA(0), and pk/p1 = e−β2ω2 , ∀k ≥ 2, for some
inverse temperature β2 > 0 chosen such that the total
effective initial temperature of qudit B is equal to βA(0).
We have denoted |Ek〉B the eigenstates of HB . For the
same values of βA,B(0) and ωA,B as in Fig. (4), these
three conditions ensure that the joint dynamics of the
qudit B and qubit A will consume the only available re-
source, i.e. non-thermal energy in the qudit, to store
work in the qubit (see Appendix H for further details).

IX. DESCRIBING FULLY AUTONOMOUS
MACHINES

The examples treated in Sections VIII B and VIII C are
not fully autonomous as the coupling between the sys-
tems must be switched on or off externally to start/stop
the operation of the machines. However, the present
framework is well suited to analyze autonomous machines
as we sketch below.
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ηCOP

FIG. 2. Performances of the two-qubit refrigerator. a: heat flow QA(t) from qubit A (blue curve), heat flow QB(t) from
qubit B (red curve), work WA(t) provided by qubit A (purple curve), work WB(t) provided by qubit B (orange curve), and
coupling energy Eint(t) (green curve) in units of ωA after the qubits interacted for a duration t. Time is given in unit of the

frequency Ω =
√
g2 + (ωB − ωA)2 characterizing the effective strength of the coupling. b: coefficient of performance of the

refrigerator ηCOP(t) = QA(t)/[WA(t)+WB(t)−∆Eint(t)] as a function of the interaction time t (blue solid line). Carnot’s upper
bound ηCOP

Carnot = βB(0)/(βA(0)− βB(0)) defined above is indicated by the dashed line. Parameters: βA(0)ωA = 2, βBωA = 1.8,
ωB/ωA = 1.25, g/ωA = 0.5, φ = 0.055π.

(a)
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Ωt
π
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(b) 1 2 3 4 5 6 7 8 9 10

Ωt
π

0.2

0.4

0.6

0.8

1

η

FIG. 3. Performances of the two-qubit engine. a: Work WA(t) provided by A (purple curve), heat QB(t) provided by B
(red curve), and variation of the coupling energy ∆Eint(t) (green curve) in units of ωA after the qubits interacted during a time
t. Time is given in unit of the frequency Ω =

√
g2
x + g2

y + (ωB − ωA)2. Note that WB(t) is equal to 0 for the considered time

interval, and thus is not appearing in the plot. b: Efficiency of the engine η(t) = [−WA−WB+∆Eint]
QB

Θ(−WA −WB + ∆Eint),

with Θ the Heaviside step function (blue curve) and Carnot’s efficiency 1 − βB(0)/βA(0) (brown straight line). Parameters:
βA(0)ωA = 2, βB(0)ωA = 0.1, ωB/ωA = 1.63, gx/ωA = 2, gy/ωA = 0.8.

A. Steady-state engines

One first possible kind of autonomous machines stems
from a nonequilibrium steady state between different
reservoirs and work sources continuously performing a
given task (e.g. conversion of heat into work) [29, 53–59].
Treating such situations requires to consider large (or
infinite) systems for A and B. In this spirit, it has
already been suggested that infinite baths in squeezed
and/or displaced states behaves has source of work
[60–63]. When combined with (exact or approximate)
methods to express the systems’ dynamics, our results
provide a unified framework to analyze such engines and
investigate resource conversion mechanisms [36].

B. Autonomous piston

Another class of autonomous machines involve addi-
tional degrees of freedom whose dynamics will impose
the targeted engine schedule (which can be referred to as
a clock or a piston) [15, 64, 65]. In principle, any non-
autonomous setup involving a time-dependent Hamilto-
nian can be mimicked this way [17, 41]. We provide in
Appendix I an example of ideal clock model, based on the
motion of massive particle, able to induce autonomous
switching of the interaction between two systems, and
e.g. make the machines of section VIII fully autonomous.
The ideal clock turns out to be an ideal work source (as
defined in Section VII) and the work it provides matches
the energy variation associated with switching on and off
the interaction between systems A and B. Such quan-
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tum clock is closely related to ideal work storage models
used in resource-theoretic formulations of quantum ther-
modynamics [17, 41]. More realistic autonomous ther-
modynamic transformations of finite duration can also
be investigated from quantum scattering models [21, 22].

C. Second law for N systems

It is likely that any useful autonomous machine will
be made of more than two interacting systems. This is
the case for instance when the driving protocol ruling the
interaction between two sources is rules by the dynamics
of a clock as proposed in the previous section IX B, or
when a working medium is coupled to multiple baths. We
prove in Appendix J that our main results Eq. (5) and
(12) can be extended to a set of more than two systems
initially uncorrelated and put in contact at a time t = 0,
leading to:

∆Sj −
∑
i 6=j

βj(0)Qj(t) ≥ 0 (15)

and

−
∑
j

βj(0)Qj(t) ≥ 0, (16)

where Qi(t) = −∆Eth
i (t) and βi(t) are defined analo-

gously as before for each system i. Eqs. (15)-(16) can
be used to investigate realistic setups of quantum heat
engines, where some systems play the role of non-ideal
hybrid work and heat sources, while others play the role
of working media.

X. GENERALIZATIONS

A. Initial correlations

The violation of Eqs. (15)-(16) means (i) that the sys-
tems Si are not evolving unitarily, which can be useful for
instance to detect the presence of noise in the setup [27];
or (ii) the systems are initially correlated. Building up on
this last possibility, it is a known fact that the consump-
tion of initial correlations is a resource to extract work
or invert the sign of natural heat flows [66, 67] (e.g. it
captures the case of Maxwell demons). We can therefore
refine the inequalities to include such situations, obtain-
ing

−
∑
j

βj(0)Qj(t) ≥ ∆Itot(t), (17)

where Itot(t) = D(ρtot(t)‖
⊗N

j=1 ρj(t)) quantifies corre-

lations between the N systems at time t, and ∆Itot(t)
is the variation of correlations, not necessarily positive.
Another approach to take into account these initial cor-
relations was proposed in [27, 28].

B. Bounds involving the time-dependent
temperatures

Finally, it can be noticed that as the effective tem-
peratures βi(t) of the systems generally depend on time,
their thermal part can be seen as finite-size heat baths. In
particular, from Eqs. (15)-(16) one can derive tighter in-
equalities using the instantaneous temperatures to quan-
tify the entropy flows:

∆Sj −
∑
i 6=j

∫ t

0

dt′βi(t
′)Q̇i(t

′) ≥ 0,

and −
∫ t

0

dt′
∑
j

βj(t
′)Q̇j(t

′) ≥ 0, (18)

where Q̇j(t) = −Ėth
j (t) is the heat current associated to

Qj(t).
Note that inequalities of the same form have been de-

rived in [12, 68], but from a different approach treating
asymetrically small systems and bath. In particular, dif-
ferent notions of nonequilibrium bath temperature (com-
puted from the bath’s energy) and of heat (identified with
the whole change of energy of systems treated as baths)
are used (see also discussion in Section VI C); this leading
to expressions of entropy production which are positive
only for some class of initial bath states. In contrast,
we here provide a symmetric description, quantifying all
nonequilibrium resources in the systems, therefore lead-
ing to a positive entropy production whatever the initial
states of the system. A subsequent generalization of the
Carnot bound is given in Appendix K.

XI. CONCLUSION AND OUTLOOK

We have demonstrated a version of the second law of
thermodynamics valid for any set of quantum systems,
initially in arbitrary uncorrelated states, and evolving
autonomously under their joint unitary evolution.

The initial entropy of each system leads to the emer-
gence of an effective temperature and an amount of ther-
mal energy, the variation of which plays the role of heat.
The energy beyond the thermal energy can be instead
used as a resource to decrease entropy, and its variation is
therefore assimilated to work. Moreover, this quantity is
reminiscent of the notion of ergotropy, already considered
as a promising candidate to extend the notion of work to
the quantum domain. We also showed that these no-
tions of heat and work become equivalent to earlier well-
accepted expressions in the case of systems behaving as
ideal work and heat sources. We illustrated the reach of
our results by demonstrating the possibility to design re-
frigerators and heat engines based on microscopic quan-
tum systems each able to combine simultaneously the
role of work and heat sources. With our universally valid
notions of work and heat, these microscopic engines then
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follow laws similar to macroscopic thermodynamics, with
efficiencies complying with Carnot’s bounds.

The consequences of our results are multifaceted and
yet to be explored. On one hand, they ground recent at-
tempts to refine the splitting between work and heat in
a fully quantum description. On the other hand, they
allow one to understand the performances of realistic
quantum devices, in which no such things as perfect heat
sources or work sources exist, and determine which mi-
croscopic properties lead to devices which are close to, or
conversely deviate from, these ideal models. While our
results hold in principle at any scale, a practical limita-
tion comes from the challenge to quantify and access all
the nonequilibrium resources (the generalized ergotropy)
stored in a large quantum system. This difficulty can
be addressed within our formalism by defining easily ac-
cessible resources, and treating the others as part of the
heat, which leads to an effectively coarse-grained descrip-
tion, still finer than the paradigm of pure heat and work
sources (see Section VI C and Appendix D). This modu-
lar methodology can directly be combined with the theo-
retical frameworks [48, 69] and experiments [49, 70] which
provide promising partial access to quantum baths dy-
namics. When instead focusing on machines made of ele-
mentary systems, our formalism opens an avenue towards
the design of extremely compact quantum engines, whose
performances constitutes a largely uncharted territory.
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APPENDIX A: INTERPRETATION OF E∞ AS
THE PREPARATION WORK COST

We are interested in this section in the minimum
amount of work ones needs to prepare an arbitrary non-
equilibrium state ρ0

A of a system A. For reference, the
same conclusion as the one derived below was obtained
in [20].

We assume that the system A of Hamiltonian HA is

initially in an equilibrium state wA[β,HA] := e−βHA

Tr{e−βHA}
with a bath at inverse temperature β. Assuming we can
perform arbitrary driving and quenches, one reversible
protocol to reach ρ0

A is as follows.

• Perform an isothermal reversible quasi-static driv-
ing HA → H̃A such that the final state is our target
state, wA[β, H̃A] = ρ0

A. This can always be done,
at least in theory, for arbitrary initial state ρ0

A. It

can be shown as follows. One expresses ρ0
A in its

diagonal form,

ρ0
A :=

L∑
l=1

rl|rl〉〈rl|, (A1)

and

HA =

K∑
k=1

ek|ek〉〈ek|, (A2)

with 1 ≤ L ≤ K ≤ +∞. For l ∈ [1;L], we intro-
duce pseudo-energies El as

El := − 1

β
(ln rl + c), (A3)

where c is a free constant one can use to choose the
energy origin. Then, if ρ0

A is full rank, meaning if

L = K, we define H̃A as

HA :=

L∑
l=1

EL|rl〉〈rl|. (A4)

However, if ρ0
A is not full rank L < K, we define

H̃A as

HA :=

L∑
l=1

EL|rl〉〈rl|+
K∑

l=L+1

El|el〉〈el|, (A5)

where El = El′ � 1/β for all l, l′ ≥ L + 1. With
this choice, one can verify that

wA[β, H̃A] := e−βH̃A/Tr[e−βH̃A ] = ρ0
A, (A6)

for the full-rank situation. This identity becomes
only approximate in the non-full-rank situation,
but the approximation is exponentially good for
large El, l > L. The work involved in this reversible
quasi-static driving is given by the variation of equi-
librium free energy F [w[β,H]] := Tr[ρH]− 1

βS[ρ],

Wquasi−static = F [wA[β, H̃A]]− F [wA[β,HA]]. (A7)

• Switch off the bath interaction.

• Perform a quench H̃A → HA to come back to
the initial Hamiltonian. The work involved in the
quench is

Wquench = Tr[ρ0
A(HA − H̃A)], (A8)

since the quench does not change the state of A
for occurring on a timescale much smaller than the
system evolution time.
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Then, the total work invested to prepare ρ0
A, is

Wβ = Wquasi−static +Wquench

= Fβ,HA [ρ0
A]− F [wA[β,HA]] (A9)

where Fβ,HA [ρ0
A] = Tr[ρ0

AHA]− 1
βS[ρA] denotes the non-

equilibrium free-energy. Interestingly, one can show that
the overall work W is related to the relative entropy be-
tween ρ0

A and wA[β,HA],

Wβ =
1

β
D(ρ0

A‖wA[β,HA]), (A10)

which is always positive, as expected: one always has to
spend work to prepare a non-equilibrium state. Since
the above protocol is reversible, it guarantees to be the
one with the smallest amount of work to invest, for fixed
β. Then, what is the value of β which minimizes Wβ?
The answer is given by taking the derivative of Wβ with
respect to β. We obtain

1

∂β
Wβ =

1

∂β
F [wA[β, H̃A]]− 1

∂β
F [wA[β,HA]]

=
1

β2

{
S[ρ0

A]− S[wA[β,HA]]
}
. (A11)

Since S[wA[β,HA]] is a monotonic decreasing function
of β, we deduce that Wβ is a monotonic decreasing func-
tion of β on [0;β0] and a monotonic increasing function of
[β0; +∞[, where β0 denotes the inverse temperature such
that S[wA[β0, HA]] = S[ρ0

A]. Consequently, the mini-
mum amount of work to prepare ρ0

A is Wβ0 . By noticing
that Wβ0 = Tr[ρ0

AHA] − Tr[wA[β0, HA]HA] = E∞A , the
“generalized” ergotropy [43] introduced in the main text,
one concludes that E∞A represents the minimal amount
of work needed to prepare the state ρ0

A out of a thermal
bath.

APPENDIX B: NEGATIVITY OF THE ENTROPY
PRODUCTION DEFINED FROM THE

SPLITTING ERGOTROPY - PASSIVE ENERGY

One natural choice widely used for autonomous sys-
tems is to identify the variation of ergotropy of a system
as work. If one assumes that the variation of ergotropy
corresponds to the whole exchange of work, the second
law of thermodynamics should take the form,

σA,erg(t) := ∆SA + βB(0) (∆EB −∆EB) ≥ 0. (B1)

From Eq. (1), one finds that:

σA,erg(t) = IAB(t) +D[πB(t)|wB [βB(0)]]

−D[πB(0)|wB [βB(0)]]. (B2)

We now show that the quantity on the right-hand side
can become negative, or equivalently that the free energy
of system A can be increased by more than the ergotropy
consumed. We first note that in the case where system B
is a qubit, EB −WB = Eth

B , such that σA,erg = σA ≥ 0.

Our counterexample must therefore involve a system of
dimension at least 3. We consider the case where systems
A and B are two identical qutrits of Hamiltonians

Hj =

2∑
k=0

ωk|k〉j〈k|j , j = A,B (B3)

initialized in state ρAB(0) = ρA(0)⊗ρB(0), with ρA(0) =
wA[βB(0)] a thermal state at temperature β(0) and

ρB(0) =
∑2
k=0 pB,k|k〉B〈k|B . We further assume that

pB,2 ≤ pB,1 ≤ pB,0 (that is ρB(0) is a passive state and
WB(0) = 0), but non-thermal, that is, there is no positive
real number β such that pB,i/pB,j = e−β(ωi−ωj) for all
couples (i, j) ∈ J0, 2K2. Such a non-thermal passive state
can be simply built by choosing pB,1 ∝ e−β1ω1pB,0 and
pB,2 ∝ e−β2ω2pB,0 with two different positive numbers
β1 6= β2. These conditions imply that EB(0)− Eth

B (0) 6=
0. As before, we denote βB(0) the inverse temperature of
the thermal state which has the same entropy as ρB(0).
Finally, we choose a coupling Hamiltonian implementing
a swap of the two qutrit states, namely:

V = g
∑
k 6=l

|kl〉AB〈lk|. (B4)

It is straightforward to show that for t = tSWAP verifying
gtSWAP = π/2, we have ρAB(tSWAP) = ρB(0) ⊗ ρA(0),
that is the states of qutrits A and B are swapped. This
means that the state of qutrit B is replaced with a ther-
mal state which has the same entropy, and therefore still
no ergotropyWB(0), however its energy has decreased by
EB(tSWAP) − EB(0) = Eth

B (0) − EB(0) < 0. Moreover,
the entropy of qubit A did not change:

SA(t) = S[ρA(tSWAP)] = S[ρB(0)]

= S[wB [βB(0)]] = SA(0). (B5)

Finally, we have σA < 0. The qutrit swap allows for
a spontaneous diminution of the passive amount of en-
ergy EB − WB in qubit B. Similarly, the variation of
the free energy of system A is equal to its variation of
internal energy as ∆SA = 0, that is ∆EA(tSWAP) =
−∆EB(tSWAP) ≥ 0: the free energy of qubit A was in-
creased without consuming any ergotropy.

Consequently, identifying work with the variation of
ergotropy may lead to underestimation of entropy pro-
duction. More generally, as the present example al-
lows for a spontaneous decrease of the passive amount
of energy EB − WB of B without any entropy vari-
ation of the entropy of A, it also demonstrates that
there is no other choice of effective temperature that
one could inject in Eq. (B1) to ensure its positivity:
this demonstrates that the notion of ergotropy is in-
sufficient to capture all the energy that can be assimi-
lated as work. One can note however that under spe-
cial assumptions, e.g. restricting the possible initial state
of system B to unitary-transformed thermal states, i.e.

ρB(0) = U0wB [βB(0)]U†0 , one obtains

∆SA(t) + βB(0)∆EA(t) ≥ 0, (B6)
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in agreement with the results of [27, 32]. Note that is
inequality is less tight than Eq. (5) in general as system
B can still end up in a state that contains more non-
thermal energy than ergotropy.

APPENDIX C: SYMMETRIC FORMULATION
OF THE 2ND LAW

To go from Eq. (5) to inequality (12) of main text, we
use the definitions of wA[βA(t)]:

∆SA = S[wA[βA(t)]]− S[wA[βA(0)]]

= S[wA[βA(t)]] + Tr{wA[βA(t)] logwA[βA(0)]}
−Tr{wA[βA(t)] logwA[βj(0)]} − S[wA[βA(0)]]

−Tr{wA[βA(0)] logwj [βA(0)]}
+Tr{wA[βA(0)] logwj [βA(0)]}

= −D(wA[βA(t)‖wA[βA(0)])

−Tr{wA[βA(t)] logwA[βA(0)]}
+Tr{wA[βA(0)] logwA[βA(0)]}. (C1)

This finally leads to the identity:

∆SA = −D(wA[βA(t)‖wA[βA(0)])− βA(0)QA(t), (C2)

valid for any quantum system.

APPENDIX D: PARTIAL CONTROL AND
EXTRACTABLE WORK

In this section, we focus for simplicity on the case
of two systems A and B, while the results below can
straightforwardly be extended for N systems. To formal-
ize the idea of partial access to the degree of freedom of B
introduced in the main text VI C, we assume that we can
act on B only via a family of unitaries U [α] which con-
sume one type of resources that are considered accessible.
For instance, for a bosonic bath, U [α] could be displace-
ment operators, as energy stored in a coherent displace-
ment can be efficiently re-used as work by driving a sys-
tem quasi-resonantly [35]. We then assume that the ini-
tial state ofB has the form ρB(0) = U†[α0]wB [β(0)]U [α0]
to show that

σα := ∆SA − β(0)QαB
= IAB(t) +D(U [αt]ρB(t)U†[αt]‖wB [β(0)]) ≥ 0.

(D1)

Above,

QαB = −Tr{HB

(
U [αt]ρB(t)U†[αt]− U [α0]ρB(0)U†[α0]

)
}

= −Tr{HB

(
U [αt]ρB(t)U†[αt]− wB [β(0)]

)
} (D2)

gathers the heat QB provided by system B (as defined in
main text) and all the non-thermal energy that cannot
be extracted by one of the unitaries U [α]. U [αt] is the

unitary of the family that allows to extract work from
the final state of B. Conversely,

Wacc
B = Tr{HB

(
ρB(0)− U [α0]ρB(0)U†[α0]

)
}

− Tr{HB

(
ρB(t)− U [αt]ρB(t)U†[αt]

)
}, (D3)

is the work provided by B via a variation of the accessible
resources only.
Proof.– Defining ρ̃B(t) = U [αt]ρB(t)U†[αt], we write

D(ρ̃f (t)‖wf [β(0)]) = Tr{ρ̃f (t) log ρ̃f (t)}
−Tr{ρ̃f (t) logwf [β(0)]}

= Tr{ρf (t) log ρf (t)}
−Tr{ρ̃f (t) logwf [β(0)]}

= Tr{ρf (t) log ρf (t)}
−Tr{ρf (0) log ρf (0)}
+Tr{ρf (0) log ρf (0)}
−Tr{ρ̃f (t) logwf [β(0)]}

= −∆Sf + Tr{wf [β(0)] logwf [β(0)]}
−Tr{ρ̃f (t) logwf [β(0)]}

= −∆Sf

−β(0)Tr{HB (wf [β(0)]− ρ̃f (t))}.
(D4)

We then inject this equation for ∆SB into the identity
∆SA + ∆SB = IAB to derive σα.

Note that Eq. (D1) is less tight than Eq. (5). However,
σα can become negative if the initial state of B contains
resources which are not accessible via U(α). Neverthe-
less, the coarse-grained description associated with σα
does not requires access to the entropy of B, while still
constituting a finer description of the energy exchanged
than Eq. (1).

APPENDIX E: IDEAL WORK SOURCE

We assume that the unitary evolution of A and B is
such that at any time, IAB(t) = 0 and ρAB(t) = ρA(t)⊗
ρB(t). The Liouville-Von-Neumann evolution equation
reads:

ρ̇AB(t) = −i[HA + V +HB , ρA(t)⊗ ρB(t)]. (E1)

Taking partial trace over one or the other system, we
obtain:

ρ̇A(t) = −i[Heff
A (t), ρA(t)]

ρ̇B(t) = −i[Heff
B (t), ρB(t)], (E2)

where Heff
A (t) = HA + TrB{V ρB(t)} (respectively

Heff
B (t) = HB + TrA{V ρA(t)}) is an effective Hamilto-

nian acting on system A (resp. B), where Tri denotes
the partial trace over the operator space of system i.
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We can see that both systems undergo a unitary evo-
lution due to their interaction. As a consequence, the
entropy of B, and therefore its effective inverse temper-
atures βB(t) are conserved. This leads to QB(t) = 0 and
WB(t) = −∆EB(t). We now use Eq. (E2) to express the
work provided by system B. We have

WB(t) = −
∫ t

0

dt′Tr{HB

(
−i[Heff

B (t), ρB(t)]
)
}

= i

∫ t

0

dt′Tr{[HB , HB + TrA{V ρA(t)}]ρB(t)}

= i

∫ t

0

dt′Tr{[HB ,TrA{V ρA(t)}]ρB(t)}

= i

∫ t

0

dt′Tr{[Heff
B (t),TrA{V ρA(t)}]ρB(t)}

= i

∫ t

0

dt′Tr{[Heff
B (t), V ]ρA(t)⊗ ρB(t)}

= −i
∫ t

0

dt′Tr
{

TrB{V [Heff
B (t), ρB(t)]}ρA(t)

}
=

∫ t

0

dt′Tr
{∂Heff

A (t)

∂t
ρA(t)

}
. (E3)

We finally note that in the case of only two subsystems,
the condition that B is an ideal work source for A
implies automatically that A is also an ideal work source
for B, such that the entropy of both system is constant.
As soon as three or more systems are coupled however,
the entropy of system A may vary due to interactions
with other energy sources which are not ideal work

sources, even though the entropy of B remain constant.

APPENDIX F: AUTONOMOUS TWO-QUBIT
REFRIGERATOR

For a qubit system characterized by state ρj(t), the
Von Neumann entropy depends only of the parameter

rj(t) =

√
Tr{σjxρi(t)}2 + Tr{σjyρi(t)}2 + Tr{σjzρi(t)}2,

namely:

S[ρj(t)] = −1 + rj(t)

2
log

(
1 + rj(t)

2

)
−1− rj(t)

2
log

(
1− rj(t)

2

)
. (F1)

Comparison with the entropy of a qubit thermal state

wj [βj ] = e−βjωjσ
j
z/2/Zi allows one to identify the effective

temperature βj(t) = log((1 + rj(t))/(1− rj(t))/ωj . Con-
sequently, we can compute the thermal energy Eth

j (t) =
−rj(t)ωj/2, and therefore the work and heat provided by
qubit i between t = 0 and t:

Qj = ωi∆rj(t)/2 (F2)

Wj = −ωi(∆rj(t) + ∆zj(t))/2, (F3)
where zj(t) = Tr{σjzρj(t)}. Assuming the initial states

ρA(0) = wA[βA(0)] and ρB = e−iφσ
B
x wB [βB(0)]eiφσ

B
x , we

can propagate the two-qubit state according to ρAB(t) =
e−iHABtρA(0)⊗ ρB(0)U iHABt and compute:

xA(t) = 2
g

Ω
cosφ sinφ tanh

ωAβA(0)

2
tanh

ωBβB(0)

2
cos

(ωA + ωB)t

2
sin

Ωt

2
(F4)

yA(t) = −2
g

Ω
cosφ sinφ tanh

ωAβA(0)

2
tanh

ωBβB(0)

2
sin

(ωA + ωB)t

2
sin

Ωt

2
(F5)

zA(t) =
1

4Ω2

{
−[2g2(1 + cos Ωt) + 4(ωA − ωB)2] tanh

ωAβA(0)

2
− 2g2(1− cos Ωt) cos 2φ tanh

ωBβB(0)

2

}
(F6)

xB(t) =
2

Ω
cosφ sinφ tanh

ωBβB(0)

2

[
−(ωA − ωB) cos

(ωA + ωB)t

2
sin

Ωt

2
+ Ω sin

(ωA + ωB)t

2
cos

Ωt

2

]
(F7)

yB(t) =
2

Ω
cosφ sinφ tanh

ωBβB(0)

2

[
(ωA − ωB) sin

(ωA + ωB)t

2
sin

Ωt

2
+ Ω cos

(ωA + ωB)t

2
cos

Ωt

2

]
(F8)

zB(t) =
1

4Ω2

{
−2g2(1− cos Ωt) tanh

ωAβA(0)

2
− [2g2(1 + cos Ωt) + 4(ωA − ωB)2] cos 2φ tanh

ωBβB(0)

2

}
. (F9)

(F10)

Moreover:

∆Eint(t) = −g
2(ωA − ωB)(1− cos Ωt)

2Ω2

(eωAβA(0) − eωBβB(0)) cos2 φ+ (eωAβA(0)+ωBβB(0) − 1) sin2 φ

(eωAβA(0) + 1)(eωBβB(0) + 1)
(F11)

We have introduced the parameter:

Ω =
√
g2 + (ωA − ωB)2. (F12)
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APPENDIX G: TRADE-OFF VELOCITY VERSUS
EFFICIENCY

In this section we aim to briefly illustrate that the heat
(and potentially the work) provided by the system B
does depend on the “trajectory” of A. One general con-
sequence is that faster processes are usually more dissi-
pative/irreversible and less efficient. In Fig. (4), we plot
the efficiency of the autonomous two-qubit engine con-
sidered in section VIII C against the time evolution (in
unit of ωA) for increasing coupling strength. The lighter
curve corresponds to gx/ωA = 2, while the darker curve
corresponds to gx/ωA = 3. Each curve in-between corre-
sponds to an increment of δgx/ωA = 0.1 with respect to
its lighter neighbor. We observe the expected behavior:
faster processes are less efficient. This illustrates, in par-
ticular, that the heat provided by B does depend on the
trajectory of A, as announced.

APPENDIX H: EXTRACTING WORK FROM A
NON-THERMAL PASSIVE STATE

Conditions to reproduce the two-qubit work
extraction

We consider a bi-partite machine made up of a qubit
A and a (d+ 2)-level qudit B. A is initially in a thermal
state wA[βA(0)], while B is initially in a non-thermal
passive state ρB(0) =

∑
k pk|Ek〉B〈Ek|, where {|Ek〉B}

is the eigenbasis of HB , with an effective temperature
matching that of qubit A, i.e. βA(0). As qudit B is not
initially in a thermal state, the matching temperatures
do not imply equilibrium and the non-thermal energy
of qudit B can be consumed to generate heat and work
flows between the systems. We wish to choose qudit B
such that its two lower levels behave as the second qubit
of the two-qubit engine presented in the main text. We
therefore choose an energy splitting ωB between these
two levels, and a population ratio p1/p0 = e−βB(0)ωB

with βB(0) < βA(0). Moreover, we couple these two
levels of the qudit to qubit A with the same coupling as
for the two-qubit engine. We further assume that the
other states of qudit B are not coupled to qubit A.

When this conditions are fulfilled, the joint dynamics

of the qubit and of the two first levels of the qudit ex-
actly match that of the two-qubit engine presented in the
main text. To prove this statement, we write the qudit
Hamiltonian as a block matrix:

HB =

(
ω212 ⊗ 1d 0

0 ωB12 ⊗ (1 + σz)/2

)
(H1)

Here 1n denotes the identity in dimension n and tensor
products are always denoted with the space of qubit A
on the left. We assume that only qubit B′ is coupled to
qubit A:

V ′ =

(
0 0
0 V

)
, (H2)

with V = gx
2 σx ⊗ σx +

gy
2 σy ⊗ σy. Denoting HA =

(ωA/2)σz ⊗ 1d+2 and H = HA + HB + V ′, the total
unitary evolution is:

UAB =

(
e−iω2t12 ⊗ 1d 0

0 U2x2

)
, (H3)

with U2x2 = e−iH2x2t the two-qubit reduced evolution
ruled byH2x2 = (ωA/2)σz⊗12+(ωB/2)12⊗σz+V , which
is exactly the dynamics considered in Section (VIII C).

Initial state of qudit B

We now examine the condition of existence of an ad-
missible initial passive state of B whose effective temper-
ature matches that of qubit A while fulfilling p1/p0 =
eβB(0)ωB with βB(0) < βA(0). The desired initial state
of B is:

ρB(0) =
1

N

(
e−β2ω21d 0

0 e−βBωB(1+σz)/2

)
. (H4)

We first note that SB(0) is a decreasing function of
β2 and reaches its minimum value Lim

β2→∞
SB(0) = SB′(0),

i.e. the initial entropy of the qubit B′ encoded in the
two lower level of B. Therefore a necessary condition
for the existence of an inverse temperature β2 such that
the effective temperature of B is βA(0) is that SB′(0) =
S[wB′ [βB(0)]] ≤ S[wB [βA(0)]].

To have an inverse effective temperature βA(0), the
qudit initial entropy must be equal to

S[wB [βA(0)]] = −Tr

 1

N3

 e−βA(0)ω21d log(e−βA(0)ω2/N3) 0

0
e−βA(0)ωB log(e−βA(0)ωB/N3) 0

0 log(1/N3)


=
N2

N3
S[wB′ [βA(0)]] +

N3 −N2

N3
log(d) + SSh

(
N2

N3

)
, (H5)

withN3 = 1+de−βA(0)ω2+e−βA(0)ωB , N2 = 1+e−βA(0)ωB and SSh(x) = −x log x − (1 − x)log(1 − x) the Shannon
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FIG. 4. Trade-off velocity of the work production versus efficiency. Plots of the efficiency of the autonomous two-qubit
engine against the time (in unit of ωA), for coupling strength varying from gx/ωA = 2 (lighter curve) to gx/ωA = 3 (darker
curve). The other parameters are the same as in the previous figure, namely βA(0)ωA = 2, βBrωA = 0.1, ωB/ωA = 1.63, and
gy/ωA = 0.8.

entropy. We see that S[wB [βA(0)]] is constituted of the
average of S[wB′ [βA(0)] < S[wB′ [βB ]] and log(d), plus
a positive term given by a Shannon entropy associated

with the binary distribution
{
N2

N3
, 1− N2

N3

}
. When

de−β2ω2 � 1 (small values of d or of βAω2), then
S[wB [βA(0)]] is close to S[wB′ [βA(0)] which is smaller
than S[wB′ [βB(0)] and therefore the equality cannot
be satisfied. This result let us foresee the existence
of constraints beyond Eq. (5) on the practical ability
to consume passive non-thermal energy as a resource.
On the other hand, for sufficiently large value of d,
S[wB [βA(0)] > S[ωB′ [βB(0)]]. This is for instance
clearly true when d→∞ such that S[wB [βA(0)]→ log d
while SB′(0) ≤ log 2. Thus, by increasing enough the
dimension of the qudit, one can always find a passive
non-thermal state reproducing the two-qubit engine.

To reproduce the engine of Section (VIII C), d = 5,
ω2 = 1.7ωA and β2 = 75.97 are sufficient.

APPENDIX I: CLOCK MODEL FOR
AUTONOMOUS DRIVING

In this section, we present one idealized model showing
the possibility to generate any effective time-dependent
Hamiltonian from the interaction with an auxiliary sys-
tem initialized out of equilibrium.

Specifically, we consider that the interaction Hamil-
tonian between systems A and B is controlled by an-
other degree of freedom, denoted C, and hereafter called
“clock”. For instance, A and B could be the internal
degrees of freedom of two particles, interacting via a
distance-dependent coupling, while C is the motional de-
gree of one of the particles. Then, one can prepare C
in a state localized around a large distance to the other
particle (ensuring vanishing initial interaction between

A and B), but with an average initial velocity ensuring
that the subsequent dynamics will bring the two particle
close enough to reach significative interaction for some
duration τ .

In an ideal setup [17, 71], the clock is described by
a Hamiltonian HC = vp̂C (analogous to a free photon),
with p̂C the momentum operator of C, and initialized
in a eigenstate of the position q̂C |q0〉C = q0|q0〉C . The
Hamiltonian of the total autonomous system read:

H = HA +HB +HC + VABC (I1)

VABC = G(q̂C)VAB , (I2)

where VAB is a Hamiltonian coupling systems A and B
only, and G(q) is a continuous function with finite sup-
port (typically a gate function). The coupling between
systems A and B is switched on when the clock’s spa-
ial wavepacket has an overlap with the region verifying
G(q) 6= 0, that we assume to be centered around q = 0
without loss of generality. We assume that q0 < 0 lies
outside this region. One can understand the autonomous
switching of the coupling in the interaction picture with
respect to the free clock’s Hamiltonian, where dynamics
is governed by Hamiltonian:

HI(t) = HA +HB +G(q̂C + vt)VAB (I3)

Finally, the reduced dynamics of system A and B is
effectively ruled by an effective Hamiltonian with time-
dependant coupling autonomously switching on and off
provided the wavepacket of the clock remain much local-
ized in position space with respect to the typical scale
of variation G(q). This typically coincides with the scat-
tering limit ensured by a large initial mean energy and
energy uncertainty of the clock [21, 22, 72]

Taking into account the initial state of the clock, the
full system dynamics obeys
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ρABC(t) = e−iHt (ρAB(0)⊗ |q0〉〈q0|) eiHt (I4)

= e−iHCtT e−i
∫ t
0
dt′HI(t′) (ρAB(0)⊗ |q0〉〈q0|)

(
T e−i

∫ t
0
dt′HI(t′)

)†
eiHCt (I5)

= T e−i
∫ t
0
dt′Heff

q0
(t′)ρAB(0)

(
T e−i

∫ t
0
dt′Heff

q0
(t′)
)†
⊗ e−iHCt|q0〉〈q0|eiHCt (I6)

= T e−i
∫ t
0
dt′Heff

q0
(t′)ρAB(0)

(
T e−i

∫ t
0
dt′Heff

q0
(t′)
)†
⊗ |q0 + vt〉〈q0 + vt| (I7)

where

Heff
q0 (t) = HA +HB +G(q0 + vt)VAB (I8)

is the effective time-dependent Hamiltonian controlling
the reduced dynamics of system A and B. We note that
system C is always in a factorized state with system A
and B. To go from the second to the third line, we have
used that the interaction picture Hamiltonian Eq.(I3)
preserves the clock’s state |q0〉〈q0|.

From Section VII of main text and Appendix G, we
see that the clock behave as an ideal work source and
the work it provides verifies:

WC(t) =

∫ t

0

dt′Tr

{
∂Heff

q0 (t′)

∂t′
ρAB(t′)

}

=

∫ t

0

dt′
∂

∂t′
Tr
{
Heff
q0 (t′)ρAB(t′)

}
(I9)

= G(q0 + vt)Tr{VABρAB(t)}
−G(q0)Tr{VABρAB(0)}
∆EA + ∆EB . (I10)

That is, any difference between the total energy of sys-
tem A + B between initial and final time, including the
interaction energy, corresponds to work performed by the
clock. Additionally, the entropy of the clock remains con-
stant and it does not provide any heat.

The case of autonomous switching of the coupling cor-
responds to G(q0) = G(q0 + vt) = 0 and G(q) ' 1 ap-
proximately constant over the interval (q1, q2) where it
is non-zero. The rise of G(q) from 0 to 1 is assumed to
be fast with respect to the dynamics of A and B. More-
over, we assume that the energies of A and B are each
conserved when the two system don’t interact, i.e. out-
side the time interval t′ ∈ (t1, t2), with t1 = q1−q0

v and

t2 = q2−q0
v . From these assumptions, we obtain:

WC(t) =

∫ t+1

t−1

dt′Tr

{
∂Heff

q0 (t′)

∂t′
ρAB(t′)

}

+

∫ t+2

t−2

dt′Tr

{
∂Heff

q0 (t′)

∂t′
ρAB(t′)

}
=
〈
VAB(t+1 )

〉
−
〈
VAB(t−2 )

〉
. (I11)

Thus, the energy required to switch on and off the
coupling corresponds to the work provided by the clock.

While preparing a particle in an infinite energy state
such as a position eigenstate is obviously unrealistic, the
situation above is well approximated by considering a fi-
nite wavepacket of small position (large momentum) vari-
ance. The Hamiltonian HC = vp̂C can be approximated
by a free massive particle of large mean initial impulsion
p0 such that any variation of its kinetic energy caused by
the interaction can be linearized, i.e.:

p̂2
C

2m
∼ p2

0

2m
+
p̂C − p0

m
+O(p̂C − p0)2, (I12)

where m is the particle’s mass. We finally note that
such an ideal clock model is similar to the work storage
model used in Refs. [17].

APPENDIX J: AUTONOMOUS SECOND LAW
FOR N SYSTEMS

We here extend the formulation of the second law to
the case of N quantum systems initially in a factorized

state ρtot(0) =
⊗N

i=1 ρi(0). The total Hamiltonian reads
Htot =

∑
iHi + V , where V contains all the coupling

terms. We introduce:

Itot(t) = D(ρtot(t)‖
N⊗
i=1

ρi(t)) ≥ 0, (J1)

which verifies Itot(0) = 0. We can then express the vari-
ation of the Von Neumann entropy of system j ∈ J1, NK
between time t = 0 and t:

∆Sj = Itot(t)−
∑
i6=j

∆Si. (J2)

Analogously to the case of two systems, we define for
each system i:

wi[βi(t)] =
e−βi(t)Hi

Zi(t)
, (J3)

Zi(t) = Tr{e−βi(t)Hi}, (J4)

Eth
i (t) = Tr{Hiwi[βi(t)]},
Qi(t) = −Eth

i (t) + Eth
i (0), (J5)

where βi(0) is the solution of

S[wi[βi(t)]] = S[ρi(0)]. (J6)
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We then add on both side of Eq. (J2) the quantity
−
∑
i 6=j βi(0)Qi(t) and use that

−βi(0)Qi(t)− (S[ρi(t)]− S[ρi(0)])

= −Tr{(wi[βi(t)]− wi[βi(0)]) logwi[βi(0)]}
−S[wi[βi(t)]] + S[wi[βi(0)]]

= D(wi[βi(t)]‖wi[βi(0)]), (J7)

to finally get

∆Sj −
∑
i6=j

βi(0)Qi(t) =

Itot(t) +
∑
i 6=j

D(wi[βi(t)]‖wi[βi(0)]), (J8)

which implies inequality (15) of main text. To demon-
strate inequality (16) of main text, we rewrite the varia-
tion the entropy of system j using the identity Eq. (C2)
and inject it into Eq. (J8) to get:

−
∑
i

βi(0)Qi(t) = Itot +
∑
i

D(wi[βi(t)]‖wi[βi(0)]),(J9)

which in turn implies inequality (16) of main text.

APPENDIX K: INEQUALITIES INVOLVING THE
TIME-DEPENDENT TEMPERATURE

The first line of Eq. (18) in the main text can be seen
as a tighter entropy production from which one can de-
rive tighter upper bounds for the efficiency of engines or
refrigerators. An intuitive way to see that is by intro-
ducing “average inverse temperatures” for each system j
as

β̄j∆E
th
j =

∫ t

0

duβj(u)Ėth
j (u), (K1)

which verifies:

min[βj(0), βj(t)] ≤ β̄j ≤ max[βj(0), βj(t)]. (K2)

The above property can be shown as follows. Firstly, let’s
assume, for now only, that Eth

j (u) is monotonic from 0

to t. Then, one can make a change of variable u → Eth
j

in the integral of Eq. (K1). This leads to∫ t

0

duβj(u)Ėth
j (u) =

∫ Eth
j (t)

Eth
j (0)

dEth
j βj [E

th
j ]. (K3)

By continuity of the function βj(E
th
j ), and since βj

is a monotonic function of Eth
j , there exists β̄j ∈[

βj [E
th
j (0)];βj [E

th
j (t)]

]
, if Eth

j (u) is increasing on [0; t]

(or β̄j ∈
[
βj [E

th
j (t)];βj [E

th
j (0)]

]
if Eth

j (u) is decreasing
on [0; t]), such that∫ Eth

j (t)

Eth
j (0)

dEth
j βj [E

th
j ] = β̄j [E

th
j (t)− Eth

j (0)]. (K4)
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FIG. 5. (a)Performances of the two-qubit refrigera-
tor. Plot of the efficiency of the refrigerator presented in
Fig. 2 (b) of the main text, with the additional refined up-

per bound ηCOP
Carnot introduced in (K7) in dotted-dashed line.

(b)Performances of the two-qubit engine. Plot of the
efficiency of the refrigerator presented in Fig. 3 (b) of the
main text, with the additional refined upper bound ηCarnot

introduced in (K9) in dotted-dashed line.

If now Eth
j (u) is not monotonic on [0; t], one can decom-

pose the interval in smaller intervals [tn; tn+1] on which
Eth
j (u) is monotonic. Then, applying the above transfor-

mation of each interval [tn; tn+1] we have,∫ t

0

duβj(u)Ėth
j (u) =

∑
n

∫ tn+1

tn

duβj [E
th
j (u)]Ėth

j (u)

=
∑
n

∫ Eth
j (tn+1)

Eth
j (tn)

dEth
j βj [E

th
j ]

=

∫ Eth
j (t)

Eth
j (0)

dEth
j βj [E

th
j ]. (K5)

Then, repeating the same argument of continuity and
monoticity of βj [E

th
j ], we obtain,∫ t

0

duβj(u)Ėth
j (u) = β̄j [E

th
j (t)− Eth

j (0)], (K6)

with β̄j in [Eth
j (0);Eth

j (t)] or [Eth
j (t);Eth

j (0)] depending

whether Eth
j (t) ≤ Eth

j (0) or Eth
j (t) ≥ Eth

j (0). This
corresponds to the statement (K2).
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Furthermore, coming back to the two-body refrigerator
introduced in section VIII B of the main text, the use of
the first line of Eq. (18) implies

ηCOP(t) =
QA(t)

WA(t) +WB(t)−∆Eint(t)

≤ ηCOP
Carnot :=

β̄B
β̄A − β̄B

. (K7)

Additionally, one can show

ηCOP
Carnot ≤ η

COP
Carnot =

βB(0)

βA(0)− βB(0)
. (K8)

In Fig. 5 (a) we plot the efficiency of the refrigerator
as in Fig.2 of the main text, but adding the refined up-

per bound ηCOP
Carnot. The remaining distance between the

actual efficiency ηCOP and ηCOP
Carnot is solely due to the

generation of correlation IAB(t) between A and B.

Similarly, for the two-body engine introduced in sec-
tion VIII C, we have

η(t) =
−WA(t)−WB(t) + ∆Eint(t)

QB(t)

≤ ηCarnot := 1− β̄B
β̄A
≤ ηCarnot = 1− βB(0)

βA(0)
.

(K9)

The corresponding plot is presented in Fig. 5 (b).
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N. Somaschi, A. Auffèves, and P. Senellart, Coherence-
powered work exchanges between a solid-state qubit
and light fields, arXiv 10.48550/arXiv.2202.01109 (2022),
2202.01109.

[71] N. Gisin and E. Z. Cruzeiro, Quantum Measurements,
Energy Conservation and Quantum Clocks, Ann. Phys.
530, 1700388 (2018).

[72] S. Rogers and A. N. Jordan, Postselection and quantum
energetics, Phys. Rev. A 106, 052214 (2022).

https://doi.org/10.1038/s41467-019-10333-7
https://doi.org/10.1038/s41467-019-10333-7
https://doi.org/10.1103/PhysRevE.104.L022103
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.48550/arXiv.2202.01109
https://arxiv.org/abs/2202.01109
https://doi.org/10.1002/andp.201700388
https://doi.org/10.1002/andp.201700388
https://doi.org/10.1103/PhysRevA.106.052214

	Extending the laws of thermodynamics for autonomous, arbitrary quantum systems
	Abstract
	I Introduction
	II Background: Second law for a quantum system coupled to ideal heat and work sources
	III Second law for two arbitrary quantum systems
	IV Properties of work
	V Work-like resources beyond erogtropy
	VI  General consequences of Eq. (5)
	A A tighter bound for a bath starting at equilibrium
	B A fully symmetric description
	C Accessing the effective temperature

	VII Retrieving ideal sources of work and heat
	VIII Bi-partite machines
	A Carnot Bounds
	B Example: a refrigerator composed of two qubits
	C Example: an engine composed of two qubits
	D Example: exploiting passive non-thermal states

	IX Describing fully autonomous machines
	A Steady-state engines
	B Autonomous piston
	C Second law for N systems

	X Generalizations
	A Initial correlations
	B Bounds involving the time-dependent temperatures

	XI Conclusion and outlook
	 Acknowledgements

	 Appendix A: Interpretation of E as the preparation work cost
	 Appendix B: Negativity of the entropy production defined from the splitting ergotropy - passive energy
	 Appendix C: Symmetric formulation of the 2nd law
	 Appendix D: Partial control and extractable work
	 Appendix E: Ideal work source
	 Appendix F: Autonomous two-qubit refrigerator
	 Appendix G: Trade-off velocity versus efficiency
	 Appendix H: Extracting work from a non-thermal passive state
	 Conditions to reproduce the two-qubit work extraction
	 Initial state of qudit B

	 Appendix I: Clock model for autonomous driving
	 Appendix J: Autonomous second law for N systems
	 Appendix K: Inequalities involving the time-dependent temperature
	 References


