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Abstract
A retention strategy based on an enlightened lapse model is a powerful profitability 
lever for a life insurer. Some machine learning models are excellent at predicting 
lapse, but from the insurer’s perspective, predicting which policyholder is likely to 
lapse is not enough to design a retention strategy. In our paper, we define a lapse 
management framework with an appropriate validation metric based on Customer 
Lifetime Value and profitability. We include the risk of death in the study through 
competing risks considerations in parametric and tree-based models and show 
that further individualization of the existing approaches leads to increased perfor-
mance. We show that survival tree-based models outperform parametric approaches 
and that the actuarial literature can significantly benefit from them. Then, we com-
pare, on real data, how this framework leads to increased predicted gains for a life 
insurer and discuss the benefits of our model in terms of commercial and strategic 
decision-making.
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1  Introduction

In life insurance, “lapse risk" or “persistency risk" is the risk that the policy-
holder will cancel the contract at a time other than when the issuer expected when 
pricing the contract [41]. A life insurance policy can lapse if the policyholder 
stops paying the premiums required to keep the policy in force. This can happen 
if the policyholder becomes unable or unwilling to make the premium payments 
or if the policyholder chooses to surrender the policy for its cash value. When 
a policy lapses, the coverage and benefits the policy provides are no longer in 
effect, and the policyholder will not receive any payout if they pass away after 
the policy has lapsed. This risk is not considered an insurance risk because the 
payment to the policyholder “is not contingent on an uncertain future event that 
adversely affects the policyholder". However, lapse management is still undoubt-
edly a primary concern for life insurers. Lapses may substantially affect a compa-
ny’s solvency, its future profits and cash flows [9, 10] or its Asset and Liabilities 
Management (ALM) [21, 22, 24, 40]. The importance of measuring lapse and 
churn behaviours is global; it goes from yielding individual estimations of the 
Customer Lifetime Values (CLV) to being an estimator of a firm’s profitability 
[27, 28] or strength [2]. Therefore, this paper focuses on developing strategies to 
prevent lapses before they occur: for a life insurer, an enlightened and proactive 
lapse management strategy (LMS) is critical for successful monitoring and steer-
ing. This paper is about defining a framework for a life insurer to measure and 
optimise the future loss or profit to be expected when applying such an LMS.

Part of the literature on lapse management adopts an economic-centred point 
of view [15, 17, 38, 39, 42, 50, 54, 58, 60, 61, 63]; we refer the reader to the 
complete bibliometric analysis on this topic by [59] for a summarised view of 
all these references. This economic-centred research aims to determine lapse fac-
tors like interest rates, gross domestic product, or unemployment rates. They are 
driven by economic hypotheses such as the emergency fund hypothesis (lapsing 
is a way of constituting an emergency fund), the policy replacement hypothesis 
(lapsing will occur when one changes its policy) or the interest rate hypothesis 
(lapsing depends strongly on rate change and arbitration).

On the other hand, a large part of the literature investigates the individual 
determinants of lapse with policyholder-centred approaches. Micro-oriented fea-
tures such as policyholder’s personal information or the policy characteristics 
have shown to give valuable insights into lapse behavior [21, 34, 49, 56]. Curak 
et  al. [16] as well as [25]’s works indicate that policyholders’ features such as 
age and the number of beneficiaries are significant lapse factors, whereas [60] 
dismissed those results. A recent work from [46] proposes a comparison of lapse 
management strategies based on an innovative evaluation metric derived from 
the Customer Lifetime Value (CLV). [33] investigates the benefits of incorporat-
ing spatial analysis in lapse modeling, and [3] shows with an approach based on 
random forests that microeconomic features such as the company’s commercial 
approach for instance—is determining in the lapse decision. In contrast, macro-
economical features only have a limited effect. This variety of results—sometimes 
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contradicting each other—demonstrates the active interest in this research 
problem.

This paper focuses on lapse management strategy and retention targeting and 
will contribute to the existing literature on the relationship between retention strat-
egy and lapse prediction: as in [2] and [46], our goal is not only to model the lapse 
behavior but rather to select policyholders that are expected to generate future profit, 
if targeted by a retention strategy. This work shows that a well-chosen strategy, 
based on individualized CLV and directed towards a well-chosen target, increases 
the insurer’s expected profitability. A critical concept that motivates many CLV-
driven decisions is that customers should be judged as assets based on their future 
profitability for the insurer. Thus, since retention often serves as the basis for CLV 
models [19, 29, 45]—sometimes specifically designed for targeting tasks [62]—
and since CLV considerations should drive retention management, it seems natural 
to extend the existing life insurance applications linking those topics together. We 
make decision-making a central concern of our work and suggest proactive lapse 
management tools allowing the insurer to undertake actions to prevent the causes of 
lapse; that is opposed to a reactive management approach where decisions are taken 
after lapses and aim at recapturing lost policyholders.

The goal of this paper is to create an individualized CLV model that will be 
used to enhance classical binary churn models. We will then have a model for lapse 
management strategy and retention targeting that we further improve with tree-
based survival analysis and competing risks considerations. The global framework 
is directly inspired by [46]. We try in this paper to build from that existing work 
and extend it. We model an individual future CLV with a new survival approach for 
which the risks of death and lapse are treated as mutually exclusive competing risks. 
For this purpose, we introduce parametric approaches—Cox cause-specific and 
subdistribution models—as well as tree-based survival models—Random Survival 
Forest (RSF) and Gradient boosting survival analysis. We focus here on tree-based 
models as they are often considered state-of-the-art models [26]. Thus we introduce 
tree-based machine learning algorithms for binary prediction, including Classifi-
cation and Regression Tree (CART), Random forests (RF), and Extreme Gradient 
Boosting (XGBoost) to lapse behavior modeling. CART and XGBoost [46, 49] were 
used in the literature for lapse modeling but have yet to be applied to predicting life 
insurance lapses in a competing risk setting. To our knowledge, while Random Sur-
vival Forest has been used for churn prediction recently [57], both RSF and Gradient 
boosting survival analysis have never been used for that purpose before in an actu-
arial context.

Our contribution to the actuarial literature is twofold. First, we detail a two-step 
lapse management modeling approach: we fit parametric and tree-based competing 
risk individual survival models to estimate individualized future CLVs that are part 
of an evaluation metric for tree-based lapse management models. Second, this work 
includes a business-oriented discussion of the results achieved by this framework, 
which is missing from existing similar approaches.

The results and discussions show that a CLV-based lapse management strategy 
very often outperforms a more classical binary classification approach, even with 
competing risks and individualized considerations. When the latter yields profitable 
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retention gain, the former can produce higher profits, up to more than 60%. If a loss-
inducing retention strategy is considered, our methodology limits the loss consider-
ably, often setting 0 as a floor limit or even turning it into a profit-inducing reten-
tion strategy. Sensitivity analysis explores the influence of conjectural and structural 
parameters.

The rest of this paper is structured as follows. We briefly outline the data used in 
our study in Sect. 2. In Sect. 3, we then introduce the binary classification models we 
selected and detail our study’s methodology, describing the classical and CLV-based 
performance measures and discussing substantial parametrization improvements 
over existing approaches. Then, Sect. 4 details our two-step methodology, with the 
parametric and non-parametric modelings of individual survival predictions, in a 
competing risks framework and then their implementation in the tree-based classifi-
cation approaches considered. Section 5 presents the real-life application we consid-
ered and the different results it produces. Those results are analyzed and discussed 
in Sect. 6 with commercial and strategical decision-making orientations. Eventually, 
Sect. 7 concludes this paper.

2 � Data

We apply our framework to a real-world insurance portfolio. For privacy reasons, all 
the data, statistics, product names and perimeters presented in this paper have been 
either anonymized or modified. All analyses, discussions and conclusions remain 
unchanged.

We illustrate our methodology with a life insurance portfolio from a French 
insurer contracted between 1997 and 2018. Each record in the data set represents 
a unique policy for a unique policyholder. In the following sections, we will often 
refer to a unique pair of policy and policyholder by the term “subject”. The dataset 
contains 251,325 rows with 248,737 unique policies and 235,076 unique policyhold-
ers. It means that some policies are shared between several policyholders and that 
one individual can detain several insurance policies. The dataset contains 43 covari-
ates described in Table 1.

The data set represents policies that are majority owned by men (57.4%) for a 
mean censored seniority time of 13.4 years. Three products are present in the data-
set. Product one was chosen by 72% of policyholders, product 2 by 25% and product 
3 by 3%.

Regarding their state, 61% of the policies are still active, 22% lapsed, and 17% 
ended after the PH’s death. We chose here to present the distribution of the vari-
able SENIORITY as it is the response variable in our survival models. Its mod-
eling has a critical influence on CLV, thus, on our lapse management strategy 
framework. We also chose to show the distribution of the variable TOTAL PRE-
MIUM AMOUNT representing the most recent observed face amount for every 
subject, as it is a known determinant of lapse behavior. We are aware that this 
covariate is a rather dynamic one as its value is updated at every payment, total 
or partial lapse, profit sharing, arbitration or even fees movements on a policy, 
and only considering its most recent value ignores a large part of the insights 
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it can provide. Without any better option, we can only use TOTAL PREMIUM 
AMOUNT as it is and defer any dynamic considerations for future work.

The seniorities and most recent face amount recorded before the potential end 
of the policy are distributed as in Fig. 1.

Table 1   Data set description
Covariates (Numerical, Categorical, Date) Description

ID
CDI ID PERSONNE Policyholder (PH) unique ID
CDI ID CONTRAT Policy unique ID

PH-level information

CDI DT NAISSANCE PH’s birth date (main PH when several policyholders owns one policy)
Age souscription PH’s age at subscription
Nb Contrats Number of different policies owned by the policyholder
CDI CD SEXE PH’s gender (1=Female; 2=Male; other=Non precised)
CDI DESTINATAIRE COURRIER Anonymised PH’s name
CDI NUM ET NOM VOIE Anonymised PH’s address
CDI CD POSTAL Anonymised PH’s postcode
CDI COMMUNE Anonymised PH’s city of residence
CDI TOP ASSURE Binary: 1 if PH is the main PH on the policy, 0 otherwise

Policy-level informations

CDI TYPE PRODUIT Type of product (“Top-end product” or “Classical product”)
CDI NOM PRODUIT Name of life insurance product (“Product 1”, “Product 2” or “Product 3”)
CDI PARTENAIRE Name of the insurance distributor
CDI DATE DEB CONTRAT Policy’s start date
CDI DATE FIN CONTRAT Policy’s end date
START YEAR Policy’s start year
END YEAR Policy’s end year
SENIORITY Policy’s seniority (final seniority if the policy is ended, current seniority otherwise)
STATE Policy’s state (“Active”, “Lapsed”, or “Death” if the policy ended following PH’s death)
YEAR Last year of observation

External data DISCOUNT RATE Discount rate corresponding to the last year of observation

Policy’s cumulated financial flows

TOTAL PREMIUM AMOUNT Total face amount of the policy
TOTAL EURO PREMIUM AMOUNT Face amount of the policy in euros
TOTAL UC PREMIUM AMOUNT Face amount of the policy in units of account
ARBITRATION EURO Cumulated arbitration amount of the policy in euros
ARBITRATION UC Cumulated arbitration amount of the policy in units of account
FEES EURO Cumulated fees amount of the policy in euros
FEES UC Cumulated fees amount of the policy in units of account
OTHER EURO Cumulated other parts of the face amount of the policy in euros
OTHER UC Cumulated other parts of the face amount of the policy in units of account
PREMIUM EURO Cumulated payments amount of the policy in euros
PREMIUM UC Cumulated payments amount of the policy in units of account
PROFIT SHARING EURO Cumulated profit sharing amount of the policy in euros
PROFIT SHARING UC Cumulated profit sharing amount of the policy in units of account
CLAIM EURO Cumulated partial or total lapsed amount of the policy in euros
CLAIM UC Cumulated partial or total lapsed amount of the policy in units of account

Covariates derived from financial flows

%TOTAL UC PREMIUM AMOUNT Percentage of the face amount in units of account
%TOTAL EURO PREMIUM AMOUNT Percentage of the face amount in euros
%CLAIM UC Percentage of the face amount in units of account that was lapsed
%CLAIM EURO Percentage of the face amount in euros that was lapsed
%CLAIM Percentage of the total face amount that was lapsed

Target covariate EVENT Policy’s state (0=Active, 1=Lapsed, 2 ended following PH’s death)

Fig. 1   Seniorities and face amounts distributions
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Without further analyzing the data, we can note several things. First, we can see 
that the mean censored seniority of 13.4 years is not equally distributed among our 
subjects. Active contracts tend to be older than lapsed ones, themselves older than 
policies that ended with the policyholder’s death. That emphasizes the importance 
of several contributions, and the apparent difference in seniority regarding the cause 
of the policy’s termination encourages a competing risks approach to analyze sur-
vival. Moreover, if we suspect lapse and death to be highly dependent on individual 
characteristics—such as the policyholder’s age—this also supports an individualized 
survival analysis. Eventually, we can see that the last face amount observed is signif-
icantly lower for lapsed policies. It confirms our first intuitions and the face amount 
will be included in our model.

Among the covariates introduced in Table  1, several play a central part in our 
two-step modeling approach. First, the competing risks survival analysis step where 
SENIORITY will be the response variable, and all other covariates, including indi-
vidual data and financial flows, are potential explanatory variables. The binary 
classification second step aims at predicting the EVENT outcome with minor trans-
formations explained in Sect. 3 below. It is equivalent to using STATE as a target 
variable, as they are entirely similar. As a result, all covariates are not utilized and 
our predictions are solely based on the covariates underlined in Table  1 as they 
appeared to be of interest to insurers.

3 � Framework

This section describes a modeling approach that follows [46]’s work. Our contri-
butions place our work in a framework that differs from it by being only future-
oriented, by a precise and individualized analysis of retention probabilities and by 
choosing a classification framework instead of regression. We chose to use a major-
ity of their existing notations here.

Usual lapse management models based on classification aim to predict whether a 
policyholder will lapse. They may perform very well at that specific task, but it only 
reflects some aspects of this economic problem. Indeed, the literature is clear [2], 
and many policyholders may be predicted as “lapsers” but may not be profitable to 
the insurance company if targeted. In that case, keeping such policyholders would 
be irrational, and an efficient model should not predict them as targets. Targeting 
policyholders is an economic problem that requires an economic measure to assess. 
We propose to consider a measure based on the discounted expected profit of all the 
policies, in other words, the sum of all (CLVs) . Optimizing a lapse, churn, or other 
prediction tasks with business-related measures is not new. However, to our knowl-
edge, none of the existing approaches uses individualized future CLVs and models 
the profit of retention strategy by accounting for competing risks or using survival 
tree-based models.
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CLV is a well-studied subject in marketing and business economics and has also 
been modeled in an insurance context. For a given subject i, her future CLV at hori-
zon T can be modeled as

with t in years, t = 0 represents the last observation point for subject i. The quan-
tity pi,t is her profitability ratio as a proportion of Fi,t , representing her face amount 
observed at time t. The quantity ri,t is the i-th subject’s probability of still being 
active at time t, and naturally, di,t is the discount rate at time t, for subject i. We argue 
that both the profitability ratio and the discount rate should be as individualized as 
possible—either at the product or policy level—as FCLVi reflects the individualized 
risk of policyholder i to the insurer. It is also worth mentioning that evaluating dis-
count rates is well beyond the scope of this paper as it is complex and subject to sig-
nificant judgment; for further details, we refer the astute reader to a variety of papers 
on the subject [4, 11, 51].

It is worth pointing out that FCLVi does not represent the global profit gen-
erated by subject i from her policy’s first year until time T as in [46]; it rather 
represents the future T years of profit. FCLVi is not to be compared with the Cash 
Surrender Value but rather with the Fair Market Value (FMV) of the outstand-
ing liabilities. The only difference with the latter is that FCLVi is based on the 
insurer’s knowledge of its portfolio, thus computed with its own profitability and 
discount parameters rather than with market-consistent considerations. Whereas 
the portfolio market value would consist of financial instruments that replicate 
the insurance liability cash flows. In our framework, the life insurer is more inter-
ested in maximizing its own realistic profitability rather than a sum of individual 
market values.

We suggest a model for the insurer’s estimated profit—or loss—resulting from 
a lapse management strategy (LMS). In order to do that, we will compare the 
expected value of the portfolio before and after applying a given strategy. We are 
aware that there could be infinite ways to design a retention campaign: offering a 
punctual incentive, recurrent services or more profit sharing, for instance. Here, 
we define what we will consider an LMS.

Definition 1  (Lapse management strategy) A T-years lapse management strategy is 
modeled by the offer of an incentive �i to subject i if she is targeted. The incentive is 
expressed as a percentage of her face amount and should not exceed the profitability 
ratio pi,t , at any time point t. Contacting the targeted policyholder has a fixed cost 
c and after contact, the incentive is accepted with probability �i . A targeted sub-
ject who accepts the incentive will be considered as an “acceptant” who will never 
lapse. In our dataset, any subject that has never been observed to lapse is considered 
as an “acceptant” and her probability of being active at year t ∈ [0, T] is denoted 
r
acceptant

i,t
 . Conversely, a subject who refuses the incentive and prefers to lapse will be 

(1)FCLVi

(
pi,Fi, ri, d, T

)
=

T∑
t=0

pi,tFi,tri,t(
1 + di,t

)t ,
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considered as a “lapser”. In our dataset, a subject is labeled as a lapser whenever she 
has been observed to lapse at year t = 0 , and her probability of being active at year t 
is denoted rlapser

i,t
 . A lapse management strategy is uniquely defined by the parameters 

(p, �, �, c,T).

It is to be noted that even if the framework involves a time dimension, it is still a 
static approach: the insurer would run all analyses on its portfolio at one given time 
and apply an appropriate LMS immediately.

Even if this definition is already a simplification of any real-life insurance reten-
tion strategy, various constraints and the data and tools at the insurer’s disposal do 
not always allow to conduct such a study. In the following section, we consider a 
simplified version of this framework by assuming that pi,t,Fi,t , and di,t remain con-
stant across time, and denoted pi , Fi and di hereafter, with Fi being the most recent 
face amount observed for subject i. Moreover, we set �i and �i to be the same for all 
subjects and denoted as � and � hereafter. The constraint that 𝛿 < min(pi) detailed in 
Definition 1 still holds. Finally, the last observed state of subject i is denoted yi , with 
yi = 1 if the policy is lapsed, yi = 0 otherwise.

With those considerations, we can then define the control portfolio’s future value 
as

It represents the hypothetical value of the portfolio, considering that:

•	 every subject that did not lapse up to her last observation point—yi = 0 at t = 0

—has a vector of retention probabilities of racceptant
i

;
•	 every subject that has been observed to lapse—yi = 1 at t = 0—has a vector of 

retention probabilities of rlapser
i

Remark 1  It is important to note that this does not reflect the actual future value of 
the portfolio—as the future CLV of lapsers should be 0 - but rather its hypothetical 
expected future value given the nature (lapser or not) of every subject but not their 
actual states (actually lapsed or not). It represents this hypothetical future CLV of all 
subjects if no customer relationship management about lapses is carried out.

A classification algorithm would take the lapse indicator yi as a target variable 
and yield predictions ŷi . Given a lapse management strategy and such a classifica-
tion algorithm, we define the lapse managed portfolio future value by

(2)

FCPV(p, �, � , c,T) =

n∑
i=1

FCLVi

(
pi,Fi, r

acceptant

i
, di, T

)
⋅ 1

(
yi = 0

)

+

n∑
i=1

FCLVi

(
pi,Fi, r

lapser

i
, di, T

)
⋅ 1

(
yi = 1

)
.
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Clearly, the sums appearing in the formulas above could be grouped to make them 
more concise. We chose not to do so for the sake of visualization: we can distinctly 
see each possible case in each summand.

Then, we define the economic metric of the algorithm as the retention gain, the 
future profit generated by the retention management strategy over T years as

which can be simplified as

This evaluation metric can now be derived into an individual retention gain meas-
ure. More specifically, we define zi as

That last equation can seem obscure at first glance. It simply assigns to each individ-
ual the expected profit or loss that would result from targeting her with a given lapse 
management strategy. A positive amount for subject i means that targeting her would 
generate profit, whereas a negative one would lead to a loss for the insurer. We can 

(3)

FLMPV(p, �, � , c, T) =
n
∑

i=1

FCLVi
(

pi,Fi, r
acceptant
i , di, T

)

⋅ 1
(

yi = 0, ŷi = 0
)

+
n
∑

i=1

FCLVi

(

pi,Fi, r
lapser
i , di, T

)

⋅ 1
(

yi = 1, ŷi = 0
)

+
n
∑

i=1

FCLVi
(

pi − �,Fi, r
acceptant
i , di, T

)

⋅ 1
(

yi = 0, ŷi = 1
)

+ � ⋅
n
∑

i=1

FCLVi
(

pi − �,Fi, r
acceptant
i , di, T

)

⋅ 1
(

yi = 1, ŷi = 1
)

+ (1 − �) ⋅
n
∑

i=1

FCLVi

(

pi,Fi, r
lapser
i , di, T

)

⋅ 1
(

yi = 1, ŷi = 1
)

−
n
∑

i=1
c ⋅ 1

(

ŷi = 1
)

.

(4)RG(p, �, � , c,T) = FLMPV(p, �, � , c,T) − FCPV(p, �, � , c,T),

(5)

RG(p, 𝛿, 𝛾 , c,T) =

n∑
i=1

[
𝛾
[
FCLVi

(
pi − 𝛿,Fi, r

acceptant

i
, di, T

)

− FCLVi

(
pi,Fi, r

lapser

i
, di, T

)]
⋅ 1

(
yi = 1, ŷi = 1

)

− FCLVi

(
𝛿,Fi, r

acceptant

i
, di, T

)
⋅ 1

(
yi = 0, ŷi = 1

)]

−

n∑
i=1

c ⋅ 1
(
ŷi = 1

)
.

(6)zi =

⎧
⎪⎨⎪⎩

−FCLVi

�
�,Fi, r

acceptant

i
, di, T

�
− c if yi = 0

� ⋅
�
FCLVi

�
pi − �,Fi, r

acceptant

i
, di, T

�
if yi = 1

−FCLVi

�
pi,Fi, r

lapser

i
, di, T

��
− c.
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take the example of a hypothetical scenario where pi = 3% , � = 0.05% , � = 10% and 
c = 10 euros. It would generate zi s taking values from −234, 614 € to 53, 066€ with a 
mean of −218 € and a median of −55 €. Different scenarios would result in very dif-
ferent distributions for the zi’s.

Eventually, we define ỹi as a binary target variable indicating for policyholder i if 
the individual expected retention gain resulting from a given retention strategy is a 
profit or a loss. More specifically, we define ỹi as

Remark 2  A subject in the dataset for which yi = 0 would produce ỹi = 0 , whereas 
one for which yi = 1 could produce ỹi = 0 or ỹi = 1 . In other words, it is never profit-
able for the insurer to offer an incentive to a subject that would not have lapsed. On 
the other hand, offering that same incentive to a lapser can be profitable. However, 
depending on the subject’s features and the lapse management strategy parameters, 
it can also lead to a loss.

We can now include ỹi as a new binary target variable in our models and directly 
consider RG as the global evaluation metric in the tree-based models we consider.

We can now compare two models: the classical one with yi as a target variable 
and accuracy as the evaluation metric; and the CLV-augmented one with ỹi as a tar-
get variable and RG as the evaluation metric.

Intuitively, the former tries to predict whether a policyholder will lapse and tune 
its parameters by minimizing the misclassification rate. On the other hand, the latter 
aims at predicting whether applying a given retention strategy to the ith individual 
will be profitable for the insurer and tune its parameters by maximizing the global 
expected retention gain.

4 � Methodology

In Sect. 3, we described a business-oriented framework, augmenting lapse manage-
ment strategy with an evaluation metric based on the future CLV of every subject. 
Evaluating this metric requires computing racceptant and rlapser , the matrices of size 
(n, T + 1) containing for every subject, survival probabilities that we detail below. 
This individual survival analysis differs from [46]’s work where rlapser is estimated 
globally and takes the same value for every policyholder regardless of their charac-
teristics and where racceptant = 1 for any subject and at any time, ignoring the fact that 
an “acceptant”’s policy can end with the policyholder’s death.

(7)ỹi =

{
1 if zi > 0

0 if zi ≤ 0
.
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Given this framework, we propose a two-step methodology: firstly, we detail how 
this survival analysis is carried out to model those retention parameters, and sec-
ondly, we explain how we use them for training tree-based classification models.

4.1 � Step 1: modeling racceptant and rlapser

We recall that a given subject’s policy can end with lapse or death, and the policy is 
considered active if competing events are yet to occur. Furthermore, while a lapser’s 
policy can end with lapse or death, whatever comes first, an acceptant one can only end 
with death.

rlapser represents the probability that the policy of subject i is still active at time t, 
given that the subject is labeled as a lapser—EVENT = 1—at t = 0 . Predicting these 
overall conditional survival probabilities with competing risks can be achieved by cre-
ating a combined outcome: the policy ends with death or lapse, whichever comes first. 
To compute rlapser in practice, we recode the competing events as a combined event. 
This approach is compatible with any survival analysis method regarding statistical 
guarantees.

Conversely, racceptant represents the probability that the policy of subject i is still 
active at time t, given that the subject is not labeled as a lapser—EVENT = 0 or 2—at 
t = 0 . This estimation is more complex as we must dissociate the risks of lapse and 
death. These causes being mutually exclusive, a competing risks methodology is well-
suited to estimate racceptant [43].

It is also important to note that here, rlapser is modeled on subjects that have lapsed 
in the past—they may have been offered an incentive in the past, this is unknown—
and not on subjects that have been offered an incentive that they declined. Our frame-
work makes the implicit hypothesis that both behaviors are alike. It is more intuitive for 
racceptant as a subject that has not lapsed in the past would have accepted any incentive 
if offered.

4.1.1 � Competing risks frameworks

We are aware that improvements of our model over [46]’s approach, require the analy-
sis of both the risks of lapse and death, thus a competing risk setting. As detailed in 
Appendix A.1, several regression models exist to estimate the global hazard and the 
hazard of one risk in such settings: cause-specific and subdistribution models. They 
account for competing risks differently, obtaining different hazard functions and thus 
have distinct advantages, drawbacks and interpretations. These differences are dis-
cussed in [48], where the authors also considered a competing risk framework for lapse 
prediction.

After discussions detailed in Appendix  A.1, the simplicity of a cause-specific 
approach and the fact that it can be adapted to any survival method, including tree-
based ones, oriented our choice towards it. We then computed racceptant and rlapser with 
three different methods—Cox model, Random Survival Forest and Gradient Boosting 
Survival Model—and retained the best one. These methods are shortly described in the 
following sections.
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4.1.2 � Cox proportional hazard model

One of the most common survival models is the Cox proportional hazard (CPH) 
model [14]. It postulates that the hazard function can be modelized as the prod-
uct of a time-dependent and a covariate-dependent functions. The hazard function 
at time t for subject i with covariate vector Xi , under Cox proportionnal hazard 
model can be expressed as

It is crucial to note that in this model, the hazard function is the product of the base-
line hazard, which only varies with time, and the partial hazard, which only var-
ies depending on the covariates. The parameters of this model are the � , and they 
can easily be estimated with a maximum likelihood approach. Their estimation can 
be carried out without having to model �0(t)—which is why CPH is considered 
semi-parametric.

We use Python and lifelines [18] to implement it. We specify a spline estima-
tion for the baseline hazard function. We select the covariates and model param-
eters using AIC [1] and use the concordance index [31] to compare CPH to other 
models. The concordance index—or Harrel’s c-index or simply c-index—is a 
metric to evaluate the predictions made by a survival model. It can be interpreted 
as a generalization of the area under a receiver operating characteristic (ROC) 
curve [30]—or AUC—in a survival setting with censored data.

4.1.3 � Random survival forest

Survival trees have been extensively studied for a long time, and a complete 
review of such existing methods up to 2011 can be found in [5]. The most impor-
tant thing to understand is that a survival tree can be created by modifying the 
splitting criterion of a regular tree. Most survival tree algorithms are designed 
with a split function that aims to maximize the separation of the resulting child 
nodes in terms of survival profiles. This separation between nodes is estimated by 
maximizing the log-rank statistic [44, 47]. Each terminal node of a survival tree 
contains a survival profile from which we can derive the survival and cumulative 
hazard function.

An RSF is the counterpart of a random forest (see Appendix A.2.2) for such sur-
vival trees. It has been developed in [36] and extended for competing risks a few 
years after [37]. A prediction with RSF for a given subject is made by getting his/
her survival profile in each tree in the forest. His/her corresponding survival and 
cumulative hazard function are estimated in each tree with Kaplan–Meier and Nel-
son–Aalen estimators, respectively. Eventually, the aggregation of those single-tree 
estimates constitutes the RSF’s prediction.

�(t|X1
i
,X2

i
,…)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
hazard function

= �(t|Xi) =

baseline hazard

⏞⏞⏞
�0(t) e

log-partial hazard

⏞⏞⏞⏞⏞(
Xi ⋅ �i

)
⏟⏞⏞⏟⏞⏞⏟
partial hazard

.
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We use Python and sksurv [53] to implement RSF, and we tune and evaluate our 
model using the concordance index.

Remark 3  Sksurv allows us to use RSF with a cause-specific consideration of the 
competing risks. To this day, sksurv does not have a subdistribution competing risks 
model, whereas its R implementation randomForestSRC does [35].

Moreover, a severe limitation of that approach is that predictions can only be 
made at time points observed in the training set. Concretely, this prevents us from 
using RSF to extrapolate survival and hazard functions to unobserved time points.

4.1.4 � Gradient boosting survival model

In the same way Random Forest has a survival counterpart, this is also true for Gra-
dient Boosting approaches. An essential distinction between classical boosting algo-
rithms (see Appendix A.2.3) and Gradient Boosting Survival Model (GBSM) lies in 
its loss function. The loss function that we use with GBSM is the partial likelihood 
loss of a CPH model, and the optimization in such a model is achieved by maximiz-
ing a slightly modified log-partial likelihood function,

where �i is the event indicator and f (Xi) is GBSM’s prediction for the i-th subject, 
with a covariate vector Xi . gi is the tree leaf including subject i.

Similarly to RSF, we use Python and sksurv [53] to implement GBSM. We tune 
and evaluate our model using the concordance index. Remark 3 also applies here.

4.1.5 � Final modeling choice

Our analysis shows that, based on concordance index, RSF and GSBM both outper-
formed a semiparametric Cox model in our study case. Regarding interpretability, 
we note that the feature importance analysis is very similar between the three mod-
els. All the details about the final concordance index scores, covariates importance 
and various plot for further analysis are available in Appendix A.2.

In the following sections, we decide to retain GBSM for the modeling of racceptant 
and rlapser as it has the best concordance index.

Remark 4  As this study aims to be business-oriented and favor real-life decision-
making, it is crucial to note that the computation times for fitting these different 
models are very different and could potentially be a huge constraint for real opera-
tional deployment. Specific computation times differ greatly depending on vari-
ous factors, such as the number of subjects or features considered, the computation 
power or parallelization ability at disposal, for instance. However, we can still give 
here an order of magnitude for those differences. If the tuning and fitting process 

argmin
f

n∑
i=1

�i

[
f (Xi) − log

(∑
j∈gi

e(f (Xj))

)]
,
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for CPH can last a few tens of seconds, it lasts hours for RSF and tens of hours for 
GBSM.

4.2 � Step 2: classification tasks

Our work focuses on lapse management with tree-based models. It aims to answer 
the question: which policyholders would be worth targeting with a lapse manage-
ment strategy to maximize the expected T-year profit for the insurer? We will con-
sider a single tree built with Breiman’s CART algorithm, Random Forest, XGBoost, 
and RE-EM trees. The following sections detail how those different approaches 
work. Those models will be compared on two different classification tasks; and 
tuned with two different evaluation metrics, a statistical metric and a business-
related one.

On yi First, we will use a classical lapse prediction framework to model the poli-
cyholder’s behavior. Each policyholder will be labeled as a lapser or a non-lapser 
with a binary outcome yi . Our first batch of models will be trained with yi as a 
response variable and produce predictions ŷi . Accuracy(y, ŷ) , which is undoubtedly 
the most intuitive performance measure for binary classification, is defined as the 
proportion of correctly predicted observations over all observations. It is widely 
used for churn analysis and appears to be a satisfying performance measure for rela-
tively balanced outcomes—22% of all observed subjects being lapsers—in binary 
classification problems. We will use it as an evaluation metric in a 10-fold cross-
validation step for tuning our models.

We know that more advanced evaluation metrics are available for binary clas-
sification, including the recall, the F� score family [13], the AUC under the ROC 
or under the Precision-Recall curve, the Brier Score [8] and lift curve. They are 
standard evaluation metrics in classification and provide valuable insights into the 
model’s performance, they are also frequently used in the applied binary classifica-
tion literature, especially in the presence of a significant imbalance in the data [32]. 
However, in this paper, the mildness of the imbalance of yi and our will to compare 
a customer-centered framework to representative real-world practices encourages 
us to use accuracy as a comparison. One of the goals of this article is to demon-
strate that some of the current practices in real-world applications, based on statisti-
cal metrics such as accuracy can be significantly improved by considering a profit-
driven target variable and evaluation metric. We are aware that accuracy may not be 
an optimal choice of evaluation metric for binary prediction in general and churn or 

Table 2   Insightful LMS Scenarios p � � c d T

A-1 2.50% 0.04% 25% 10 1.50% 5
A-5 2.50% 0.04% 5% 10 1.50% 5
A-25 5.00% 0.10% 25% 10 1.50% 5
B-6 2.50% 0.08% 10% 10 1.50% 20
B-27 5.00% 0.20% 20% 100 1.50% 5
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lapse analysis specifically, but it seems representative of what practitioners use (see 
Table 2 from [20] for example), as it is suggested in [46]. We do not aim at compar-
ing our framework against the best existing methods but rather against the most rep-
resentative. Nevertheless, the numerical results of Table 3 have also been obtained 
with recall, F1-score, and AUC for tuning and cross-validation and some are avail-
able in Appendix A.4: the conclusions obtained with such measures are similar to 
those obtained with accuracy. Thus, in this article and as in [46], we will only select, 
evaluate and discuss the models in the light of accuracy.

On ỹi Secondly, we will use the CLV-Augmented lapse prediction framework, 
detailed in Sect. 3. Each policyholder will be labeled as a targeted lapser or a non-
targeted policyholder with the binary outcome ỹi and prediction for that outcome are 
denoted ̂̃yi.

Remark 5  Note that whenever yi = 0 , we also have ỹi = 0 . In other words, if subject 
i does not intend to lapse, it is never worth proposing her an incentive: the subject 
will accept it with probability 1 and would not have lapsed.

On the other hand, when yi = 1 , it corresponds to either ỹi = 1 or ỹi = 0 . In other 
words, if subject i is labeled as a lapser, it does not necessarily mean it is worth 
targeting her. From the insurer’s point of view, some policies are better off lapsed. ỹ 
can be seen as a more detailed version of yi as it carries not only behavioral informa-
tion regarding lapse but also a profitability one.

We thus train a second batch of models with ỹi as a response variable. We use RG 
as an evaluation metric in a 10-fold cross-validation step for tuning these models.

Summary of our methodology: First, we train a CART, RF and XGBoost models 
with yi as a binary target variable and accuracy as a tuning evaluation metric.

Then we train them with ỹi as a binary target variable and RG as a tuning evalua-
tion metric.

Finally, we train and test all six models on different random samples of our data-
set and keep track of the model’s classification performance on all of them and for 
various retention strategies for comparison’s sake.

The sections below briefly introduce the tree-based model we selected before dis-
playing how they performed in various lapse management scenarios.

4.2.1 � CART​

CART (Classification And Regression Trees) is an algorithm developed by [7] that 
consists of recursively partitioning the covariate space. It is a widespread, intuitive 
and flexible algorithm that handles regression and classification problems.

4.2.2 � Random forest

A natural idea to correct CART’s instability and enhance its prediction accuracy 
is the aggregation of a significant number of single trees, each grown on differ-
ent subsamples of the dataset. A random forest (RF by [6]) is a tree-based bagging 
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procedure where each tree is grown on randomly drawn observations and contains 
splits considering only randomly drawn covariates.

4.2.3 � XGBoost

Other tree-based approaches have been designed to reduce the instability of a single-
tree model. Model boosting is an adaptative technique, first developed by Freund et 
Shapire [23], that does not rely on the aggregation of independent weaker models 
but rather on the aggregation of weak models built sequentially, one after the other. 
XGBoost [12] is a widespread and performant tree-boosting model that relies on a 
gradient-boosting step and provides a very optimized parallelized procedure. It is 
considered a state-of-the-art library for various prediction problems.

The interested reader can find more detailed explanations about CART, RF 
and XGBoost mechanisms in the aforementioned references. For these modeling 
approaches, we used Python and sklearn [52].

5 � Real‑life application

Based on the real life-insurance dataset at our disposal (described in Sect. 2), we use 
the survival model we selected and estimate racceptant and rlapser for every individual. 
This allows us to compute the individual CLVs, RGs, zi ’s and ỹi . We have already 
defined what a strategy is (see Definition 1), and we can thus apply our classification 
methodology to various retention strategies.

5.1 � Considered lapse management strategies

The strategies considered are based on several criteria. First, we selected realistic 
strategy parameters and time horizons based on actual retention campaigns led by 
life insurers. Moreover, we chose to present strategies that illustrate the exhaustive 
list of conclusions and discussions that are carried out in the next section. Finally, 
we also incorporated strategies that are “obviously bad” in the sense that such strate-
gies would necessarily lead to a loss for the insurer. Such extreme scenarios will 
supplement our discussions. In any case, we consider pi and di to be constant in our 
application, as both those parameters were not estimated at the individual level by 
the life insurer that provided with the dataset.

Results related to the 64 considered LMS are given in Appendix A.5. Our analysis 
showed that all considered LMS results can be split into five categories depending 
on how applying our framework impacted their expected retention gain over a naïve 
targeting. We have realistic profitable strategies that are improved by our framework, 
but also highly loss-inducing, moderate loss-inducing, highly profitable and unre-
alistically highly profitable strategies. We refer to the LMS displayed in Table 2 as 
representative strategies as they all belong to one of those categories. Numerical 
results regarding the most representative strategies can be found in Sect.  5.2 and 
related comments on how to read these tables are given in Sect. 5.3.
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5.2 � Numerical results

See Table 3.

5.3 � Comments

Several terms in the two previous tables need to be explained. “% target diff” 
represents how different y and ỹ are. It is the percentage of subjects for which 
yi = 1 and ỹi = 0 : in other words, the proportion of lapsers not worth targeting 
with a given strategy. The quantity “% of 1’s” represents the proportion of ones in 
ỹ the target variable. It is to be compared with the 22% of ones in y: the proposed 
framework’s imbalance increases with “% target diff”.

Then the table shows the 10-fold cross-validated mean accuracies, retention 
gains and RG/target with two methodologies: the columns denoted yi represent 
the metrics obtained by a model with yi as a response variable and accuracy as an 
evaluation metric, and the columns denoted ỹi represent the metric obtained by a 
model with ỹi as a response variable and RG as an evaluation metric.

RG/target represents the achieved retention gain for every targeted individual, 
for yi , it is RG∕

∑
i ŷi , for ỹi it is RG∕

∑
i
̂̃yi . Eventually, “Improvement” represents 

the percentage of improvement between the RG obtained with a classification 
on yi and the gain obtained with a classification on ỹi . As the reported financial 
information was distorted for confidentiality reasons (see Sect. 2), relative meas-
ures such as “Improvement” are certainly more informative than absolute ones 
such as RG.

Some LMS are worth focusing on. For every strategy, we display its 10-fold 
cross-validated results: 10% of the dataset acting as an out-of-sample validation 
set at every fold. Every model is tuned by cross-validation within every fold. The 
boxplots below summarize some typical key results illustrated by several strategies. 
Those results will be discussed in Sect. 6.

Remark 6  With considerable computation power and great parallelization, the 
results for all strategies—see other strategies in Appendix A.5—were obtained with 
a wall time of less than 4 days and a CPU time of more than 100 days.

6 � Discussion

6.1 � General statements

As expected and shown in the actuarial literature, RF and XGBoost perform glob-
ally better than CART regarding mean accuracy and RG. It is true for all LMS con-
sidered in Table 10. Globally, XGBoost is more consistent and is the best model in 
most scenarios, both with and without the CLV-based measure. It is only outper-
formed by RF in strategies no A-7, A-11, A-14, A-29, B-7, B-14 and B-31.

As expected, by design, the vast majority of strategies, including all the realis-
tic ones, show that a classification on ỹi produces a targeting that yields better RG 
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than a classification on yi . Conversely, a classification on yi produces a targeting that 
delivers better accuracies regarding whether a policyholder will churn than a classi-
fication on ỹi . These results were expected because of the models’ respective objec-
tives. Even if it is not surprising, it once again shows that for an insurer, lapse pre-
diction and lapse management strategy are two very different prediction problems, 
often treated as similar ones.

Our CLV-augmented model shows different behavior depending on the strat-
egy considered. As highlighted by Fig. 2, a model on yi is greatly improved by our 
framework regarding RG and RG/target. Conversely, its accuracy in lapse prediction 
is not optimal.

An attractive property of our framework can be observed in Fig. 3: it yields loss-
limiting targeting. When the LMS considered is too aggressive, it will usually prefer 
to predict that an LMS should not be applied at all ( ∀i, ̂̃yi = 0 ), thus generating a RG 
around 0€. This is made evident in some extreme strategies (LMS no A-5, A-15, 
B-11, B-13 and B-16) and explains the presence of 0’s in Table 3.

On less extreme strategies, it shows to yield substantial improvement when clas-
sification on yi gives negative RG. That observation confirms what was already 
pointed out by [46]: it can even turn a negative RG into a positive one [see LMS no 
A-8, B-8, B-12, B-23 and B-27 (Fig. 4)].

Our framework also improves a strategy where a classification on yi gives high 
RG. However, the improvement decreases as the difference between the total number 

Fig. 2   Strategy no A-1: (Positive result on yi and an improved result on ỹi)
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Fig. 3   Strategy no A-5: (Very negative result on yi and a loss-limiting result on ỹi)

Fig. 4   Strategy no B-27: (Negative result on yi and positive one on ỹi)
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of lapsers and the number of lapsers that would be profitable if retained is sizeable. 
An example of that is shown in Fig. 5.

Finally, we can generate LMS for which our framework does not improve the 
expected RG. It is the case in LMS no A-13, A-18 or A-27 (see e.g. Fig. 6). In LMS 
no A-13, we can see that the mean of the RG is not improved, but the median is. In 
all those cases, the RG per target produced by the CLV-augmented model is greatly 
improved, indicating that a CLV-augmented strategy prefers to target fewer policy-
holders but only those who would generate high future profits. This last observa-
tion explains why a CLV-augmented LMS generates higher RGs when the cost of 
contact c is considerable. Indeed, the more costly a contact is, the more precise and 
specific a targeting strategy should be.

Generally, we can collate the results of various LMS—excluding LMS no B-27 
that has a very high improvement ratio—to obtain a mean performance of our 
framework.

The average observed RG improvement of a CLV-augmented framework over 
the classical lapse one is 57,9%.1 If we weigh these results by the expected RGs, 
the average improvement is still 31.7%. As a comparative result, it is reported in 
Sect. 6.2 of Loisel et al.’s work [46] that they obtain improvements over that same 
classical framework between 18% and 26%, depending on the considered strate-
gies. This emphasizes that by extending their work, we seem to improve on their 
results. Obviously, as we were not able to compare our results on the same data 

Fig. 5   Strategy no B-6: (High positive result on yi slightly improved with ỹi)

1  Using XGBoost.



	 M. Valla et al.

1 3

and strategies, and because our definitions of RG differ, such a conclusion is to be 
treated cautiously.

6.2 � Marketing decision making

We already pointed out that the improvement of a lapse management strategy 
including CLV grows with the proportion of lapsers with a negative CLV (see 
Appendix  A.3). Models resulting from our framework do not consider them as 
good targets. In fact, there is a Pearson correlation coefficient of 77% between RG 
improvement and the proportion of target differences among the LMS detailed in 
Table 10. Of course, as the improvement ratio has no clear interpretation in some 
cases, this analysis should be carried out in more depth, separating the cases where 
both RG—with and without the inclusion of CLV—are positive from the cases 
where one of them is negative. By doing so, we observe that the Pearson correlation 
coefficient for LMS yielding positive RG regardless of the inclusion of CLV is even 
higher: 83%.

In terms of targeting, it seems crucial to understand what differentiates a subject 
for which yi = 1 and ỹi = 0 from the others. An investigation of such policyholder 
profiles can be carried out for every lapse management strategy. We take the exam-
ple of LMS no A-1, where 62.6% of policyholders were in that case (see Sect. 5.2). 
With that strategy, the profile of non-targeted lapsers indicates that

Fig. 6   Strategy no A-25: (Results on yi better than results on ỹi)
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•	 57.2% of them are men, similar to the entire dataset,
•	 76.4% of them contracted product no 1 whereas 72% of all policyholders chose 

it,
•	 the mean seniority of their policy is 10.4 years compared to the 13.4 years for the 

complete dataset,
•	 the mean face amount of such policies is 12,156, whereas the average face 

amount for all considered policies is 40,263.

In that strategy, our framework indicates that marketing efforts on low seniority pol-
icyholders with low face amount policies are inefficient. Of course, this conclusion 
is only valid for the considered LMS; however, our framework allows us to conduct 
such analysis for any LMS and interpret the results at an individualized level.

6.3 � Management rules decision making

Sensitivity analysis of those results can highly benefit management rules decision-
making. This framework serves as a tool that compares future hypothetical lapse 
management strategies in order to choose the best one—among realistic scenarios. It 
can also be used to tune a given strategy by answering questions like:

•	 For which incentive � the retention strategy becomes profitable ?
•	 For which acceptance probability � the retention strategy becomes profitable ?
•	 With a given budget, what is the optimal list of policies that should be targeted?
•	 At which horizon T, the retention strategy become profitable ? In other words, 

when can the insurer expect a return on investment?

Answering these questions constitutes a 1-parameter sensitivity analysis. In our 
framework, six parameters influence the expected retention gain (p, �, � , c, d, T).

We can argue that among them are three structural parameters that are insurer’s 
dependent and not linked to the external state of the world: � , � and c. Among them, 
the contact cost c is more or less fixed and can not be easily changed by the insurer. 
Conversely, � and � are to be chosen by the insurer. Moreover, they also are corre-
lated with management and commercial efficiency—an efficient campaign impacts 
the final �—and correlated together: the higher the incentive � , the higher the prob-
ability of acceptance �.

By fixing all other parameters and trying various combinations of � and � we 
obtain the following 3D surfaces.

This surface is not surprising and indicates that the higher the acceptance rate and 
the lower the incentive, the higher the retention gain. The surface gradient can give 
powerful insights regarding the most efficient commercial efforts to make: is it better 
for the insurer to propose lower incentives and manage to conserve the same accept-
ance probability or to put commercial effort into improving the acceptance probabil-
ity for the same proposed incentive? This surface directly addresses this question.

Remark 7  Of course, the interdependency of those parameters should make some 
part of this surface unrealistic from a management decision-making point of view. 
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The insurer should consider such dependencies when designing a lapse management 
strategy.

Among the six parameters are also three conjectural parameters that depend on 
the external state of the world: the insurer’s profitability p (that depends on com-
petition, macroeconomic considerations or regulation), the discount rate d and the 
time horizon T (that can be driven by the insurer’s vision but also by regulation: 
the ORSA time horizon with the strategic and the long-term business planning time 
horizon should be both considered). Among them, we chose to fix p and let d and 
T vary. Moreover, p and T are obviously interdependent and considered through the 
management’s prospective view of the conjecture’s evolution. A given interest rate 
scenario should represent a curve on the following surface.

This surface is less smooth than the one displayed in Fig. 7 and seems to indicate 
a more unstable relationship between RG and the conjectural parameters. An expla-
nation of that behavior can be that those surface points are generated by running 
our framework on a random subsample of our dataset, for computation time con-
siderations. Generating the same surface with more policyholders is likely to give a 
smoother behavior (Fig. 8).

Remark 8  Of course, the interdependency of T and d should make some part of this 
surface unrealistic from an actuarial point of view. Actuarial rate projections would 
give precise plausible scenarios on this surface. Such considerations should be taken 
into account by the insurer when designing a lapse management strategy.

Remark 9  The insurer can also use our framework to measure the retention gain to 
be expected at different time horizons obtained by existing retention campaigns. In 
that case, the insurer would have to neutralize the effect of the existing LMS in order 
to estimate the control portfolio’s future value. We leave this remark as future work 
for applied risk management research.

Fig. 7   3d plot ( � , � , RG)
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7 � Conclusion and perspectives

The work carried out in this paper shows that including CLV in lapse management 
strategy can largely benefit an insurer’s decision-making ability regarding lapse 
management strategy. We showed that survival tree-based models can outperform 
parametric approaches in such actuarial contexts. Then, our comparison of tree-
based models on different lapse management strategies indicated that our CLV-
based framework leads to increased predicted gains for any realistic scenario and 
acts as a loss-limiting targeting approach, regardless of the retention strategy. More-
over, the global results obtained in Sect.  6.1 show that our approach significantly 
improves on existing ones. Eventually, the discussion section highlighted the fact 
that our model can give insights to the life insurer regarding commercial and strate-
gic decision-making.

The framework and methodologies described in this paper suffer some limita-
tions. For instance, following one single fixed strategy for every policyholder is 
arguably unrealistic. We could imagine an extension of our models to individual-
ized lapse management strategies that would vary between subjects and could also 
be adjusted with time. In the application, we also considered constant parameters p 
and � : a limiting assumption whose impact could be studied. There is also room for 
improvement regarding the correlations of LMS parameters: the value of the incen-
tive and the acceptance probability are evidently interdependent parameters for an 
insurance company, and this interdependency could be considered.

This paper defines a practical management tool for life insurers as those mod-
els can measure the RG and improve real strategies used in existing retention cam-
paigns. Finally, our vision of CLV, and by extension, our whole methodology design 
could be improved by using longitudinal data that would yield time-dynamic results. 
We leave those two last observations for future work.

A real-life comparison between an actual retention strategy targeting and both the 
naïve and CLV-improved methodologies could be insightful for the insurer.

Fig. 8   3d plot (d, T, RG)
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A Appendix

A.1 Competing risk framework

There are several regression models to estimate the global hazard and the hazard of 
one risk in settings where competing risks are present: modeling the cause-specific 
hazard and the subdistribution hazard function. They account for competing risks 
differently, obtaining different hazard functions and thus distinct advantages, draw-
backs, and interpretations. Here, we will introduce those approaches’ theoretical and 
practical implications and justify which one we will use in our modeling approaches.

In cause-specific regression, each cause-specific hazard is estimated separately, 
in our case, the cause-specific hazards of lapse and death, by considering all sub-
jects that experienced the competing event as censored. Here, t is the traditional time 
variable of a survival model, with t = 0 being the beginning of a policy. It is not to 
be confused with the use of t in Sects. 3 and 4. We remind that JT = 0 corresponds 
to an active subject that did not experience lapse JT = 1 or death JT = 2 . The cause-
specific hazard rates regarding the jth risk ( j ∈ [1,… J] ) are defined as

We can recover the global hazard rate as �T ,1(t) +⋯ + �T ,J(t) = �T (t) , and derive 
the global survival distribution of T as

This approach aims at analysing the cause-specific “distribution” function: 
FT ,j(t) = P

(
T ≤ t, JT = j

)
 . In practice, it is called the Cumulative Incidence Func-

tion (CIF) for cause j and not a distribution function since FT ,j(t) → P
(
JT = j

) ≠ 1 
as t → +∞ . By analogy with the classical survival framework, the CIF can be char-
acterised as FT ,j(t) = ∫ t

0
fT ,j(s)ds,2 where fT ,j is the improper3 density function for 

cause j. It follows that

The equation above is self-explanatory: the probability of experiencing cause j at 
time t is simply the product of surviving the previous time periods by the cause-
specific hazard at time t. We finally obtain the CIF for cause j as

𝜆T ,j(t) = lim
dt→0

P
(
t ≤ T < t + dt, JT = j ∣ T ≥ t

)
dt

.

P(T > t) = 1 − FT (t) = ST (t)

= exp

(
−∫

t

0

(
𝜆T ,1(s) +⋯ + 𝜆T ,J(s)

)
ds

)
.

fT ,j(s) = lim
dt→0

P
(
t ≤ T < t + dt, JT = j

)
dt

= 𝜆T ,j(t)ST (t).

FT ,j(t) = ∫
t

0

�T ,j(s) exp

(
−∫

s

0

�T (u)du

)
ds.

2  We suppose that T has a continuous distribution.
3  Because derived from the CIF, an improper cumulative distribution function.
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There are several advantages to that approach. First of all, cause-specific hazard 
models can be easily fit with any classical implementation of CPH by simply con-
sidering as censored any subject that experienced the competing event. Then the 
CIF is clearly interpretable and summable P(T ≤ t) = FT ,1(s) +⋯ + FT ,J(s)

4. On 
the other hand, the CIF estimation of one given cause depends on all other causes: it 
implies that the study of a specific cause requires estimating the global hazard rate, 
and interpreting the effects of covariates on this cause is difficult. Indeed, part of the 
effects on a specific cause comes from the competing causes, but in our setting, we 
are only interested in the prediction of the survival probabilities, not their interpreta-
tion as such.

We have introduced it at the beginning of this section; another approach is often 
considered to analyze competing risks and derive a cause-specific CIF. This other 
approach called the subdistribution hazard function of Fine and Gray regression, 
works by considering a new competing risk process � . Without loss of generality, 
let’s consider death as our cause of interest,

It has the same as T regarding the risk of death, P(� ≤ t) = FT ,2(t) and a mass point 
at infinity 1 − FT ,2(∞) , probability to observe other causes 

(
JT ≠ 2

)
 or not to observe 

any failure. In other words, if the previous approach considered every subject that 
experienced competing events as censored, this approach considers a new and artifi-
cial at-risk population. This last consideration is made clear when deriving the haz-
ard rate of �,

Finally, we obtain the CIF for the risk of death as

This subdistribution approach resolves the most important drawback to cause-spe-
cific regression, as the coefficients resulting from it do have a direct relationship 
with the cumulative incidence: estimating the CIF for a specific cause does not 
depend on the other causes, which makes the interpretation of CIF easier. The sub-
distribution hazard models can be fit in R by using the crr function in the cmprsk 
package or using the timereg package. Still, to our knowledge, there is no implemen-
tation of a Fine and Gray model in Lifelines or, more generally, Python. We can also 
note that these two approaches are linked, [55] and the link between ��(t) and �T ,j(t) 
is given by

� = T × 1JT=2
+∞ × 1JT≠2.

𝜆𝜏(t) = lim
dt→0

P
(
t ≤ T < t + dt, JT = 2 ∣ {T ≥ t} ∪

{
T ≤ t, JT ≠ 2

})
dt

.

FT ,2(t) = 1 − exp

(
−∫

t

0

��(s)ds

)
.

4  unlike to the function 1 − exp
(
− ∫ t

0
�T ,j(u)du

)
.
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In other words, if the probability of any competing risk is low, the two approaches 
give very close results.

A. 2 Survival analysis results

The quantity rlapser
i,t

 represents the probability that the policy of subject i is still active 
at time t, given that it was active at its last observed time. Predicting the overall con-
ditional survival with the competing risks, in that case, can be achieved by creating a 
combined outcome. The policy ends with death or lapse, whichever comes first, and 
to compute rlapser , we recode the competing events as a combined event. In terms of 
statistical guarantees, this approach is compatible with any survival analysis method.

In the following sections of this appendix, racceptant
i,t

 indicates the probability of 
survival for subject i at time t given that it will not lapse. In other words, it is the 
survival probability regarding only the risk of death. As detailed in Sect. 4.1.1, this 

��(t) = rj(t)�T ,j(t), with rj(t) =
P(JT = 0)

∑J

p≠j P(JT = p)
.

Fig. 9   10 policyholders’ 
survival curve for racceptant with 
Cox model

Fig. 10   10 policyholders’ survival curve for rlapser
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corresponds to the cause-specific survival probability for death. It is to be noted that 
the density from which we derive our survival probabilities is improper as it derives 
itself from the CIF, which is not a proper distribution function.5 Therefore, any 
conclusion about those probabilities should be drawn with care. Similarly to rlapser , 
covariates selection and tuning are performed by minimizing AIC.

All graphs representing survival curves below are plotted with the same axis. The 
x-axes are the time in years, the y-axes represent the survival probability.

A.2.1 Cox‑model

We first decide to estimate survival with a Cox Proportional hazard model with a 
spline baseline hazard from the Python library Lifelines. Covariate selection and 
tuning are performed by minimizing AIC.

Here is what racceptant , the vector of cause-specific probabilities, looks like, and 
we can compare it to rlapser on some subjects (Figs. 9, 10).

Fig. 11   Coefficient plot for rlapser

Fig. 12   rlapser trajectories for different products

5  as it does not tend to 1 as t goes to +∞
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Fig. 13   rlapser trajectories by gender

Fig. 14   rlapser trajectories for different ages

Fig. 15   rlapser trajectories for different face amounts
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The effect of various covariates on the survival outcome can be found below 
(Figs. 11, 12, 13, 14, 15, 16, 17, 18, 19).

Fig. 16   Coefficient plot for racceptant

Fig. 17   racceptant trajectories by gender

Fig. 18   racceptant trajectories for 
different ages
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Fig. 19   racceptant trajectories for different face amounts

Fig. 20   10 policyholders’ survival curve for racceptant with RSF

Fig. 21   10 policyholders’ survival curve for rlapser with RSF
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A.2.2 RSF

We obtain better results than Cox in terms of concordance index at the cost of 
very high computation time for one training with one set of parameters—5 days 
without parallelisation, 4  h with—compared to a few seconds for cox model 
(Tables 4, 5).

Some of the results we obtain are displayed below (Figs. 20, 21).

Table 4   Covariates importance 
for racceptant with RSF

Weight Feature

0.3148 ± 0.0064 Age_souscription
0.0100 ± 0.0008 CDI_CD_SEXE_1
0.0091 ± 0.0014 PRODUIT_2
0.0077 ± 0.0006 TOTAL_PRE-

MIUM_
AMOUNT

0.0013 ± 0.0004 Nb_Contrats
0.0010 ± 0.0003 PRODUIT_3

Table 5   Covariates importance 
for rlapser with RSF

Weight Feature

0.1838 ± 0.0045 Age_souscription
0.0415 ± 0.0018 TOTAL_PRE-

MIUM_
AMOUNT

0.0083 ± 0.0011 CDI_CD_SEXE_1
0.0026 ± 0.0013 PRODUIT_2
0.0022 ± 0.0006 PRODUIT_3
0.0020 ± 0.0006 Nb_Contrats

Fig. 22   10 policyholders’ survival curve for racceptant with GBSM
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A.2.3 XGSB

We obtain better results than Cox and slightly better results than RSF in terms of 
concordance index at the cost of even higher computation time for one training 
with one set of parameters—10 h with great parallelisation—compared to a few 
seconds for Cox model (Tables 6, 7).

Some of the results we obtain are displayed below (Figs. 22, 23).

Fig. 23   10 policyholders’ survival curve for rlapser with GBSM

Table 6   Covariates importance 
for racceptant with GBSM

Weight Feature

0.3274 ± 0.0071 Age_souscription
0.0104 ± 0.0006 TOTAL_PRE-

MIUM_
AMOUNT

0.0100 ± 0.0008 CDI_CD_SEXE_1
0.0025 ± 0.0005 PRODUIT_2
0.0005 ± 0.0001 Nb_Contrats
0.0000 ± 0.0001 PRODUIT_3

Table 7   Covariates importance 
for rlapser with GBSM

Weight Feature

0.1872 ± 0.0039 Age_souscription
0.0438 ± 0.0020 TOTAL_PRE-

MIUM_
AMOUNT

0.0134 ± 0.0014 PRODUIT_2
0.0076 ± 0.0009 CDI_CD_SEXE_1
0.0051 ± 0.0006 PRODUIT_3
0.0011 ± 0.0004 Nb_Contrats
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A.2.4 Final survival model

The final concordance index scores are displayed below (Table 8):

A.3 Other results

A.4 Considering various statistical metrics

The table below contains the results of the ”LMS listed in Table  3, evaluated on 
accuracy, recall, F1-score and AUC. For every metric, it displays the results of a 
classification over yi tuned and cross-validated with each of the metrics—respec-
tively accuracyyi  , recallyi  , F1−scoreyi  and AUCyi —or over ỹi which is always tuned and cross-validated 
with RG (Table 9, Fig. 24).

It is to be noted that regardless of the evaluation metric used for tuning and vali-
dation purposes, the objective function used with XGB to generate those results is 
always the log-loss function. Using the area under the ROC curve or the area under 
the Precision-Recall curve as an objective function in this boosting algorithm would 
surely yield better results when trained on yi and even better on the more unbalanced 
ỹi . As stated in Sect. 4.2, this analysis is not within the scope of our article.

Table 8   Survival models 
comparison

Concordance index

rlapser racceptant

Cox model 69.5% 80.7%
RSF 71.6% 83.7%
GBSM 73.0% 84.1%
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A.5 Complwete LMS numerical results

See Table 10.

Table 10   More LMS

LMS p � � c d T LMS p � � c d T

A-1 2.50% 0.04% 25% 10 1.50% 5 B-1 2.50% 0.08% 20% 10 1.50% 5
A-2 2.50% 0.04% 25% 10 1.50% 20 B-2 2.50% 0.08% 20% 10 1.50% 20
A-3 2.50% 0.04% 25% 100 1.50% 5 B-3 2.50% 0.08% 20% 100 1.50% 5
A-4 2.50% 0.04% 25% 100 1.50% 20 B-4 2.50% 0.08% 20% 100 1.50% 20
A-5 2.50% 0.04% 5% 10 1.50% 5 B-5 2.50% 0.08% 10% 10 1.50% 5
A-6 2.50% 0.04% 5% 10 1.50% 20 B-6 2.50% 0.08% 10% 10 1.50% 20
A-7 2.50% 0.04% 5% 100 1.50% 5 B-7 2.50% 0.08% 10% 100 1.50% 5
A-8 2.50% 0.04% 5% 100 1.50% 20 B-8 2.50% 0.08% 10% 100 1.50% 20
A-9 2.50% 0.10% 25% 10 1.50% 5 B-9 2.50% 0.20% 20% 10 1.50% 5
A-10 2.50% 0.10% 25% 10 1.50% 20 B-10 2.50% 0.20% 20% 10 1.50% 20
A-11 2.50% 0.10% 25% 100 1.50% 5 B-11 2.50% 0.20% 20% 100 1.50% 5
A-12 2.50% 0.10% 25% 100 1.50% 20 B-12 2.50% 0.20% 20% 100 1.50% 20
A-13 2.50% 0.10% 5% 10 1.50% 5 B-13 2.50% 0.20% 10% 10 1.50% 5
A-14 2.50% 0.10% 5% 10 1.50% 20 B-14 2.50% 0.20% 10% 10 1.50% 20
A-15 2.50% 0.10% 5% 100 1.50% 5 B-15 2.50% 0.20% 10% 100 1.50% 5
A-16 2.50% 0.10% 5% 100 1.50% 20 B-16 2.50% 0.20% 10% 100 1.50% 20
A-17 5.00% 0.04% 25% 10 1.50% 5 B-17 5.00% 0.08% 20% 10 1.50% 5
A-18 5.00% 0.04% 25% 10 1.50% 20 B-18 5.00% 0.08% 20% 10 1.50% 20
A-19 5.00% 0.04% 25% 100 1.50% 5 B-19 5.00% 0.08% 20% 100 1.50% 5
A-20 5.00% 0.04% 25% 100 1.50% 20 B-20 5.00% 0.08% 20% 100 1.50% 20

Fig. 24   Correlation between the proportion of non-targeted lapsers and the improvement of a CLV-aug-
mented LMS.(Taking the results of XGBoost and excluding LMS n◦B-27 that has a very high improve-
ment ratio.)
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LMS p � � c d T LMS p � � c d T

A-21 5.00% 0.04% 5% 10 1.50% 5 B-21 5.00% 0.08% 10% 10 1.50% 5
A-22 5.00% 0.04% 5% 10 1.50% 20 B-22 5.00% 0.08% 10% 10 1.50% 20
A-23 5.00% 0.04% 5% 100 1.50% 5 B-23 5.00% 0.08% 10% 100 1.50% 5
A-24 5.00% 0.04% 5% 100 1.50% 20 B-24 5.00% 0.08% 10% 100 1.50% 20
A-25 5.00% 0.10% 25% 10 1.50% 5 B-25 5.00% 0.20% 20% 10 1.50% 5
A-26 5.00% 0.10% 25% 10 1.50% 20 B-26 5.00% 0.20% 20% 10 1.50% 20
A-27 5.00% 0.10% 25% 100 1.50% 5 B-27 5.00% 0.20% 20% 100 1.50% 5
A-28 5.00% 0.10% 25% 100 1.50% 20 B-28 5.00% 0.20% 20% 100 1.50% 20
A-29 5.00% 0.10% 5% 10 1.50% 5 B-29 5.00% 0.20% 10% 10 1.50% 5
A-30 5.00% 0.10% 5% 10 1.50% 20 B-30 5.00% 0.20% 10% 10 1.50% 20
A-31 5.00% 0.10% 5% 100 1.50% 5 B-31 5.00% 0.20% 10% 100 1.50% 5
A-32 5.00% 0.10% 5% 100 1.50% 20 B-32 5.00% 0.20% 10% 100 1.50% 20

No Time 
(s)

Model % 
Target 
diff

Accuracy  Retention gain RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

A-1 4949 CART​ 62.58% 92.3% 85.3% 114,661 219,655 4.48 38.20 91.57%
RF 92.9% 85.4% 232,314 287,884 9.82 56.65 23.92%
XGB 93.4% 85.8% 243,365 324,952 9.61 54.64 33.52%

A-2 6111 CART​ 26.66% 92.3% 89.8% 7,092,097 6,142,119 277.00 353.83 −13.39%
RF 92.9% 90.2% 6,596,374 5,696,455 278.47 351.02 −13.64%
XGB 93.4% 90.9% 7,308,721 7,432,688 288.92 404.84 1.70%

A-3 4603 CART​ 93.50% 92.3% 83.3% −2,187,622 −8224 −85.52 −31.09 99.62%
RF 92.9% 83.4% −1,900,265 45,483 −80.18 194.35 102.39%
XGB 93.4% 83.5% −2,032,650 77,481 −80.39 174.44 103.81%

A-4 5555 CART​ 55.37% 92.3% 86.5% 4,789,814 5,117,844 187.00 577.74 6.85%
RF 92.9% 86.4% 4,463,796 4,255,175 188.47 566.05 −4.67%
XGB 93.4% 86.8% 5,032,706 5,433,366 198.92 610.26 7.96%

A-5 4753 CART​ 86.72% 92.3% 83.6% − 514,477 −112,372 −20.08 −86.48 78.16%
RF 92.9% 83.4% −323,544 −3937 −13.65 −28.28 98.78%
XGB 93.4% 83.3% −383,004 0 −15.14 0 100.00%

A-6 5803 CART​ 44.27% 92.3% 87.9% 335,810 517,224 13.17 39.91 54.02%
RF 92.9% 87.9% 655,350 661,021 27.68 61.13 0.87%
XGB 93.4% 88.6% 654,219 729,493 25.86 58.22 11.51%

A-7 4241 CART​ 99.09% 92.3% 83.3% −2,816,759 −10,205 −110.08 −384.04 99.64%
RF 92.9% 83.3% −2,456,122 1013 −103.65 66.30 100.04%
XGB 93.4% 83.3% −2,659,020 243 −105.14 15.92 100.01%

A-8 5164 CART​ 82.78% 92.3% 84.0% −1,966,473 −46,323 −76.83 −22.31 97.64%
RF 92.9% 84.0% −1,477,229 253,885 −62.32 149.67 117.19%
XGB 93.4% 84.1% −1,621,796 273,243 −64.14 117.83 116.85%
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No Time 
(s)

Model % 
Target 
diff

Accuracy  Retention gain RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

A-9 4781 CART​ 77.60% 92.3% 83.7% −825 372 −161 100 −32.19 − 127.87 80.48%
RF 92.9% 83.4% −384,736 8 596 −16.22 32.12 102.23%
XGB 93.4% 83.6% −498,263 22,337 −19.70 35.47 104.48%

A-10 6075 CART​ 29.10% 92.3% 89.7% 4,614,513 4,483,831 180.36 266.33 −2.83%
RF 92.9% 89.9% 4,973,929 4,328,724 210.01 280.90 −12.97%
XGB 93.4% 90.7% 5,354,770 5,368,917 211.69 301.57 0.26%

A-11 4506 CART​ 96.56% 92.3% 83.2% −3,127,655 −118,886 −122.19 −2230.39 96.20%
RF 92.9% 83.3% −2,517,315 1340 −106.22 87.71 100.05%
XGB 93.4% 83.3% −2,774,278 736 −109.70 52.00 100.03%

A-12 5534 CART​ 57.93% 92.3% 86.2% 2,312,231 3,310,314 90.36 412.71 43.17%
RF 92.9% 86.1% 2,841,351 3,129,652 120.01 465.74 10.15%
XGB 93.4% 86.6% 3,078,755 3825920 121.69 475.53 24.27%

A-13 4640 CART​ 92.91% 92.3% 83.3% −1,201,626 −163,056 −46.87 −1838.44 86.43%
RF 92.9% 83.3% −717,620 − 5339 −30.28 −354.24 99.26%
XGB 93.4% 83.3% −875,378 508 −34.60 16.26 100.06%

A-14 5739 CART​ 47.12% 92.3% 87.3% −1,476,651 − 831,019 −57.49 −77.99 43.72%
RF 92.9% 86.0% −380,683 126,532 −16.03 21.14 133.24%
XGB 93.4% 85.5% −644,389 29,382 −25.47 7.10 104.56%

A-15 4216 CART​ 99.61% 92.3% 83.3% −3,503,908 − 97,263 − 136.87 −2354.34 97.22%
RF 92.9% 83.3% −2,850,198 0 −120.28 0 100.00%
XGB 93.4% 83.3% −3,151,393 0 −124.60 0 100.00%

A-16 5096 CART​ 84.46% 92.3% 83.8% −3,778,933 −734,773 −147.49 −418.58 80.56%
RF 92.9% 83.5% − 2 

,513,261
8914 −106.03 20.13 100.35%

XGB 93.4% 83.6% −2,920,405 34,492 −115.47 45.75 101.18%

No Time 
(s)

Model % 
Target 
diff

Accuracy  Retention gain RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

A-17 5390 CART​ 28.74% 92.3% 89.5% 5,100,456 4,899,479 199.11 279.88 −3.94%
RF 92.9% 89.8% 4,635,482 4,226,648 195.69 276.06 −8.82%
XGB 93.4% 90.2% 5,196,736 5,138,253 205.40 299.27 −1.13%

A-18 6452 CART​ 12.12% 92.3% 91.3% 52,090,240 47,706,070 2034.15 2170.64 −8.42%
RF 92.9% 91.9% 46,171,160 42,049,900 1949.05 2082.36 −8.93%
XGB 93.4% 92.5% 51,629,950 52,606,740 2040.95 2339.70 1.89%

A-19 4913 CART​ 64.89% 92.3% 85.2% 2,798,173 3,182,143 109.11 481.60 13.72%
RF 92.9% 85.2% 2,502,903 2,743,070 105.69 554.76 9.60%
XGB 93.4% 85.6% 2,920,720 3,438,303 115.40 576.64 17.72%
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No Time 
(s)

Model % 
Target 
diff

Accuracy  Retention gain RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

A-20 6160 CART​ 29.03% 92.3% 89.6% 49,787,960 45,366,730 1944.15 2616.32 −8.88%
RF 92.9% 90.0% 44,038,580 39,947,830 1859.05 2547.89 −9.29%
XGB 93.4% 90.6% 49,353,940 49,789,670 1950.95 2796.17 0.88%

A-21 5079 CART​ 51.69% 92.3% 86.8% 482,682 544,887 18.85 53.99 12.89%
RF 92.9% 86.8% 557,090 554,195 23.52 65.17 −0.52%
XGB 93.4% 87.1% 607,670 624,556 24.01 64.79 2.78%

A-22 6199 CART​ 23.94% 92.3% 90.2% 9,335,438 8,527,444 364.60 454.78 −8.66%
RF 92.9% 90.6% 8,570,307 7,931,029 361.80 460.42 −7.46%
XGB 93.4% 91.2% 9,518,466 9,581,934 376.27 501.56 0.67%

A-23 4601 CART​ 89.51% 92.3% 83.6% −1,819,600 135,305 − 71.15 121.80 107.44%
RF 92.9% 83.5% −1,575,489 159,620 − 66.48 215.65 110.13%
XGB 93.4% 83.7% −1,668,346 228,226 − 65.99 208.69 113.68%

A-24 5650 CART​ 50.83% 92.3% 87.0% 7,033,156 7,124,100 274.60 680.08 1.29%
RF 92.9% 87.0% 6,437,729 6,364,477 271.80 711.89 −1.14%
XGB 93.4% 87.4% 7,242,450 7,840,770 286.27 771.71 8.26%

A-25 5379 CART​ 30.97% 92.3% 89.2% 4,160,423 3,882,623 162.44 241.06 −6.68%
RF 92.9% 89.5% 4,018,432 3,666,219 169.65 249.54 −8.76%
XGB 93.4% 90.0% 4,455,108 4,410,629 176.09 267.87 −1.00%

A-26 6410 CART​ 12.52% 92.3% 91.3% 49,612,660 45,948,690 1937.51 2 083.30 −7.39%
RF 92.9% 91.9% 44,548,720 40,814,960 1880.59 2029.68 −8.38%
XGB 93.4% 92.5% 49,676,000 50,549,740 1963.72 2260.20 1.76%

A-27 4887 CART​ 66.67% 92.3% 85.1% 1,858,140 2,575,538 72.44 442.86 38.61%
RF 92.9% 85.0% 1,885,853 2,387,018 79.65 531.25 26.57%
XGB 93.4% 85.4% 2,179,093 2,879,880 86.09 544.35 32.16%

A-28 6047 CART​ 29.42% 92.3% 89.4% 47,310,370 43,168,880 1847.51 2519.41 −8.75%
RF 92.9% 89.9% 42,416,140 38,573,620 1790.59 2504.61 −9.06%
XGB 93.4% 90.5% 47,399,990 47,812,830 1873.72 2721.63 0.87%

A-29 5070 CART​ 53.79% 92.3% 86.5% − 204 467 − 5098 − 7.95 − 1.66 97.51%
RF 92.9% 86.1% 163,014 273,435 6.90 40.30 67.74%
XGB 93.4% 86.8% 115,297 248,982 4.55 28.64 115.95%

A-30 6179 CART​ 24.36% 92.3% 90.3% 7,522,978 7,058,487 293.94 382.06 −6.17%
RF 92.9% 90.6% 7,534,275 7,068,293 318.08 411.80 −6.18%
XGB 93.4% 91.2% 8,219,857 8,265,167 324.94 442.88 0.55%

A-31 4627 CART​ 90.18% 92.3% 83.6% − 2 506 
749

− 139 983 − 97.95 − 121.44 94.42%

RF 92.9% 83.5% −1,969,564 73,101 − 83.10 111.49 103.71%
XGB 93.4% 83.6% −2,160,719 76,641 − 85.45 93.28 103.55%

A-32 5679 CART​ 51.25% 92.3% 86.8% 5, 220,695 5,811,833 203.94 583.55 11.32%
RF 92.9% 86.9% 5,401,696 5,269,505 228.08 605.69 −2.45%
XGB 93.4% 87.4% 5,943,841 6,682,230 234.94 670.03 12.42%
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No Time 
(s)

Model % Target 
diff

Accuracy  Retention gain  RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

B-1 4778 CART​ 75.89% 92.3% 84.0% − 627,165 −148,913 −24.46 −65.19 76.26%
RF 92.9% 83.7% −280,855 11,973 −11.84 9.57 104.26%
XGB 93.4% 84.1% −366,103 25,099 −14.47 12.30 106.86%

B-2 6074 CART​ 29.70% 92.3% 89.7% 3,862,156 3,397,247 150.95 203.11 −12.04%
RF 92.9% 89.9% 4,127,224 3,550,730 174.26 230.67 −13.97%
XGB 93.4% 90.6% 4,451,686 4,408,819 175.99 250.17 −0.96%

B-3 4528 CART​ 96.60% 92.3% 83.2% −2,929,448 −85,465 −114.46 −1482.06 97.08%
RF 92.9% 83.3% −2,413,433 3724 −101.84 −108.33 100.15%
XGB 93.4% 83.3% −2,642,119 9092 −104.47 93.79 100.34%

B-4 5476 CART​ 60.93% 92.3% 85.9% 1,559,874 2,471,262 60.95 329.63 58.43%
RF 92.9% 85.8% 1,994,645 2,517,111 84.26 422.45 26.19%
XGB 93.4% 86.3% 2,175,670 3,089,897 85.99 422.77 42.02%

B-5 4708 CART​ 84.33% 92.3% 83.4% −857,439 −159,856 −33.45 −218.16 81.36%
RF 92.9% 83.3% −484,459 40 −20.44 7.23 100.01%
XGB 93.4% 83.3% −596,203 897 −23.57 46.96 100.15%

B-6 5906 CART​ 36.63% 92.3% 88.8% 705,721 922,490 27.69 60.21 30.72%
RF 92.9% 88.9% 1,352,182 1,269,349 57.11 97.63 −6.13%
XGB 93.4% 89.6% 1,342,882 1,428,722 53.09 96.76 6.39%

B-7 4400 CART​ 98.49% 92.3% 83.2% −3,159,722 −39,633 −123.45 −1230.61 98.75%
RF 92.9% 83.3% −2,617,037 1024 −110.44 0.56 100.04%
XGB 93.4% 83.3% −2,872,219 295 −113.57 19.31 100.01%

B-8 5278 CART​ 73.18% 92.3% 84.6% −1,596,562 169,852 −62.31 41.78 110.64%
RF 92.9% 84.6% −780,396 637,625 −32.89 194.52 181.71%
XGB 93.4% 85.0% −933,133 780,845 −36.91 188.79 183.68%

B-9 4601 CART​ 94.12% 92.3% 83.3% −2,380,789 −113,444 −92.86 −840.25 95.24%
RF 92.9% 83.3% −1,403,468 317 −59.21 7.96 100.02%
XGB 93.4% 83.3% −1,724,731 3980 −68.17 149.44 100.23%

B-10 5947 CART​ 35.98% 92.3% 89.0% −760,449 429,196 −29.35 29.80 156.44%
RF 92.9% 88.5% 1,175,540 1,354,131 49.71 118.11 15.19%
XGB 93.4% 89.8% 871,455 1,456,080 34.48 96.25 67.09%

B-11 4229 CART​ 99.16% 92.3% 83.3% −4,683,072 −48,985 −182.86 −1186.22 98.95%
RF 92.9% 83.3% −3,536,046 0 −149.21 0 100.00%
XGB 93.4% 83.3% −4,000,747 0 −158.17 0 100.00%

B-12 5391 CART​ 66.76% 92.3% 85.0% −3,062,732 −388,289 −119.35 −80.44 87.32%
RF 92.9% 84.7% −957,039 710,688 −40.29 220.55 174.26%
XGB 93.4% 85.3% −1,404,561 834,198 −55.52 163.88 159.39%

B-13 4493 CART​ 96.30% 92.3% 83.3% −2,358,179 −159,922 −91.98 −2793.13 93.22%
RF 92.9% 83.3% −1,384,098 0 −58.40 0 100.00%
XGB 93.4% 83.3% −1,705,577 0 −67.42 0 100.00%
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diff

Accuracy  Retention gain  RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

B-14 5851 CART​ 42.98% 92.3% 87.8% −3,251,762 −1,761,821 −126.63 −143.20 45.82%
RF 92.9% 86.4% −1,013,089 79,273 −42.69 11.90 107.82%
XGB 93.4% 83.3% −1,582,006 4396 −62.52 287.68 100.28%

B-15 4040 CART​ 99.67% 92.3% 83.3% −4,660,462 −38,969 −181.98 −2075.03 99.16%
RF 92.9% 83.3% −3,516,676 0 −148.40 0 100.00%
XGB 93.4% 83.3% −3,981,592 161 −157.42 10.53 100.00%

B-16 5182 CART​ 77.97% 92.3% 84.2% −5,554,044 −1,491,522 −216.63 −549.23 73.15%
RF 92.9% 83.6% −3,145,668 52,475 −132.69 84.54 101.67%
XGB 93.4% 83.3% −3,858,022 0 −152.52 0 100.00%

No Time 
(s)

Model % Target 
diff

Accuracy  Retention gain RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

B-17 5324 CART​ 32.66% 92.3% 88.9% 3,361,471 3,037,200 131.25 191.31 −9.65%
RF 92.9% 89.3% 3,241,680 2,911,023 136.86 204.43 −10.20%
XGB 93.4% 89.6% 3,596,593 3,546,671 142.15 222.04 −1.39%

B-18 6411 CART​ 13.83% 92.3% 91.1% 39,860,670 37,695,680 1556.66 1778.71 −5.43%
RF 92.9% 91.7% 35,787,050 32,345,100 1510.72 1654.32 −9.62%
XGB 93.4% 92.0% 39,908,670 40,886,810 1577.61 1848.71 2.45%

B-19 4853 CART​ 70.34% 92.3% 84.7% 1,059,189 1,813,631 41.25 392.14 71.23%
RF 92.9% 84.8% 1,109,101 1,808,616 46.86 474.33 63.07%
XGB 93.4% 85.0% 1,320,578 2,141,271 52.15 482.34 62.15%

B-20 5973 CART​ 31.76% 92.3% 89.2% 37,558,390 34,068,550 1466.66 2125.97 −9.29%
RF 92.9% 89.4% 33,654,470 30,032,580 1420.72 2072.47 −10.76%
XGB 93.4% 90.1% 37,632,650 38,008,480 1487.61 2277.17 1.00%

B-21 5228 CART​ 41.79% 92.3% 87.7% 1,136,879 1,179,837 44.40 92.50 3.78%
RF 92.9% 88.1% 1,276,808 1,188,256 53.91 104.81 −6.94%
XGB 93.4% 88.7% 1,385,145 1,356,864 54.74 104.76 −2.04%

B-22 6296 CART​ 19.52% 92.3% 90.7% 18,704,980 17,177,190 730.55 852.81 −8.17%
RF 92.9% 91.1% 17,182,100 15,732,340 725.34 859.29 −8.44%
XGB 93.4% 91.5% 19,071,370 19,050,020 753.90 939.00 −0.11%

B-23 4746 CART​ 81.36% 92.3% 84.1% − 1,165,404 458,223 − 45.60 172.83 139.32%
RF 92.9% 84.0% − 855,770 525,335 − 36.09 288.55 161.39%
XGB 93.4% 84.1% − 890,871 645,445 − 35.26 310.86 172.45%

B-24 5845 CART​ 40.47% 92.3% 88.2% 16,402,700 15,013,310 640.55 1093.43 −8.47%
RF 92.9% 88.4% 15,049,520 13,423,040 635.34 1122.81 −10.81%
XGB 93.4% 88.9% 16,795,360 17,144,260 663.90 1247.50 2.08%

B-25 5274 CART​ 37.42% 92.3% 88.6% 1,607,847 1,839,864 62.84 126.33 14.43%
RF 92.9% 88.7% 2,119,067 1,923,982 89.49 152.71 −9.21%
XGB 93.4% 89.2% 2,237,965 2,194,469 88.45 155.54 −1.94%

B-26 6425 CART​ 14.83% 92.3% 91.1% 35,238,060 32,690,970 1376.37 1558.26 −7.23%
RF 92.9% 91.6% 32,835,370 29,986,540 1386.17 1543.12 −8.68%
XGB 93.4% 92.0% 36,328,440 36,803,630 1436.10 1688.53 1.31%
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No Time 
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Model % Target 
diff

Accuracy  Retention gain RG/target Improve-
menta

yi ỹi yi ỹi yi ỹi

B-27 4811 CART​ 73.92% 92.3% 84.3% − 694,436 751,404 − 27.16 226.99 208.20%
RF 92.9% 84.4% −13,512 1,018,369 −0.51 356.48 7636.98%
XGB 93.4% 84.7% −38,050 1,253,252 −1.55 345.94 3393.68%

B-28 5995 CART​ 32.61% 92.3% 89.1% 32,935,780 29,342,930 1286.37 1847.71 −10.91%
RF 92.9% 89.4% 30,702,790 27,725,620 1296.17 1933.38 −9.70%
XGB 93.4% 90.0% 34,052,420 34,390,060 1346.10 2094.90 0.99%

B-29 5143 CART​ 47.03% 92.3% 87.3% −363,861 55,985 −14.12 3.38 115.39%
RF 92.9% 87.4% 377,170 488,284 15.95 49.62 29.46%
XGB 93.4% 88.0% 275,772 491,567 10.89 44.89 78.25%

B-30 6243 CART​ 20.47% 92.3% 90.7% 14,747,500 13,838,380 576.23 690.22 −6.16%
RF 92.9% 91.1% 14,816,830 13,378,460 625.54 743.34 −9.71%
XGB 93.4% 91.5% 16,146,490 16,169,440 638.30 814.80 0.14%

B-31 4730 CART​ 83.83% 92.3% 83.7% −2,666,144 −487,716 − 104.12 − 267.75 81.71%
RF 92.9% 83.7% − 1,755,409 139,545 − 74.05 102.66 107.95%
XGB 93.4% 83.7% − 2,000,244 134,199 − 79.11 130.13 106.71%

B-32 5865 CART​ 41.41% 92.3% 88.0% 12,445,210 11,693,070 486.23 884.49 −6.04%
RF 92.9% 88.3% 12,684,250 11,381,260 535.54 971.28 −10.27%
XGB 93.4% 88.8% 13,870,470 14,101,470 548.30 1048.38 1.67%

a In order to account for negative retention gains, the improvement is computed with an absolute value 
for the denominator. This leads to a rather unintuitive improvement measure whenever one of the models 
yields negative RG and the other positive RG
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