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Coaxial-Injector Surrogate Modeling based on
Reynolds-Averaged Navier-Stokes Simulations

using Deep Learning

M. Krügener ∗, J. F. Zapata Usandivaras †, M. Bauerheim ‡, A. Urbano§
ISAE-SUPAERO, University of Toulouse, France

Facing the need to increase the accuracy of rocket engines design tools, the present work

introduces an innovative methodology for the design and optimisation of rocket engine com-

bustion chambers using numerical simulations and deep learning. An experimental test case

of a single coaxial injector is taken as a reference point and a design of experiments is gener-

ated by varying nine parameters (geometrical and operative conditions). Reynolds-Averaged

Navier-Stokes simulations are carried out to generate the dataset. The data are used to train

surrogate models of different fidelity, from low dimensional outputs (0D and 1D) towards

the 2D temperature field. Attention is given on the selection of the proper machine learning

technique. For low dimensional outputs, results show that deep neural networks outperform

other standard machine learning tools, namely Radial Basis Function and Kriging. Regarding

high-dimensional outputs, convolutional neural networks with gradient-based loss functions

are found effective to capture the large and smooth temperature variations, as well as the

thin and sharp temperature gradients at the flame front. Eventually the models are used in

the framework of an optimisation problem. Results highlight the benefits of new design and

optimisation tools based on deep learning, capable of real-time predictions of complex flow

fields.

Nomenclature

ρ = density [kg/m3]

p = pressure [Pa]

T = temperature [K]

ui = velocity field component along the xi axis [m/s]

λ = thermal conductivity [W/m/K]
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a = speed of sound [m/s]

cp = specific heat at constant pressure [J/kg/K]

h = specific total enthalpy [J/kg]

h0
j = formation enthalpy of species j [J/kg]

γ = specific heat ratio

Γ = function of γ

τi j = fluid shear stress tensor [Pa]

µ = dynamic viscosity [Pa.s]

k = turbulent kinetic energy [J/kg]

ε = kinetic energy dissipation rate [J/kg/s]

Pk = production of turbulent kinetic energy [W]

Pr = Prandtl number

M = Mach number

Le = Lewis number

Sc = Schmidt number

Z = mixture fraction

Y = species mass fraction

P(Z̃, Z̃′2) = β-PDF function

D = mass diffusion coefficient [m2/s]

d = radius or height [m]

l = length [m]

A = cross section area [m2]

Ûm = mass flow rate [kg/s]

O/F = oxydizer to fuel mass ratio

qw = wall heat flux [W/m2]

Qw = integrated wall heat flux [W]

∆p = relative total pressure drop [%]

L f l = flame length [m]

|VE | = velocity magnitude at the nozzle exit [m/s]

Isp = specific impulse [s]

F = thrust [N]

cF = thurst coefficient

2



c∗ = characteristic velocity [m/s]

x = vector of inputs, coordinate

y = vector of outputs

N = number of samples in a dataset

nx, ny = number of inputs and outputs

ε = mean relative error of a model

η = surrogate model accuracy

wR,H = radial basis function parameters and coefficients

β0, β1, θK = Kriging model parameters

δF = uncertainty on the target thrust Ft

f , g,G = generic functions

W = molar mass [kg/mol]

Xp = Pareto solutions

J = momentum flux ratio

Subscripts

t = turbulent quantity, throat, tip

c = chamber

e = noozle exit

w = wall

o = oxydizer

f = fuel

in = injector

a = atmospheric

re f = reference

max = maximum

i, j, k = indexes

ap = approximate value

Upscript

.̂ = prediction

t = target
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I. Introduction
Liquid Rocket Engines (LRE) are complex systems that are composed of several sub-systems (cooling system, feed

system, thrust chamber...) that are designed to be reliable and optimised in order to obtain the highest performance

and the lowest mass. The process is iterative, and in the preliminary sizing phase, heavily relies on low order semi

empirical correlations calibrated on existing engines. These low fidelity models induce high uncertainties in the

subsystems designs that propagate and affect the global engine sizing. As a consequence, the engine development

strongly relies on experimental studies, that go up to hot-tests of the engine, making use of very expensive experimental

facilities. Increasing the numerical modelling reliability is a strategic matter that needs to be addressed in order to

reduce the development cost of innovative rocket engines for future launchers, in particular LRE, and thus ensuring

access to space. The combustion chamber and injector design are key elements of any rocket engine [1]. High fidelity

numerical simulations, and in particular Large Eddy Simulations (LES), have demonstrated their ability to finely describe

complex physical phenomena in LRE combustion chambers [2–5]. Nevertheless, LES is still a high computational

cost methodology, with long computational times, which can limit its use in the context of concrete applications. An

alternative, when only stationary operating conditions are of interest, is to use Reynolds-Averaged Navier-Stokes (RANS)

simulations [6–10]. However, even restitution times of RANS are too high if used in an optimisation framework loop of

a whole engine. What is the best way to exploit the capability of Computational Fluid Dynamics (CFD) in this context

is an interesting question which is under investigation today[11, 12]. In order to answer this question, a strategy is

proposed in the present paper using models of various fidelity. The main idea is to build surrogate models with real-time

inference capabilities for the injector and the combustion chamber, using machine learning algorithms and data from

numerical simulations. The obtained surrogate models can then be used in the framework of an optimisation problem

[13, 14]. Once deployed, the surrogate model will allow a large number of different configurations to be spanned,

providing the results of the CFD simulations with a very low inference time, of the order of the millisecond. In the

context of design and optimisation of the whole rocket engine, the surrogate model of the chamber can permit to increase

the accuracy of the final configuration performance. This eventually can reduce the number of experimental tests and

consequently the whole development cost. The derivation and use of data driven surrogate models in the aerospace

community is an active field of research. In particular, response surface models have been applied in a wide range of

applications including nozzle shape optimization [15] and rocket injector design [16, 17]. In these works, surrogate

models are either interpolators, usually high polynomials surface functions, or regressors, usually based on gaussian

processes. A survey of these methods can be find for instance in the paper from Hwang and Martins[18]. Recently,

the great developments of artificial intelligence algorithms have been recognised in the fluid mechanics community

and their application to CFD is a growing field of investigation [19]. In particular, deep learning (DL) has shown a

great potential for both modelling and analysing of complex systems, including 2D and 3D geometries [20, 21], flow

control and optimisation [14]. The use of deep learning for regression on CFD data, in order to obtain data based
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models, has been investigated in the framework of both steady external aerodynamics [14], unsteady fluid mechanics

[22] , acoustics [23], and internal reactive flows problems [24, 25]. Of particular interest is the work by Thuerey et al

[26], who investigated the accuracy of deep learning for the inference of the flow around an airfoil. The developed

surrogate models, based on U-net, a particular class of Convolutional Neural Networks, were able to reproduce the

pressure and velocities fields with errors smaller than 3%. Despite the increasing number of works in this domain, the

use of these approaches applied to rocket engines remains limited [24, 25, 27, 28] and to the authors knowledge there

are no work available focusing on their application for injector design.

The aim of the present paper is to carry out a proof of concept of the proposed methodology based on machine

learning by applying it on a simple configuration. The selected test case is a single coaxial injector chamber, using

gaseous methane and oxygen as propellants. The database will be generated using 2D axisymmetric RANS simulations.

Specific geometric parameters (for instance the chamber diameter and injector diameters) and specific operative

conditions are defined as design parameters. The objective is to build surrogate models able to provide, with a very low

inference time, three different types of quantities: performance parameters (0D), the wall heat flux distribution (1D)

and a visualisation of the chamber temperature field (2D). In order to achieve this objective several research questions

will be addressed. First, the paper will investigate how to deploy a strategy in order to build a design of experiments

from the selected case. The second question addresses the type and architecture of the machine learning tool necessary,

depending on the size of the target quantity of interest (0D, 1D and 2D). Eventually, the deployment of the developed

models in the context of an optimization problem will be tested.

In the following, the experimental test case used as a reference point for the present investigation is presented

in Section II. The numerical setup is introduced and the ability in reproducing the results in agreement with the

experimental data on the target configuration is demonstrated. Then, the design of experiments is introduced (Section III)

and the methodology is deployed to generate the data (Section IV). The data are then used to train different algorithms

depending on the fidelity level of interest: global quantities (0D), wall quantities (1D) or field quantities (2D). Sensitivity

analyses are carried out to establish the best set of hyperparameters and loss function. Finally, an example of application

of the developed models in the framework of an optimisation problem is shown in Section VI.

II. Reference test case: coaxial single injector
The database generated and analysed in the present work is based on a reference experimental test case [29]. It

corresponds to a single coaxial injector chamber, operated at 20 bar, with gaseous methane and gaseous oxygen. The

gaseous oxygen enters the square chamber of side 12 mm through the inner tube of the injector that has a radius of

do = 2 mm. The gaseous methane flows through the annulus around the oxygen, that has a height of df = 0.5 mm.

RANS simulations are carried out with the commercial software Ansys Fluent with the objective of retrieving the

stationary condition. As a first step, a numerical study has been carried out in order to find a numerical configuration
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that reproduces the experimental data at the reference point. This includes a mesh independence study, turbulence

model sensitivity analysis and a comparison between several chemical schemes and turbulent combustion interaction

models. The test case is largely documented and has been used as a benchmarck for several numerical studies, including

RANS simulations [4, 30]. In the following sections are given the details about the governing equations, the numerical

setup and grid selected to carry out the present study.

df

do
dt

dstep
dc

lr

(a) Fuel and oxidizer inlet detail with recessed post tip.

dc

Ac

At

Ae

(b) Refined nozzle and outlet detail.

Fig. 1 Parametrized geometry and meshes close to the injector tip (a) and nozzle (b). Note that the recess
length is zero in the reference experiment ( lr = 0).

A. Governing equations

The compressible, reactive, turbulent flow is described with the following conservation equations for mass,

momentum and energy:

∂ρ

∂t
+
∂ρũ j

∂xj
= 0 , (1)

∂ρũi
∂t
+
∂ρũi ũ j

∂xj
= −

∂p
∂xj
+
∂τi j

∂xj
, (2)

∂ρh̃
∂t
+
∂ρũi h̃
∂xi

=
∂

∂xi

(
λ + λt

cp

∂ h̃
∂xi

)
, (3)

where ρ is the density, p is the pressure, ui the velocity field component along the xi axis, λ and λt are laminar and

turbulent conductivities and cp is the specific heat at constant pressure. h is the specific total enthalpy (in J/kg) which is

given by:

h̃ =
ũi ũi

2
+

∑
j

[∫ T̃

Tre f

cp, jdT + h0
j (Tre f , j)

]
(4)

where h0
j is the formation enthalphy of species j at the reference temperature Tre f , j . The Favre formalism has been used

and for every flow variable f , f is an ensemble average and f̃ is a mass weighted average [31, 32]. τi j is the stress

tensor which is given by the following expression:

τi j = (µ + µt )

[
∂ũ j

∂xi
+
∂ũi
∂xj
−

2
3
δi j
∂ũk
∂xk

]
, (5)
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where µ is the laminar dynamic viscosity of the mixture and µt is the turbulent viscosity. Thermophysical models are

needed in order to close the system. The perfect gas equation is considered. NASA polynomials [33] are employed for

the specific heat at constant pressure cp with an ideal gas mixture law. Laminar conductivity and dynamic viscosity for

the mixture are considered constant and equal respectively to λ = 0.0454W m−1K−1 and µ = 17.2 µPa s. For what

concerns turbulence closure modelling, the k − ε model [34] is used and therefore transport equations for the turbulent

kinetic energy k and its rate of dissipation ε have to be solved in addition to the system of Eqs. (1)-(3):

∂ρk
∂t
+
∂ρũik
∂xi

=
∂

∂xi

[(
µ +

µt
σk

)
∂k
∂xi

]
+ Pk + ρε

(
2

k

a2 − 1
)
, (6)

∂ρε

∂t
+
∂ρũiε
∂xi

=
∂

∂xi

[(
µ +

µt
σε

)
∂ε

∂xi

]
+ C1ε

ε

k
Pk − C2ε ρ

ε2

k
, (7)

where a is the sound speed. The production term of turbulent kinetic energy Pk is expressed as follow:

Pk = µt

[
∂ũ j

∂xi
+
∂ũi
∂xj

]
∂ũi
∂xj

. (8)

The model constants used are C1ε=1.44, C2ε=1.92, σk = 0.9 and σε = 0.9. The turbulent dynamic viscosity can be

computed from k and ε :

µt = ρCµ
k2

ε
, (9)

where Cµ = 0.09 is a constant. Eventually the turbulent conductivity kt is given by:

λt =
cp
ρ

µt
Prt

, (10)

where Prt = 0.9 is the turbulent Prandtl number. The non-adiabatic Steady Diffusion Flamelet (SDF) approach is used

to model the multi-species reactive flow [35], making use of a β-PDF to account for turbulence-chemistry interaction.

The Flamelet table is generated with the GRI-3.0 mechanism, considering 20 species (H2, H, CH4, O2, H2O, CO, CO2,

OH, O, C2H2, C2H4, C2H6, HO2,CH3, H2O2, HCO, CH2CO, CH2O, C3H8, C2H3). The GRI-3.0 mechanism, which

was originally built for pressures around 1 atm, has been successfully applied to simulate higher pressure combustion in

liquid rocket engines [30, 36]. Therefore, it is considered suitable for the present investigation. A mixture fractionZ is

introduced:

Z =
Yi − Yi,o

Yi, f − Yi,o
(11)

where Yi is the mass fraction for the ith species, and the subscript f and o refer to the fuel and oxydizer inlets. Density

ρ̃, temperature T̃ and species mass fractions ỹi (generically called φ̃ in the following ) are estimated from the local
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average mixture fraction Z̃, its variance Z̃′2 and the local average total enthalpy h̃ (described by (Eq.3)):

φ̃ =

∫ 1

0
φ(Z̃, h̃)P(Z̃, Z̃′2)dZ , (12)

where P(Z̃, Z̃′2) is a standard β-PDF function. Therefore, two additional transport equations for Z̃ and Z̃′2 are

considered:

∂ρZ̃

∂t
+
∂ρũiZ̃
∂xi

=
∂

∂xi

[
ρ(D + Dt )

∂Z̃

∂xi

]
, (13)

∂ρZ̃′2

∂t
+
∂ρũiZ̃′2

∂xi
=

∂

∂xi

[
ρ(D + Dt )

∂Z̃′2

∂xi

]
+ Cgµt .

(
∂Z̃

∂xi

)2

− Cdρ
ε

k
Z̃′2 , (14)

where Cg = 2.86 and Cd = 2. D and Dt are laminar and turbulent diffusion coefficients respectively. Considering a

unitary number of Lewis, Le=1, the laminar diffusion is expressed as a function of λ and µ:

D =
λ

ρcp
. (15)

A turbulent Schmidt number Sct = 0.5 is introduced in order to express Dt as a function of µt according to:

Dt =
µt
ρSct

. (16)

B. Numerical setup

To solve the above governing equations with the Ansys Fluent code, a pressure based implicit scheme, accounting

for compressibility effects, has been selected to carry out axisymmetric simulations looking for a steady solution. The

experimental chamber is rectangular and the nozzle has a rectangular cross section. In order to carry out axisymmetric

simulations, the geometry has thus been modified into a cylindrical chamber and a conical nozzle. The radius of the

chamber is dc = 6.77 mm , which corresponds to the same cross section area of the experimental square chamber

(namely dc =
√

Ac/π with Ac cross section area of the chamber). A schematic of the computational domain is reported

in Fig. 1, with a close-up view of the injector and nozzle regions. Inlet boundary conditions are specified in terms of

mass flow rate Ûm and temperatures for both propellants, while no boundary condition is applied at the nozzle outlet

where the flow is expected to be supersonic. Specifically, oxygen and methane are at 278 K and 269 K during injection

respectively, the mass flow rate is Ûm = 0.062 kg/s and the oxidizer-to-fuel ratio is (O/F) = 2.62.This translates to inlet

velocities of 122 m/s and 132 m/s for oxygen and methane respectively. The walls of the injector assembly are assumed

adiabatic with a no slip boundary condition. A no slip, isothermal boundary condition is applied on the chamber wall,
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considering a thermal resistance for a solid wall of copper with a thickness of 1 mm. The outer temperature profile is a

linearization of the experimental wall temperature provided in [29] in the same position, as reported in Fig.2.

x [mm]

T w
[K
]

Fig. 2 Experimental wall temperature and linearization imposed as a boundary condition in all the simulations
in the outer side of the 1mm thick chamber wall.

C. Grid convergence analysis

The mesh is not uniform and the resolution is increased in the region where stronger gradients are expected. Indeed,

a refinement is applied around the area of fuel and oxidizer mixing as can be observed in the detailed view of Fig.1a. A

grid sensitivity study was carried out in order to verify the requirements in term of resolution. Fig. 3 shows the wall heat

flux profiles obtained with three different grids: coarse (181×103 cells), medium (720×103) and fine (2 770×103 cells).

The ratio of the cells height from one grid to another is 2. Wall heat flux profiles are similar, with differences between

coarse and fine meshes smaller than 8%. In Fig.3 are also reported the experimental curve [29] (N) and the numerical

results provided by [30] (- -). The present numerical results are in agreement with experimental data and present the

same level of errors obtained with other simulations carried out with similar models in [30]. From a quantitative point

of view, the error between the solution and an extrapolated exact solution can be evaluated from the results obtained

with the three grids, using the Richardson method [37]. As an example, the error for the integrated wall heat flux Qw ,

the average total pressure pc and temperature Tc at the chamber outlet (nozzle inlet) versus the number of grid cells are

reported in log scale in Fig.4. The error decreases by increasing the number of cells, showing a convergence of the

results.
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x [mm]

q w
[M
W
/m

2 ]

[30]

Fig. 3 Wall heat flux profile. Comparison between experimental data [29], numerical results from [30], and
the present setup for different meshes.

Cells number

ε 
[%

]

105 106

5

10
15
20 Q

pc
Tc

w

Fig. 4 Error versus number of cells for different grid refinements, for the integrated heat fluxQw , the stagnation
temperature Tc and pressure pc .

In conclusion the convergence analysis is satisfactory and the obtained results are in agreement with experimental

data. Considering that the purpose of the present work is to put in place a methodology by generating a large database, it

has been decided to use the coarse mesh (181 000 cells) in order to reduce the computational time for the data generation.

All the results presented in the following are therefore carried out with a grid similar to the coarse mesh, with variations

according to the geometry parametrisation.

III. Design of experiments and data generation

A. Inputs and outputs

The reference numerical setup detailed in Section II will be used to generate a large database to infer models for

injector design optimization. To do so, the first task is to define the inputs and outputs. The outputs are the quantities

needed to define the best injector design. Therefore, these outputs are related to both performances and the sizing
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of other rocket engine components that depend on the injector design. Moreover, a visualisation of the temperature

field inside the chamber can be useful to understand how the design choice impacts the flame and flow topologies. All

the outputs are directly deduced from the results of each simulation. 0D outputs, referred as global quantities in the

following, are computed with volume averages. 1D quantities are the wall quantities. 2D quantities are field quantities.

More information about these outputs are given in the next sections.

Regarding the inputs, seven geometrical parameters are necessary to define the geometry of the single coaxial

injector chamber. These parameters, shown in Figure 1 are: the chamber radius dc , the contraction ratio between the

chamber (c) and the throat (t) areas Ac/At , the expansion ratio between exit (e) and throat areas Ae/At , the oxygen inlet

radius do, the tip width dt , the fuel inlet height df and the recess length lr . The only geometrical parameter which is

kept constant for all the simulations is the chamber length lc , which has been increased with respect to the experimental

value and is equal to 580 mm. This has been done in order to ensure a combustion length higher than the flame length

for all the simulations. Two more inputs are used in order to define the operating point: the total inlet mass flow rate Ûm

and the oxidizer to fuel mass ratio O/F. The propellants injection temperatures, the wall temperature and the outlet

atmospheric pressure (pa = 1 atm) are kept constants for all the simulations. To summarise, the design of experiments

(DOE) will be build varying 9 parameters: 7 geometrical parameters and 2 parameters defining the operating point.

B. High-dimensional sampling

When sampling the 9D parameter space, it is required that design points are well spaced and give a good representation

of possible parameters combinations. However, a purely random sampling along each axis does not guarantee a

maximized spacing between points. Therefore, Latin Hypercube Sampling (LHS) [38] is used to sample the parameter

space. This method takes into account all previously sampled points when determining the next one. Specifically, the

Enhanced Stochastic Evolutionary [39] algorithm which is an efficient implementation adhering to the LHS optimally

criteria, is used with the Surrogate Modeling Toolbox (SMT) [40].

0
do dt d f dc O/F ṁ lr Ac/At At/Aedo dt df dc lr

<latexit sha1_base64="GzGogniLT3+7UZ2HxHSpq4coyyk=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVkUxJ0V7APaIsl0WoNpEiaTQgnBrT/gVj9L/AP9C++MKahFdEKSM+eec2fuvW7ke7G0rNeCMTe/sLhUXC6trK6tb5Q3t5pxmAjGGyz0Q9F2nZj7XsAb0pM+b0eCOyPX5y337kzFW2MuYi8MruUk4r2RMwy8gcccSVSnOxAOSy+z9Dy7KVesqqWXOQvsHFSQr3pYfkEXfYRgSDACRwBJ2IeDmJ4ObFiIiOshJU4Q8nScI0OJvAmpOCkcYu/oO6RdJ2cD2qucsXYzOsWnV5DTxB55QtIJwuo0U8cTnVmxv+VOdU51twn93TzXiFiJW2L/8k2V//WpWiQGONE1eFRTpBlVHcuzJLor6ubml6okZYiIU7hPcUGYaee0z6b2xLp21VtHx9+0UrFqz3Jtgnd1Sxqw/XOcs6B5ULWPqtbVYaV2mo+6iB3sYp/meYwaLlBHQ3f8EU94NurG2MiM+0+pUcg92/i2jIcPiS6T6w==</latexit>

O

F

<latexit sha1_base64="7uKQj7DlFjjzGXyk80k/acllZC0="></latexit>

ṁ
<latexit sha1_base64="LpMI0TTY4hfLD4Cb30Y8F0NVNqg="></latexit>

Ac

At

<latexit sha1_base64="1feOkI+N/Iv14luaeTln25YJuvY=">AAAC2HicjVHLSsNAFD2Nr1pf1S7dBIvgqqQi6rLqxmUF+8C2lGQ6raFpEiYToZSAO3HrD7jVLxL/QP/CO2MKahGdkJkz595zZu5cJ/TcSFrWa8aYm19YXMou51ZW19Y38ptb9SiIBeM1FniBaDp2xD3X5zXpSo83Q8HtkePxhjM8U/HGDReRG/iXchzyzsge+G7fZbYkqpsvtPvCZpOT7oQniVpkknTzRatk6WHOgnIKikhHNci/oI0eAjDEGIHDhyTswUZEXwtlWAiJ62BCnCDk6jhHghxpY8rilGETO6R5QLtWyvq0V56RVjM6xaNfkNLELmkCyhOE1WmmjsfaWbG/eU+0p7rbmFYn9RoRK3FN7F+6aeZ/daoWiT6OdQ0u1RRqRlXHUpdYv4q6ufmlKkkOIXEK9yguCDOtnL6zqTWRrl29ra3jbzpTsWrP0twY7+qW1ODyz3bOgvp+qXxYsi4OipXTtNVZbGMHe9TPI1Rwjipq5D3GI57wbFwZt8adcf+ZamRSTQHfhvHwAa3il+A=</latexit>

Ae

At

uniform

Fig. 5 Histograms (nBin = 40) for all the parameters of the Design of Experiments (DOE) along their respective
ranges: 1D projections of the 9D parameter space sampling.
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Parameter Symbol Range Reference Sampling Mode

Oxidizer inlet radius do 0.5 − 4 mm 2 mm linear in
√
-space

Injector tip width dt 0.2 − 1 mm 0.5 mm linear in
√
-space

Fuel inlet height df 0.2 − 1 mm 0.5 mm linear in
√
-space

Chamber radius dc 4 − 10 mm 6.77 mm linear in 4√ -space

Mixture ratio O/F 2 − 4 2.62 linear

Total mass flow rate Ûm 0.005 − 0.13 kg/s 0.062 kg/s linear

Recess length lr 0 − 30 mm 0 mm linear

Contraction ratio Ac/At 2 − 5 2.5 linear

Expansion ratio At/Ae 2 − 3 2 linear

Table 1 Parameter range, reference values and sampling mode for all 9 parameters.

Some combinations of input parameters could lead to non-physical configurations (for instance a supersonic flow in

the injector). To avoid non physical behaviours, some limits are imposed in terms of minimum of Ac/At , do, dc and df

(see Eqs. (25), (30), (31) and (32) in Appendix VII.A). Note that lower inlet sizes and chamber diameters are more

likely to result in violation of these parameter limits. If these parameter ranges are sampled in a linear space, this will

result in few design points with a combination of small inlets and chamber sizes. To increase the likelihood of these

edge cases being sampled, do, dt and df are sampled in
√
-space and dc is sampled in 4√ -space. This implies that

samples are taken linearly from functions f , g image spaces such that f (x) =
√

x and g(x) = 4√x, with x representing

the sampled variable. This can be observed in Fig. 5 that shows the histograms of the sampling points for the different

parameters. The parameters sampling ranges and the sampling mode are summarised in Tab. 1.
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do dt df dc lr
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F

Fig. 6 Probability Density Function isosurfaces for all parameter combinations. x and y-axis limits as in Table
1.

To further investigate the distribution of the design points, Fig. 6 shows a 2D projection of the probability density

function (PDF) for all parameters combinations. The influence of the parameters limits is clearly visible. For example,

the third row from the top with dc on the y-axis illustrates the dependence of Eq.(32) on do, dt and df . The distribution

of dc is however also influenced by Eq. (25), which results in a relationship between the contraction ratio and the

chamber diameter seen in row Ac/At column dc . The contraction ratio is also influenced by do, dt and df via the

chamber pressure approximation (Eq. 28). Other parameters like O/F, Ûm, lr and At/Ae do not feature prominently in

the limit equations and therefore do not lead to significant changes in the uniformity of the distribution. This can be

observed by looking at their respective rows which feature little to no change in the distribution along the y-axis. In

general, if the distribution evolves only in x or y direction, the two parameters have fewer dependence on each other via

parameter limits. The more the gradient features a combined x-y direction, the more the two parameters interact in the

DOE. Note that this only highlights the correlations between input variables when sampling the database, but is not

related to any later correlation in the learnt surrogate model.

IV. Data generation, overview and preparation for training
Following the previous rules, a DOE of 3640 points is considered and for each point a RANS simulation is carried

out until convergence using 16 cores on Xeon-6126 processors at 2.6GHz. On average, a run takes 52 minutes (13.87

CPU hours ) for a total of 50 000 CPU hours for the whole dataset generation. Over the total 3640 simulations, outliers

outside of the 3σ range are removed which result in N = 3437 simulations that remain for training. Prior the training

phase, a post-processing is necessary to extract outputs of interest from the generated data: these consist in global, wall

and field quantities. These are described and analysed in the following sections.
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A. Global quantities

Twelve global quantities of interest for the injector design will be computed: the average total pressure at the

chamber outlet pc , the ratio between the total pressure loss and the inlet total pressure in the fuel injector ∆p f and in the

oxidizer injector ∆po, the maximum average temperature along the chamber axis Tmax , the flame length L f l estimated

as the position of Tmax , the maximum wall heat flux qw,max , the average wall heat flux qw , the velocity magnitude at

the nozzle outlet VE , the thrust F, the thrust coefficient cF , the characteristic velocity c∗ and the specific impulse Isp.

An overview of the ranges and distributions of the outputs is given by the histograms of Fig.7. The ranges of these

outputs were not known in advance and are reasonable with respect to the parameters ranges. For instance, the means for

the chamber pressure pc and the peak wall heat flux qw,max are pc = 31.82bar and qw,max = 7.6MW/m2 respectively,

which are well in the same order of magnitude of the reference case (pc ≈ 20bar and qw,max ≈ 5.5MW/m2).
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Fig. 7 Histogram of the global quantities for N=3437 simulations. Outliers larger than 3σ have been removed.

B. Wall quantity

The only wall quantity considered is the chamber top wall heat flux distribution qw . The wall profile is extracted from

the simulation and sampled at 1024 equidistant points along the wall, making an interpolation from the computational
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grid. For the 3437 available samples, this amounts to a training dataset size of 30MB, which is 2 orders of magnitude

larger than the size for global quantities. The heat flux exhibits a peak in the first 5-30 cm of the chamber and then

remains almost constant. The distribution of the heat fluxes over the whole DOE is shown in Fig. 8. The minimum

and maximum lines are combinations of different simulations results: these are the maximum and minimum heat flux

at specific axial positions. The wall heat fluxes in rocket engines combustion chambers constitute a critical, but yet

difficult to estimate, quantities during preliminary designs. Knowledge of these and their gradients is critical to the

design of the chamber cooling system to ensure safe engine operation.
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Fig. 8 Wall heat fluxes distributions over the Design of Experiments.

C. Field quantity

The field quantity considered in the present work is the temperature field in the chamber (the nozzle is not considered).

The temperature distribution in the chamber serves as a window into the topology of the flame. Locations with large

temperature gradients are linked to heat-release areas where chemical reactions are stronger. The axial location of the

maximum of the cross section averaged temperature serves as a proxy for the flame length L f l . Smoother gradient

regions are linked to flow recirculation or turbulent mixing. These structures can be studied in conjunction with the

aforementioned wall heat-flux providing a degree of interpretability during the design process. As an example, in the

left part of Fig. 9 are shown three different RANS temperature fields corresponding to three different points of the DOE.

The flame topology is strongly affected by the parameters choice. The overall range of temperature is similar and varies

between the inflow temperature around 250 K and a maximum temperature between 2600 K and 3300 K.

The field data provided by CFD on the computational non-uniform mesh must be processed into a uniform Cartesian

grid with a pixel-like format prior to the training. In fact this is a requirement in order to use convolutional neural

networks (CNN). The fields are therefore interpolated on a uniform fixed resolution grid of size 128×128. The fixed

number of interpolation points results in different spatial resolutions in the transverse direction of the injector depending

on the chamber diameter. In Fig. 9 are reported three examples of temperature fields from three different DOE samples.

In the left part, the fields on the grid from the CFD simulation are shown. Note that the transverse y axis has been

magnified to allow a better visualisation, being the chamber length always much greater than the diameter. In the right

part of the figure are shown the corresponding transformed views of the same fields once interpolated on the 128×128
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grid. These are the snapshots that will be used to train the CNN.
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Fig. 9 Temperature field examples. Up: geometric view (y-axis magnified by a factor of 10). Bottom: trans-
formed view used during training.

In addition, a Boolean mask of the geometry is provided at the same resolution of 128×128. Specifically, the

Boolean mask is a 128×128 table that assigns true values only in cells containing the fluid field, and false values in cells

outside the fluid domain. The error will be computed only in the masked subset of the chamber and therefore only the

cells containing the temperature information will be used for training. Additionally, all 9 scalar DOE parameters are

supplied by nine constant 128×128 matrices: for each matrix, all entries are equal to the respective DOE parameter.

Both the 9 DOE parameters and the temperature field are scaled to 0 mean and 1 standard deviation.

V. Results
Depending on the dimension of the output expected from the surrogate models (0D global quantities, 1D wall

quantities or 2D field quantities) different algorithms will be tested for the training. Data are split in samples for training

(2/3) and samples for validation (1/3). Furthermore, 77 samples are held back and never used during training. They will

be used as test data in order to prevent overfitting when optimizing the hyper-parameters to the validation data.

A. Global quantities

Global quantities values are the training targets with the lowest complexity in terms of overall dataset size and target

dimensions. This translates to low computational cost when training models and the necessity to use simpler models to

avoid the possibility of over-fitting. Training data always include all DOE parameters, but only one output target at the

time: the models are trained on the 12 post-processing quantities described in Section V. In the following, we will
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indicate with ŷ ∈ Rny the prediction of a model, which is generically given by:

ŷ = f (x, xt, yt ) (17)

where x ∈ Rnx is the vector of inputs, xt ∈ Rnx×N the vector of training inputs and yt ∈ Rny×N the vector of training

outputs, where nx , ny and N are respectively the dimensions of the input, output and the number of samples. Therefore,

for every global quantity it is nx = 12 and ny = 1. Three different algorithms are tested and compared for the surrogate

model f . The first two are classical machine learning methods: Radial Basis Functions (RBF) and Kriging (KRG). For

RBF, the following interpolating function f is used, with Gaussian basis functions:

f =
N∑
i

exp

(
−
‖x − xti ‖

2
2

H2

)
wR , (18)

where the coefficients vector wR ∈ R
N is evaluated during the training, and the scaling parameter is set to H = 0.05.

For KRG, Gaussian covariance functions are used together with a linear model for the deterministic linear regression

term, thus leading to the following expression for f :

f = β0 + β1x + G(x) , (19)

where β0 ∈ R and β1 ∈ R
nx . G(x) is the realisation of a stochastic process with zero mean value and a spatial covariance

given by a Gaussian function:

cov[G(xi, xj)] = σ2
Π

nx

k=1 exp
[
−θk(xki − xkj )

2)
]

(20)

where σ2 is the variance of the process G(x) and the nx hyper parameters θk are determined solving an optimization

problem in order to obtain a maximum likelihood function. They are all initialised to 0.01. Both RBF and KRG are

provided by the Surrogate Modeling Toolbox (SMT) open source package, and the reader can refer to [40] for the details

about the algorithms.

In addition, a fully connected neural network (FCNN) is also trained using the PyTorch library [41]. A standard

approach for regression is used with a ReLU activation function on all layers but the last, which has no activation

function [42]. The Adam optimizer is used with the Mean Squared Error Loss (MSE), defined by:

MSE(y, ŷ) =
1
N

N∑
i=1
(yi − ŷi)

2 (21)

where yi is the target output and ŷi is the network prediction. The quality of a network is evaluated considering its

accuracy as a figure of merit, which is related to the mean relative error over the samples of the validation dataset.
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Specifically, the relative error for a target variable yi , for sample i, is defined with the following expression:

εi =
|yi − ŷi |

yi
, (22)

and the accuracy η is defined accordingly by:

η =

(
1 −

1
N

N∑
i=1

εi

)
× 100. (23)

In order to build the suitable FCNN, two tuning studies are carried out. The first one aims at choosing the network

architecture. A set of 23 different architectures with depths ranging from 1-4 hidden layers with layer widths between

16-1024 were tested with chamber pressure as target output. Given that preliminary tests had shown a tendency for

overfitting even in small networks, all 23 architectures were trained with a weight decay of 1 × 10−4 and a dropout of

0.01. Batch size was set at 64 with total training time of 500 epochs. 10-fold cross validation was used to allow for

comparability between runs. Training these setups with 10-fold cross validation took roughly 3.5 hours on a 4-core

machine. Given these results, the network architecture with the best combination of accuracy and lowest parameter

count was chosen. This network has 2 hidden layers with 64 neurons each, so the overall architecture is 9 - 64 - 64 - 1

with 4865 trainable weights and biases.

Parameter Learning Rate LR Decay Batch Size Weight Decay Dropout

Range 0.001 - 0.05 0.5 - 0.99 8 - 128 0 - 0.002 0 - 0.05

Discretization Uniform 0.01 8 0.0001 0.001

Best setup 0.01214 0.97 32 0.0002 0.0

Table 2 Hyper-parameters, with range and discretization, used during tuning for the FCNN (9-64-64-1) on the
global quantities.

The second analysis aims at finding the best hyper-parameters setup. The five hyper-parameters under consideration

are the learning rate (LR), LR decay, batch size, weight decay and dropout. A Bayes search optimization approach

is applied using the wandb sweep API. Three-fold cross validation is used leading to a 2/3-1/3 split between training

and validation data per training run. All parameters ranges for tuning are listed in Table 2. Training would run for a

maximum of 200 epochs or if the learning rate hits 10−10. In total, 193 different setups were tested and the optimizer set

to minimize the relative error on the validation dataset. Eventually, the best setup is summarized in Table 2.
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Model

Quantity
pc ∆po ∆p f L f l Tmax qw,max qw |VE | F Isp cF c∗

Neural Network 98.86 97.51 97.79 97.53 99.83 97.50 98.75 99.76 99.54 99.68 99.92 99.82

Kriging (KRG) 99.42 95.64 92.51 95.55 99.68 96.64 99.08 99.71 99.69 99.63 99.90 99.75

Radial Basis Function (RBF) 98.15 94.27 83.76 91.65 99.45 94.45 98.22 99.53 99.46 99.11 99.79 99.65

Table 3 Accuracy η on validation dataset (Eq.(23)) for global quantities models, obtained using 20-fold cross
validation. Highest accuracies are highlighted in bold.

For the three algorithms, training times are negligible compared to computational cost to generate the data.

Specifically, training on a 4-core CPU took 1s for RBF, 52 s for KRG and 85 s for FCNN (considering 200 epochs and a

32 batch size).

The results obtained with the selected FCNN are compared against KRG and RBF models. It is worth mentioning

that the default hyper-parameters values were chosen for RBF and KRG. To achieve a high confidence in the accuracy

values obtained during training, 20-fold cross validation is used and the accuracy η on the validation dataset is used as

a figure of merit and reported in Table 3. The best model for each parameter is highlighted in bold. The RBF setup

never produces the most accurate model, and the corresponding accuracy is usually within 1 - 2 % lower than the KRG

accuracy. Generally, FCNN and KRG accuracies are in the same order of magnitude.

As an example, Fig. 10a shows the predictions for training and validation data of both the KRG and FCNN models

side-by-side for L f l and the corresponding relative errors ε. A slightly higher mean accuracy of 97.53% is obtained

with the FCNN versus a 95.55% with KRG on the validation dataset (see Table 3). This difference mainly presents itself

in the low end of combustion length, with comparably low relative errors for higher values. Training data error for KRG

is not shown in the plot, as the KRG error in the training data is 0. Figure 10b shows the predictions for training and

validation data of both the KRG and FCNN models side-by-side for qw,max . The FCNN again narrowly beats KRG with

97.50% mean accuracy versus 96.64%. The relative error of the FCNN model is consistently lower over the entire range

of the target dimension.
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Fig. 10 Top figures: model predictions for L f l and qw,max for training and validation data using KRG and
FCNN. Bottom figures: relative error and moving mean.

Finally, KRG and FCNN are compared in terms of inference times. Fig. 11 shows the inference time for a single

predicted value, if it is part of a batch inference. On CPU, FCNN is around 10 times faster than KRG. A plateau is

reached for batch sizes around 16 for KRG and 256 for FCNN. The fastest inference can be achieved for FCNN using a

GTX1060 GPU. Moreover, the same batch inference time is obtained no matter the batch size until 65536.
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Fig. 11 Inference times for a batch divided by batch size with trained KRG and FCNN models. Mean of 10
runs.

B. 1D quantities: wall heat flux

The FCNN approach was again used to predict the heat flux all along the chamber top wall. The main difference

being that the last layer of the network now has 1024 nodes instead of just a single one. Due to the high dimensionality

of the output data and the overall data size, KRG and RBF models were no longer pursued. Given the increased network

size and gained experience from global model training, cross validation was no longer deployed. The dataset is split

90/10 between training and validation samples with again 77 samples held back as an additional test dataset. A tuning is

carried out following the approach used in section V.A. In total, five different architectures are tested. The ranges of

parameters are increased compared to the one used for the global quantities, as reported in Table 4. Additionally, the

maximum number of training epochs is increased to 1000.

Parameter Layers Learning Rate LR Decay Batch Size Decay Dropout

Range

9 - 256 - 256 - 1024

0 - 0.1 0.5 - 0.999 16 - 256 0 - 0.02 0 - 0.1

9 - 64 - 64 - 128 - 1024

9 - 64 - 128 - 256 - 1024

9 - 256 - 64 - 256 - 1024

9 - 128 - 128 - 128 - 1024

Discretization Categorical Uniform 0.001 16 0.0001 0.001

Table 4 Tested architectures and hyper-parameters ranges for training on wall heat flux.
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Layers Weights LR LR Decay Batch Epochs Decay Dropout train. η val. η Test η

9 - 256 - 64 - 256 - 1024 300k 0.015 0.994 176 947 0 0.032 96.60% 96.19% 96.85%

9 - 64 - 128 - 256 - 1024 300k 0.0071 0.986 192 853 0 0.035 96.75% 96.04% 96.80%

9 - 256 - 256 - 1024 330k 0.013 0.867 32 99 0 0.014 96.81% 95.95% 96.93%

9 - 256 - 256 - 1024 330k 0.0051 0.98 208 245 0 0.099 96.66% 95.83% 96.83%

Table 5 Best training setups during hyper-parameters tuning for wall heat flux. Mean accuracy evaluated for
the training, validation and test datasests.

The best four networks characteristics are summarised in Table 5. Most of the differences in peak accuracy for an

architecture is due to the higher numbers of trainable weights leading to higher accuracy, albeit necessitating the use of

higher dropout to prevent over-fitting. The mean accuracy is computed considering an average of Eq.(23) over the wall

length. The mean accuracy for training, validation and test data shows consistent values of around 96%. However, this

mean accuracy for the entire length of the combustion chamber is not necessarily meaningful if the error occurs in

critical locations like peak heating and on sharp gradients along the chamber.
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Fig. 12 Wall heat flux predictions (top) and corresponding relative errors (bottom) for five samples of the test
dataset.

Figure 12 (top) shows predictions for five randomly chosen samples from the test dataset. These samples have

never been part of the training process of the network and are a good representation of the diversity of the dataset. The

predictions were obtained using the network with the highest validation accuracy in Table 5. The mean relative accuracy

of 96.85% on the entire test dataset is comparable with the accuracy on the train and validation datasets, leading to the

assumption that the network is able to generalize and has not overfit to training data or even to validation data during

hyper-parameters tuning. The samples predictions show good accuracy on the overall shape of the wall heat flux curve

along the chamber wall, as well as in capturing the sharp gradients and peaks in the first part of the chamber. The
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highest relative error (Fig 12 bottom) occurs at the point of lowest wall heat flux at the chamber inlet. This behaviour is

expected, since it corresponds to the zone with the highest gradients and lowest absolute values. The valleys in the

relative error plot in Fig.12 indicate crossings were prediction and true curve intersect. Each sample exhibits at least

three such crossings, indicating the prediction oscillates around the true curve instead of e.g. exhibiting a constant offset.
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Fig. 13 Mean Relative Error on the wall heat flux prediction along the chamber axis, for the three dataset
(training, validation and test).

Quantity
Training Validation Test

Mean Rel. Error [%] Std. [%] Mean Rel. Error [%] Std. [%] Mean Rel. Error [%] Std. [%]

qw,max 2.35 2.53 2.75 2.99 2.91 3.05

qw 1.05 1.35 1.60 2.94 1.44 1.11

Table 6 Mean Relative Error and Standard Deviation for peak (qw,max) and average heat flux (qw) across
different datasets (training, validation and test).

Fig. 13 illustrates the mean error distribution across all datasets and along the chamber. There is a strong correlation

of the error distributions between all datasets. In agreement with the samples shown in Fig. 12, the larger mean relative

errors occur early at the chamber inlet. The error quickly decreases thereafter and reaches lowest values in the last

quarter of the chamber. Note that the deep learning models could be trained specifically to reduce this error if needed,

for example by including the error on gradients into the loss function. Such a strategy is proposed in Section V.C, where

it is proved effective to capture the sharp gradients of the temperature fields induced by the thin flame front.

Table 6 shows the mean relative error for the peak wall heat flux qw,max and the average wall heat flux qw as

calculated from the wall heat flux curve. They translate to a mean accuracy η on validation data of 97% and 98%

respectively. These physical quantities are a good descriptors of the quality of the surrogate model, as they quantify the

accuracy on typical quantities of interest. Comparing them to the accuracies obtained by the global modelling approach

(reported in Table 3), both values are between 0.5% and 1% worse than the dedicated global model.

The 1D wall heat flux model under scrutiny was trained with a MSE loss function without any pondering of such

quantities as qw,max and qw . In spite of this, the derived quantities from the model 1D predictions show to be in good

agreement with those of the evaluated datasets. Recovering these quantities without specifically accounting for them in

the loss function suggests the model is capturing the essential structures of the wall heat flux.

24



C. 2D quantities: temperature field

The entire temperature field in the injector and combustion chamber is learnt to provide in real-time a view of

the complete field. A 2D field will be easier to interpret in terms of flame anchoring and shape, compared with 0D

and 1D quantities. Therefore the output is a 128 × 128 = 16384 cells field. This 2D regression task was tackled with

two variants of Convolutional Neural Networks (CNN). The first one is a simple encoder-decoder network using only

convolutional layers. The second is a U-Net [43] architecture including batch normalization, up-sampling layers and

skip connections. The use of CNN on 2D spacial data has been studied extensively in the context of image processing

and has recently been extended to be used on simulation tasks [14, 22, 23, 26]. The setup of both architectures are

displayed in Table 7. The channel and kernel sizing was partly based on networks in Thuerey et al. [26] and downscaled

to fewer channels. The number of trainable weights is in the same order of magnitude as for the wall quantity learning

task using FCNN networks. Learning rate and decay were also selected based on previously used values for this type of

network [26]. Both architectures were trained using the same dataset of 3200 training, 170 validation and 77 test fields.

The uncompressed dataset size is 2.3GB with 10 128x128 inputs and 1 target image per simulation.
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Fig. 14 Loss progression during training for base U-Net and Fully Convolutional (FC) networks , for training
and validation datasets.

First, a classical MSE loss, defined by Eq.(21), is used. Note that this MSE is not computed over the whole 128× 128

cells, but only on a masked subset containing the temperature information. The mask of the geometry provided as input

is used for this purpose. The loss evolution over the number of epochs for both networks is shown in Figure 14. They

both reach a plateau with regards to their validation loss after roughly 400 epochs of training. The U-Net training loss

continues to decrease further, indicating an overfitting for larger epochs. This overfitting of the U-Net might come from

its higher number of weights. No extensive hyper-parameters tuning was done for this task.

Type Hidden Layers Trainable Weights Epochs Batch Size LR LR-Decay

Fully Convolutional 9 400k
500 64 0.001 0.99

U-Net 13 490k
Table 7 Convolutional Neural Network architectures used to predict temperature fields.

25



An overview of the relative error distribution for a test dataset prediction using either the fully convolutional net or

the U-net is shown in Figure 15 (c) and (d), and the corresponding target output is shown in Figure 15 (a). These figures

illustrate the comparison only on one test dataset sample, taken as an example, but the behaviour is similar for all the
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Fig. 15 Target and predicted temperature fields via best performing network, and relative errors fields for
different networks. Sample of test dataset
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samples. It can be seen that the amplitude of the error is less for U-Net. However, the location of the error remains

similar. Both networks exhibit the higher relative error in very small areas of strong temperature gradients, associated

with the thin flame front. The location of a strong gradient in temperature has a correlation with the combustion length,

which is a quantity of interest for optimization. Therefore further action was taken to decrease the error in this region. A

mix between MSE Loss and a Gradient Difference Loss (GDL) was investigated. The GDL loss is defined by:

GDL(y, ŷ) =
1
N

N∑
k=1

[∑
i, j

| | [yk(i, j) − yk(i − 1, j)] − [ŷk(i, j) − ŷk(i − 1, j)] | |2+

| |(yk(i, j) − yk(i, j − 1) − (ŷk(i, j) − ŷk(i, j − 1)| |2
]
.

(24)

The GDL corresponds to an L2 loss on the gradient image, thus encouraging the network to capture correctly strong

gradient regions. This strategy has been applied successfully in multiple fluid problems such as [23]. Four different

mixing ratios between the two losses were tested for both network architectures: only MSE, equal weighting (1/1) and

increased weights for the GDL/L2 mix (10/1 and 100/1) . Figure 16 gives an overview of the relative errors. The left

graph shows a decline in overall relative field error when using mixing ratios of 1/1 and 10/1 for both architectures, but

a significant increase for 100/1. It suggests that an optimal mixing between GDL and L2 can be achieved. The optimal

weighting 10/1 corresponds to a contribution of 79 % and 21 % of GDL and L2 in the total train loss, respectively.

Interestingly, the GDL allows for a better capture of the temperature gradients, i.e. a better accuracy on the flame shape.

For all cases, training, validation and test errors are close indicating only minimal overfitting. On average, the U-Net

exhibits a small advantage for all runs compared to the Fully Convolutional architecture. An example of field prediction

and corresponding relative error achieved with the best performing U-Net architecture using 10/1 mixed GDL/L2 Loss

during training are shown in Fig.15(b) and (e) respectively. The strongest temperature gradient is well resolved. The

relative error is concentrated in a very limited area in the fuel injector and as noise in the oxidizer injector lines.
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Fig. 16 Mean relative error for trained CNN and U-Net networks with varying levels of GDL/MSE mixing in
the loss. Top: T field. Middle: Tmax . Bottom: L f l .

The field prediction can also be used to extract lower dimensional quantities known from the simulation data. Figure

17 shows the cross-section averaged temperature along the chamber for 4 different configurations with the same chamber

length. It can be seen that the predicted curves closely match the true temperature distributions and most of errors occur

at peak gradient values.

true
pred

3000

2000

1000

[K
]

-121.5 580x [mm]

Fig. 17 Mean temperature prediction along the chamber length. Predictions via U-Net (10/1 GDL).

The average temperature curves in Fig. 17 were evaluated to extract the peak temperature Tmax and its location,
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which is used as an indicator of the flame length L f l . These values were also obtained by the FCNN architectures

trained on global quantities (see Sec. V.A). Figure 16 shows lower error for the U-Net architecture on these computed

quantities. A mixed loss approach showed no improvement for Tmax . The mixed loss does however marginally reduce

error for L f l . Indeed, a reduced gradient error might also yield to a reduced offset of gradient leading to better location

accuracy down the chamber. Overall, the L f l error translated into a cell resolution is between 1 and 2 cells. A further

decrease might therefore need higher resolution of the field.

To summarise, the fact that using a GDL allows a better capture of the temperature gradients, is confirmed by

the better accuracy obtained by the weighting 10/1 on both the whole temperature field as well as the location of the

Tmax (that is L f l). However, mixing GDL and L2 with 10/1 penalize the prediction of the maximal temperature in the

combustion chamber. Moreover, this conclusion holds for both convolutional networks. It suggests that in general for

multi-objective tasks, no proper loss can be defined, and a careful choice should be made depending on which objective

is the priority. For instance here, a different mixing weight will be selected if Tmax or L f l is chosen as a priority.

PPPPPPPPPPPPP
Quantity

Architecture
Fully Convolutional U-Net FCNN

Temperature Field: T 98.35% 98.39% –

Peak y-Avg Temperature: Tmax 99.64% 99.73% 99.83%

Location of Tmax : L f l 97.59% 97.85% 97.53%

Table 8 Test data accuracy for CNN architectures using 10/1 GDL mixed loss, compared against FCNN
networks predicting global quantities.

Finally, a field accuracy is estimated by computing the mean of Eq.(23) over all the mask points for every sample and

averaging over all the samples of the validation dataset. The accuracy is reported in Table 8 for Fully Convolutional and

U-Net networks using a 10/1 GLD/L2 loss mix. The achieved accuracy with both networks exceeds 98%. Performances

for Tmax and L f l are also reported. The accuracy on computed global quantities from the predicted field is comparable

with the accuracy of the dedicated FCNN model. The U-Net architecture does have a slight edge over the Fully

Convolutional network in all cases, the difference being most notable for L f l . While being more difficult and costly to

train with respect to the FCNN on the global quantities, convolutional networks on the field data have the benefit to

output the complete temperature field, much easier to interpret in terms of physics. Therefore, they constitute a first step

towards reliable AI-based tools.
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a) average pressure

b) wall heat flux

c) temperature field

Fig. 18 Error on the test dataset for different DOE sizes. Whiskers: complete range. Box: 1st till the 3rd
quartile. Median line: mean error.

D. Sensitivity analysis on the DOE dimension

In the previous sections, surrogate models have been extracted for global, wall and field quantities, based on a DOE

composed of 3600 points, among which 3437 where used for the training. Each point corresponds to a numerical
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simulation. Decreasing the number of the DOE points would decrease the computational cost associated with the

surrogate models generation. A sensitivity analysis of the results on the number of samples of the DOE has been carried

out. This has been done by carrying out the networks training for global pressure, the wall heat flux, and the temperature

field varying the number of samples N in the DOE between 1000 and 3437. In each case, no hyper parameters or

network architecture variations have been carried out: the best networks selected in Sections V.A, V.B and V.C have

been used.

The evolution of the mean relative error ε with the number N of samples in the DOE is shown in Fig .18.a), 18.b)

and 18.c) for the average pressure, wall heat flux and temperature field respectively. The complete range of the relative

error is also reported in order to highlight the sparsity of the results. For both 0D, 1D and 2D quantities, both the mean

error and the sparsity of the error decrease when the number of samples N increases. However, the gain in increasing

the DOE size is reduced for higher N . In particular, for N greater than 3000, the error for the global quantity reaches

a plateau. This sensitivity analysis gives an idea of the requirements in term of DOE extension in order to obtain a

specific accuracy. For instance, if an error between 1.3 and 2.3 % on the global quantities is acceptable, a dataset with

N = 1000 samples is sufficient. On the other hand, if the surrogate model should provide high accuracy on the 1D

and 2D quantities, the dataset used in the present analysis comprising N = 3437 samples, seems to be necessary. This

analysis clearly points out the necessity in providing innovative strategies in order to reduce the dataset dimension if the

methodology is to be applied on higher fidelity computations (namely Large Eddy Simulations). This will be the object

of future works.

VI. Surrogate models application and exploitation
The surrogate models derived in section V can be used in the design and optimization of a coaxial injector and of

the rocket configuration in which it is used. Specifically, these models can be useful in two ways. First, they can be used

to carry out an optimization of the injector with respect to some specific figures of merit, and the optimization of a

whole rocket system using the injector. In particular global and wall quantities are the more suitable outputs for this task.

Second, they can contribute to gain insight into some specific flow and combustion features that eventually lead to the

specific performances that bring to the optimal design. Indeed, having access to the field with a very low inference

time allows the immediate observation of the flow topology induced by a selected design and thus to deduce specific

conclusion on the observed behaviour.

To showcase the items mentioned above, a constrained multi-objective injector design problem has been addressed.

It is of common interest for design bureaus to search for injector geometries which provide a best compromise between

engine performance, typically represented by its specific-impulse Isp , and engine compactness. Both variables have an

opposing dynamics as larger engines will typically allow for better combustion as flow residence time in the combustion

chamber is increased. The dimensioning of the combustion-chamber length is associated to the characteristic length
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which directly depends on the flame length L f l[44]. The rationale is smaller flame-lengths allow greater system

compactness.

Fixed Values Variables Ranges

Ft [N] δF [N] x =
[
do, dt, df , dc,

Ac

At
, Ae

At

]T
Ûm [kg/s] O/F lr [mm]

135.9 1.0 [2.0, 0.5, 0.5, 6.77, 2.5, 2.0] 0.001 - 0.13 2.0 - 3.99 0.0 - 30.0

Table 9 Multi-objective optimization problem variables values and ranges.

The problem addressed is to find the subset of mass-flow rate Ûm, mixture ratio (O/F) and recess length lr within

the domain of validity of the global quantities models detailed in Section V.A which maximizes specific-impulse and

minimize flame-length. Additionally, the design is constrained to yield a target thrust Ft with a given uncertainty δF .

Among the 9 input parameters of the DOE (see Sec III.A) only 3 are considered variables: Ûm, O/F and lr . Remaining

6 degrees of freedom, hereby called x have been given arbitrarily fixed values (Tab. 9) to further simplify the present

problem.

The design problem under consideration is to find then x ∈ Xp , where Xp corresponds to the set of non-dominated

solutions, also called Pareto solutions, of the multi-objective optimization (MOO) problem with objective functions:

f1(x) = −Isp(x, x) and f2(x) = L f l(x, x). L f l corresponds to the axial location of the maximum average temperature in

the chamber, hereby used as an indicator of flame-length. The problem is also subjected to the constraint g(x) ≤ 0, such

that g(x) = |Ft − F(x, x)| − δF .

Several algorithms which treat the MOO problem described above are available in the literature. In the current

work, the NSGA-II (Non Dominated Sorting Genetic Algorithm) is employed. NSGA-II, as with other algorithms of

its type, is non-gradient based. Note that even though NSGA-II spares of the readily available gradients offered by a

neural-networks, the fast inference times of the surrogates models used (F, Isp, L f l) allow to keep the optimization

problem tractable. The algorithm is chosen due to its straight-forward implementation and accessibility. In the results to

follow, the concerned values taken are detailed in Tab. 9.

The NSGA-II algorithm is run by means of the PyMOO python package [45], with a population size of 1000 agents,

random sampling and crossover probability of 0.9. The algorithm reached a solution set after 45 generations with a

tolerance on the objective function of 10−3. Overall, 45000 evaluations where made of the objective functions fi(x).

The algorithm is observed to explore the complete range of the individual coordinates of the search-space. This is a

convenient property of the algorithm which makes it more robust in the face of local minima, even though it is not

a sufficient condition in the path towards the global minima. Fig.19 displays the histogram for the non-dominated
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Fig. 19 NSGA-II non-dominated solution set (Pareto solutions) frequency in the search-space.

solutions set. The points are distributed in the intervals O/F ∈ [2.0, 2.37], Ûm ∈ [6.27 × 10−2, 6.62 × 10−2] kg/s and

lr ∈ [0.0, 29.99] mm. Note that the solutions interval in the Ûm dimension corresponds to only 2.7% of the space defined

in Table 9 which may result as a consequence of the strong relationship between the expected thrust and mass flow rate.

In the lr dimension the points are not distributed uniformly but rather three clusters are observed, as indicated in Fig. 19.

Cluster A corresponding to solutions where lr ≤ 2.0 mm, Cluster B where 20 mm ≤ lr ≤ 29.9 mm and Cluster C with

lr > 29.9 mm. The non-dominated solutions labeled by cluster are plotted in the objective space in Fig. 20, also known

as the Pareto front.

Points in Fig. 20 show a variation along the Pareto front of 216.18 mm in flame-length and greater than 13.64 s in

Isp . The front is seemingly continuous with a discontinuity between points of clusters A and B. Three points, A, B and

C belonging to each of the clusters are highlighted in the graph. Their corresponding temperature field predictions

through the field quantities surrogate model is shown in Fig. 21a. point C corresponds to a highly recessed case
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Fig. 20 Projection of the non-dominated solutions in the objective space (Pareto front), from themulti-objective
problem. Crosses: RANS results.

(lr ≈ 30.0 mm) with O/F = 2.18 and Ûm = 6.58× 10−2 kg/s. Point B in Fig. 21a corresponds to an intermediate value of

recess (lr ≈ 24.4 mm) with O/F ≈ 2.29 and Ûm = 6.48 × 10−2 kg/s. Finally, point A refers to a no-recess case (lr ≈ 0.0)

with O/F ≈ 2.15 and Ûm = 6.32 × 10−2 kg/s.

The temperature field in point C reflects a sooner expansion due to the presence of a highly recessed oxidizer post.

The faster expansion results in a shorter flame-length, to the expense of a higher temperature at the wall in the first

half of the chamber (increasing wall heat-fluxes) and a shorter mixing length. The temperature of the gases decreases

sharply in the second half of the chamber being greatly reduced at the chamber’s end in contrast to point’s A and B. This

has a negative impact on the performance seen on the smaller Isp linked to the points of cluster C. Note that the early

expansion of the gases in the recess channel causes the necking of the oxidizer jet, which is also seen in the intermediate

recess case ( point B). The temperature field in point B is similar to that of point C, however a longer flame is observed

congruent with a higher temperature of gases at the exit which explains the behavior of the Pareto front in the regime of

cluster B. Note that point B, in comparison to point C, has an increased O/F. Scaling relations for reacting coaxial

oxy-flames [46] provide insight on the longer flame as L f l/(2 ∗ do) ∝ J−1/2 ∝ O/F, where J = (ρu2)CH4/(ρu2)O2 is the

momentum-flux-ratio and do the oxidizer post radius. Point B also shows a longer recirculation zone as a consequence

of the longer flame as well as decreased wall temperatures. Finally, point’s A temperature field shows a non-recessed

injector with a fully concave average flame shape. This is due to the absence of the initial expansion in the channel

linked to the recessed injector, as in points B and C. The peak temperature is located downstream due to a slower

expansion. It is suspected that to counter-act the longer flame, the optimization algorithm has resolved a smaller O/F

yielding a smaller oxidizer jet inlet velocity. The smaller temperatures observed at the wall as well as the longer flame

with higher temperatures at the chamber’s end are expected to be the cause of the greater Isp in such configuration.

Finally, RANS simulations with the parameters corresponding to points A, B and C have been carried out. The
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Fig. 21 Temperature fields prediction provided by the best performing model, U-Net GDL 10/1 , for selected
points of Fig.20, and respective fields computed with RANS.

obtained temperature fields are reported in Fig.21b. The temperature fields are in agreement with the surrogate models

predictions. From a quantitative point of view, for A, B and C the errors on L f l are of 1%, 5.6% and 3.2 % respectively.

The errors for the Isp are 0.2%, 0.43 % and 0.52% respectively. These values are in the expected ranges discussed in

Section V.A, since an average error of 3.47 % was reported for the L f l and 0.32% for the Isp . The impact of this error

on the Pareto front estimation can be seen in Fig. 19 where the computed values of L f l and Isp for the three points from

the RANS are also reported: points A, B and C from the RANS are in proximity of the Pareto front as expected from the

estimated errors of the surrogate models.
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The previous analysis showcased a particular application problem for multi-objective optimization with the

aforementioned surrogate models, for a problem involving three design parameters. However, more intricate single

objective optimization problems, involving a compromise objective function may be solved by harnessing the power

of neural networks and the readily available gradients. Optimization problems, involving a larger number of design

parameters could be addressed in future works. Combined with robust gradient based optimization algorithms such as

Stochastic Gradient Descent and the fast inference time these models offer, multidisciplinary optimization loops may be

solved in realistic timescales.

VII. Conclusions
In the present paper, a first attempt to jointly use data from computational fluid dynamics simulations and deep

learning for the design of rocket engines injector and combustion chamber has been carried out. Reynolds-Averaged

Navier-Stokes simulations of a single coaxial injector chamber, operated with gaseous methane and oxygen propellants,

have been carried out in order to generate a large database which comprises more than 3600 different points. It has been

shown that particular attention must be devoted to the design of experiments generation in order to ensure the physical

correctness of the computed configurations. The core of the work has been devoted to the development of three classes

of surrogate models: global quantities, wall quantities and field quantities surrogate models. All the models have the

same nine inputs parameters that define the geometry and the operative conditions and differ in the dimension of the

output. A comparison between fully connected neural networks (FCNN) and other machine learning approaches, namely

Kriging and radial basis functions, has been done for the gloabl quantities models, showing a comparable accuracy

between the approaches. After hyperparameter tuning, the best neural network accuracy for the global quantities varies

between 97.5 and 99.92%. When increasing the dimension of the problem (1D and 2D) only deep learning methods are

of interest. For the wall heat flux, the developed surrogate model based on a fully connected neural network is able

to reproduce the data with an accuracy up to 97%. Two types of convolutional neural network have been tested for

the temperature field models: a standard CNN and a U-Net. Particularly, an increase in the accuracy is achieved by

considering a mixed loss which combines a Mean Squared Error loss and Gradient Difference loss, that allows to reach

a mean accuracy of 98.49% with the U-Net. Interestingly, the field surrogate model allows to retrieve important global

quantities, like the flame length, with the same accuracy of the best FCNN selected for the corresponding global model.

Eventually, the obtained models have been used in the framework of an optimisation problem. In this example, the

global quantities models allow to choose the best configuration with respect to the objective function and the specific

constraints. Immediately, the field model allows to visualise the corresponding temperature field thus giving clear

indications and explanations of the observed behaviour in terms of performance.

It is worth mentioning that from a quantitative point of view the presented results are of course affected by the

validity and quality of the data. Reynolds-Averaged Navier-Stokes simulations do not allow to capture specific low scale
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and non stationary phenomena that play an important role in the flow development inside the combustion chamber.

Moreover, all the study has been carried out considering a constant wall temperature, which is a strong approximation.

Nevertheless, the results show the potentiality of the methodology in permitting fast and comprehensive analysis of

complex phenomena. This work represents a proof of concept of a methodology that needs to be further developed

increasing the quality of the data. Specifically, it would be interesting to use Large Eddy Simulation to generate

the data. Furthermore, it would be interesting to test the above developed surrogate models in the framework of a

multi-disciplinary analysis and optimisation of a whole rocket engine.

Appendix

A. DOE generation and constraints

Having chosen the input parameters, a database need to be generated by properly varying then inputs in the 9D

parameter space, that is by generating a proper Design of Experiments (DOE). One possibility would be to randomly

sample points linearly within the parameter space. This approach has three main drawbacks. First, some combinations

of input parameters could lead to non-physical configurations and therefore have to be withdrawn from the DOE. Second,

a random sampling would not guarantee a maximised space between the points. Third, a linear sampling could not be

suitable depending on the mathematical dependence expected between inputs and outputs. Therefore, two improvements

were made to increase the viability of the design points and their use in training a neural network as explained in the

following. As expected, preliminary tests showed that a purely random sampling of the parameter space can lead to

nonphysical setups. Mostly, these issues would manifest themselves as supersonic flows in the oxidizer or fuel inlets or

chamber pressures orders of magnitude higher than anticipated. To avoid those points, we need to impose the following

three conditions that are usual for the design of liquid rocket engine combustion chambers and injectors [47]. First, 1),

the contraction area should be high enough in order to ensure a choked nozzle. Second, 2), the injector Mach number

should not exceed 0.7: Min < 0.7. Third, 3), the chamber Mach number should not exceed 0.3: Mc < 0.3 . Conditions

1) and 3) bring to the following restriction on the contraction area Ac/At :

Ac

At
>

1
Mc

√√√√(
1 + γ−1

2 M2
c

1 + γ−1
2

) γ+1
γ−1

, (25)

with Mc = 0.3, and γ is the specific heat ratio of the gas flowing in the nozzle. To find suitable constraints for do, df

and dc in order to respect conditions 2) and 3) the pressure chamber pc influence has to be investigated. In fact, as the

mass flow rate and temperature are inlet boundary conditions, the flow velocity in the inlet mainly depends on chamber

pressure pc . The pressure chamber pc is an output of the simulation. In fact the nozzle is choked, and therefore the mass
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flow rate can be estimated with the well known expression derived from the theory of 1D isentropic flow in nozzles [47]:

Ûm = Γ
pc At
√

RTc

(26)

where Γ =

√
γ

(
2
γ+1

) γ+1
γ−1 , R is the gas constant and Tc is the total temperature in the chamber. This equation can be

recast in order to express the dependence of pc over three design parameters Ûm, Ac/At and dc :

pc
pc,re f

= K
(
Ûm
Ûmre f

) (
(Ac/At )

(Ac/At )re f

) (
dc,re f

dc

)2
(27)

where the index re f refers to the reference setup and K = (
√
Γ/RTc)/(

√
Γ/RTc)re f . From Eq.(27) we expect, in a first

approximation, to find a linear relation between pc and Ûm, and between pc and Ac/At and a quadratic relation between

pc and dc .
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Fig. 22 Response of chamber pressure pc to changes in parameters, sweeping through one parameter range at
a time.

To verify this statement and to investigate the other dependencies, a study was carried out to investigate the influence

each input parameter individually has on pc when other values are set to their reference values. For each parameter, 20

simulations along their range where carried out and the obtained pc with respect to the varied parameter is shown in

Fig. 22. As expected, only the above mentioned 3 parameters change pc to a significant degree (dc , Ac/At , Ûm). Their

interactions when changed simultaneously are not known at this point, but in order to estimate physical limitations an

approximate pressure model was extracted from this study. For this, linear functions were fitted to Ûm and Ac/At and a

quadratic function to dc with respect to their reference values. The approximate chamber pressure pc,ap was defined as

follow :
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pc,ap = pc,ref

linear︷︸︸︷
Ûm
Ûmref

linear︷    ︸︸    ︷
Ac/At

Ac/Atref

quadratic fit︷                                      ︸︸                                      ︷(
2.1

(
dc

dc ref

)2
− 6.2

dc
dc ref

+ 5.15

)
(28)

(29)

With this approximate pressure pc,ap , we are able to express the following constraints on do, df and dc in order to

verify conditions 1) and 3):

do >

√√√
Ûmo2

0.7pc,apπ

√
cvRTo2

cpWO2

, (30)

df >

√√√
d2
o + 2dodt + d2

t +
ÛmCH4

0.7pc,apπ

√
cvRTCH4

cpWCH4

− do − dt, (31)

dc >
√

ac
ain

(
d2
o + df

(
2do + 2dt + df

) )
. (32)

where R = 8314J/kg/K is the universal gas constant and Wi is the molar mass of species i.
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