
HAL Id: hal-03903108
https://hal.science/hal-03903108

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In the Land of MMUs: Multiarchitecture OS-Agnostic
Virtual Memory Forensics
Andrea Oliveri, Davide Balzarotti

To cite this version:
Andrea Oliveri, Davide Balzarotti. In the Land of MMUs: Multiarchitecture OS-Agnostic Vir-
tual Memory Forensics. ACM Transactions on Privacy and Security, 2022, 25 (4), pp.1-32.
�10.1145/3528102�. �hal-03903108�

https://hal.science/hal-03903108
https://hal.archives-ouvertes.fr

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics

ANDREA OLIVERI, Eurecom, France

DAVIDE BALZAROTTI, Eurecom, France

The first step required to perform any analysis of a physical memory image is the reconstruction of the virtual address spaces, which
allows translating virtual addresses to their corresponding physical offsets. However, this phase is often overlooked and the challenges
related to it are rarely discussed in the literature. Practical tools solve the problem by using a set of custom heuristics tailored on a
very small number of well-known operating systems running on few architectures.

In this paper, we look for the first time at all the different ways the virtual to physical translation can be operated in 10 different CPU
architectures. In each case, we study the inviolable constraints imposed by the MMU that can be used to build signatures to recover
the required data structures from memory without any knowledge about the running operating system. We build a proof-of-concept
tool to experiment with the extraction of virtual address spaces showing the challenges of performing an OS-agnostic virtual to
physical address translation in real-world scenarios. We conduct experiments on a large set of 26 different OSs and a use case on a real
hardware device. Finally, we show a possible usage of our technique to retrieve information about user space processes running on an
unknown OS without any knowledge of its internals.

CCS Concepts: • Applied computing → System forensics; • Security and privacy → Operating systems security.

Additional Key Words and Phrases: memory forensics, OS-agnostic forensics, virtual memory, MMU

ACM Reference Format:
Andrea Oliveri and Davide Balzarotti. 2022. In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics. 1, 1
(April 2022), 33 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The problem of recovering semantic information from low-level data is common to many areas of computer security. In
particular, this is the main obstacle when performing a physical memory analysis—a task that is key for both memory
forensics and virtual machine introspection. The problem, often called the semantic gap, captures the challenge of
“interpreting low level bits and bytes into a high level semantic state of an in-guest operating system” [35]. However,
at a closer look, the semantic gap can be further divided into two different aspects: the reconstruction of the virtual
address spaces (which deal with translating pointers expressed as virtual addresses to their physical position in the
memory) and the recovery and identification of key operating system (OS) kernel data structures (e.g. those related to
running processes, memory management, and kernel modules).

In practice, most tools and existing techniques neglect the first aspect. For instance, Libvmi, a popular virtual machine
introspection library, explicitly mentions that the virtual-to-physical translation is only available on live VMs as it would
otherwise require OS-specific heuristics [67]. Similarly, Fu and Lin [35] acknowledge that to analyze the content of the
memory, the first step requires “to perform the MMU level virtual to physical (V2P) address translation” but the authors
again avoid the problem by inspecting the registers of a live target. Other papers focusing on narrowing the semantic
gap, such as Virtuoso [27], relied instead on pre-existing frameworks (e.g., Volatility[64] and Rekall[23]) for the V2P
translation. These memory forensics frameworks, as well as products developed by BlackBag[2] and Volexity[63], rely,

Authors’ addresses: Andrea Oliveri, Eurecom, Sophia-Antipolis, France, andrea.oliveri@eurecom.fr; Davide Balzarotti, Eurecom, Sophia-Antipolis, France,
davide.balzarotti@eurecom.fr.

2022. Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Andrea Oliveri and Davide Balzarotti

in turn, on a set of manually curated and very specific OS and architecture heuristics to locate kernel data structures
that are used to recover the mapping between the virtual and physical address spaces. However, these heuristics are
based on a deep knowledge of the internals of the OS under analysis, thus precluding their generalization to different
operating systems or different CPU architectures. In other words, every memory analysis study to date has “avoided”
the virtual memory translation step either by focusing only on live systems or by considering only a small subset of
OSs (in practice, Linux, Windows and OSX) running only on the x86 architecture and, partially, on ARM (in particular
Android and recent Apple M1 devices). However, as recently shown by Cozzi et al. [25], IoT malware authors started
to target also architectures less common in desktop environments, such as PowerPC and MIPS. This is troublesome
from both an academic and a practical aspect. In the academic community the virtual-to-physical address translation,
which is a fundamental step of the semantic gap reconstruction, is considered a solved problem. However, except for a
few OSs running on x86 and ARM, this is far from being true. At the same time, from a practical point of view, the
lack of cross-architecture OS-independent analysis techniques to perform V2P translation poses a serious challenge for
the future of memory analysis. In fact, the rapid increase in IoT devices and cloud-hosted VMs translates into a more
variegated number of architectures and operating systems.

1.1 Contribution

In this work, for the first time, we systematically study how to bridge the semantic gap in virtual-to-physical translations
in 10 different CPU architectures in anOS-agnostic way.We show how the traditional page tables, whichmost researchers
are familiar with, is only one of many possible ways to perform the V2P translation and how the memory management
unit (MMU) affect the reconstruction of V2P mappings. In each case, we study the inviolable constraints imposed by the
MMU and use them to build signatures to recover the required data structures from memory without any knowledge
about the running OS. We also introduce a static code analysis step to recover the state of the MMU registers configured
by the OS at boot time. We implement these techniques in a tool that, in contrast to the existing forensics tools available,
uses only parameters derived from the CPU ISA to recover V2P mappings. We test our tool against memory dumps
collected from 26 different operating systems and a physical device, proving the usefulness and accuracy of the described
techniques in the reconstruction of the V2P mapping in real-world scenarios. Finally, we show a possible practical
usage of our technique to recover and analyze the user space processes running on an unknown device. This permits
an analyst to start a forensics analysis on the system without any knowledge of the internals of the OS.

2 VIRTUAL MEMORY: BASIC CONCEPTS

The term Virtual Memory refers to an abstraction of the memory resources available on a given machine. In virtual
memory mode, each program performs memory accesses using an isolated and private address space called virtual
address space (VAS). The combined work of the MMU and the OS permits to translate virtual addresses of a particular
process into physical addresses that specify where the data is physically located in memory.

The virtual memory abstraction provides numerous benefits, allowing programs to be written as if they had complete
and unrestricted access to the entire physical memory, regardless of its usage and the presence of other programs. This
permits to run multiple processes at the same time without worrying about the actual physical memory configuration,
which can change across different types of machines. Virtual memory provides also isolation and protection between
processes by preventing malicious, unauthorized, or poorly implemented programs to access the memory of other
running programs. Furthermore, it allows a program to allocate memory beyond the limits of the physical address space
(PAS) by mapping part of the VAS of a process onto secondary storage.
Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 3

Virtual
address	space

(VAS)

Physical
address	space

(PAS)

Se
gm

en
t

Pa
ge

M
em

or
y

H
ol
e

Segmented
address	space

(SAS)

Fig. 1. Virtual, segmented and physical address spaces. Memory holes are physical memory regions that are not usable as storage
memory regions (e.g MMIO, device reserved regions, ROMs, not assigned regions etc.)

The virtual memory abstraction is implemented in different architectures by relying on two different techniques:
segmentation and paging, as illustrated in Figure 1. Segmentation, the oldest of the twomethods, was originally developed
to organize and protect running programs. Its goal is to divide the VAS of a process into one or more logical units, called
segments, with different sizes and access permissions, by mapping them into another address space called segmented
address space. In general, segments follow the internal structure of the program that they represent: the memory of
a process can be divided, for example, into two different segments containing, respectively, the code and the data.
Segmentation, however, does not permit optimal use of the available memory: if we map segments of various programs
directly on the physical memory, the PAS starts to fragment and at some point it is impossible to allocate new chunks
of sufficient size to accommodate new segments.

To solve this problem we first need to introduce the concept of page, which is a contiguous block of memory of fixed
(and typically small) size. Then we divide the segmented address space (SAS) into a set of pages (called virtual pages), and
we define a way to map them to pages in the physical address space (called physical pages) as shown in Figure 1. This
technique, called paging, drastically reduces the fragmentation of the physical memory and contributes to maximizing
the use of the available resources. In the context of our study, it is important to understand that both segmentation and
paging require some in-memory data structures, or dedicated CPU registers, that need to be configured by the OS, and
used by the MMU.

Manuscript submitted to ACM

4 Andrea Oliveri and Davide Balzarotti

Offset

RADIX_ROOT Huge
Page

Directory tables Pages Page tables

Segmented address
L0 index L1 index L2 index L3 index

Page address Offset

Physical address

Fig. 2. Radix tree address resolution process.

2.1 MMU

The MMU is the hardware device that converts the virtual addresses used by the processor to physical addresses. To
accomplish this task, the MMU needs to be configured by using special system registers, while in-memory structures that
maintain the virtual-to-physical mapping have to be defined and continuously updated by the operating system. When
the MMU fails to resolve a requested virtual address, it raises an interrupt to signal the OS to update the in-memory
related structures.

It is important to note that the MMU demands strict conformity of the shape and topology of the in-memory structure
to the ISA and MMU configuration requirements. Otherwise, it raises an exception and aborts the address translation.

The translation process can involve up to two separate translations, both accomplished by the MMU: segmentation,
which converts virtual to segmented addresses, and paging, which converts segmented addresses to physical ones.
Some architectures use either one or the other, while others use both.

In general, when the system boots, the MMU is virtually disabled and all the virtual addresses are identically
transformed to physical ones. This allows the OS to start in a simplified memory environment and gives it time to
properly configure and enable the MMU before spawning other processes.

Since address translation is a performance bottleneck, the latest translated addresses are cached in a few but low-
latency hardware structures called Translation Lookaside Buffers (TLBs). Before starting a translation, the MMU checks
if TLBs contain an already resolved virtual address and, if so, it returns directly the corresponding physical addresses.

Our analysis of the most common CPU architectures shows that two main approaches are used for paging: radix
trees, and inverted page tables.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 5

2.2 Radix Tree

Radix trees maintain a hierarchical representation of the SAS. Each tree is composed (see Figure 2) by N-1 levels of
directory tables, each containing entries that either point to tables of the lower level or to a physical memory page (huge
pages), whose size depends on the level itself. The final level is composed of page tables that point only to same-size
physical memory pages. The tree root is the physical address of the directory table of Level 0 and it identifies uniquely
the SAS and, consequently, the process to which it is assigned.1 This address is stored in a special system register (here
generically called RADIX_ROOT) by the operating system and it is used by the MMU to locate the radix tree when it starts
a new translation. The translation performed by the MMU starts from the root table pointed by the address contained
in RADIX_ROOT: the MMU then divides the segmented address into two parts: a prefix and a page offset. The prefix part
is divided into a series of N chunks that represent the hierarchical sequence of indexes to be used to locate the entry
inside a table of the corresponding level. This process ends when an entry points to a physical page. At this point, the
MMU returns the concatenation of the page offset extracted by the segmented address to the physical page address
found in the last page table entry.

2.3 Inverted page tables

Inverted page tables maintain one entry for every physical page in the system along with the associated virtual page
address in its segmented space. As such, instead of having one radix tree per segmented space, a single inverted page
table is maintained for all the processes of the system. Inverted page tables are often implemented by using a hash
table, whose address is stored in a special system register. The OS then needs to use the same hash function used by the
MMU, as defined in the processor ISA, to index an entry in the hash table when allocating memory for a process. When
the system needs to resolve an address, (see the right side of Figure 4) the segmented address is split into the page
number and a page offset. Starting from the page number and a unique segment identifier (VSID), the MMU generates a
hash value which is retrieved from the hash table and, in the case of a positive match, the physical address is formed
by concatenating the physical page address, indexed by the hash, with the page offset extracted from the segmented
address.

3 APPROACH

The goal of our work is the automatically recover the virtual address space (VAS) of the kernel and all user space
processes contained in a memory dump, independently from the OS and the applications that are running on the
machine. The only input to our analysis is the CPU architecture and a copy of the raw memory. To reconstruct the set
of VASs we need to extract the configuration of the MMU and also locate and interpret the data structures that are used
by the MMU to translate virtual to physical addresses. While the actual techniques we employ are architecture-specific,
and therefore we will present them in detail in the following sections, we can summarize them in three broad categories.

3.1 Structural Signatures

The use of structural signatures computed over the values of individual fields (sometimes called invariants) has been
used in several studies to locate particular data structures in memory dumps or binary blobs. This technique has been
successfully applied to retrieve OS kernel structures [28, 47], application data [46], user space stack layouts [1], internal
representations of malicious processes [26], and hypervisors/VMs configurations [36]. We follow a similar approach by
1In certain architectures, the kernel does not have its own radix tree but is instead mapped inside every process segmented space at a fixed continuous
block of addresses.

Manuscript submitted to ACM

6 Andrea Oliveri and Davide Balzarotti

manually studying the different MMU data structures and compiling a list of structural constraints that can be used to
build pattern-matching signatures.

For instance, a set of constraints to match Intel x86_64 ISA directory tables require each entry pointing to an inferior
table to have the P bit set (entry[P]==1), some other bits unset (entry[MAXPHYADDR:51]==0 ∧ entry[7]==0) and
the pointer containing a paging table to be in the PAS range (entry[addr] ≪ 12 ∈ RAM). These constraints are then
translated to patterns that can be used to verify whether the bits of a given physical page satisfy the requirements. The
complete list of constraints we use in this paper is reported in Appendix B. It is important to stress that these signatures
are derived solely by analyzing the inviolable constraints imposed by the MMU and they are completely independent of
the OS.

3.2 Validation Rules

Structural signatures are used to match all the possible regions of memory that could contain a given data structure.
However, the patterns are not very unique and therefore result in a large number of false positives. Therefore, the
second type of technique we use is a set of rules to filter out the noise and reduce the number of candidates. However,
since we cannot make assumptions on the underlying OS and we already use all the information from the MMU to
distil the signatures in the first place, possible validation routines are scarce and difficult to construct.

The problem is further complicated by the great variability of OS behaviours in managing the system resources.
For instance, one might think to discard tables that contain pointers to physical pages outside the size of the physical
memory itself. However, even this simple rule fails in practice as some OSs create a complete radix tree that can
address all the possible physical memory pages of the RAM, whether such memory is installed or not on the machine.
Furthermore, all OSs maintain a mapping to MMIO ranges that are often allocated far outside the PAS. Another simple
strategy would be to set a minimum threshold on the number of pages (but this fails as the kernel can map the process
VAS using a single physical page) or to look at how the physical pages of a process are distributed in the physical
memory and discard the structure if not even two pages are consecutive. However, even this simple idea did not work
as we encountered operating systems that spread physical pages all over the entire PAS and, in general, is false for all
the OSs in presence of high memory pressure.

To avoid these problems, our strategy to create validation rules is based on the use of other inviolable constraints
imposed by other CPU subsystems. In particular, we aim at identifying pages that must always be mapped in the VAS
to have a functional system (for instance, the ones containing the Interrupt Address Table) for certain architectures and
use them to discard those VASs that do not map their physical addresses.

3.3 Binary Code Analysis

Some architectures use MMU-related CPU registers that contain values that do not refer to any in-memory data
structure. Thus, to recover these values, we cannot rely on signatures. However, we can still take advantage of how the
boot process works: when a machine boots up the bootloader loads the kernel code into physical memory and runs it.
In this early boot stage, the MMU is disabled and all the virtual addresses are mapped in a fixed way to the physical
ones. At this point, the kernel sets up the MMU-related registers based on the physical configuration of the machine
(e.g. the CPU model or the size of the RAM). When we dump the physical memory of the system, this contains all the
allocated kernel code2 and this allows us to try to recover the content of the MMU registers by analyzing the assembly

2It is possible that the MMU setup is done by the bootloader and the kernel can delete or rewrite the physical memory pages containing it. However, all
the OS we encountered in our study leave the task of the configuration of the MMU to the kernel itself.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 7

instructions used by the kernel code to load their values. In particular, for architectures that have aligned and fixed-size
opcodes, we can search for the byte patterns corresponding to the instructions that load values inside the MMU-related
registers. Then we can identify the functions containing these opcodes and finally, we can use data-flow analysis to
derive which values are loaded inside them. To accomplish this task, default values of some CPU registers at the system
power-on are required because the kernel could use them to decide how to configure the MMU.

In the next three sections, we discuss ten of the most popular CPU architectures, grouped into three separate groups
based on the different MMU modes available on them. The first group includes ARM, RISC-V and x86 in their 32 and
64-bit implementations. These architectures use exclusively radix tree-based MMU modes. The second group contains
PowerPC (32-bit), which uses the inverted page table as main MMU mode but, at the same time, also has another
peculiar mode that distinguishes it from other architectures. Finally, the last group contains MIPS in its 32 and 64-bit
flavours. These architectures show unique and very flexible management of the virtual memory, which requires a
separate category. The last architecture, Power, is treated instead in Appendix A.

4 GROUP I: RADIX TREES

This group includes three architectures that use a radix tree to translate virtual to physical addresses. We present them
here ordered from the easiest to the hardest to analyze.

4.1 RISC-V (32 and 64-bit)

4.1.1 MMU Internals. RISC-V is an open-source ISA first published by UC Berkeley in 2010. It has become increasingly
popular as several large companies[21][66][44] have announced its use in their future products, or they are implementing
their custom versions. The last ratified ISA [65] features both 32-bit and 64-bit little-endian CPUs that support three
different MMU modes: SV32, SV39 and SV48 (the last two available only for 64-bit CPUs). As there is no segmentation
unit in RISC-V, virtual addresses are identically mapped to segmented ones. The MMU uses the SATP register as
RADIX_ROOT register, which also permits to select the MMU mode. The radix tree is composed of two, three, or four
table levels (respectively for SV32, SV39 and SV48) with a predefined size and fixed layout of the entries specified by the
ISA. Every mode supports both 4KiB pages and huge pages of different sizes.

4.1.2 Analysis. In RISC-V the shape of the entries permits to distinguish among tables of different levels, thus allowing
the reconstruction of a radix tree in a very simple way. The algorithm starts by parsing the memory dump and identifying
directory tables of all levels, page tables, and data pages by using the set of constraint signatures presented in Appendix
B. Starting from data pages and empty tables we then look for all tables which point to them and recursively list all
tables of level N-1 pointing to the ones of level N in a forward search. By using this technique we can completely
reconstruct the radix tree, find the top-level table (and its address contained in the SATP register), and derive the VAS
associated with it. Furthermore, the privilege separation and access permission bits, present in the table entries, permit
to distinguish user pages from kernel ones, and pages containing data from those containing executable code.

4.2 Intel x86 (32 and 64-bit)

4.2.1 MMU Internals. First introduced in 1985 by Intel, the x86 ISA has been extended over the years by adding new
functionalities and new instructions, maintaining however full backward compatibility. This fact has resulted in the
existence of a segmentation unit that must be enabled to use the paging one[42]. Before the existence of the paging
unit, OSs running on x86 ISA used segmentation as a form of isolation between the processes running on the system.

Manuscript submitted to ACM

8 Andrea Oliveri and Davide Balzarotti

However, after the introduction of the paging unit, segmentation was quickly replaced by paging by all OSs. As we
could not find any case in which the two were used in combination, for the 32-bit version of the architecture we assume
that the operating system defines segments that identically map virtual addresses to segmented ones.

When AMD introduced the x86_64 architecture extension (also known as AMD64), aware of the fact that the
segmentation unit was not used by any OSs, it virtually disabled it: when the MMU is configured for using the 64-bit
specific paging mode it continues to operate with the segmentation unit enabled but it uses an automatically defined
set of segments, which identically map all the virtual addresses to segmented ones.

The current implementation of the x86 architecture supports three major MMU modes with paging enabled: 32-bit
mode, PAE mode, and 4-level mode, the last one available only in 64-bit. The physical address of the root of the radix
tree is stored in the CR3 register and the radix tree is composed, respectively, by two, three, or four table levels with a
predefined size and fixed layout of the entries. Every mode supports 4KiB pages, as well as huge pages of different sizes.

4.2.2 Analysis. In contrast to the RISC-V ISA, the x86 directory table and page tables are, in general, not distinguishable.
This peculiarity is exploited by some OSs (for example the Windows family) to allocate a reduced number of tables by
inserting self-references entries in them (see Figure 3). This poses a problem for our analysis as it is difficult to tell
whether a parsed table is the root of a radix tree, an intermediate level, or a leaf one.

To solve this problem we use another structure that must be initialized by any operating system and that has a
predefined format: the interrupt table. In the x86 architecture, the interrupt descriptor table (IDT) has a predefined
length and is composed of entries of fixed format. Each entry contains the virtual address of an interrupt handler to
which the CPU jumps when it receives an interrupt. Every process must have mapped the IDT in its PAS because an
interrupt can occur at every moment also when the system is not running kernel code. This allows us to discriminate
between root directory tables and lower-level tables: true top directory tables are starting points of radix trees that are
able to resolve all the virtual interrupt handler addresses while trees with false-positive top directory tables, in general,
are not able to do so. As for the RISC-V architecture, it is possible to infer which ranges of the VAS of a process contain
code or data and its privilege level thanks to the flags available in the tables entries.

4.3 ARM (32-bit)

4.3.1 MMU Internals. ARM is a RISC (Reduced Instruction Set Computer) architecture developed by ARM Holdings
and widely adopted in mobile and IoT devices. ARM-based processors are produced in different implementations and
versions by many companies. In our study, we consider only the Application Profile ARM processors (ARM-A) which is
the only one implementing an MMU. ARM32 CPUs are bi-endian and support two MMU modes[39]: short and long
descriptor modes for which the radix tree have, respectively, two and three levels and map 4KiB pages as well as huge
pages of different sizes. Each VAS is divided into two parts. The high-end one is resolved by using a radix tree pointed
by the TTBR1 register, contains the kernel code/data, and is accessible only in that mode. The lower end is instead
resolved by using the TTBR0 register, which points to a different radix tree, containing the data structures of the running
process.3 At every change of the execution context, the scheduler loads the value of TTBR0 register accordingly to
the scheduled process while the value of TTBR1 is left unchanged. The TTBCR register controls which MMU mode is
used and the size of the kernel and user VAS, from which it derives the size of the user space top-level tables in short
descriptor mode.

3It is also possible for the OS to use only TTBR0 as RADIX_ROOT register for both the kernel and the user parts of the virtual address space.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 9

SATPSATP

(a) RISC-V

CR3

(b) AMD64

TTBR0

(c) ARM32 (user process)

TTBRx_EL1

(d) AARCH64

Fig. 3. Radix trees used by RISC-V, AMD64, ARM32, and AArch64. Tables with different layouts are represented with different colours.
Tables and pages with partially dashed borders can have different sizes. Tables with full dashed borders shall not exist in the tree.
Note the possibility for x86 and AArch64 tables to have self-referencing entries.

4.3.2 Analysis. Because of the peculiarities of the ARM architecture, an approach based solely on signatures (like the
ones used for RISC-V and Intel) is not sufficient. In fact, we first need to recover the value of the TTBCR register to
identify the virtual address space layout. For this reason, ARM32 requires to first perform our code analysis phase
described in Section 3. If the procedure succeeds, we then continue our analysis based on the retrieved information.

As it was for RISC-V, also in ARM short descriptor mode the tables can be easily classified as page or directory tables.
We can then parse the memory looking for kernel directory tables and page tables, which have both a fixed size, and
user process directory tables of sizes compatible with the recovered value of TTBCR.

If the MMU is configured in long descriptor mode, things get more complicated. In this mode, it is not possible to
distinguish between directory tables of different levels but only between directory and page tables. Moreover, in ARM
we cannot rely on the IDT to filter out false radix trees because its entries do not have a fixed format, which makes them
difficult to locate in memory. To solve the problem, we look for pages containing code that must always be present to
have a fully functional paginated system and which must be reachable in kernel mode. Our technique is based on the
fact that in ARM32 CPUs when the MMU is unable to resolve an address it raises an interrupt and it inserts information
about the cause of the faulty translation inside the IFSR / DFSR registers. These are privileged registers accessible only
when the CPU is in kernel mode and must be read by the MMU related interrupt handlers to correctly manage the
fault. Since this code snippet needs to always be accessible in memory, we can look for opcodes that read the content of

Manuscript submitted to ACM

10 Andrea Oliveri and Davide Balzarotti

IFSR / DFSR registers to identify physical pages which must be indexed from a valid kernel radix tree and filter out false
positive ones.

4.4 ARM (64-bit)

4.4.1 MMU Internals. Introduced in 2011, ARM 64-bit (also known as AArch64) is a new instruction set that shows
retro compatibility with ARM32 and, at the same time, drastically changes the internal organization of the CPU by
introducing new operating modes, new MMU modes, and by defining different sets of system registers for different CPU
modes. The ARM32 TTBR0, TTBR1 and TTBCR registers are replaced by TTBR0_EL1, TTBR1_EL1 and TCR_EL1: the EL1
suffix indicates that they are writable when the CPU is in kernel mode and are used in kernel and less privilege modes
as user mode (suffixes EL2 and EL3 are used to indicate registers that are part of the register sets of the higher privileged
hypervisor and monitor modes). Note that also the MMU configuration register (TCR) is duplicated between CPU modes:
the MMU can be configured to have different behaviours when the CPU runs user and kernel code, hypervisor, or
monitor one. AArch64 introduces two new MMU modes: the long mode and LPA long mode, the latter using a slightly
modified version of table entries derived from the former and supporting a PAS up to 52 bits. These two modes are
based on the long mode of ARM32 and they inherit the impossibility to distinguish directory tables of different levels,
thus permitting the existence of loops in the radix tree. Important changes are introduced by AArch64 on the supported
physical page sizes and the number of levels of the radix trees. AArch64 support three physical page size (4KiB, 16KiB,
and 64KiB, plus huge pages) which can be configured independently for the kernel and the user processes. Furthermore,
the sizes of the kernel and user process parts of the VAS and the sizes chosen for the physical pages determine the size
of the tables, their alignment in memory, and the number of levels in the radix trees.

4.4.2 Analysis. To deal with the AArch64 MMU specificity, we adapted the parsing technique used for ARM32, but
replacing the IFSR / DFSR registers with their corresponding ESR_EL1, FAR_EL1 and ELR_EL1. We also modified the
algorithm to reconstruct radix trees compatible with the new constraints based on the shape imposed by TCR_EL1. The
impossibility, also for ARM64, to recover the IDT does not permit to resolve the ambiguity due to the presence of loops
in trees, supposedly leaving more false positives compared to ARM32 short descriptor mode. This affects in particular
user processes that do not contain any specific instructions or code snippets we can use to filter out false positives.

5 GROUP II: INVERTED PAGE TABLES

5.1 PowerPC (32-bits)

5.1.1 MMU Internals. PowerPC is a 32-bit big-endian architecture used mainly in desktop and medium-class servers. It
supports only one MMU operating mode based on Block Address Translation + Inverted Hash Table (BAT+SDR1 mode).
In BAT+SDR1 mode the MMU uses two concurrent resolution processes [34], one based on block translation and one
on the inverted page table: if the block one succeeds the inverted page resolution is interrupted.

The block translation mode relies on a set of CPU registers (the BAT set) to define fixed mappings between contiguous
blocks of VAS to same-size blocks in the PAS. If the virtual address to be translated belongs to one of the ranges defined
by the BAT registers the MMU returns the associated physical address. Each BAT register describes the characteristics
of one of the contiguous blocks: its physical start address, its length, the start address of the associated VAS, the
permissions flags and CPU modes that are allowed to access the memory.

The inverted page table resolution walk starts, instead, by selecting one of the 16 segment registers (SR, in Figure 4)
according to the upper four bits of the virtual address. Segment registers contain access permission bits in addition to a
Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 11

virtual segment identifier (VSID), which is combined with the remaining part of the virtual address to form the Virtual
Page Number (VPN). The VPN is then passed as input to the hash function to get the key for the hash table (whose
starting address and size are stored in SDR1 register). The extracted value, the real page number, is the physical address
of the page associated with the initial virtual address.

5.1.2 Analysis. As in the case of ARM and AArch64, a combination of parsing and data-flow analysis is required to
recover the information stored in the CPU registers. Our analysis starts by looking for the hash tables of the minimum
size allowed by the ISA and then we progressively aggregate them to form bigger ones. We also perform a code analysis
phase to try to recover the SDR1 value which indicates, without ambiguity, the physical address and the size of the
table. The same code analysis also tries to recover the content of the SR and BAT registers. However, some of the BAT
registers could be used on a system-wide base, for example by defining fixed blocks of physical memory dedicated
to the kernel data and code, or on a per-process base, thus changing at every context switch. In the second case, the
code analysis phase cannot succeed because of the custom storage format used by the kernel to save the registers in its
private context switch data structures. In the same way, the SR register set is used to define segments inside the SAS
and, in general, the majority of them change during a context switch. This fact does not permit to recover the segment
definitions and cannot permit to assign them, unambiguously, to each different process.

This complexity in the use of the BAT and SR registers affects the ability to recover the VAS of the kernel/user
processes in two different ways. First, even when we can recover the content of BAT registers, they do not contain any
information about which process they refer to. Furthermore, the MMU uses the upper four bits of a virtual address
resolved through the inverted page table to choose the segment to use during the translation. Therefore, if we are
not able to extract and associate the SR registers to a process, we can only partially reconstruct the V2P mapping. In
Section 8.4 we will see the consequences of these on the results.

6 GROUP III: SOFTWARE-DEFINED ADDRESS TRANSLATION

6.1 MIPS (32 and 64-bit)

6.1.1 MMU Internals. MIPS is a modular RISC architecture developed by MIPS Technology and largely used in
embedded devices. The current ISA release (revision 6) features both 32-bit and 64-bit bi-endian CPU flavours and it
supports a range of both mandatory and optional MMU modes. The segmentation unit is always active, also during
boot, and the VAS is partitioned into multiple segments with different access permissions and translation policies.
Segments can be mainly classified in unmapped and mapped: virtual addresses which belong to unmapped segments are
translated directly into physical addresses. On the contrary, mapped segments are paginated and the virtual addresses
which belong to them are translated by using the Translation Lookaside Buffers.

The MIPS ISA defines a default set of segments which contains at least one unmapped segment contain the kernel
code (kseg0 and kseg1 in 32-bit and xkphys in 64-bit implementations). The ISA also defines a default mapped segment
which contains virtual addresses associated with code and data of user processes (useg / xuseg), and at least one mapped
segment which contains data structures of the kernel (kseg2 and kseg3 in 32-bit and xkseg in 64-bit implementations).

At boot, the segments use the ISA predefined layout (shown in Figure 5) but some MIPS CPU models permit, by
modifying the content of the MMU SegCtl registers, to redefine segments by changing their starting virtual address,
size, access permissions and translation mode. They also allow to completely disable the unmapped kernel segment
(EVA mode), thus using paging also for the addresses of the kernel code.

Manuscript submitted to ACM

12 Andrea Oliveri and Davide Balzarotti

...

BAT0

BAT1

BAT15

Virtual	address

Offset

SR

...

SR0

SR1

SR15

...

SDR1

VSIDs

Hash	function

Offset

C
om

pa
re

C
om

pa
re

H
as
h	
ta
bl
e

Segmentation

Paging

Offset

Physical	addresses
C
om

pa
re

Physical	pages
addresses Hashes

Virtual	blocks
addresses

Physical	blocks
addresses

V
PN

Fig. 4. Address resolution in PowerPC.

All the architectures we discussed so far automatically manage the TLBs content by using the MMU hardware TLB
refiller which, thanks to the in-memory structures defined by the OS, can resolve segmented addresses never solved
before and refill the TLBs. However, MIPS CPUs by default do not have a hardware TLB refiller and all the complexity
of the paging and TLB refilling is therefore delegated to the operating system. This approach offers great flexibility as
the OS can choose which data structure to use to manage the memory allocation and segmented addresses translations,
e.g. by using a complete software implementation of radix trees or huge arrays of page table entries 4. When the MMU
does not find a valid TLB entry able to translate a segmented address, it raises an exception. In response, the OS needs
to look into its software paging data structures and refills the TLB with the missing physical page.

Finally, the MIPS ISA defines also an optional MMU mode based on a hardware radix tree TLB refiller, which is much
more flexible than the equivalent modes provided by other architectures. In fact, the number of the radix tree levels, the
size of huge pages, and the bits of a segmented address that need to be translated are all completely configurable via
MMU registers. Furthermore, the format of the page table entries is not completely defined by the ISA, which only lists
the essential fields and leave their absolute positions inside the page table entries to be configured via MMU registers.

6.1.2 Analysis. The lack of in-memory translation structures (in the case of default MIPS MMU mode), and the great
complexity and variability of the page tables (in the case of MMU supporting TLBs hardware refiller), makes it very
difficult to implement a fully automated recovery technique. However, we can still use our code analysis phase to
recover the configuration of the segments (SegCtl0, SegCtl1, SegCtl2 registers) and, if the CPU supports it, also

4The MIPS architecture uses a dedicated Context register to support this last technique as illustrated in [50]. This register is used by the OS to maintain
the address of an array of physical pages allocated for the current process, changing its value at each context switch. However, in contrast to other
architectures, the resolution of segmented addresses and the refill of the TLBs continue to remain a software task.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 13

0x00000000

0x80000000

0xA0000000

0xC0000000

0xE0000000

kuseg

kseg2

1-to-1

0x20000000

kseg3

Paging

VAS SAS PAS

kseg0

kseg1

Kernel	code

Fig. 5. Segmentation and paging in MIPS32 using default segments layout.

the configuration values of the TLBs hardware refiller (Config, Config5, ContextConfig, PageGrain, PageMask,

PWBase, PWCtl, PWField, PWSize, Wired registers). Unfortunately, even when all register values can be recovered,
they can only be used to reconstruct the segment configuration and the code part of the VAS of the kernel, which is
loaded inside unmapped segments. In EVA mode and for user process VASs in systems without a hardware TLBs refiller,
a manual analysis of the TLB interrupt handler (that can be easily located in a memory dump by looking for opcodes
that load the TLBs) could allow an analyst to reverse engineer the custom algorithm used by the kernel to map virtual
to physical pages. Instead, in presence of a hardware TLBs refiller, by combining the MMU configuration retrieved by
the code analysis phase with a custom parser for page tables, it could be possible to manually recover the radix trees
used to resolve the VASs of kernel data and user processes.

7 IMPLEMENTATION

In the previous sections, we presented the internal details of how the MMU translates virtual to physical addresses
on different architectures. We also discussed how the different structures can be identified and reconstructed from a
memory image, and which class of techniques is required to retrieve the different pieces of information. Table 1 presents
a summary of the various architecture and MMU modes and shows what could be recovered when operating in a perfect

scenario. In other words, this ignores possible false positives and assumes a perfect code analysis phase that always
succeeds in reconstructing the value of the MMU registers. Thus, the results presented in the table are a useful upper
bound of what could be achieved in theory. In reality, results can be much worse.

Therefore, to test and validate the techniques discussed in Section 3 in real-world scenarios, we implemented them
in a proof-of-concept tool written in Python: MMUShell. MMUShell takes as input a memory dump and a YAML file
that describes the hardware machine on which the image was collected. This includes information about the CPU
architecture, the MMU mode (if known), and the default hardware values of the machine at the reset (e.g. the layout of

Manuscript submitted to ACM

14 Andrea Oliveri and Davide Balzarotti

Table 1. Data structure/register recovery for all the studied architectures in a
perfect scenario.

Architecture MMUmode Mode structure Recoverability

Segm
ented

Paginated
Paging

M
ode

In-m
em

ory
structs

In-registerstructs
Conf.registers

KernelM
M
U
structs

U
serM

M
U
structs

KernelVA
space

U
serVA

space
A
ccessperm

s

AArch64 Long # 3 # G#1

Long LPA # 3 # G#1

AMD64 4-level G#2 3 # #

ARM32 Short # 3 # G#1

Long # 3 # G#1

MIPS32 TLB G#3 -4G#4# G#4G#4G#5G#5
Radix G#33 # 6 6 6 6

MIPS64 TLB G#3 -4G#4# G#4G#4G#5G#5
Radix G#33 # 6 6 6 6

PowerPC BAT+SDR1 2 # G#7G#7G#8G#8 G#9

RISC-V32 SV32 # 3 # #

RISC-V64 SV39 # 3 # #
SV48 # 3 # #

x86 IA32 3 # #
PAE 3 # #

Paging modes: 3 Radix tree, 2 Inverted page table.
1 Some permission bits depend on SCTLR register value.
2 Segmentation unit is active but virtually disabled.
3 Paging is used for kernel data and user address space.
4 Software dependent.
5 ISA defines specific address ranges for kernel and user address spaces, internal alloca-
tions are software dependent.

6 Not in an automatic way.
7 SR and BAT registers can be associated with the running process making them not
recoverable using data-flow analysis.

8 The VAS mapping is only partially recoverable.
9 Permissions for paginated SAS are stored in SR registers, which in general are not
recoverable.

the PAS and the initial content of some CPU registers). All these are public information, that can be extracted from the
hardware specifications, and are completely independent of the operating system that is running on the device.

MMUShell implements all parsing rules listed in Appendix and uses them to create patterns that can locate candidate
MMU data structures. Whenever the system needs to retrieve a value contained in a MMU register, MMUShell identifies
all the locations of instructions that operate on the corresponding register and retrieves all previous instructions until it
finds an unconditional jump, a long jump, an instruction signalling a function epilogue (e.g RET instruction for AArch64
architecture), special instructions (e.g instructions which permit the return from an interrupt handler), or an invalid
Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 15

opcode. This backward analysis is possible because all the architectures for which we need to recover MMU registers
have aligned and fixed-size opcodes, thus allowing for a backward linear disassembly.

Results could be improved by extracting the entire function that contains the target instruction (and then also
to compute a callgraph to reason inter-procedurally). However, the functions executed during the OS initialization,
including those that configure the MMU, are often hand-written in assembly and do not have an easily recognizable
structure as those produced by a traditional compiler toolchain. In our experiments, this fact prevented automated
disassembly and function recognition tools to identify the required functions.

After extracting the code as described above, MMUShell analyzes it to retrieve the values that were written by the
OS in the MMU registers. To implement this analysis we evaluated different popular options, which however failed to
support all the architectures in our study. Eventually, we decided to extend the Miasm framework [31]. Miasm supports
symbolic analysis by first lifting binaries of different architectures to a custom intermediate representation. However,
Miasm was developed to operate on user space binaries that do not contain all the special and privileged instructions
we encountered in our experiments. So, we had to extend the framework to include both the MMU registers and the
main operands used to load and retrieve their values.

MMUShell implements 11 out of 13 MMU modes described in Section 3. We did not implement ARM Long (which is
almost identical to AArch64 Long) as we could not find OS that supports it and RISC-V SV48 (which is an extension
of SV39 and, currently, is not supported by any CPU available on the market). The code analysis phase for MIPS64 is
currently not supported by Miasm (however, the functioning of MIPS64 MMU is exactly the same as MIPS32, which is
supported by our tool).

8 EXPERIMENTS

To evaluate the accuracy and performance of our approach we tested MMUShell on memory dumps running 26 different
operating systems with 10 different MMU modes. Each system was configured with 4GB of RAM, unless the OS required
a different amount (see Tables 3-6 for more details). We have chosen to limit the amount of RAM to 4GB because many
32bit architectures cannot address more memory and because 4GB also represents a typical memory size that can be
found in IoT devices.

To avoid possible inconsistencies [53] and establish a ground truth for our experiments, we run each OS in a virtual
machine hosted by a custom version of QEMU [30]. In particular, we modified the emulator to record, for each write
operation on MMU registers, the timestamp and the written value. The use of QEMU also allowed us to acquire a copy
of the physical memory layout of the emulated machine. For our tests, we installed each OS, booted the machine, and
manually used the system by issuing a number of basic commands before acquiring the physical memory.

The operating systems were selected to be as varied as possible in terms of kernel architecture, (including monolithic,
microkernel, nanokernel, hybrids, multikernel, and real-time), public availability of the source code, programming
languages used to implement the kernel (assembly, C, Rust), year of release (from 1993 to 2020) and purpose (spanning
embedded devices, general-purpose, hobbyists project, research, and teaching). The list also deliberately includes some
very old (and obsolete) OSs to better prove the generality of our approach. Table 2 lists all the OSs along with the
architectures in which we were able to run them. Note that Linux is present twice, first as a minimal distribution
(Buildroot [3]) similar to what one might expect to find in embedded devices, and then with a full-fledged Debian
installation. The reason is that we were not able to find a popular desktop distribution that runs on all our architectures
and MMU configurations. While Debian is supported only by a subset of the Linux Buildroot configurations, it has one
order of magnitude more processes (and therefore more MMU structures) to recover.

Manuscript submitted to ACM

16 Andrea Oliveri and Davide Balzarotti

Table 2. Summary of the operating system analyzed.

OS Architectures MMU modes

Kerneltype 1
O
pen-source

A
A
rch64

Long
A
M
D
64

A
RM

32
Short

M
IPS32

TLBs
M
IPS32

Radix
Pow

erPC
RISC-V

SV32
RISC-V

SV48
x86

IA
32

x86
PA

E

9Front[24] H # # # # # # # # #
Barrelfish[17] U # # # # # # #
Darwin[4] H # # # # # # # # #
Embox[5] R # # # # # #
FreeBSD M # # # # # #
GenodeOS[6] m # # # # # # # # #
HaikuOS[7] H # # # # # # # #
HelenOS[8] m # # # # #
Linux Buildroot[3] M
Linux Debian M # # # #
MacOS 9 n # # # # # # # # # #
MacOS X H # # # # # # # # # #
Minix3[9] m # # # # # # # # #
MorphOS[10] m # # # # # # # # # #
NetBSD M # # # # #
Illumos[29] M # # # # # # # # #
QNX[11] R # # # # # # # # # #
rCore[13] M # # # # # #
ReactOS[14] m # # # # # # # # #
RedoxOS[15] m # # # # # # # # #
vxWorks[19] R # # # # # # # # # #
Windows 10 H # # # # # # # #
Windows 95 M # # # # # # # # # #
Windows NT H # # # # # # # # # #
Windows XP H # # # # # # # #
XV6[20] M # # # # # # # # #
1 H: hybridkernel, m: microkernel, M: monolithic kernel, U: multikernel,
n: nanokernel, R: real-time kernel

The MMU registers values collected by the emulator are used as ground truth. However, it is necessary to filter out
those obsolete entries that reference data structures not present anymore in RAM at the time we acquired the memory
dump (e.g. radix trees of defunct processes freed by the kernel). While it might still be possible to recover these data
structures from memory, their bytes might have been already partially overwritten by other processes, thus making it
difficult to locate and validate their correctness. For this reason, we performed a self-consistency check on radix trees
and remove those that contained at least one table that is no more valid. We also verified the last time the kernel wrote
a value into each MMU register to identify only the last configuration used.

In our proof of concept implementation, we did not pay particular attention to the performance, also because our
analysis is a one-time operation that needs to be performed only once. According to our experiments, the slowest
operation (the search of IDT tables) required approximately 1 hour for a 4GB dump on a 4 core x86 CPU.
Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 17

Table 3. RISC-V (32 and 64 bit)

OS MMUmode VAS FN FP

FreeBSD SV39 9 - -
Buildroot1 SV32 7 - -
Buildroot SV39 7 - -
Debian SV39 18 - -
rCore SV32 2 - -
rCore SV39 2 - -
XV6 SV39 3 - -
1 Does not support 4GiB of RAM.

In the rest of the section, we discuss in detail the results for the three groups of architectures.

8.1 Group I: RISC-V 32 and 64-bit

Table 3 shows the results for RISC-V 32 and 64 bit. In particular, for the various operating systems and MMU modes,
the table reports the total number of virtual address spaces (VAS) retrieved from the modified QEMU (i.e., the ground
truth). The last two columns show the number of false negatives (i.e., the address spaces that could not be correctly
reconstructed by our tool) and false positives (i.e., spurious data structures that were erroneously reported as address
spaces).

In this case, MMUShell was able to successfully retrieve all the correct radix trees associated with kernel and user
space processes without any false positives. Therefore, our system could fully reconstruct the virtual-to-physical
memory mapping for the kernel and each running process.

8.2 Group I: Intel x86 and AMD64

The results for Intel x86 and AMD64 are reported in Table 4. In this case, the tables include two additional columns to
report whether the correct Interrupt Descriptor Table (IDT) has been located in the dump and the number of additional
candidates IDTs. While the extraction of the IDT is not the goal of our analysis, it plays a very important role in the
results because, as we explained in Section 4.2 MMUShell uses this information to validate the candidate page tables. In
fact, when MMUShell was not able to retrieve a valid IDT, the number of false positives rose considerably.

MMUShell was able to find all the VAS in all the tested configurations with the exception of rCore running on AMD64,
for which it wrongly identifies the IDT. Therefore, even if the correct radix trees were found by the tree reconstruction
part of the algorithm, they were later discarded as possible FP because they could not resolve the virtual addresses of
the false interrupt handlers.

8.3 Group I: ARM32 and AArch64

For ARM32 and AArch64 our tool needed to retrieve the part of the TTBCR/TCR_EL1 register (N and EAE for ARM32,
T0SZ, T1SZ, TG0, TG1 for AArch64) that controls the shape of the processes radix trees. In Table 5 we report the
statistics of the retrieved register fields values for each OS and then report the radix trees with a shape compatible
with the true positive values of TTBCR/TCR_EL1 fields. For ARM32 the data flow analysis permitted, for all the OSs, to
retrieve both the values of fields of TTBCR register as well as all the kernel radix trees and, when TTBR1 is used, also all
the user process ones.

Manuscript submitted to ACM

18 Andrea Oliveri and Davide Balzarotti

Table 4. INTEL x86 and AMD64

Intel x86 IA32 / PAE MMUmodes

OS MMUmode IDT VAS FN FP
Found FP

9Front IA32 3 61 - 8
Embox IA32 # - 1 - 54
FreeBSD IA32 1 21 - -
HaikuOS IA32 1 18 - 12
Buildroot IA32 1 9 - 1
Buildroot PAE 1 10 - 1
Debian IA32 1 68 - 2
Minix3 IA32 - 209 - 2
NetBSD IA32 - 18 - -
QNX IA32 2 40 - 1
ReactOS IA32 1 17 - -
Windows 10 PAE 5 137 - 34
Windows 951 IA32 - 1 - -
Windows NT IA32 - 14 - -
Windows XP IA32 - 19 - -
Windows XP PAE - 19 - 1
1 Does not support more than 512MiB of RAM.

AMD64 4-level MMU mode

OS IDT VAS FN FP
Found FP

Barrelfish - 31 - -
Darwin - 16 - 11
FreeBSD 2 48 - 3
GenodeOS # - 61 - 68
HaikuOS - 17 - 1
HelenOS # - 63 - 63
Buildroot - 22 - 2
Debian - 71 - 2
NetBSD - 18 - -
OmniOS 6 4 - -
rCore # 1 3 3 -
vxWorks # - 2 - -
RedoxOS # - 62 - 33
Windows 10 1 127 - 4
Windows XP 2 21 - -

Table 5. ARM and AArch64

ARM32 Short MMU mode

OS TTBCR
fields

Kernel
VASs

User processes
VASs

TP FP VAS FN FP VAS FN FP

Barrelfish 2/2 1 1 - 6 26 - 6
Embox 2/2 - 1 - 2 -2
HelenOS 2/2 - 33 - 6 -2
Buildroot1 2/2 - 14 - 1 -2
Debian1 2/2 - 77 - 1 -2
NetBSD 2/2 1 1 - - 15 - -

1 vexpress-a9 machine supports a maximum of 1GiB of RAM.
2 Uses only TTBR0 due to TTBCR.N=0[39]

AArch64 Long MMUmode

OS TCR_EL1
fields

Kernel
VASs

User processes
VASs

TP FP VAS FN FP VAS FN FP

Barrelfish 3/4 1 1 - 1 10 - -
Embox 0/4 - 1 - 1 - - -
FreeBSD 4/4 - 1 - 3 14 - -
HelenOS1 4/4 - 2 - 2 49 - -
Buildroot 4/4 2 1 - 1 5 - -
Debian 4/4 2 1 - 1 15 - -
NetBSD 4/4 1 1 - 1 16 - -
rCore2 4/4 - 2 - - 1 - -
Windows 10 0/4 - 107 - 1 97 - 2
1 Does not support more than 1GiB of RAM.
2 raspi3 machine supports a maximum of 1GiB of RAM.

For AArch64 instead, in two cases (Embox and Windows 10) it was not possible to recover the four TCR_EL1 fields
necessary to reconstruct the radix tree and VAS shape. In another case (Barrelfish) we failed to retrieve only one of
these fields. For all the tested configurations MMUShell recovered all the radix trees for kernel and user space processes.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 19

Table 6. PowerPC and MIPS32

PowerPC BAT+SDR1 MMUmode

OS BAT registers Hash Table
Subregs. BAT Location Size FP SDR1

HelenOS1 8/16 0/8 - #
Buildroot2 16/16 8/8 -
Debian2 16/16 8/8 -
MacOS 93 12/16 4/8 - #
MacOS X2 -4 - -
MorphOS2 6/16 3/8 - #
NetBSD 7/16 2/8 6 #
1 g3beige machine supports a maximum of 1GiB of RAM.
2 mac99 machine supports a maximum of 2GiB of RAM.
3 Does not support more than 1GiB of RAM.
4 See text for more details.

MIPS32 TLBs / Radix Tree MMUmodes

OS MMUmode MMU registers
TP FN FP

Embox TLBs 13 - -
HelenOS1 TLBs 13 - 2
Buildroot2 Radix 12 1 6
Debian2 TLBs 13 - 2

1 malta machine supports a maximum of 2GiB of RAM.
2 Does not support more than 256MiB of RAM on malta ma-
chine.

8.4 Group II: PowerPC 32-bit

In the PowerPC architecture, the address resolution process involves the use of the BAT registers and an inverted page
table pointed by the SDR1 register. Each BAT register is physically implemented as a couple of 32-bit sub-registers (BATU
and BATL) which are loaded separately by the CPU but used as an atomic unit by the MMU. The BATU subregister
contains the address of the translated virtual address block and its size, while the companion BATL contains the physical
address of the correspondent block plus its access permissions. Thus, even if only one of the two subregisters is
automatically retrieved from a memory dump, it still provides important information to the human analyst about the
layout of the virtual or the PAS. For this reason, Table 6 reports the number of physical subregisters recovered by
MMUShell and the number of complete couples, corresponding to the entire BAT register.

Our code analysis phase was able to completely recover the content of the BAT set for Linux, partially for Morphos
MacOS 9 and NetBSD, and only isolated subregisters for HelenOS. This is due to the lack of interprocedural analysis
and the incomplete support of PowerPC MMU instructions in the Miasm framework. It is important to note that MacOS
X defines different address blocks for every process, thus changing the content of the BAT registers at every context
switch. As a result, the values cannot be recovered without an in-depth knowledge of the data structures used by the OS
kernel. On the contrary, MMUShell can retrieve, for every tested OS, the physical address and size of the hash table and,
in some cases, also the content of the SDR1 register. Thus, MMUShell could fully reconstruct, for each OS, the mapping
between segmented and physical address spaces, but was not able to completely reconstruct the mapping between the
virtual and the segmented spaces. Furthermore, in the case of Linux and partially of MorphOS, MacOS 9 and NetBSD,
by retrieving also BAT registers, MMUShell could also list the blocks of VAS directly mapped to the physical ones.

8.5 Group III: MIPS 32-bit

As discussed in Section 6.1 for MIPS32 we need to retrieve the partial content of 13 different MMU registers to identify
uniquely the MMU configuration of the machine. While MMUShell was very accurate in retrieving those values, as
explained in Section 6.1, these registers provide only half of the picture and a human analyst still need to manually
reverse engineer the algorithm used by the kernel to map segments to physical pages.

Manuscript submitted to ACM

20 Andrea Oliveri and Davide Balzarotti

9 APPLICATION TO REAL HARDWARE

In order to demonstrate the usefulness and validate the functionality of MMUShell in a real-world scenario and
demonstrate how our solution can help in a real investigation, we have conducted a forensic analysis on a real hardware
running an uncommon OS. For this experiment, we chose a Raspberry PI 3B+[12], an AArch64 board that also supports
ARM32 and for which we were able to acquire the raw memory content by using the integrated JTAG controller. On the
board, we have installed RISC OS[16], a partially-open operating system used digital TV decoders, factory automation
systems [16]. This is an excellent example of a popular but not well-known OS that runs on embedded devices but that
is not supported by QEMU (and this is why we could not include it as part of our controlled experiments).

By using only the board documentation, we created the necessary YAML file that describes the physical memory
layout and the initial default value of the CPU registers. Moreover, through the JTAG interface, we are also able to
dump the value of the MMU registers at runtime, and later use their content as ground truth to validate the results
automatically extracted from the memory by MMUShell.

MMUShell was able to correctly recover all MMU registers values (as confirmed by our ground truth values collected
during the dump phase) and reconstruct the kernel/user radix tree without any false positive (RISC OS, as other real-time
OSs analyzed in Section 8, uses only one radix tree for all the processes running in the system).

As a result, the analyst now can easily reconstruct the mapping between the PAS and the VASes of the kernel and
the user processes. This permits to correctly resolve the pointers contained in the dump and allows to start the analysis
of the data structures contained in it.

It is important to stress again that MMUShell results derive only from the memory dump and the public information
on the hardware architecture. No OS-specific rules or information is necessary for our analysis.

10 TOWARDS OS AGNOSTIC MEMORY FORENSICS

To conclude the paper, in this section, we want to show a possible use of our technique to perform a preliminary
memory analysis of a dump acquired from an unknown operating system. It is important to stress that there are no
tools or techniques available today that can operate in these settings. While our work is only the first step towards an
OS-agnostic analysis, by using our virtual memory reconstruction we can already automatically extract all running
processes and derive information about them without any knowledge of the OS internals, executable file format, or
mechanism used to interact with the kernel.

In fact, MMUShell can export each virtual address space as a self-contained ELF Core dump file, which maps each
physical memory page to its corresponding virtual one inside a LOAD segment – along with right the page access
permissions. This allows an analyst to obtain a faithful representation of the process VAS. In addition, each ELF can
also be easily opened and analyzed by using popular static analysis tools – such as IDA Pro. Each ELF generated by
MMUShell corresponds to a process running in the system (either kernel, privileged services, user space programs,
or dead processes). This can already be used by a security analyst to retrieve the process running in any IoT device,
independently from the architecture or the running OS. The list of running processes in a compromised device could be
easily compared with that acquired on a clean system to detect anomalous processes that might need to be manually
reverse engineered.

By using the extracted information, in the rest of the section, we discuss which other properties could be identified
for either a single or an ensemble of processes. Unlike the other part of our work, to perform this task we rely on a set

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 21

of heuristics based on the usage of the MMU by a generic OS, which are reasonable in multiprocess systems with an
MMU.

• Kernel and privileged services identification – The access permissions of the pages in the process VAS
allows to discriminate whether a process is a privileged one (which runs at kernel-level and does not permit, in
general, any write access to its space to user mode processes or does not map any user space accessible pages) or
a user space one (which can have kernel pages mapped in its address space but without write access).

• Executable file format identification – It is possible to use tools, like binwalk[38], which permit to identify a
known executable file format headers (e.g., ELF, PE, COFF, etc.) in the VAS of a process, thus recovering additional
information about the structure of the executable file loaded supported by the unknown OS.

• Core shared libraries and data pages – Modern OSs that support multiple processes and virtual memory
usually rely on a special library to support the executable loading process before starting its execution (e.g.
ld-linux.so in Linux) or core libraries and data pages (e.g. libc.so) to easily interface the user space process
with the kernel through syscalls. To reduce memory consumption, physical pages that contain core shared
libraries are present in a unique copy that is mapped, without write permissions, into the majority of the user
space VAS. We can find these shared resources by looking for regions in each user process that point to the same
physical pages and which are present in at least 90% of the user processes.

• Minor shared libraries, shared code pages, and interprocess shared memory regions – By using the
same technique without the 90% threshold we identify less common shared libraries, pages of code shared among
processes (due to syscall similar to the UNIX fork) and, including also pages with permission RW-: shared regions
used by multiple processes to efficiently share data among them.

• Special regions – By using our data, we can identify a set of virtual address ranges which are always mapped
at the same physical addresses in all processes. These (e.g., the vsyscall pages in Linux). could play a particular
role in the target OS architecture.

• Stack identification – The stack pages of a process must have at least RW- permissions (in general, for security
reasons, executable permission is missing but in some architecture, as x86-32, this is not possible) and they must
be contiguous. Furthermore, if we assume that the stack frame pointer register is used to track old previous
stack frame start, stack pages contain adjacent couples of values composed by an instruction address and a stack
address. This pattern is directly related to the functioning of stack-based architectures: a CALL instruction to a
routine pushes the address of the immediately following instruction on the stack (the return address), followed
by the address of the previous stack frame contained in the stack frame pointer register. Stack pages can be
identified by looking for pages with the correct permissions set and which contains the biggest number of valid
couples of return addresses and stack frame pointer addresses. It is possible to identify return addresses because
they are virtual addresses that belong to code pages (R-X) and tools like radare2[32], which can load our VAS
due to its representation as ELF core file, permit, also in case of non-fixed length opcode architecture like x86, to
perform backward decompilation and check if the previous instruction pointed by the return address is a real
CALL instruction removing a great number of false positives. At the same time, stack frame pointer addresses are
supposed to belong to the same page on which they reside (supposing the stack frame is not bigger than a page
size or astride them).

• Approximated entry point – Directly related to stack identification, we can derive an approximated position
of the entry point of the executable: the bottom of the stack must contain the address of an instruction belonging

Manuscript submitted to ACM

22 Andrea Oliveri and Davide Balzarotti

to the first function executed by the program or by the loader library, permitting to identify approximately which
part of code could contain the real entry point.

• Processes relations – A manual analysis of which processes share writable memory areas and code areas
permit to identify relations among processes. A multiplicity of stack candidates (if we suppose that they are not
false positives) may indicate the presence of different threads associated with the process: they will share the
same code pages but each will have its own private stack. Finally, it is possible to calculate a TLSH[18] fuzzy hash
on the content of the single physical pages of two or more processes to check similarities in code and cluster
them also in case of code relocations as shown in [52].

10.1 Experiment

For this experiment, we have chosen an x86-32 installation of the QNX operating system. The x86 architecture has been
chosen because, as discussed in previous sections, radix-tree based architectures (such as INTEL, ARM, RISC-V and
partially Power) permit a complete reconstruction of the VASs. This partially complicates our analysis, like the MMU
mode supported by x86-32 which does not provide any bit to set a page as executable, so all the accessible pages in user
mode are at least readable and executable.

We choose the QNX OS because it is a closed-source operating system that does not have a lot of public information
about its internals and it was poorly studied by the memory forensics community.

As ground truth, we have extracted, through /proc/PID/as interface of QNX, information about the virtual memory
space layout of all processes running in the system and their associated threads. MMUShell, as shown in Table 4
correctly identified all the valid VASs present in the memory dump (40), including three VASs belonging to processes
that already terminated (at dump time only 37 processes were running on the system).

By using the heuristics described above, our tool was able to automatically distinguish all processes in user processes
(36) from the kernel itself (1) and determine that QNX uses the ELF format. It also identified two core libraries mapped
by most processes (which correspond to ldqnx.so.2 and libc.so.3), as well as many other libraries used by a subset
of the user space programs and writable memory regions shared among different processes. For 34 processes, our
system correctly identified the stack and the instructions belonging to the first function executed by the programs.
Furthermore, the presence of multiple stacks on some processes confirmed their multithread nature.

In summary, the analysis and experiment presented in this section show a possible practical use of our tool to perform
a preliminary memory analysis for any operating system currently unsupported by existing forensic tools.

11 LIMITATIONS AND FUTURE EXTENSIONS

We now discuss some limitations of our approach, either due to engineering problems or to the OS-agnostic nature of
our work. We believe this list can also provide some ideas for possible extensions and future research in the field:

• Even after our extensions, Miasm still lacks support for several opcodes, in particular for PowerPC and MIPS.
This further emphasizes the need of our community for a binary analysis framework able to operate in a symbolic
way on privileged code for non-x86 architectures.

• On some architectures, like Intel x86/AMD64 and ARM32/AArch64, when a page table entry has the present
bit unset, the MMU simply ignores the content of the remaining bits and raises an interrupt if the CPU tries to
access virtual memory addresses potentially resolved by it. However, as extensively shown in numerous works,
OSs like Windows, Linux and OSX fill ignored bits of invalid page table entries with values that efficiently permit

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 23

them to manage extensions to the traditional model of virtual address space. Examples of this behaviour are
the classical swap to secondary storage, or the compressed swap stores and transition pages implemented in
Windows [43, 55], the PROT_NONE pages in Linux [45], OSX memory queues [22], or the possibility for Linux
and OSX to compress at runtime part of the RAM content [54] to increase the memory available to the system.
All these techniques save a reference to the original page and additional metadata (e.g. an offset within a swap
file) into the invalid page table entry relative to the page itself. When the CPU tries to access a virtual address
that belongs to those pages, the MMU raises an exception and the OS checks the invalid bits in the entry. If the
OS determines, for example, that the page is part of a compressed memory region, it decompresses the page,
restores the association between the page table entry and the page, set the valid bit, and restart the execution of
the process that has generated the previous illegal access.
Our technique is completely blind to these types of behaviour, which is strongly OS-dependent. However, these
extensions do not break the inviolable MMU constraints since they are based on the use of ignored bits in invalid
page table entries. To access to this type of pages a partially OS-independent approach could consist in the
identification of the page fault handler in the interrupt table and its emulation by using the faulting page table
entry as a parameter (as specified by the CPU ISA). This automated approach may allow to gain some information
about pages marked as invalid but instead treated in special ways by the OS. As a last resort, a human analyst
could perform a manual analysis of the page fault handler to understand how it works and how to manage
invalid page entries. Furthermore, in the last few years, the memory forensics community has deeply studied the
memory management subsystems of Windows, Linux and OSX and has implemented inside tools as Volatility
and Rekall[62] modules able to treat correctly invalid page table entries, thus drastically increasing the analysis
capabilities of these systems.

• We found very little information that can be used to build validation rules to reduce the number of false-positives.
However, in our experience, human experts can often tell the difference between real VASs and false-positive
ones, suggesting that maybe a ML classifier can be trained to reduce the FP. This is an interesting research
direction that we leave as future work.

• Even though we performed all our experiments in a ‘benign’ scenario, as we have specified in various parts of
the paper the MMU requires that the OS strictly respects a number of inviolable constraints. A rootkit (or other
forms of a compromised system) is no exception to this rule and cannot bypass our MMU constraints.
However, even though we did not encounter this case in any of the 26 OSs we tested, it is possible that the code
responsible to configure the MMU is intentionally deleted from memory after the setup is complete. In this
(possibly adversarial) setting, bridging the semantic gap may become very difficult, if even possible at all.

• In our work, we assumed that the OS under analysis is running on a bare-metal machine or inside a VM for
which we can get a memory dump containing only the VM memory. However, it is also possible to consider the
possibility in which the OS is running as a hypervisor for other VMs. In this case, a memory dump of the full
system will contain also the VMs memory. All the treated architectures in this work (but PowerPC and MIPS32)
support virtualization in various forms by using, in general, an extension of the already presented MMU modes.
In particular, radix-tree architectures extend the existing MMU modes introducing radix-trees composed of a
different type of page tables associated with each VMs. Each of these new radix-trees maps the VM physical page
addresses, valid inside the associated VM, to physical pages exiting on the bare-metal machine. An interesting
development of our technique could support also the reconstruction of the MMU hypervisor in-memory data
structure associated with each single VM which only requires to define new structure signatures to match this

Manuscript submitted to ACM

24 Andrea Oliveri and Davide Balzarotti

new type of data. The special case of Intel x86, memory forensics of hypervisor has also been covered by Graziano
et al [36].

12 DISCUSSION

In this study, we discussed the broad range of strategies adopted by the MMU of different CPU architectures to translate
virtual to physical addresses. We have presented the first complete study of the problem, and our solution to bridge the
semantic gap of virtual-to-physical address translation in a zero-knowledge scenario. We have also highlighted that, due
to the peculiarities of some architectures (PowerPC, Power and MIPS), a full automatic complete reconstruction of the
virtual address spaces without a deep knowledge of the OS internals is, in the general case, impossible. This fact is not a
limitation of our technique but an intrinsic limitation imposed by those ISAs.

We have shown that our solution, based on a combination of OS-agnostic MMU derived constraints (to identify
candidate data structures) and static code analysis (to retrieve the setup of system registers) can extract the maximum
amount of information, permitted by the CPU ISA, about the virtual address spaces of the running processes. The
technique does not use any knowledge on the running OS or tailor-made heuristics.

MMUShell, the proof-of-concept tool implementing our technique, was able to recover all the VAS in the vast
majority of the experiments and also on a dump extracted from a physical hardware device, proving the feasibility of our
approach in real-world scenarios. A simple OS-agnostic memory forensics analysis was conducted on a close-sources
OS to show the potential of our tool in real-world scenarios.

The amount of time required to add the support for a new architecture would largely depend on the type of virtual-
to-physical address translation strategy implemented by its MMU, the analyst knowledge of its internal details, and
the quality of the available documentation. For instance, it took us only a few days to support RISC-V (to read the
documentation, compile a list of constraints, create a valid strategy to reconstruct radix-trees, and perform some tests)
while MIPS and ARM64 required roughly a few weeks each, due to the variability of the available options, complexity
and peculiarity of their MMU modes.

13 RELATEDWORK

The more general problem of extracting data structures from memory dumps has already been treated in several
previous studies, even if with different goals. For instance, Dolan-Gavitt et al.[28] have proposed a signature-based
approach to define invariants of kernel data structures and generate signatures for their recovery in memory dumps. A
similar approach, but based also on probabilistic inferences, was developed in[46]. Another signature-based work is
"Multi-Aspect, Robust, and Memory Exclusive Guest OS Fingerprinting"[37]. In this work Yufei et al. use invariants,
derived from kernel code and data structures extracted from a memory dump of a system running Linux, to generate
signatures to identify the kernel version. Other techniques use signatures derived from the topology of data structures
(SigGraph[47], SigPath[61] and Mace[33]) or neural networks to label data structures in memory dumps (DeepMem[59]).
Other works have focused instead on the reconstruction of the shape, content and primitive types of the data-structures
[48][49][57][58][60]. However, all these techniques work on data structures that contain virtual addresses, thus assuming
the problem of address spaces translation was already solved by other means, or they require multiple dumps of the
same version of the operating system to train an algorithm. Saur and Grizzard [56] are the first to propose an approach
to reconstruct radix trees for Intel x86-32 from both Windows XP and Linux memory dumps. Their parsing technique
is based on rules derived from the ISA specifications and tailor-made heuristics derived from the OSs internals, which
allows the authors to retrieve virtual and physical address spaces of hidden processes running on a sampled system.
Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 25

Their approach, however, is limited by the non-universality of their parsing rules, which contains heuristics based on
how Linux and Windows kernels use page tables, making it impossible to use on dumps of different OSs. Finally, a work
more similar to ours for its focus on CPU ISA but with a different goal is [36]. In this work, the authors use OS-agnostic
parsing rules to detect, in memory dumps, virtual machine control structures, used by the Intel CPUs to maintain the
state of virtual machines.

14 CODE AVAILABILITY

We will release MMUShell as an open-source project[51], together with the part of the dataset not covered by particular
OS license restrictions.

15 ACKNOWLEDGMENTS

This project was supported by the European Research Council (ERC) under the European Unions Horizon 2020 research
and innovation programme under grant agreement No 771844 (BitCrumbs) and by the European Unions Horizon 2020
research and innovation programme under grant agreement No. 786669 (ReAct).

REFERENCES
[1] Ali Reza Arasteh and Mourad Debbabi. 2007. Forensic memory analysis: From stack and code to execution history. Digital Investigation 4 (2007),

114–125.
[2] Various authors. 2022. BlackBag Technologies. BlackBag Technologies. https://www.blackbagtech.com/
[3] Various authors. 2022. Buildroot. Buildroot Association. https://buildroot.org/
[4] Various authors. 2022. Darwin OS. Apple Inc. https://github.com/apple/darwin-xnu
[5] Various authors. 2022. Embox OS. Embox Ltd. https://www.embox.rocks/
[6] Various authors. 2022. Genode OS. Genode Labs. https://genode.org/
[7] Various authors. 2022. Haiku OS. Haiku Inc. https://www.haiku-os.org/
[8] Various authors. 2022. HelenOS. HelenOS Community. http://www.helenos.org/
[9] Various authors. 2022. Minix3 OS. VU University. https://www.minix3.org/
[10] Various authors. 2022. MorphOS. MorphOS Development Team. https://www.morphos-team.net/
[11] Various authors. 2022. QNX. BlackBerry Limited. https://www.qnx.com
[12] Various authors. 2022. Raspberry PI. RaspberryPI Foundation. https://www.raspberrypi.org/
[13] Various authors. 2022. rCore. rCore Developers. https://github.com/rcore-os/rCore
[14] Various authors. 2022. ReactOS. ReactOS Team and Contributors. https://reactos.org/
[15] Various authors. 2022. Redox OS. Redox Developers. https://www.redox-os.org/
[16] Various authors. 2022. RISC OS Open. RISC OS Open Limited. https://www.riscosopen.org
[17] Various authors. 2022. The Barrelfish OS. ETH Zurich. http://www.barrelfish.org/
[18] Various authors. 2022. TLSH - Trend Micro Locality Sensitive Hash. Trend Micro. https://github.com/trendmicro/tlsh
[19] Various authors. 2022. vxWorks. Wind River Systems. https://www.windriver.com/products/vxworks/
[20] Various authors. 2022. XV6. Massachusetts Institute of Technology. https://github.com/mit-pdos/xv6-riscv
[21] Jeffrey Burt. 2020. Alibaba On The Bleeding Edge Of RISC-V With XT910. The Next Platform. https://www.nextplatform.com/2020/08/21/alibaba-on-

the-bleeding-edge-of-risc-v-with-xt910/
[22] Andrew Case, Ryan D Maggio, Modhuparna Manna, and Golden G Richard III. 2020. Memory Analysis of macOS Page Queues. Forensic Science

International: Digital Investigation 33 (2020), 301004.
[23] Michael Cohen. 2014. Rekall Memory Forensic Framework.
[24] 9Front community. 2022. 9Front OS. 9Front community. http://9front.org/
[25] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. 2018. Understanding linux malware. In 2018 IEEE symposium on

security and privacy (SP). IEEE, IEEE Computer Society, Los Alamitos, CA, USA, 161–175.
[26] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. 2008. Digging for Data Structures. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation (San Diego, California) (OSDI’08). USENIX Association, USA, 255–266.
[27] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual

Machine Introspection. In Proceedings of the 2011 IEEE Symposium on Security and Privacy (SP ’11). IEEE Computer Society, USA, 297–312.
https://doi.org/10.1109/SP.2011.11

Manuscript submitted to ACM

https://www.blackbagtech.com/
https://buildroot.org/
https://github.com/apple/darwin-xnu
https://www.embox.rocks/
https://genode.org/
https://www.haiku-os.org/
http://www.helenos.org/
https://www.minix3.org/
https://www.morphos-team.net/
https://www.qnx.com
https://www.raspberrypi.org/
https://github.com/rcore-os/rCore
https://reactos.org/
https://www.redox-os.org/
https://www.riscosopen.org
http://www.barrelfish.org/
https://github.com/trendmicro/tlsh
https://www.windriver.com/products/vxworks/
https://github.com/mit-pdos/xv6-riscv
https://www.nextplatform.com/2020/08/21/alibaba-on-the-bleeding-edge-of-risc-v-with-xt910/
https://www.nextplatform.com/2020/08/21/alibaba-on-the-bleeding-edge-of-risc-v-with-xt910/
http://9front.org/
https://doi.org/10.1109/SP.2011.11

26 Andrea Oliveri and Davide Balzarotti

[28] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin. 2009. Robust Signatures for Kernel Data Structures. In Proceedings
of the 16th ACM Conference on Computer and Communications Security (Chicago, Illinois, USA) (CCS ’09). Association for Computing Machinery,
New York, NY, USA, 566–577. https://doi.org/10.1145/1653662.1653730

[29] OmniOS Community Edition. 2022. OmniOS. Various authors. https://omniosce.org/
[30] Fabrice Bellard et al. 2022. QEMU - Generic and open sourcemachine and userspace emulator and virtualizer. QEMUCommunity. https://www.qemu.org/
[31] Fabrice Desclaux et al. 2022. Miasm - Reverse engineering framework. CEA. https://github.com/cea-sec/miasm
[32] Sergi Alvarez et al. 2022. Radare2 - Libre and Portable Reverse Engineering Framework. Radare2 community. https://rada.re/n/
[33] Qian Feng, Aravind Prakash, Heng Yin, and Zhiqiang Lin. 2014. Mace: High-coverage and robust memory analysis for commodity operating systems.

In Proceedings of the 30th annual computer security applications conference. Association for Computing Machinery, USA, 196–205.
[34] FreeScale. 2005. Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture. FreeScale.
[35] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically Bridging the Semantic Gap in Virtual Machine Introspection via

Online Kernel Data Redirection. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA. IEEE Computer
Society, USA, 586–600. https://doi.org/10.1109/SP.2012.40

[36] Mariano Graziano, Andrea Lanzi, and Davide Balzarotti. 2013. Hypervisor Memory Forensics. In Research in Attacks, Intrusions, and Defenses,
Salvatore J Stolfo, Angelos Stavrou, and Charles V Wright (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 21–40.

[37] Yufei Gu, Yangchun Fu, Aravind Prakash, Zhiqiang Lin, and Heng Yin. 2014. Multi-aspect, robust, and memory exclusive guest os fingerprinting.
IEEE Transactions on Cloud Computing 2, 4 (2014), 380–394.

[38] Craig Heffner. 2022. Binwalk. ReFirm Labs. https://github.com/ReFirmLabs/binwalk
[39] ARM Holdings. 2018. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition. ARM Holding.
[40] ARM Holdings. 2020. ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. ARM Holdings.
[41] IBM. 2017. Power ISA. Version 3.0B. IBM.
[42] Intel. 2020. Intel 64 and IA-32 Architectures–Software Developer’s Manual–Volume 3 (3A, 3B, 3C & 3D): System Programming Guide. Intel Corporation.
[43] Jesse D Kornblum. 2007. Using every part of the buffalo in Windows memory analysis. Digital Investigation 4, 1 (2007), 24–29.
[44] Kevin Krewell. 2017. Western Digital Gives A Billion Unit Boost To Open Source RISC-V CPU. Forbes. https://www.forbes.com/sites/tiriasresearch/

2017/12/06/western-digital-gives-a-billion-unit-boost-to-open-source-risc-v-cpu/
[45] Jamie Levy. 2015. Using PROT_NONE on Linux. Volatility Labs. https://volatility-labs.blogspot.com/2015/05/using-mprotect-protnone-on-linux.html
[46] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu. 2012. Discovering semantic data of interest from un-mappable with

confidence. In Proceedings of the 19th Network and Distributed System Security Symposium (NDSS). The Internet Society, USA.
[47] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang. 2011. SigGraph: Brute Force Scanning of Kernel Data Structure

Instances Using Graph-based Signatures. In Proceedings of the Network and Distributed System Security Symposium (NDSS). The Internet Society, San
Diego, California, USA. https://www.ndss-symposium.org/ndss2011/siggraph-brute-force-scanning-of-kernel-data-structure-instances-using-
graph-based-signatures

[48] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic reverse engineering of data structures from binary execution. In Proceedings of the
11th Annual Information Security Symposium. CERIAS - Purdue University, USA, 1–18.

[49] Daniel Mercier, Aziem Chawdhary, and Richard Jones. 2017. dynStruct: An automatic reverse engineering tool for structure recovery and memory
use analysis. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE Computer Society, IEEE
Computer Society, USA, 497–501.

[50] Mips. 2015. MIPS Architecture For Programmers Vol. III: MIPS32 / microMIPS32 Privileged Resource Architecture. Imagination Technologies.
[51] Andrea Oliveri. 2022. MMUShell. Eurecom. https://github.com/eurecom-s3/mmushell
[52] Fabio Pagani, Matteo Dell’Amico, and Davide Balzarotti. 2018. Beyond Precision and Recall: Understanding Uses (and Misuses) of Similarity Hashes

in Binary Analysis. In Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy (Tempe, AZ, USA) (CODASPY ’18).
Association for Computing Machinery, New York, NY, USA, 354–365. https://doi.org/10.1145/3176258.3176306

[53] Fabio Pagani, Oleksii Fedorov, and Davide Balzarotti. 2019. Introducing the temporal dimension to memory forensics. ACM Transactions on Privacy
and Security (TOPS) 22, 2 (2019), 1–21.

[54] Golden G Richard III and Andrew Case. 2014. In lieu of swap: Analyzing compressed RAM in Mac OS X and Linux. Digital Investigation 11 (2014),
S3–S12.

[55] O. Sardar and D. Andonov. 2019. White paper: Finding Evil inWindows 10 Compressed Memory. Technical Report. FireEye, 601 McCarthy Blvd. Milpitas,
CA 95035. 11 pages. https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/finding-evil-in-windows-10-compressed-memory-wp.pdf

[56] Karla Saur and Julian B. Grizzard. 2010. Locating x86 paging structures in memory images. Digital Investigation 7, 1-2 (oct 2010), 28–37.
https://doi.org/10.1016/j.diin.2010.08.002

[57] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2010. DDE: dynamic data structure excavation. In Proceedings of the first ACM asia-pacific
workshop on Workshop on systems. USENIX Association, New Delhi, India, 13–18.

[58] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A Dynamic Excavator for Reverse Engineering Data Structures. In Proceedings of
the Network and Distributed System Security Symposium (NDSS). The Internet Society, San Diego, California, USA.

[59] Wei Song, Heng Yin, Chang Liu, and Dawn Song. 2018. DeepMem: Learning Graph Neural Network Models for Fast and Robust Memory Forensic
Analysis. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). Association for

Manuscript submitted to ACM

https://doi.org/10.1145/1653662.1653730
https://omniosce.org/
https://www.qemu.org/
https://github.com/cea-sec/miasm
https://rada.re/n/
https://doi.org/10.1109/SP.2012.40
https://github.com/ReFirmLabs/binwalk
https://www.forbes.com/sites/tiriasresearch/2017/12/06/western-digital-gives-a-billion-unit-boost-to-open-source-risc-v-cpu/
https://www.forbes.com/sites/tiriasresearch/2017/12/06/western-digital-gives-a-billion-unit-boost-to-open-source-risc-v-cpu/
https://volatility-labs.blogspot.com/2015/05/using-mprotect-protnone-on-linux.html
https://www.ndss-symposium.org/ndss2011/siggraph-brute-force-scanning-of-kernel-data-structure-instances-using-graph-based-signatures
https://www.ndss-symposium.org/ndss2011/siggraph-brute-force-scanning-of-kernel-data-structure-instances-using-graph-based-signatures
https://github.com/eurecom-s3/mmushell
https://doi.org/10.1145/3176258.3176306
https://www.fireeye.com/content/dam/fireeye-www/blog/pdfs/finding-evil-in-windows-10-compressed-memory-wp.pdf
https://doi.org/10.1016/j.diin.2010.08.002

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 27

Computing Machinery, New York, NY, USA, 606–618. https://doi.org/10.1145/3243734.3243813
[60] Katerina Troshina, Yegor Derevenets, and Alexander Chernov. 2010. Reconstruction of composite types for decompilation. In 2010 10th IEEE Working

Conference on Source Code Analysis and Manipulation. IEEE Computer Society, IEEE Computer Society, USA, 179–188.
[61] David Urbina, Yufei Gu, Juan Caballero, and Zhiqiang Lin. 2014. Sigpath: A memory graph based approach for program data introspection and

modification. In European Symposium on Research in Computer Security. Springer, Springer International Publishing, Cham, 237–256.
[62] Sebastian Vogl and Blaine Stancill. 2019. Rekall support for Windows 10 memory compression. FireEye. https://github.com/mandiant/win10_rekall/

blob/win10_compressed_memory/rekall-core/rekall/plugins/windows/win10_memcompression.py
[63] Volexity. 2022. Volexity. Volexity. https://www.volexity.com/
[64] Aaron Walker. 2017. Volatility framework: Volatile memory artifact extraction utility framework.
[65] Asanovic K. Waterman A. (Ed.). 2019. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version 20190608-Priv-MSU-

Ratified. RISC-V Foundation, USA.
[66] William G. Wong. 2020. Ada and RISC-V Secure Nvidia’s Future. Endeavour Business Media. https://www.electronicdesign.com/markets/automotive/

article/21121197/ada-and-riscv-secure-nvidias-future
[67] Haiquan Xiong, Zhiyong Liu, Weizhi Xu, and Shuai Jiao. 2012. Libvmi: A Library for Bridging the Semantic Gap between Guest OS and VMM. In

Proceedings of the 2012 IEEE 12th International Conference on Computer and Information Technology (CIT ’12). IEEE Computer Society, USA, 549–556.
https://doi.org/10.1109/CIT.2012.119

A POWER ISA (64-BIT)

The Power architecture is a RISC architecture introduced by IBM in the early ’90s. Starting from the original POWER
ISA, many architectural variants have been developed during the last 30 years, including variants for gaming consoles.
However, only two of those architectures are still currently developed and supported: PowerPC, already described in
Section 5.1, and Power ISA.

A.1 MMU Internals

The Power ISA is a server-class 64-bit bi-endian architecture focused on para-virtualization: a hypervisor OS manages
all the resources of the system, including MMU registers and in-memory tables, partitioning them between the para-
virtualized machines (called Logical Partitions or LPARs). An OS running inside an LPAR needs specific support for this
environment in order to interface with the hypervisor. CPUs based on the latest Power ISA revision [41], like the IBM
POWER9 family, use the PTCR register to point to an in-memory hypervisor-reserved table called Partition Table, which
contains pointers to relevant memory management structures of the hypervisor and every LPAR running on the system.
Each entry of this table points to one of two different types of structures automatically used by the MMU to translate
virtual addresses of the LPAR (or the hypervisor): an Inverted Page Table (along with an optional segment table used
instead of the segment registers) or the root of the radix tree of the kernel (with a related process table containing roots
of process radix trees).

The Inverted Page Resolution mode works in the same way as for PowerPC (without BAT registers) with, in addition,
the support for 64-bit VASs and multiple page sizes. In this mode, all the LPAR share the hash table with the hypervisor
calling it to fill the hash table and the segment registers (the optional segment table is filled directly by the OS).

In radix tree mode, the translation of a virtual address to a physical one goes through a double translation: a radix-tree,
allocated by the guest OS, translates the virtual address to a pseudo-physical address. Then, a radix tree associated with
the LPAR and maintained by the hypervisor, translates the pseudo-physical address to a real physical one. Radix trees
have a predefined number of levels, page sizes and table entry format which permits to distinguish between directory
and page tables.

Manuscript submitted to ACM

https://doi.org/10.1145/3243734.3243813
https://github.com/mandiant/win10_rekall/blob/win10_compressed_memory/rekall-core/rekall/plugins/windows/win10_memcompression.py
https://github.com/mandiant/win10_rekall/blob/win10_compressed_memory/rekall-core/rekall/plugins/windows/win10_memcompression.py
https://www.volexity.com/
https://www.electronicdesign.com/markets/automotive/article/21121197/ada-and-riscv-secure-nvidias-future
https://www.electronicdesign.com/markets/automotive/article/21121197/ada-and-riscv-secure-nvidias-future
https://doi.org/10.1109/CIT.2012.119

28 Andrea Oliveri and Davide Balzarotti

A.2 Analysis

On a Power ISA machine we can perform a physical memory dump in two different ways: a dump of the entire machine
memory or a dump of a single LPAR. In the first case, we can recover the value contained in the PTCR register using
code analysis or parsing for the Partition Table using rules derived from the ISA. If an LPAR or the hypervisor uses
the radix tree MMU or the hash table with the segment table it is possible to recover the entire V2P address mapping
starting from the Partition Table. Instead, if they use the hash table MMU mode with the segment registers set, we can
only reconstruct the segmented to physical translation, in the same ways as we described for PowerPC.

Finally, if we work with an LPAR memory dump we can recover the structure of the guest radix trees but if the LPAR
uses the hash table mode, we cannot recover any information about the V2P address translation because the hash table
resides in the hypervisor memory.

A.3 Limitations

We have decided to not include Power ISA in Section 3 for four reasons: first of all, this architecture is strongly oriented
to virtualization and the MMU operating modes are structured with this perspective, opening the problem of the
privilege level to whom the memory dump is taken, which influences, in turn, the features recoverability. Second,
QEMU does not support the emulation of a complete Power machine running an LPAR—making it impossible to test
the reconstruction techniques in the case of a hypervisor memory dump. Third, Miasm does not support Power ISA,
making it impossible to perform the code analysis phase. Last but not least, the only operating system we could find
that runs in hypervisor mode is Linux and this lack of test cases would not allow to have any statistical significance on
the obtained results.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 29

B STRUCTURE SIGNATURES AND VALIDATION RULES

Table 7. Structure signatures (#) and validation rules () for each MMU mode implemented in MMUShell.
See ISA’s documentation[65][42][39][40][34] for more details.

AArch64 (64 bit) Long MMUmode

Object Type Rule

PTL0/PTL1/PTL2/PTL3 Entry # Size(Entry) = 8 Bytes
Empty PTL0/PTL1/PTL2/PTL3 Entry # Entry[0] = 0
PTL3 reserved entry 4/16/64Kib granule # Entry[0] = 1 ∧ Entry[1] = 0

PTL3 entry 4/64KiB granule # Entry[0,1] = 1 ∧ Entry[SH] ≠ 1
PTL3 entry 16KiB granule # Entry[0,1] = 1 ∧ Entry[SH] ≠ 1 ∧ Entry[12,13] = 0

Block PTL2 entry 4KiB granule # Entry[0] = 1 ∧ Entry[1] = 1 ∧ Entry[12. . .15] = 0 ∧ Entry[SH] ≠ 1
∧ Entry[17. . .20] = 0

Block PTL2 entry 16KiB granule # Entry[0] = 1 ∧ Entry[1] = 1 ∧ Entry[12. . .15] = 0 ∧ Entry[SH] ≠ 1
∧ Entry[17. . .24] = 0

Block PTL2 entry 64KiB granule # Entry[0] = 1 ∧ Entry[1] = 1 ∧ Entry[12. . .15] = 0 ∧ Entry[SH] ≠ 1
∧ Entry[17. . .28] = 0

Block PTL1 entry 4KiB granule # Entry[0] = 1 ∧ Entry[1] = 1 ∧ Entry[12. . .15] = 0 ∧ Entry[SH] ≠ 1
∧ Entry[17. . .29] = 0

PTL0/PTL1/PTL2 pointer 4KiB granule # Entry[0,1] = 1 ∧ Entry[Address] ∈ RAM
PTL0/PTL1/PTL2 pointer 16KiB granule # Entry[0,1] = 1 ∧ Entry[12,13] = 0 ∧ Entry[Address] ∈ RAM
PTL0/PTL1/PTL2 pointer 64KiB granule # Entry[0,1] = 1 ∧ Entry[12. . .15] = 0 ∧ Entry[Address] ∈ RAM

Kernel Radix tree ∃ DataPage | ReadOpcode(ESR_EL1, FAR_EL1, ELR_EL1) ∈
DataPage ∧ ∃ DataPage | WriteOpcode(TTBR0_EL1, TCR_EL1) ∈
DataPage ∧ ∃ DataPage | ExecOpcode(ERET) ∈ DataPage

Kernel Radix tree 1 ∃ Entry ∈ {Tables of RadixT} | Entry[AP[0,1]] = 0 ⇒ RadixT ∈
{Accepted Kernel radix trees}

User Radix tree ∃ DataPage |
ExecOpcode(RET) ∈ DataPage ∧ ∃ DataPage | ExecOpcode(BLR) ∈
DataPage

User Radix tree 2 ∃ Entry ∈ {Tables of RadixT} | Entry[AP[1]] = 1 ⇒ RadixT ∈
{Accepted User radix trees}

PTL0/PTL1/PTL2/PTL3 # Address(Table) alignment and Size(Table) compatible with
TCR_EL1 fields. See [40] for more details.

TCR_EL1 # TCR_EL1[6, 35, 59. . . 63] = 0
Size(X) = The size of the object X.
Object[W,X,Y. . .Z] = Bit W,X and all the bits in [Y,Z] of Object.
Object[NAME] = Field ‘NAME‘ of Object. See documentation for the exact location of the field in the object.
RAM = Physical address used to access to a system memory location (no MMIO, ROMs, device memory etc.).
ReadOpcode(X,Y), WriteOpcode(X,Y) = Physical address of an opcode which reads/writes on register X or Y.
ExecOpcode(X) = Physical address of X opcode.
Address(X) = Physical address of the object X.
REGISTER[W,X,Y. . .Z] = Bits of the value contained in REGISTER.

1 It exist at least a page writable in kernel mode and not writable in user mode.
2 It exist at least a page readable or writable in in user mode.

Manuscript submitted to ACM

30 Andrea Oliveri and Davide Balzarotti

AMD64 (64 bit) 4-level MMU mode

Object Type Rule

IDT entry Size(IDTEntry) = 16 Byte
IDT entry Address(IDT) % 4 = 0
Empty IDT entry IDTEntry[P] = 0
Used IDT entry IDTEntry[P] = 1 ∧ IDTEntry[35. . .39,44,95:127] = 0

∧ IDTEntry[TYPE] ∈ {14,15} ∧ IDTEntry[DPL] ∈ {0,3}

IDT table Address(IDT) % 8 = 0 ∧ Size(IDT) = 4096 Byte
IDT table ∀ i ∈ {0. . .8,10. . .14,16. . .19} IDT[i][P] = 1 ∧ IDT[i][47. . .64] = 1
IDT table 1 IDT[3][DPL] = 3 ∧ IDT[0,2,6,7,8,10. . .14][DPL] = 0

PT/PD/PDPT/PML4 Entry # Size(Entry) = 8 Bytes
Empty PT/PD/PDPT/PML4 Entry # Entry[P] = 0

PT entry # Entry[P] = 1 ∧ Entry[MAXPHYADDR:51] = 0

PD 2MiB entry # Entry[P] = 1 ∧ Entry[MAXPHYADDR:51] = 0 ∧ Entry[7] = 1
PDPT 1GiB entry # Entry[P] = 1 ∧ Entry[MAXPHYADDR:51] = 0 ∧ Entry[7] = 1

∧ Entry[21:29] = 0
PT/PD/PDPT pointer # Entry[P] = 1 ∧ Entry[MAXPHYADDR:51] = 0 ∧ Entry[7] = 0

∧ Entry[Address] ≪ 12 ∈ RAM

PD/PT/PDPT/PML4 # Address(Table) % 4096 = 0 ∧ Size(Table) = 4096 Bytes

Radix Tree ∀ InterruptHandler ∈ {Found IDT} Resolve(RadixTree,
InterruptHandler[Address]) = True

IDT[X][Y] = Field Y of the record X in interrupt table.
MAXPHYADDR = See documentation [42] for more details.
Resolve(R,V) = Resolve virtual address V using radix tree R returning True for success False otherwise.

1 The DPL field of IDT entries defines the minimum CPU privilege mode which is allowed to execute the code pointed by the entry: 0 for kernel mode,
3 for user mode. We force the DPL field of some entries to be 0 because that entries are associated with interrupts which are managed by the kernel
(e.g. NMI, invalid opcode, double fault etc.). Instead, we force the code pointed by the entry associated with breakpoint exception to have DPL = 3
because it is needed to permit to a user space process to debug other processes.

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 31

ARM (32 bits) Short MMU mode

Object Type Rule

PTL1/PTL2 Entry # Size(Entry) = 4 Bytes
Empty PTL1/PTL2 Entry # Entry[0,1] = 0

Small PTL2 Page Entry # Entry[1] = 1 ∧ (Entry[TEX] ≠ 1 ∨ Entry[B] = 1 ∨ Entry[C] = 0)
Large PTL2 Page Entry # Entry[0] = 1 ∧ Entry[1] = 0 ∧ Entry[6. . .8] = 0 ∧

(Entry[TEX] ≠ 1 ∨ Entry[B] = 1 ∨ Entry[C] = 0)
Large PTL2 page entries group # if ∃ LPEntry in Table⇒ ∃ LPEntryj | Address(LPEntryj+1) =

Address(LPEntryj + 4) ∧ Address(LPEntry0) % 16 = 0) j ∈ {0. . .15}

Section PTL1 Entry # Entry[1] = 1 ∧ Entry[9,18] = 0 ∧ (Entry[TEX] ≠ 1 ∨ Entry[B] = 1
∨ Entry[C] = 0)

Supersection PTL1 Entry # Entry[1,18] = 1 ∧ Entry[9] = 0 ∧ (Entry[TEX] ≠ 1 ∨ Entry[B] = 1
∨ Entry[C] = 0)

Supersection PTL1 entries group # if ∃ SSEntry in Table⇒ ∃ SSEntryj | Address(SSEntryj+1) =
Address(SSEntryj + 4) ∧ Address(SSEntry0) % 16 = 0) j ∈ {0. . .15}

PTL2 pointer Entry # Entry[0] = 1 ∧ Entry[1] = 0 ∧ Entry[9] = 0

PTL1 Table # Address(Table) alignment and Size(Table) compatible with TTBCR
fields. See [42] for more details.

PTL2 Table # Address(Table) % 1024 = 0 ∧ Size(Table) = 1024 Bytes

Kernel Radix tree ∃ DataPage | ReadOpcodes(DFSR, IFSR) ∈ DataPage ∧
∃ DataPage | WriteOpcodes(TTBR0, TTBCR) ∈ DataPage

Kernel Radix tree 1 ∃ Entry ∈ {Tables of RadixT} | Entry[PNX] = 0⇒ RadixT ∈
{Accepted Kernel radix trees}

User Radix tree 1 ∃ Entry ∈ {Tables of RadixT} | Entry[NX] = 0⇒ RadixT ∈
{Accepted User radix trees}

User Radix tree 2 ∃ Entry ∈ {Tables of RadixT} | Entry[AP[1]] = 1 ⇒ RadixT ∈
{Accepted User radix trees}

TTBCR # TTBCR[3] = 1 ∧ TTBCR[6, 31] = 0
1 It exist at least a table entry executable i.e. it exist at least a page which contains code.
2 It exist at least a table entry writable i.e. it exist at least a page which contains data.

MIPS32 (32 bit) TLB and Radix tree MMUmodes

Object Type Rule

Config # Config[4. . .6] = 0 ∧ Config[31] = 1
Config5 # Config5[1,12,14. . .26] = 0
PageGrain # PageGrain[5. . .7,13. . .25] = 0
PageMask # PageMask[0. . .10,29. . .31] = 0
PWCtl # PWCtl[8. . .30] = 0
PWField # PWField[30. . .31] = 0 ∧ (if Config[10. . .12] ≥ 2 ⇒

∀ i ∈ {GDI, UDI, MDI, PTI}PWField[i] < 12)
PWSize # PWSize[30. . .31] = 0 ∧ (if Config[10. . .12] ≥ 2 ⇒

PWSize[PTW] ≠ 1)
Wired # Wired[0. . .15] < Wired[16. . .31]

Manuscript submitted to ACM

32 Andrea Oliveri and Davide Balzarotti

PowerPC (32 bit) SDR1+BAT MMUmode

Object Type Rule

Hash Table Entry # Size(Entry) = 8 Bytes
Empty Hash Table entry # Entry[V] = 0

Used Hash Table entry # Entry[V] = 1 ∧ Entry[RPN] ≪ 12 ∈ RAM ∧ (Entry[R] = 1 ∨
Entry[C] = 0)

Hash Table entries group # HT[i][j] ≠ HT[i][k] i ∈ {0. . .Size(HT)/64 - 1} j,k ∈ {0. . .7} ∧ j ≠ k

Hash Table # Address(HT) % 16 = 0 ∧ Size(HT) ∈
{64Kib 128Kib 256KiB 512KiB 1MiB 2MiB 4Mib 8MiB 16MiB 32MiB}

Hash Table # ∀ Entry ∈ HT | Entry[V] = 1 ⇒ Address(Entry)[16. . .31] =
Address(HT)[25. . .31] ∥ Hash(Entry[VSID][10. . .18] ⊕ Entry[API])
∧ (1 ≪ (Log(Size(HT) - 16) -1) ∨ (Address(HT) ≫ 16)[0. . .8]

Hash Table 1 ∃ Entry ∈ HT | Entry[V] = 1
Hash Table 2 ∃ Entry1 and Entry2 ∈ HT | Entry1[V] = Entry2[V] = 1 ∧

Entry1[VSID] ≠ Entry2[VSID]
Hash Table 3 ∃ Entry1 and Entry2 ∈ HT Entry1[V] = Entry2[V] = 1 ∧

Entry1[RPN] ≠ Entry2[RPN]

Parsed Hash Tables 4 ∀ j ∈ {Parsed HTs}|𝐻 𝑗 = 𝐻 (HT𝑗) = −∑
𝑃 (RPN𝑖) log2 𝑃 (RPN𝑖);

𝐻max = Max(𝐻 𝑗);
if 𝐻 𝑗 > 0.8𝐻max ⇒ j ∈ {Accepted HTs}

HT[X][Y] = Field Y of the record X in hash table.
1 It exists at least one not empty entry in the table.
2 It exists entries associated with at least two different segments.
3 The hash table maps for at least two different physical pages.
4 The kernel, spreading data among a wide range of physical pages in RAM, increase the entropy of the distribution of the physical addresses of the
pages in the real hash table. We filter the set of hash tables candidates discarding tables which have entropy less than the 80% of the maximum of
entropy in the set.

RISC-V SV32 and SV48 MMUmodes

Object Type Rule

PTL0/PTL1 Entry (SV32) # Size(Entry) = 4 Bytes
PTL0/PTL1/PTL2 Entry (SV48) # Size(Entry) = 8 Bytes
Empty PTL0/PTL1(/PTL2) Entry # Entry[V] = 0

PTL0 entry (SV32) # Entry[V] = 1
PTL0 entry (SV39) # Entry[V] = 1 ∧ Entry[54,63] = 0
PTL1 4MiB entry (SV32) # Entry[V] = 1 ∧ Entry[10:19] = 0
PTL1 2MiB entry (SV39) # Entry[V] = 1 ∧ Entry[54,63] = 0 ∧ Entry[10:18] = 0
PTL2 1GiB entry (SV39) # Entry[V] = 1 ∧ Entry[54,63] = 0 ∧ Entry[10:28] = 0

PTL0 pointer (SV32) # Entry[V] = 1 ∧ Entry[R,W,X,D,A,U] = 0 ∧ Entry[Address] ≪ 12 ∈
RAM

PTL0/PTL1 pointer (SV39) # Entry[V] = 1 ∧ Entry[R,W,X,D,A,U] = 0 ∧ Entry[54,63] = 0 ∧
Entry[Address] ≪ 12 ∈ RAM

PTL0/PTL1(/PTL2) # Address(Table) % 4096 = 0 ∧ Size(Table) = 4096 Bytes

Manuscript submitted to ACM

In the Land of MMUs: Multiarchitecture OS-Agnostic Virtual Memory Forensics 33

Intel x86 IA32 and PAE MMUmodes

Object Type Rule

IDT entry Size(IDTEntry) = 8 Bytes
Empty IDT entry IDTEntry[P] = 0
Used IDT entry IDTEntry[P] = 1 ∧ IDTEntry[32:39,44] = 0 ∧ IDTEntry[42] = 1 ∧

IDTEntry[DPL] ∈ {0,3}

IDT Address(IDT) % 4 = 0 ∧ Size(IDT) = 2048 Bytes
IDT IDT[0. . .8,10. . .14][P] = 1
IDT 1 IDT[0,2,6. . .8,10. . .14][DPL] = 0 ∧ IDT[3][DPL] = 3

PT/PD Entry (IA32) # Size(Entry) = 4 Bytes
PT/PD/PDPT Entry (PAE) # Size(Entry) = 8 Bytes
Empty PT/PD(/PDPT) Entry # Entry[P] = 0

PT entry (IA32) # Entry[P] = 1
PT entry (PAE) # Entry[P] = 1 ∧ Entry[MAXPHYADDR:62] = 0 ∧ Entry[7] = 0

PD 4MiB entry (IA32) # Entry[P] = 1 ∧ Entry[7] = 1 ∧ Entry[MAXPHYADDR. . .19, 21] = 0
PD 2MiB entry (PAE) # Entry[P] = 1 ∧ Entry[MAXPHYADDR:62] = 0 ∧ Entry[7] = 1 ∧

Entry[13:20] = 0

PT pointer (IA32) # Entry[P] = 1 ∧ Entry[7] = 0 ∧ Entry[Address] ≪ 12 ∈ RAM
PT pointer (PAE) # Entry[P] = 1∧ Entry[MAXPHYADDR:62] = 0∧ Entry[7] = 0∧ newline

Entry[Address] ≪ 12 ∈ RAM
PD pointer (PAE) # Entry[P] = 1∧ Entry[MAXPHYADDR:62] = 0∧ Entry[7] = 0∧ newline

Entry[1,2,5,6,8,63] = 0 ∧ Entry[Address] ≪ 12 ∈ RAM

PD/PT # Address(Table) % 4096 = 0 ∧ Size(Table) = 4096 Bytes
PDPT (PAE) # Address(Table) % 32 = 0 ∧ Size(Table) = 32 Bytes

Radix Tree ∀ InterruptHandler ∈ {Found IDT} Resolve(RadixTree,
Address(InterruptHandler))

1 See Note 1 of AMD64 architecture.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Contribution

	2 Virtual Memory: Basic Concepts
	2.1 MMU
	2.2 Radix Tree
	2.3 Inverted page tables

	3 Approach
	3.1 Structural Signatures
	3.2 Validation Rules
	3.3 Binary Code Analysis

	4 Group I: Radix Trees
	4.1 RISC-V (32 and 64-bit)
	4.2 Intel x86 (32 and 64-bit)
	4.3 ARM (32-bit)
	4.4 ARM (64-bit)

	5 Group II: Inverted page tables
	5.1 PowerPC (32-bits)

	6 Group III: Software-defined Address Translation
	6.1 MIPS (32 and 64-bit)

	7 Implementation
	8 Experiments
	8.1 Group I: RISC-V 32 and 64-bit
	8.2 Group I: Intel x86 and AMD64
	8.3 Group I: ARM32 and AArch64
	8.4 Group II: PowerPC 32-bit
	8.5 Group III: MIPS 32-bit

	9 Application to real hardware
	10 Towards OS agnostic memory forensics
	10.1 Experiment

	11 Limitations and future extensions
	12 Discussion
	13 Related Work
	14 Code availability
	15 Acknowledgments
	References
	A Power ISA (64-bit)
	A.1 MMU Internals
	A.2 Analysis
	A.3 Limitations

	B Structure signatures and validation rules

