

Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategy

Mathias Valla, Xavier Milhaud, Anani Ayodélé Olympio

▶ To cite this version:

Mathias Valla, Xavier Milhaud, Anani Ayodélé Olympio. Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategy. 2023. hal-03903047v2

HAL Id: hal-03903047 https://hal.science/hal-03903047v2

Preprint submitted on 3 Jan 2023 (v2), last revised 12 Sep 2023 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Including individual Customer Lifetime Value and competing risks in tree-based lapse management strategy

Mathias Valla^{*1,2}, Xavier Milhaud^{†3}, and Anani Olympio^{‡1}

¹ Univ Lyon, Université Claude Bernard Lyon 1, Institut de Science Financière et d'Assurances (ISFA), Laboratoire SAF EA2429, F-69366, Lyon, France. ² Faculty of Economics and Business, KU Leuven, Belgium. ³ Aix-Marseille Univ, CNRS, Institut de Mathématiques de Marseille (I2M), UMR 7373, Marseille, France.

Abstract

A retention strategy based on an enlightened lapse modelization can be a powerful profitability lever for a life insurer. Some machine learning models are excellent at predicting lapse, but from the insurer's perspective, predicting which policyholder is likely to lapse is not enough to design a retention strategy. Changing the classical classification problem to a regression one with an appropriate validation metric based on Customer Lifetime Value (CLV) has recently been proposed. In our paper, we suggest several improvements and apply them to a sizeable real-world life insurance dataset.

We include the risk of death in the study through competing risk considerations in parametric and tree-based models and show that further individualization of the existing approach leads to increased performance. We show that survival tree-based models with competing risk can outperform parametric approaches and that the actuarial literature can significantly benefit from them. Then, we compare how this framework leads to increased predicted gains for the insurer regardless of the retention strategy. Finally, we discuss the benefits of our modelization in terms of commercial and strategic decision-making for a life insurer.

Key words: Machine Learning, Life insurance, Customer lifetime value, Lapse, Lapse management strategy, Competing risks, Tree-based models

1 Introduction

In life insurance, "lapse risk" or "persistency risk" is the risk that the policyholder will cancel the contract at a time other than when the issuer expected when pricing the contract (KPMG (2020)). This risk is not considered an insurance risk because the payment to the policyholder "is not contingent on an uncertain future event that adversely affects the policyholder". However, lapse management is still undoubtedly a primary concern for life insurers. Lapses may substantially affect a company's solvency, its future profits and cash flows (Buchardt (2014); Buchardt et al. (2015)) or its Asset and Liabilities Management (ALM) (Kim (2005); Gatzert and Schmeiser (2008); Eling and Kochanski (2013); Eling and Kiesenbauer (2014)). The importance of measuring lapse and churn behaviours is global; it goes from yielding individual estimations of the Customer Lifetime Values (CLV) to being an estimator of a firm's profitability (Gupta and Lehmann (2006); Gupta (2009)) or strength (Ascarza et al. (2018)). Therefore for a life insurer, an enlightened lapse management strategy (LMS) is critical for successful monitoring and steering.

^{*}Email: mathias.valla@univ-lyon1.fr , URL: https://mathias-valla.com

[†]Email: xavier.milhaud@univ-amu.fr, URL: http://xaviermilhaud.fr

[‡]Email: anani.olympio@cnp.fr

1 Introduction 2

Part of the literature on lapse management adopts an economic-centred point of view (Dar and Dodds (1989); Kuo et al. (2003); Kagraoka (2005); Cox and Lin (2006); Kiesenbauer (2012); Russell et al. (2013); Sirak (2015); Vasudev et al. (2016); Nolte and Schneider (2017); Poufinas and Michaelide (2018); Yu et al. (2019)); we refer the reader to the complete bibliometric analysis on this topic by Shamsuddin et al. (2022) for a summarized view of all these references. This economic-centred research aims to determine lapse factors like interest rates, gross domestic product, or unemployment rates. They are driven by economic hypotheses such as the emergency fund hypothesis (lapsing is a way of constituting an emergency fund), the policy replacement hypothesis (lapsing will occur when one changes its policy) or the interest rate hypothesis (lapsing depends strongly on rate change and arbitration).

On the other hand, a large part of the literature investigates the individual determinants of lapse with policyholder-centred approaches. Micro-oriented features such as policyholder's personal information or the policy characteristics have shown to give valuable insights into lapse behaviour (Renshaw and Haberman (1986); Milhaud et al. (2011); Eling and Kiesenbauer (2014); Hwang et al. (2022)). Ćurak et al. (2015) as well as Gemmo and Götz (2016)'s works indicate that policyholders' features such as age and the number of beneficiaries are significant lapse factors, whereas Sirak (2015) dismissed those results. More recently, Loisel et al. (2021) proposed a comparison of lapse management strategies based on an innovative evaluation metric derived from the Customer Lifetime Value (CLV). Hu et al. (2021) investigated the benefits of incorporating spatial analysis in lapse modelling, and Azzone et al. (2022) showed with an approach based on random forests that microeconomic features such as the company's commercial approach for instance - is determining in the lapse decision. In contrast, macro-economical features only have a limited effect. This variety of results - sometimes contradicting each other - demonstrates the active interest in this research problem.

This paper focuses on lapse management strategy and retention targeting. As in Ascarza et al. (2018); Loisel et al. (2021), our goal is not only to model the lapse behaviour but rather to select a retention strategy that would create more profitable policyholders whether the strategy targets them or not. This work shows that a well-chosen strategy, based on individualized CLV and directed toward a well-chosen target, increases the insurer's expected profitability. A critical concept that motivates many CLV-driven decisions is that customers should be judged as assets based on their future profitability for the insurer. Thus, since retention often serves as the basis for CLV modelizations (Gupta et al. (2006); Donkers et al. (2007); Lemmens and Gupta (2020) - sometimes specifically designed for targeting tasks (von Mutius and Huchzermeier (2021)) - and since CLV considerations should drive retention management, it seems natural to extend the existing life insurance application linking those topics together. We make decision-making a central concern of our work and suggest proactive lapse management tools allowing the insurer to undertake actions to prevent the causes of lapse; that is opposed to a reactive management approach where decisions are taken after lapses and aim at recapturing lost policyholders.

The goal of this paper is to create an individualized CLV model that will be used to enhance classical binary churn models. We will then have a model for lapse management strategy and retention targeting that we further improve with tree-based survival analysis and competing risks considerations. The global framework is directly inspired by Loisel et al. (2021). We try in this paper to build from that existing work and bring our contributions and extensions to that topic without dismantling the building blocks it represents. We model an individual future CLV with a survival model for which the risks of death and lapse are treated

1 Introduction 3

as mutually exclusive competing risks. For this purpose, we introduce parametric approaches -Cox cause-specific and subdistribution models - as well as tree-based survival models - Random Survival Forest (RSF) and Gradient boosting survival analysis. We focus here on tree-based models as they can often be considered state-of-the-art models (Grinsztajn et al. (2022)). Thus we introduce tree-based machine learning algorithms for binary prediction, including Classification and Regression Tree (CART), Random forests (RF), and Extreme Gradient Boosting (XGBoost) to lapse behaviour modelling. CART and XGBoost (Milhaud et al. (2011); Loisel et al. (2021)) were used in the literature for lapse modelling but have yet to be applied to predicting life insurance lapses in a competing risk setting. To our knowledge, while Random Survival Forest has been used for churn prediction recently (Routh et al. (2021)), both RSF and Gradient boosting survival analysis have never been used for that purpose before in an actuarial context. Our contribution to the actuarial literature is twofold. First, we detail a two-step lapse management modelization: we fit parametric and tree-based competing risk individual survival models to estimate individualized future CLVs that are part of an evaluation metric for tree-based lapse management models. Second, this work includes a business-oriented discussion of the results achieved by this framework, which is missing from existing similar approaches.

The results and discussions show that a CLV-based lapse management strategy very often outperforms a more classical binary classification approach, even with competing risks and individualized considerations. When the latter yields profitable retention gain, the former can produce higher profits, up to more than 60%. If a loss-inducing retention strategy is considered, our methodology limits the loss considerably, often setting 0 as a floor limit or even turning it into a profit-inducing retention strategy. Sensitivity analysis explores the influence of conjectural and structural parameters.

The rest of this paper is structured as follows. We briefly outline the data used in our study in Section 2. In Section 3, we then introduce the binary classification models we selected and detail our study's methodology, describing the classical and CLV-based performance measures and discussing substantial parametrization improvements over existing approaches. Then, Section 4 details our two-step methodology, with the parametric and non-parametric modelizations of individual survival predictions, in a competing risks framework and then their implementation in the tree-based classification approaches considered. Section 5 is dedicated to presenting the real-life application we considered and the different results it produces. Those results are analyzed and discussed in Section 6 with commercial and strategical decision-making orientations. Eventually, Section 7 concludes this paper.

2 Data 4

2 Data

We apply our framework to a real-world insurance portfolio. For privacy reasons, all the data, statistics, product names and perimeters presented in this paper have been either anonymized or modified. All analyses, discussions and conclusions remain unchanged.

We illustrate our methodology with a life insurance portfolio from a french insurer contracted between 1997 and 2018. Each record in the data set represents a unique policy for a unique policyholder. In the following sections, we will often refer to a unique pair of policy and policyholder by the term "subject". The dataset contains 251,325 rows with 248,737 unique policies and 235,076 unique policyholders. It means that some policies are shared between several policyholders and that one individual can detain several insurance policies. The dataset contains 43 covariates described in Table 1.

Covariates (Numeri	ical, Categorical, Date)	Description					
ID	CDL_ID_PERSONNE CDL_ID_CONTRAT	Policyholder (PH) unique ID Policy unique ID					
PH-level informations	CDLDT.NAISSANCE Age.souscription Nb.Contrats CDLCD.SEXE CDLDESTINATAIRE.COURRIER CDLNUM.ET.NOM.VOIE CDLCD.POSTAL CDLCOMMUNE CDLCOMMUNE CDLTOP.ASSURE	PH's birth date (main PH when several poliholders owns one policy) PH's age at subscription Number of different policies owned by the policyholder PH's gender (1=Female; 2=Male; other=Non precised) Anonymised PH's name Anonymised PH's adress Anonymised PH's post code Anonymised PH's city of residence Binary: 1 if PH is the main PH on the policy, 0 otherwise					
Policy-level informations	CDL_TYPE_PRODUIT CDL_NOM_PRODUIT CDL_PARTENAIRE CDL_DATE_DEB_CONTRAT CDL_DATE_FIN_CONTRAT START_YEAR END_YEAR SENIORITY STATE YEAR	Type of product ("Top-end product" or "Classical product") Name of life insurance product ("Product 1", "Product 2" or "Product 3") Name of the insurance distributor Policy's start date Policy's end date Policy's end year Policy's end year Policy's start (final seniority if the policy is ended, current seniority otherwise) Policy's state ("Active", "Lapsed", or "Death" if the policy ended following PH's death) Last year of observation					
External data	DISCOUNT RATE	Discount rate corresponding to the last year of observation					
Policy's cumulated financial flows	TOTAL_PREMIUM_AMOUNT TOTAL_EURO_PREMIUM_AMOUNT TOTAL_UC_PREMIUM_AMOUNT ARBITRATION_EURO ARBITRATION_UC FEES_EURO FEES_UC OTHER_EURO OTHER_EURO OTHER_UC PREMIUM_EURO PREMIUM_UC PROFIT SHARING_EURO PROFIT SHARING_UC CLAIM_EURO CLAIM_UC	Total face amount of the policy Face amount of the policy in euros Face amount of the policy in units of account Cumulated arbitration amount of the policy in euros Cumulated arbitration amount of the policy in units of account Cumulated fees amount of the policy in euros Cumulated fees amount of the policy in units of account Cumulated other part of the face amount of the policy in euros Cumulated other part of the face amount of the policy in units of account Cumulated payments amount of the policy in euros Cumulated payments amount of the policy in units of account Cumulated profit sharing amount of the policy in euros Cumulated profit sharing amount of the policy in euros Cumulated profit sharing amount of the policy in euros Cumulated partial or total lapsed amount of the policy in euros Cumulated partial or total lapsed amount of the policy in units of account					
Covariates derived from financial flows	%TOTAL_UC_PREMIUM_AMOUNT %TOTAL_EURO_PREMIUM_AMOUNT %CLAIM_UC %CLAIM_EURO %CLAIM_EURO	Percentage of the face amount in units of account Percentage of the face amount in euros Percentage of the face amount in units of account that was lapsed Percentage of the face amount in euros that was lapsed Percentage of the total face amount that was lapsed					
Target covariate	EVENT	Policy's state (0=Active, 1=Lapsed, 2 ended following PH's death)					

Table 1: Data set description

The data set represents policies that are majority owned by men (57.4%) for a mean censored seniority time of 13.4 years. Three products are present in the dataset. Product one was chosen by 72% of policyholders, product 2 by 25% and product 3 by 3%.

Regarding their state, 61% of the policies are still active, 22% lapsed, and 17% ended after the PH's death. We chose here to present the distribution of the variable SENIORITY as it is the response variable in our survival models. Its modelization has a critical influence on CLV, thus,

2 Data 5

on our lapse management strategy framework. We also chose to show the distribution of the variable TOTAL PREMIUM AMOUNT representing the most recent observed face amount for every subject, as it is a known determinant of lapse behaviour. We are aware that this covariate is a rather dynamic one as its value is updated at every payment, total or partial lapse, profit sharing, arbitration or even fees movements on a policy, and only considering its most recent value ignores a large part of the insights it can provide. Without any better option, we can only use TOTAL PREMIUM AMOUNT as it is and defer any dynamic considerations for future work.

The seniorities and most recent face amount recorded before the potential end of the policy are distributed as in Figure 1:

Without further analyzing the data, we can note several things. First, we can see that the

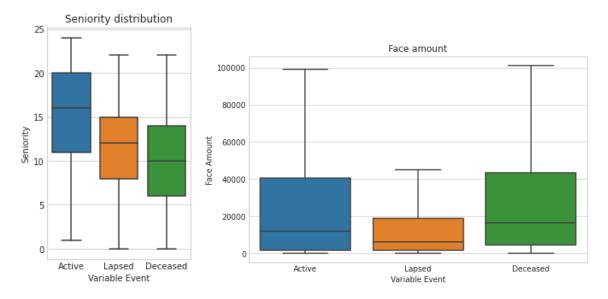


Figure 1: Seniorities and face amounts distributions

mean censored seniority of 13.4 years is not equally distributed among our subjects. Active contracts tend to be older than lapsed ones, themselves older than policies that ended with the policyholder's death. That emphasizes the importance of several contributions, and the apparent difference in seniority regarding the cause of the policy's termination encourages a competing risks approach to analyze survival. Moreover, if we suspect that lapse and death are highly dependent on individual characteristics - such as the policyholder's age, for instance - this also supports an individualized survival analysis. Eventually, we can see that the last face amount observed is significantly lower for lapsed policies. It confirms our first intuitions, and the face amount will be included in our modelization.

Among the covariates introduced in Table 1, several ones play a central part in our two-step modelization:

For the competing risks survival analysis step, *SENIORITY* will be the response variable, and all other covariates including individual data and financial flows are potential explanatory variables. The binary classification second step aims at predicting the *EVENT* outcome with minor transformations explained in Section 3 below. This prediction is based on the covariates underlined in Table 1.

3 Framework 6

3 Framework

The next section describes a modelization that follows Loisel et al. (2021)'s work. Our contributions place our work in a framework that differs from it in ways that will be made explicit, yet we chose to use a majority of their existing notations here.

Usual lapse management models based on classification aim to predict whether a policyholder will lapse. They may perform very well at that specific task, but it only reflects some aspects of this economic problem. Indeed, we can easily imagine that many policyholders may be predicted as "lapsers" but may not be profitable to the insurance company. In that case, keeping such policyholders would be absurd, and an efficient model should not predict them as targets. Targeting policyholders is an economic problem that requires an economic measure to assess. We propose to consider a measure based on the discounted expected profit of all the policies, in other words, the sum of all (CLVs). Optimizing a lapse, churn or any other prediction task with business-related measures is not new. However, to our knowledge, none of the existing approaches uses individualized future CLVs and models the profit of retention strategy by accounting for competing risks or using survival tree-based models.

CLV is a well-studied subject in marketing and business economics in general and has also been modelled in an insurance context. For a given subject i, her future (CLV) at horizon T can be modelled as follows:

$$^{F}CLV_{i}\left(\boldsymbol{p}_{i},\boldsymbol{F}_{i},\boldsymbol{r}_{i},\boldsymbol{d},T\right)=\sum_{t=0}^{T}\frac{p_{i,t}F_{i,t}r_{i,t}}{\left(1+d_{t}\right)^{t}}.$$

With t in years, t = 0 represents the last observation point for subject i. The quantity $p_{i,t}$ is her profitability ratio as a proportion of $F_{i,t}$, representing her face amount observed at time t. The quantity $r_{i,t}$ is the i-th subject's probability of still being active at time t and naturally, d_t is the discount rate at time t, common to every subject. It is worth pointing out that FCLV_i does not represent the global profit generated by subject i from her policy's first year until time T; it represents the future T years of profit.

We suggest a modelization of the insurer's estimated profit - or loss - resulting from a lapse management strategy. In order to do that, we will compare the expected value of the portfolio before and after applying a given strategy. We are aware that there could be infinite ways to design a retention campaign: offering a punctual incentive, recurrent services or more profit sharing, for instance. Here, we define what we will consider a lapse management strategy (LMS):

Definition 1 (Lapse management strategy)

A T-years lapse management strategy is modelled by the offer of an incentive δ_i to subject i if she is targeted. The incentive is expressed as a percentage of her face amount and is accepted with probability γ_i . Contacting the targeted policyholder has a fixed cost c. A targeted subject who accepts the incentive will be considered as an "acceptant" who will never lapse, and her probability of being active at year $t \in [0,T]$ is denoted $r_{i,t}^{acceptant}$. Conversely, a subject who refuses the incentive and prefers to lapse will be considered as a "lapser", and her probability of being active at year t is denoted $r_{i,t}^{lapser}$. A lapse management strategy is uniquely defined by the parameters $(\mathbf{p}, \boldsymbol{\delta}, \boldsymbol{\gamma}, c, T)$

Even if this definition is already a simplification of any real-life insurance retention strategy, various constraints and the data and tools at the insurer's disposal do not always allow

3 Framework 7

to conduct such a study. In the following section, we consider a simplified version of this framework by assuming that $p_{i,t}$, $F_{i,t}$, and d_t remain constant across time, and denoted p_i , F_i and d hereafter, with F_i being the most recent face amount observed for subject i. Moreover, we set γ_i and δ_i to be the same for all subjects and denoted as γ and δ hereafter. Finally, the last observed state of subject i is denoted i, with i if the policy is lapsed, i is denoted i is denoted i if the policy is lapsed, i is denoted i in the policy is lapsed.

With those considerations, we can then define the control portfolio's future value as follows:

$$FCPV(\boldsymbol{p}, \delta, \gamma, c, T) = \sum_{i=1}^{n} FCLV_{i}\left(p_{i}, F_{i}, \boldsymbol{r}_{i}^{\text{acceptant}}, d, T\right) \cdot \boldsymbol{1}\left(y_{i} = 0\right) + \sum_{i=1}^{n} FCLV_{i}\left(p_{i}, F_{i}, \boldsymbol{r}_{i}^{\text{lapser}}, d, T\right) \cdot \boldsymbol{1}\left(y_{i} = 1\right)$$

It represents the hypothetical value of the portfolio, considering that:

- every subject that did not lapse up to her last observation point $y_i = 0$ at t = 0 has a vector of retention probabilities of $\mathbf{r}_i^{\text{acceptant}}$;
- every subject that has been observed to lapse $y_i = 1$ at t = 0 has a vector of retention probabilities of $\mathbf{r}_i^{\text{lapser}}$

Remark 1

It is important to note that this does not reflect the actual future value of the portfolio - as the future CLV of lapsers should be 0 - but rather its hypothetical expected future value given the nature (lapser or not) of every subject but not their actual states (actually lapsed or not). It represents this hypothetical future CLV of all subjects if no customer relationship management about lapses is carried out.

A classification algorithm would take the lapse indicator y_i as a target variable and yield predictions \hat{y}_i . Given a lapse management strategy and such a classification algorithm, we define the lapse managed portfolio future value by:

$$\begin{split} ^{F}LMPV(\boldsymbol{p},\boldsymbol{\delta},\boldsymbol{\gamma},\boldsymbol{c},T) &= \\ &\sum_{i=1}^{n} {}^{F}CLV_{i}\left(\boldsymbol{p},F_{i},\boldsymbol{r}_{i}^{\text{acceptant}},\boldsymbol{d},T\right) \cdot \boldsymbol{1}\left(y_{i}=0,\hat{y}_{i}=0\right) \\ &+ \sum_{i=1}^{n} {}^{F}CLV_{i}\left(\boldsymbol{p},F_{i},\boldsymbol{r}_{i}^{\text{lapser}},\boldsymbol{d},T\right) \cdot \boldsymbol{1}\left(y_{i}=1,\hat{y}_{i}=0\right) \\ &+ \sum_{i=1}^{n} {}^{F}CLV_{i}\left(\boldsymbol{p}-\boldsymbol{\delta},F_{i},\boldsymbol{r}_{i}^{\text{acceptant}},\boldsymbol{d},T\right) \cdot \boldsymbol{1}\left(y_{i}=0,\hat{y}_{i}=1\right) \\ &+ \gamma \cdot \sum_{i=1}^{n} {}^{F}CLV_{i}\left(\boldsymbol{p}-\boldsymbol{\delta},F_{i},\boldsymbol{r}_{i}^{\text{acceptant}},\boldsymbol{d},T\right) \cdot \boldsymbol{1}\left(y_{i}=1,\hat{y}_{i}=1\right) \\ &+ (1-\gamma) \cdot \sum_{i=1}^{n} {}^{F}CLV_{i}\left(\boldsymbol{p},F_{i},\boldsymbol{r}_{i}^{\text{lapser}},\boldsymbol{d},T\right) \cdot \boldsymbol{1}\left(y_{i}=1,\hat{y}_{i}=1\right) \\ &- \sum_{i=1}^{n} \boldsymbol{c} \cdot \boldsymbol{1}\left(\hat{y}_{i}=1\right) \end{split}$$

3 Framework 8

Clearly, the sums appearing in the formulas above could be grouped to make them more concise. We chose not to do so for the sake of visualization: we can distinctly see each possible case in each summand.

Then, we define the economic metric of the algorithm as the retention gain, the future profit generated by the retention management strategy over T years:

$$RG(\boldsymbol{p}, \delta, \gamma, c, T) = {}^{F}LMPV(\boldsymbol{p}, \delta, \gamma, c, T) - {}^{F}CPV(\boldsymbol{p}, \delta, \gamma, c, T)$$

that can be simplified as follows:

$$RG(\boldsymbol{p}, \delta, \gamma, c, T) = \sum_{i=1}^{n} \left[\gamma \left[{}^{F}CLV_{i} \left(\boldsymbol{p} - \boldsymbol{\delta}, F_{i}, \boldsymbol{r}_{i}^{\text{acceptant}}, \boldsymbol{d}, T \right) \right. \right.$$

$$\left. - {}^{F}CLV_{i} \left(\boldsymbol{p}, F_{i}, \boldsymbol{r}_{i}^{\text{lapser}}, \boldsymbol{d}, T \right) \right] \cdot \mathbf{1} \left(y_{i} = 1, \hat{y}_{i} = 1 \right)$$

$$\left. - {}^{F}CLV_{i} \left(\boldsymbol{\delta}, F_{i}, \boldsymbol{r}_{\text{acceptant}}, \boldsymbol{d}, T \right) \cdot \mathbf{1} \left(y_{i} = 0, \hat{y}_{i} = 1 \right) \right]$$

$$\left. - \sum_{i=1}^{n} c \cdot \mathbf{1} \left(\hat{y}_{i} = 1 \right) \right.$$

This evaluation metric can now be derived into an individual retention gain measure. More specifically, we define z_i as:

$$z_{i} = \begin{cases} -FCLV_{i}\left(\delta, F_{i}, \boldsymbol{r}_{i}^{\text{acceptant}}, d, T\right) - c & \text{if } y_{i} = 0 \\ \\ \gamma \cdot \left[FCLV_{i}\left(\boldsymbol{p} - \delta, F_{i}, \boldsymbol{r}_{i}^{\text{acceptant}}, d, T\right) & \text{if } y_{i} = 1 \\ -FCLV_{i}\left(\boldsymbol{p}, F_{i}, \boldsymbol{r}_{i}^{\text{lapser}}, d, T\right)\right] - c \end{cases}$$

That last equation can seem obscure. It only assigns to each individual the expected profit or loss that would result from targeting her with a given lapse management strategy. A positive amount for subject i means that targeting her would generate profit, whereas a negative one would lead to a loss for the insurer. We can take the example of a hypothetical scenario where $p_i = 3\%$, $\delta = 0.05\%$, $\gamma = 10\%$ and c = 10 euros. It would generate z_i s taking values from -234,614% to 53,066% with a mean of -218% and a median of -55%. Different scenarios would result in very different distributions for the z_i 's.

Eventually, we define \tilde{y}_i as a binary target variable indicating for policyholder i if the individual expected retention gain resulting from a given retention strategy is a profit or a loss. More specifically, we define \tilde{y}_i as:

$$\tilde{y}_i = \left\{ \begin{array}{l} 1 \text{ if } z_i > 0 \\ 0 \text{ if } z_i \le 0 \end{array} \right.,$$

4 Methodology 9

Remark 2

A subject in the dataset for which $y_i = 0$ would produce $\tilde{y}_i = 0$, whereas one for which $y_i = 1$ could produce $\tilde{y}_i = 0$ or $\tilde{y}_i = 1$. In other words, it is never profitable for the insurer to offer an incentive to a subject that would not have lapsed. On the other hand, offering that same incentive to a lapser can be profitable. However, depending on the subject's features and the lapse management strategy parameters, it can also lead to a loss.

We can now include \tilde{y}_i as a new binary target variable in our models and directly consider RG as the global evaluation metric in the tree-based models we consider.

We can now compare two models: the classical one with y_i as a target variable and accuracy as the evaluation metric; and the CLV-augmented one with \tilde{y}_i as a target variable and RG as the evaluation metric.

Intuitively, the former tries to predict whether a policyholder will lapse and tune its parameters by minimizing the misclassification rate. On the other hand, the latter aims at predicting whether applying a given retention strategy to the *i*-th individual will be profitable for the insurer and tune its parameters by maximizing the global expected retention gain.

4 Methodology

In Section 3, we described a business-oriented framework, augmenting lapse management strategy with an evaluation metric based on the future CLV of every subject. Evaluating this metric requires computing $r^{\text{acceptant}}$ and r^{lapser} , the matrices of size (n, T+1) containing for every subject, survival probabilities that we detail below.

Given this framework, we propose a two-step methodology: firstly, we detail how this survival analysis is carried out to model those retention parameters, and secondly, we explain how we use them for training tree-based classification models.

4.1 Step 1: Modelling $r^{\text{acceptant}}$ and r^{lapser}

We recall that a given subject's policy can end with lapse or death, and the policy is considered active if competing events are yet to occur. Furthermore, while a lapser's policy can end with lapse or death, whatever comes first, an acceptant one can only end with death.

 r^{lapser} represents the probability that the policy of subject i is still active at time t, given that the subject is labeled as a lapser - EVENT = 1 - at t = 0. Predicting these overall conditional survival probabilities with competing risks can be achieved by creating a combined outcome: the policy ends with death or lapse, whichever comes first. In order to compute r^{lapser} in practice, we recode the competing events as a combined event. This approach is compatible with any survival analysis method regarding statistical guarantees.

Conversely, $r^{\text{acceptant}}$ represents the probability that the policy of subject i is still active at time t, given that the subject is not labelled as a lapser - EVENT = 0 or 2 - at t = 0. This modelization is more complex as we must dissociate the risks of lapse and death. These causes being mutually exclusive, a competing risks methodology is well-suited to estimate $r^{\text{acceptant}}$ (Laurent et al. (2016)).

 $4 \quad Methodology$ 10

4.1.1 Competing risks frameworks

We are aware that the context of our modelization requires competing risk setting. As detailed in Appendix A.1, several regression models exist to estimate the global hazard and the hazard of one risk in such settings: cause-specific and subdistribution modelizations. They account for competing risks differently, obtaining different hazard functions and thus have distinct advantages, drawbacks and interpretations. These These differences are discussed in Milhaud and Dutang (2018), where the authors also considered a competing risk framework for lapse prediction.

After discussions detailed in Appendix A.1, the simplicity of a cause-specific approach and the fact that it can be adapted to any survival method, including tree-based ones, oriented our choice towards it. We then computed $r^{\text{acceptant}}$ and r^{lapser} with three different methods - Cox model, Random Survival Forest and Gradient Boosting Survival Model - and retained the best one. These methods are shortly described in the following sections.

4.1.2 Cox proportional hazard model

One of the most common survival models is the Cox proportional hazard (CPH) model (Cox (1972)). It postulates that the hazard function can be modelized as the product of a time-dependent and a covariate-dependent functions. The hazard function at time t for subject i with covariate vector X_i , under Cox proportionnal hazard model can be expressed as:

$$\underbrace{\lambda(t|X_i^1,X_i^2,\dots)}_{\text{hazard function}} = \lambda(t|\boldsymbol{X_i}) = \underbrace{\lambda_0(t)}_{\text{baseline hazard}} \underbrace{e^{\underbrace{(\boldsymbol{X_i} \cdot \boldsymbol{\beta_i})}_{\text{partial hazard}}}}_{\text{partial hazard}}$$

It is crucial to note that in this model, the hazard function is the product of the baseline hazard, which only varies with time, and the partial hazard, which only varies depending on the covariates. The parameters of this model are the β , and they can easily be estimated with a maximum likelihood approach. Their estimation can be carried out without having to model $\lambda_0(t)$ - which is why CPH is considered semi-parametric.

We use Python and lifelines (Davidson-Pilon (2019)) to implement it. We specify a spline estimation for the baseline hazard function. We select the covariates and model parameters using AIC (Akaike (1973)) and use the concordance index (Harrell et al. (1982)) to compare CPH to other models. The concordance index - or Harrel's c-index or simply c-index - is a metric to evaluate the predictions made by a survival model. It can be interpreted as a generalization of the area under a receiver operating characteristic (ROC) curve (Hanley and McNeil (1982)) - or AUC - in a survival setting with censored data.

4.1.3 Random Survival Forest

Survival trees have been extensively studied for a long time, and a complete review of such existing methods up to 2011 can be found in Bou-Hamad et al. (2011). The most important thing to understand is that a survival tree can be created by modifying the splitting criterion of a regular tree. Most survival tree algorithms are designed with a split function that aims to maximize the separation of the resulting child nodes in terms of survival profiles. This separation between nodes is estimated by maximizing the log-rank statistic (Mantel (1966); LeBlanc and Crowley (1993)). Each terminal node of a survival tree contains a survival profile from which we can derive the survival and cumulative hazard function.

 $4 \quad Methodology$ 11

An RSF is the counterpart of a random forest (see Appendix A.2.2) for such survival trees. It has been developed in Ishwaran et al. (2008) and extended for competing risks a few years after (Ishwaran et al. (2014)). A prediction with RSF for a given subject is made by getting his/her survival profile in each tree in the forest. His/her corresponding survival and cumulative hazard function are estimated in each tree with Kaplan-Meier and Nelson-Aalen estimators, respectively. Eventually, the aggregation of those single-tree estimates constitutes the RSF's prediction.

We use Python and sksurv (Pölsterl (2020)) to implement RSF, and we tune and evaluate our model using the concordance index.

Remark 3

Sksurv allows us to use RSF with a cause-specific consideration of the competing risks. To this day, sksurv does not have a subdistribution competing risks model, whereas its R implementation randomForestSRC does (Ishwaran and Kogalur (2007)).

Moreover, a severe limitation of that approach is that predictions can only be made at time points observed in the training set. Concretely, this prevents us from using RSF to extrapolate survival and hazard functions to unobserved time points.

4.1.4 Gradient Boosting Survival Model

In the same way Random Forest has a survival counterpart, this is also true for Gradient Boosting approaches. An essential distinction between classical boosting algorithms(see Appendix A.2.3) and Gradient Boosting Survival Model (GBSM) lies in its loss function. The loss function that we use with GBSM is the partial likelihood loss of a CPH model, and the optimization in such a model is achieved by maximizing a slightly modified log-partial likelihood function:

$$\arg\min_{f} \quad \sum_{i=1}^{n} \delta_{i} \left[f(\boldsymbol{X_{i}}) - \log \left(\sum_{j \in \}_{i}} e^{(f(\boldsymbol{X_{j}}))} \right) \right]$$

Where δ_i is the event indicator and $f(X_i)$ is GBSM's prediction for the *i*-th subject, with a covariate vector X_i . g_i is the tree leaf including subject *i*.

Similarly to RSF, we use Python and sksurv (Pölsterl (2020)) to implement GBSM. We tune and evaluate our model using the concordance index. Remark 3 also applies here.

4.1.5 Final modelization choice

Our analysis shows that, based on concordance index, RSF and GSBM both outperformed a semiparametric Cox model in our study case. Regarding interpretability, we note that the feature importance analysis is very similar between the three models. All the details about the final concordance index scores, covariates importance and various plot for further analysis are available in Appendix A.2.

In the following sections, we decide to retain **GBSM** for the modelization of $r^{\text{acceptant}}$ and r^{lapser} as it has the best concordance index.

 $4 \quad Methodology$ 12

Remark 4

As this study aims to be business-oriented and favour real-life decision-making, it is crucial to note that the computation times for fitting these different models are very different and could potentially be a huge constraint for real operational deployment. Specific computation times differ greatly depending on various factors, such as the number of subjects or features considered, the computation power or parallelization ability at disposal, for instance. However, we can still give here an order of magnitude for those differences. If the tuning and fitting process for CPH can last a few tens of seconds, it lasts hours for RSF and tens of hours for GBSM.

4.2 Step 2: Classification tasks

Our work focuses on lapse management with tree-based models. It aims to answer the question: which policyholders would be worth targeting with a lapse management strategy to maximize the expected T-year profit for the insurer? We will consider a single tree built with Breiman's CART algorithm, Random Forest, XGBoost, and RE-EM trees. The following sections detail how those different approaches work. Those models will be compared on two different classification tasks; and tuned with two different evaluation metrics, a statistical metric and a business-related one.

On y_i First, we will use a classical lapse prediction framework to model the policyholder's behaviour. Each policyholder will be labelled as a lapser or a non-lapser with a binary outcome y_i . Our first batch of models will be trained with y_i as a response variable and produce predictions \hat{y}_i . Accuracy (y, \hat{y}) , which is undoubtedly the most intuitive performance measure for binary classification, is defined as the proportion of correctly predicted observations over all observations. It is widely used for churn analysis and appears to be a satisfying performance measure for relatively balanced outcomes in binary classification problems. We will use it as an evaluation metric in a 10-fold cross-validation step for tuning our models.

We know that more complex statistical evaluation metrics can be used for binary classification, such as the F_{β} Score family, the AUC under the ROC, the Brier Score, or the lift curve. In this paper, and similarly to a vast part of the applied binary classification literature, we will only select, evaluate and discuss the models in the light of the metrics we introduced.

On \tilde{y}_i Secondly, we will use the CLV-Augmented lapse prediction framework, detailed in Section 3. Each policyholder will be labelled as a targeted lapser or a non-targeted policyholder with the binary outcome \tilde{y}_i and prediction for that outcome are denoted \hat{y}_i .

Remark 5

Note that whenever $y_i = 0$, we also have $\tilde{y}_i = 0$. In other words, if subject i does not intend to lapse, it is never worth proposing her an incentive: the subject will accept it with probability 1 and would not have lapsed.

On the other hand, when $y_i = 1$, it corresponds to either $\tilde{y}_i = 1$ or $\tilde{y}_i = 0$. In other words, if subject i is labelled as a lapser, it does not necessarily mean it is worth targeting her. From the insurer's point of view, some policies are better off lapsed. \tilde{y} can be seen as a more detailed version of y_i as it carries not only behavioural information regarding lapse but also a profitability one.

We thus train a second batch of models with \tilde{y}_i as a response variable. We use RG as an evaluation metric in a 10-fold cross-validation step for tuning these models.

Summary of our methodology: First, we train a CART, RF and XGBoost models with y_i as a binary target variable and accuracy as a tuning evaluation metric.

Then we train them with \tilde{y}_i as a binary target variable and RG as a tuning evaluation metric.

Finally, we train and test all six models on different random samples of our dataset and keep track of the model's classification performance on all of them and for various retention strategies for comparison's sake.

The sections below briefly introduce the tree-based model we selected before displaying how they performed in various lapse management scenarios.

4.2.1 CART

CART (*Classification And Regression Trees*) is an algorithm developed by Breiman et al. (1984) that consists of recursively partitioning the covariate space. It is a widespread, intuitive and flexible algorithm that handles regression and classification problems.

4.2.2 Random forest

A natural idea to correct CART's instability and enhance its prediction accuracy is the aggregation of a significant number of single trees, each grown on different subsamples of the dataset. A random forest (RF by Breiman (2001)) is a tree-based bagging procedure where each tree is grown on randomly drawn observations and contains splits considering only randomly drawn covariates.

4.2.3 XGBoost

Other tree-based approaches have been designed to reduce the instability of a single tree model. Model boosting is an adaptative technique, first developed by Freund et Shapire (Freund and Schapire (1996)), that does not rely on the aggregation of independent weaker models but rather on the aggregation of weak models built sequentially, one after the other. XGBoost (Chen and Guestrin (2016)) is a widespread and performant tree-boosting model that relies on a gradient boosting step and provides a very optimized parallelized procedure. It is considered a state-of-the-art library for various prediction problems.

The interested reader can find more detailed explanations about CART, RF and XG-Boost mechanisms in the aforementioned references. For these modelizations, we used Python and sklearn (Pedregosa et al. (2011)).

5 Real-life application

Based on the real life-insurance dataset at our disposal (described in Section 2), we use the survival model we selected and estimate $r^{\text{acceptant}}$ and r^{lapser} for every individual. This allows us to compute the individual CLVs, RGs, z_i 's and \tilde{y}_i . We have already defined what a strategy is (see Definition 1), and we can thus apply our classification methodology to various retention strategies.

5.1 Considered lapse management strategies

The strategies considered are based on several criteria. First, we selected realistic strategy parameters and time horizons based on actual retention campaigns led by life insurers. Moreover, we chose to present strategies that illustrate the exhaustive list of conclusions and discussions that are carried out in the next section. Finally, we also incorporated strategies that are "obviously bad" in the sense that such strategies would necessarily lead to a loss for the insurer. Such extreme scenarios will supplement our discussions.

Results related to the 64 considered LMS are given in Appendix A.4. Numerical results regarding the most representative strategies (see Table 2) can be found in Section 5.2 and related comments on how to read these tables are given in Section 5.3.

Scenarios	p	δ	γ	\mathbf{c}	d	Τ
A-1	2.50% 2.50% 1.50% 2.50%	0.04%	25%	10	1.50%	5
A-4	2.50%	0.04%	5%	10	1.50%	5
A-13	1.50%	0.20%	20%	10	1.50%	5
A-21	2.50%	0.08%	10%	10	1.50%	20
A-30	1.50%	0.20%	20%	100	1.50%	5

Table 2: Insightful LMS

5.2 Numerical results

N° time (s)		Model	07 tommet J:ff	Accuracy		Retention gain		RG/target		T	
1N	time (s)	Model	% target diff	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	Improvement	
		CART		92.3%	85.3%	114 661	219 655	4.48	38.20	91.6%	
A-1	4949	RF	62.6%	92.9%	85.4%	$232\ 314$	$287\ 884$	9.82	56.65	23.90%	
	-0 -0	XGB	0_10,0	93.4%	85.8%	$243\ 365$	$324\ 952$	9.61	54.64	33.50%	
		CART		92.3%	83.6%	- 514 477	- 112 372	- 20.08	- 86.48	78.20%	
A-4	4753	RF	86.7%	92.9%	83.4%	- 323 544	- 3 937	- 13.65	- 28.28	98.80%	
		XGB		93.4%	83.3%	- 383 004	-	- 15.14	-	100.00%	
		CART		92.3%	89.2%	4 160 423	3 882 623	162.44	241.06	-6.70%	
A-13	5379	RF	31.0%	92.9%	89.5%	$4\ 018\ 432$	$3\ 666\ 219$	169.65	249.54	-8.80%	
		XGB	9-10,0	93.4%	90.0%	$4\ 455\ 108$	$4\ 410\ 629$	176.09	267.87	-1.00%	
		CART		92.3%	88.8%	705 721	922 490	27.69	60.21	30.70%	
A-21	5906	RF	36.6%	92.9%	88.9%	$1\ 352\ 182$	$1\ 269\ 349$	57.11	97.63	-6.10%	
		XGB		93.4%	89.6%	$1\ 342\ 882$	$1\ 428\ 722$	53.09	96.76	6.40%	
		CART		92.3%	84.3%	- 694 436	751 404	- 27.16	226.99	208.20%	
A-30	4811	RF	73.9%	92.9%	84.4%	- 13 512	$1\ 018\ 369$	- 0.51	356.48	7637.00%	
		XGB		93.4%	84.7%	- 38 050	$1\ 253\ 252$	- 1.55	345.94	3393.70%	

5.3 Comments

Several terms in the two previous tables need to be explained. "% target diff" represents how different y and \tilde{y} are. It is the percentage of subjects for which $y_i = 1$ and $\tilde{y}_i = 0$: in other words, the proportion of lapsers not worth targeting with a given strategy. Then the table shows the 10-fold cross-validated mean accuracies, retention gains and RG/target with two methodologies: the columns denoted y_i represent the metrics obtained by a model with y_i as a response variable and accuracy as an evaluation metric, and the columns denoted \tilde{y}_i represent the metric obtained by a model with \tilde{y}_i as a response variable and RG as an evaluation metric. RG/target represents the achieved retention gain for every targeted individual, for y_i , it is $RG/\sum_i \hat{y}_i$, for \tilde{y}_i it is $RG/\sum_i \hat{y}_i$. Eventually, "Improvement" represents the percentage of improvement between the RG obtained with a classification on y_i and the gain obtained with

a classification on \tilde{y}_i .

Some LMS are worth focusing on. For every strategy, we can display its results when trained on random samples of the dataset: the boxplots below summarize some typical key results illustrated by several strategies. Those results will be discussed in Section 6.

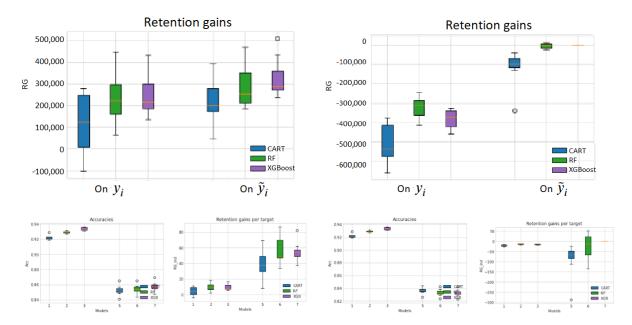


Figure 2: Strategy n°A-1: (Positive result on y_i Figure 3: Strategy n°A-4: (Very negative result on and an improved result on \tilde{y}_i .)

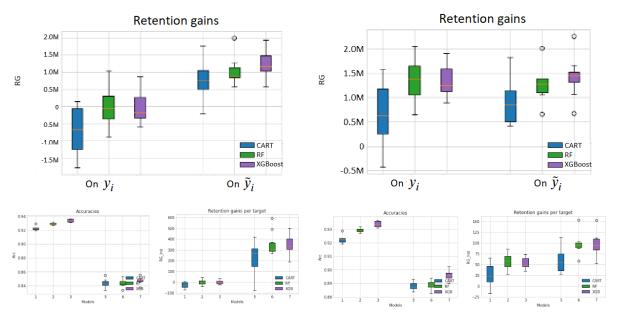
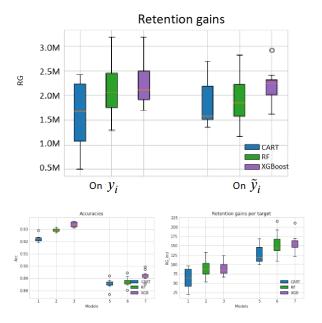



Figure 4: Strategy n°A-30: (Negative result on y_i Figure 5: Strategy n°A-21: (High positive result on and positive one on \tilde{y}_i) y_i slightly improved with \tilde{y}_i .)

6 Discussion 16

Figure 6: Strategy n°A-13: (Results on y_i better than results on \tilde{y}_i .)

Remark 6

With considerable computation power and great parallelization, the results for all strategies - see other strategies in Appendix A.4 - were obtained with a wall time of less than 4 days and a CPU time of more than 100 days.

6 Discussion

6.1 General statements

As expected and already shown in the actuarial litterature, RF and XGBoost perform globally better than CART in terms of mean accuracy and RG. It is true for all LMS considered in Table 8. Globally, XGBoost is more consistent and is the best model in most scenarios, both with and without the CLV-based measure. It is only outperformed by RF in strategies n°A-25 and A-26.

As expected, by design, the vast majority of strategies, including all the realistic ones, show that a classification on \tilde{y}_i produces a targeting that yields better RG than a classification on y_i . Conversely, a classification on y_i produces a targeting that yields better accuracies regarding whether a policyholder will churn than a classification on \tilde{y}_i . These results were expected because of the models' respective objectives. Even if it is not surprising, it once again shows that for an insurer, lapse prediction and lapse management strategy are two very different prediction problems, often treated as similar ones.

Our CLV-augmented modelization shows different behaviour depending on the strategy considered. As highlighted by Figure 2, a model on y_i is greatly improved by our framework regarding RG and RG/target. Conversely, its accuracy in lapse prediction is not optimal.

An attractive property of our framework can be observed in Figure 3: it yields loss-limiting targeting. When the LMS considered is too aggressive, it will usually prefer to predict that an LMS should not be applied at all $(\forall i, \hat{y_i} = 0)$, thus generating a RG around $0 \in$. This is made evident in some extreme strategies (like LMS n°A-23 for instance).

On less extreme strategies, it shows to yield substantial improvement when classification on y_i

 $6 \quad Discussion$ 17

gives negative RG. That observation confirms what was already pointed out by Loisel et al. (2021): it can even turn a negative RG into a positive one (see LMS n°A-5, A-12, A-22, A-24, A-29 and A-30 - Figure 4).

Our framework also improves a strategy where a classification on y_i gives high RG. However, the improvement decreases as the difference between the number of lapsers and the number of lapsers that would be profitable if retained is sizeable. An example of that is shown in Figure 5. Finally, we can generate LMS for which our framework does not improve the expected RG. It is the case in LMS n°A-13, A-18 or A-27 (See e.g Figure 6). In LMS n°A-13, we can see that the mean of the RG is not improved, but the median is. In all those cases, the RG per target produced by the CLV-augmented model is greatly improved, indicating that a CLV-augmented strategy prefers to target fewer policyholders but only those who would generate high future profits.

This last observation explains why a CLV-augmented LMS generates higher RGs when the cost of contact c is considerable. Indeed, the more costly a contact is, the more precise and specific a targeting strategy should be.

Generally, if we consider our various LMS, excluding LMS n°30 that has a very high improvement ratio:

The average observed RG improvement of a CLV-augmented framework over the classical lapse one is $57.9\%^a$. If we weight these results by the expected RGs, the average improvement is still 31.7%.

 a Using XGBoost

6.2 Marketing decision making

We already pointed out that the improvement of a lapse management strategy including CLV grows with the proportion of lapsers with a negative CLV (see Appendix A.3). Models resulting from our framework do not consider them as good targets. In fact, there is a Pearson correlation coefficient of 77% between RG improvement and the proportion of target differences among the LMS detailed in Table 8. Of course, as the improvement ratio has no clear interpretation in some cases, this analysis should be carried out in more depth, separating the cases where both RG - with and without the inclusion of CLV - are positive from the cases where one of them is negative. By doing so, we observe that the Pearson correlation coefficient for LMS yielding positive RG regardless of the inclusion of CLV is even higher: 83%.

In terms of targeting, it seems crucial to understand what differentiates a subject for which $y_i = 1$ and $\tilde{y}_i = 0$ from the others. An investigation of such policyholder's profiles can be carried out for every lapse management strategy. We take the example of LMS n°A-1, where 62,6% of policyholders were in that case (see Section 5.2). With that strategy, the profile of non-targeted lapsers indicates that:

- 57.2% of them are men, similar to the entire dataset,
- 76.4% of them contracted product n°1 whereas 72% of all policyholders chose it,
- the mean seniority of their policy is 10.4 years compared to the 13.4 years for the complete dataset,
- the mean face amount of such policies is 12,156, whereas the average face amount for all considered policies is 40,263.

6 Discussion 18

In that strategy, our framework indicates that marketing efforts on low seniority policyholders with low face amount policies are inefficient. Of course, this conclusion is only valid for the considered LMS; however, our framework allows us to conduct such analysis for any LMS and interpret the results at an individualized level.

6.3 Management rules decision making

Sensitivity analysis of those results can highly benefit management rules decision-making. This framework serves as a tool that compares future hypothetical lapse management strategies in order to choose the best one - among realistic scenarios -. It can also be used to tune a given strategy by answering questions like:

- For which incentive δ the retention strategy becomes profitable?
- For which acceptance probability γ the retention strategy becomes profitable?
- With a given budget, what is the optimal list of policies that should be targeted?
- At which horizon T, the retention strategy become profitable? In other words, when can the insurer expect a return on investment?

Answering these questions constitutes a 1-parameter sensitivity analysis. In our framework, six parameters influence the expected retention gain $(p, \delta, \gamma, c, d, T)$.

We can argue that among them are three structural parameters that are insurer's dependent and not linked to the external state of the world: δ , γ and c. Among them, the contact cost c is more or less fixed and can not be easily changed by the insurer. Conversely, δ and γ are to be chosen by the insurer. Moreover, they also are correlated with management and commercial efficiency - an efficient campaign impacts the final γ - and correlated together: the higher the incentive δ , the higher the probability of acceptance γ .

By fixing all other parameters and trying various combinations of δ and γ we obtain the following 3D surfaces:

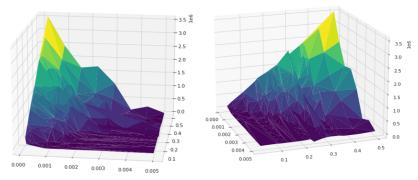


Figure 7: 3d plot (δ, γ, RG)

This surface is not surprising and indicates that the higher the acceptance rate and the lower the incentive, the higher the retention gain. The surface gradient can give powerful insights on the most efficient commercial efforts to make: is it better for the insurer to propose lower incentives and manage to conserve the same acceptance probability or to put commercial effort into improving the acceptance probability for the same proposed incentive? This surface directly addresses this question.

6 Discussion 19

Remark 7

Of course, the interdependency of those parameters should make some part of this surface unrealistic from a management decision-making point of view. The insurer should consider such dependencies when designing a lapse management strategy.

Among the six parameters are also three conjectural parameters that depend on the external state of the world: the insurer's profitability p (that depends on competition, macroeconomic considerations or regulation), the discount rate d and the time horizon T (that can be driven by the insurer's vision but also by regulation: the ORSA time horizon with the strategic and the long-term business planning time horizon should be both considered). Among them, we chose to fix p and let d and T vary. Moreover, p and T are obviously interdependent and considered through the management's prospective view of the conjecture's evolution. A given interest rate scenario should represent a curve on the following surface:

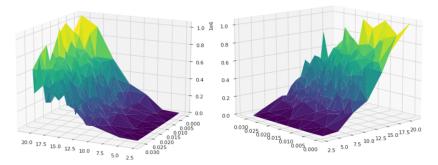


Figure 8: 3d plot (d, T, RG)

This surface is less smooth than the one displayed in Figure 7 and seems to indicate a more unstable relationship between RG and the conjectural parameters. An explanation of that behaviour can be that those surface points are generated by running our framework on a random subsample of our dataset, for computation time considerations. Generating the same surface with more policyholders is likely to give a smoother behaviour.

Remark 8

Of course, the interdependency of T and d should make some part of this surface unrealistic from an actuarial point of view. Actuarial rate projections would give precise plausible scenarios on this surface. Such considerations should be taken into account by the insurer when designing a lapse management strategy.

Remark 9

The insurer can also use our framework to measure the retention gain to be expected at different time horizons obtained by existing retention campaigns. In that case, the insurer would have to neutralize the effect of the existing LMS in order to estimate the control portfolio's future value. We leave this remark as future work for applied risk management research.

7 Conclusion, limitations and future work

The work carried out in this paper shows that including CLV in lapse management strategy can largely benefit an insurer's decision-making ability regarding lapse management strategy. We showed that survival tree-based models can outperform parametric approaches in such actuarial contexts. Then, our comparison of tree-based models on different lapse management strategies indicated that our CLV-based framework leads to increased predicted gains for any realistic scenario and acts as a loss-limiting targeting approach, regardless of the retention strategy. Finally, the discussion section highlighted the fact that our modelization can give insights to the life insurer regarding commercial and strategic decision-making.

The framework and methodologies described in this paper suffer some limitations. For instance, we can argue that following one single fixed strategy for every policyholder is unrealistic. We could easily imagine an extension of our models to individualized lapse management strategies that would vary between subjects, but that could also be adjusted with time. There is also room for improvement regarding the correlations of LMS parameters: gamma and delta are evidently interdependent parameters for an insurance company, and this interdependency could be considered.

This paper defines a practical management tool for life insurers as those models can be used to measure the RG and improve real strategies used in existing retention campaigns. Finally, our vision of CLV, and by extension, our whole methodology design could be improved by using longitudinal data that would yield time-dynamic results. We leave those two last observations for future work.

A real-life comparison between an actual retention strategy targeting and both the naïve and CLV-improved methodologies could be insightful for the insurer.

Acknowledgments

Work(s) conducted within the Research Chair DIALog under the aegis of the Risk Foundation, an initiative by CNP Assurances. The authors would like to express their very great gratitude to Marie Hyvernaud and Stéphanie Dosseh for their valuable and constructive suggestions during the development of this research work. Special thanks should be given to Marie Hyvernaud for her contribution to code writing.

References 21

References

Hirotugu Akaike. Information theory and an extension of the maximum likelihood principle. dans Second International Symposium on Information Theory, page 267–281, 1973.

- Eva Ascarza, Scott A. Neslin, Oded Netzer, Zachery Anderson, Peter S. Fader, Sunil Gupta, Bruce Hardie, Aurelie Lemmens, Barak Libai, David T. Neal, Foster Provost, and Rom Schrift. In pursuit of enhanced customer retention management: Review, key issues, and future directions, 2018. Special Issue on 2016 Choice Symposium. Customer Needs and Solutions 5,.
- Michele Azzone, Emilio Barucci, Giancarlo Giuffra Moncayo, and Daniele Marazzina. A machine learning model for lapse prediction in life insurance contracts. *Expert Systems with Applications*, 191:116261, 2022. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2021.116261. URL https://www.sciencedirect.com/science/article/pii/S0957417421015700.
- Imad Bou-Hamad, Denis Larocque, and Hatem Ben-Ameur. A review of survival trees. Statistics Surveys, 5(none):44 71, 2011. doi: 10.1214/09-SS047. URL https://doi.org/10.1214/09-SS047.
- L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees. Taylor & Francis, 1984. ISBN 9780412048418. URL https://books.google.fr/books?id=JwQx-W0mSyQC.
- Leo Breiman. Random forests. *Machine Learning*, 45(1):5–32, 2001. ISSN 0885-6125. doi: 10.1023/A: 1010933404324. URL http://dx.doi.org/10.1023/A%3A1010933404324.
- Kristian Buchardt. Dependent interest and transition rates in life insurance. *Insurance: Mathematics and Economics*, 55, 03 2014. doi: 10.1016/j.insmatheco.2014.01.004.
- Kristian Buchardt, Thomas Møller, and Kristian Bjerre Schmidt. Cash flows and policyholder behaviour in the semi-markov life insurance setup. *Scandinavian Actuarial Journal*, 2015(8):660–688, 2015. doi: 10.1080/03461238.2013.879919. URL https://doi.org/10.1080/03461238.2013.879919.
- Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '16, pages 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.
- Cox and Lin. Annuity Lapse Modeling: Tobit or not Tobit? Society of Actuaries, 2006.
- D.R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological, 34(2):187–220, 1972. URL http://www.jstor.org/stable/2985181. JSTOR,.
- A. Dar and Colin Dodds. Interest rates, the emergency fund hypothesis and saving through endowment policies: Some empirical evidence for the u.k. *Journal of Risk and Insurance*, 56:415, 1989.
- Cameron Davidson-Pilon. lifelines: survival analysis in python. *Journal of Open Source Software*, 4(40): 1317, 2019. doi: 10.21105/joss.01317. URL https://doi.org/10.21105/joss.01317.
- Bas Donkers, Peter Verhoef, and Martijn Jong. Modeling clv: A test of competing models in the insurance industry. *Quantitative Marketing and Economics (QME)*, 5(2):163-190, 2007. URL https://EconPapers.repec.org/RePEc:kap:qmktec:v:5:y:2007:i:2:p:163-190.
- Martin Eling and Dieter Kiesenbauer. What policy features determine life insurance lapse? an analysis of the german market. *The Journal of Risk and Insurance*, 81(2):241–269, 2014. ISSN 00224367, 15396975. URL http://www.jstor.org/stable/24546804.
- Martin Eling and Michael Kochanski. Research on lapse in life insurance: what has been done and what needs to be done? *Journal of Risk Finance*, 14(4):392–413, 2013. URL https://EconPapers.repec.org/RePEc:eme:jrfpps:v:14:y:2013:i:4:p:392-413.
- Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In *International Conference on Machine Learning*, pages 148–156, 1996. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6252.
- Nadine Gatzert and Hato Schmeiser. Assessing the risk potential of premium payment options in participating life insurance contracts. *The Journal of Risk and Insurance*, 75(3):691–712, 2008. ISSN 00224367, 15396975. URL http://www.jstor.org/stable/25145301.
- Irina Gemmo and Martin Götz. Life insurance and demographic change: An empirical analysis of surrender decisions based on panel data. ICIR Working Paper Series 24/16, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR), 2016. URL https://ideas.repec.org/p/zbw/icirwp/2416.html.
- Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning on tabular data?, 2022. URL https://arxiv.org/abs/2207.08815.

References 22

Sunil Gupta. Customer-based valuation. *Journal of Interactive Marketing*, 23(2):169-178, 2009. ISSN 1094-9968. doi: https://doi.org/10.1016/j.intmar.2009.02.006. URL https://www.sciencedirect.com/science/article/pii/S109499680900036X. Anniversary Issue.

- Sunil Gupta and Donald R. Lehmann. Customer lifetime value and firm valuation. *Journal of Relationship Marketing*, 5(2-3):87–110, 2006. doi: 10.1300/J366v05n02_06. URL https://doi.org/10.1300/J366v05n02_06.
- Sunil Gupta, Dominique Hanssens, Bruce Hardie, Wiliam Kahn, V. Kumar, Nathaniel Lin, Nalini Ravishanker, and S. Sriram. Modeling customer lifetime value. *Journal of Service Research J SERV RES*, 9:139–155, 11 2006. doi: 10.1177/1094670506293810.
- J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver operating characteristic (roc) curve. *Radiology*, Apr;143(1):29-36, 1982. doi: 10.1148/radiology.143.1.7063747. PMID: 7063747.
- Frank E Harrell, Robert M Califf, David B Pryor, Kerry L Lee, and Robert A Rosati. Evaluating the yield of medical tests. *Jama*, 247(18):2543–2546, 1982.
- Sen Hu, Adrian O'Hagan, James Sweeney, and Mohammadhossein Ghahramani. A spatial machine learning model for analysing customers' lapse behaviour in life insurance. *Annals of Actuarial Science*, 15(2):367–393, 2021. doi: 10.1017/S1748499520000329.
- Yawen Hwang, Linus Fang-Shu Chan, and Chenghsien Jason Tsai. On voluntary terminations of life insurance: Differentiating surrender propensity from lapse propensity across product types. *North American Actuarial Journal*, 26(2):252–282, 2022. doi: 10.1080/10920277.2021.1973507. URL https://doi.org/10.1080/10920277.2021.1973507.
- H. Ishwaran and U.B. Kogalur. Random survival forests for r. R News, 7(2):25-31, October 2007. URL https://CRAN.R-project.org/doc/Rnews/.
- H. Ishwaran, T.A. Gerds, U.B. Kogalur, R.D. Moore, S.J. Gange, and B.M. Lau. Random survival forests for competing risks. *Biostatistics*, Oct;15(4):757-73, 2014. doi: 10.1093/biostatistics/kxu010. Epub 2014 Apr 11. PMID: 24728979; PMCID: PMC4173102.
- Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random survival forests. *The Annals of Applied Statistics*, 2(3):841 860, 2008. doi: 10.1214/08-AOAS169. URL https://doi.org/10.1214/08-AOAS169.
- Yusho Kagraoka. Modeling insurance surrenders by the negative binomial model. *JAFEE International Conference*, 01 2005.
- Dieter Kiesenbauer. Main determinants of lapse in the german life insurance industry. *North American Actuarial Journal*, 16(1):52–73, 2012. doi: 10.1080/10920277.2012.10590632. URL https://doi.org/10.1080/10920277.2012.10590632.
- Changki Kim. Modeling surrender and lapse rates with economic variables. North American Actuarial Journal, 9(4):56-70, 2005. doi: 10.1080/10920277.2005.10596225. URL https://doi.org/10.1080/10920277.2005.10596225.
- KPMG. First impressions: Ifrs 17 insurance contracts (2020 edition), Jul 2020. URL https://assets.kpmg/content/dam/kpmg/ie/pdf/2020/09/ie-ifrs-17-first-impressions.pdf.
- Weiyu Kuo, Chenghsien Tsai, and Wei-Kuang Chen. An empirical study on the lapse rate: The cointegration approach. *The Journal of Risk and Insurance*, 70(3):489–508, 2003. ISSN 00224367, 15396975. URL http://www.jstor.org/stable/3519905.
- Michael LeBlanc and John Crowley. Survival trees by goodness of split. *Journal of the American Statistical Association*, 88(422):457, 1993. ISSN 0162-1459. doi: 10.2307/2290325.
- Aurélie Lemmens and Sunil Gupta. Managing Churn to Maximize Profits. Marketing Science, 39(5): 956-973, September 2020. doi: 10.1287/mksc.2020.1229. URL https://ideas.repec.org/a/inm/ormksc/v39y2020i5p956-973.html.
- Stéphane Loisel, Pierrick Piette, and Cheng-Hsien Jason Tsai. Applying economic measures to lapse risk management with machine learning approaches. *ASTIN Bulletin*, 51(3):839–871, 2021. doi: 10.1017/asb.2021.10.
- N. Mantel. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports. Part, 1 50:163–170, 1966.
- X Milhaud, S. Loisel, and V Maume-Deschamps. Surrender triggers in Life Insurance: what main features affect the surrender behavior in a classical economic context? *Bulletin Français d'Actuariat*, 11(22): 5–48, December 2011. URL https://hal.archives-ouvertes.fr/hal-01985261.
- Xavier Milhaud and Christophe Dutang. Lapse tables for lapse risk management in insurance: a

competing risk approach. European Actuarial Journal, 8(1):97–126, March 2018. doi: 10.1007/s13385-018-0165-7. URL https://hal.archives-ouvertes.fr/hal-01985256.

23

- Sven Nolte and Judith C. Schneider. Don't lapse into temptation: a behavioral explanation for policy surrender. *Journal of Banking & Finance*, 79(C):12-27, 2017. URL https://EconPapers.repec.org/RePEc:eee:jbfina:v:79:y:2017:i:c:p:12-27.
- Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. *Journal of machine learning research*, 12(Oct):2825–2830, 2011.
- Sebastian Pölsterl. scikit-survival: A library for time-to-event analysis built on top of scikit-learn. *Journal of Machine Learning Research*, 21(212):1-6, 2020. URL http://jmlr.org/papers/v21/20-729.html.
- Thomas Poufinas and Gina Michaelide. Determinants of life insurance policy surrenders. *Modern Economy*, 09:1400–1422, 01 2018. doi: 10.4236/me.2018.98089.
- H. Putter, M. Schumacher, and H.C. Houwelingen. On the relation between the cause-specific hazard and the subdistribution rate for competing risks data: The fine-gray model revisited. *Biom J*, 2020.
- Arthur E. Renshaw and Steven Haberman. Statistical analysis of life assurance lapses. *Journal of the Institute of Actuaries*, 113:459–497, 1986.
- Pallav Routh, Arkajyoti Roy, and Jeff Meyer. Estimating customer churn under competing risks. *Journal of the Operational Research Society*, 72(5):1138–1155, 2021. doi: 10.1080/01605682.2020.1776166. URL https://doi.org/10.1080/01605682.2020.1776166.
- David T. Russell, Stephen G. Fier, James M. Carson, and Randy E. Dumm. An empirical analysis of life insurance policy surrender activity. *Journal of Insurance Issues*, 36(1):35–57, 2013. ISSN 15316076, 23324244. URL http://www.jstor.org/stable/41946336.
- Siti Shamsuddin, Ismail Noriszura, and Nur Roslan. What we know about research on life insurance lapse: A bibliometric analysis. *Risks*, 10:97, 05 2022. doi: 10.3390/risks10050097.
- Adjmal S Sirak. Income and unemployment effects on life insurance lapse. *Retrieved September*, 18:2020, 2015.
- Mohnish Vasudev, Raheja Bajaj, and Antonio Alegre Escolano. On the drivers of lapse rates in life insurance. Sarjana thesis,, University of Barcelona, Barcelona, Spain, 2016.
- Bernhard von Mutius and Arnd Huchzermeier. Customized targeting strategies for category coupons to maximize clv and minimize cost. *Journal of Retailing*, 97(4):764-779, 2021. ISSN 0022-4359. doi: https://doi.org/10.1016/j.jretai.2021.01.004. URL https://www.sciencedirect.com/science/article/pii/S002243592100004X. SI: Metrics and Analytics.
- Lu Yu, Jiang Cheng, and Tzuting Lin. Life insurance lapse behaviour: evidence from China. *The Geneva Papers on Risk and Insurance Issues and Practice*, 44(4):653-678, October 2019. doi: 10.1057/s41288-018-0104-5. URL https://ideas.repec.org/a/pal/gpprii/v44y2019i4d10.1057_s41288-018-0104-5.html.
- Marijana Ćurak, Doris Podrug, and Klime Poposki. Policyholder and insurance policy features as determinants of life insurance lapse evidence from croatia. *Economics and Business Review*, 1 (15):58–77, 09 2015. doi: 10.18559/ebr.2015.3.5.

A Appendix

A.1 Competing risk framework

There are several regression models to estimate the global hazard and the hazard of one risk in settings where competing risks are present: modeling the cause-specific hazard and the subdistribution hazard function. They account for competing risks differently, obtaining different hazard functions and thus distinct advantages, drawbacks, and interpretations. We will here quickly introduce those approaches' theoretical and practical implications and justify which one we will use in our modelizations.

In Cause-specific regression, each cause-specific hazard is estimated separately, in our case, the cause-specific hazards of lapse and death, by considering all subjects that experienced the competing event as censored: We remind that $J_T = 0$ corresponds to an active subject that did not experience lapse $J_T = 1$ or death $J_T = 2$. The cause-specific hazard rates regarding the j-th risk $(j \in [1, ... J])$ are defined as:

$$\lambda_{T,j}(t) = \lim_{dt \to 0} \frac{P\left(t \le T < t + dt, J_T = j \mid T \ge t\right)}{dt}$$

We can recover the global hazard rate as $\lambda_{T,1}(t) + \cdots + \lambda_{T,J}(t) = \lambda_T(t)$, and derive the global survival distribution of T as

$$P(T > t) = 1 - F_T(t) = S_T(t)$$

$$= \exp\left(-\int_0^t (\lambda_{T,1}(s) + \dots + \lambda_{T,J}(s)) ds\right)$$

This approach aims at analysing the cause-specific "distribution" function: $F_{T,j}(t) = P(T \le t, J_T = j)$. In practice, it is called the Cumulative Incidence Function (CIF) for cause j and not a distribution function since $F_{T,j}(t) \to P(J_T = j) \ne 1$ as $t \to +\infty$. By analogy with the classical survival framework, the CIF can be characterized as $F_{T,j}(t) = \int_0^t f_{T,j}(s) ds^1$, where $f_{T,j}$ is the improper density function for cause j. It follows that:

$$f_{T,j}(s) = \lim_{dt \to 0} \frac{P\left(t \le T < t + dt, J_T = j\right)}{dt} = \lambda_{T,j}(t)S_T(t)$$

The equation above is self-explanatory: the probability of experiencing cause j at time t is simply the product of surviving the previous time periods by the cause-specific hazard at time t. We finally obtain the CIF for cause j as:

$$F_{T,j}(t) = \int_0^t \lambda_{T,j}(s) \exp\left(-\int_0^s \lambda_T(u) du\right) ds.$$

There are several advantages to that approach. First of all, cause-specific hazard models can be easily fit with any classical implementation of CPH by simply considering as censored any subject that experienced the competing event. Then the CIF is clearly interpretable and summable $P(T \leq t) = F_{T,1}(s) + \cdots + F_{T,J}(s)^3$. On the other hand, the CIF estimation of one given cause depends on all other causes: it implies that the study of a specific cause requires estimating the

 $[\]overline{^{1}}$ We suppose that T has a continuous distribution

 $^{^2}$ Because derived from the CIF, an improper cumulative distribution function

³unlike to the function $1 - \exp\left(-\int_0^t \lambda_{T,j}(u)du\right)$.

global hazard rate, and interpreting the effects of covariates on this cause is difficult. Indeed, part of the effects on a specific cause comes from the competing causes, but in our setting, we are only interested in the prediction of the survival probabilities, not their interpretation as such.

We have introduced it at the beginning of this section; another approach is often considered to analyze competing risks and derive a cause-specific CIF. This other approach, called the subdistribution hazard function of Fine and Gray regression, works by considering a new competing risk process τ . Without loss of generality, let's consider death as our cause of interest:

$$\tau = T \times \mathbb{1}_{J_T = 2} + \infty \times \mathbb{1}_{J_T \neq 2}.$$

It has the same as T regarding the risk of death, $P(\tau \leq t) = F_{T,2}(t)$ and a mass point at infinity $1 - F_{T,2}(\infty)$, probability to observe other causes $(J_T \neq 2)$ or not to observe any failure. In other words, if the previous approach considered every subject that experienced competing events as censored, this approach considers a new and artificial at-risk population. This last consideration is made clear when deriving the hazard rate of τ :

$$\lambda_{\tau}(t) = \lim_{dt \to 0} \frac{P(t \le T < t + dt, J_T = 2 \mid \{T \ge t\} \cup \{T \le t, J_T \ne 2\})}{dt}.$$

Finally, we obtain the CIF for the risk of death as:

$$F_{T,2}(t) = 1 - \exp\left(-\int_0^t \lambda_{\tau}(s)ds\right).$$

This subdistribution approach resolves the most important drawback to cause-specific regression, as the coefficients resulting from it do have a direct relationship with the cumulative incidence: estimating the CIF for a specific cause does not depend on the other causes, which makes the interpretation of CIF easier. The subdistribution hazard models can be fit in R by using the crr function in the cmprsk package or using the timereg package. Still, to our knowledge, there is no implementation of a Fine and Gray model in Lifelines or, more generally, Python. We can also note that these two approaches are linked, Putter et al. (2020) and the link between $\lambda_{\tau}(t)$ and $\lambda_{T,j}(t)$ is given by:

$$\lambda_{\tau}(t) = r_j(t)\lambda_{T,j}(t), \text{ with } r_j(t) = \frac{P(J_T = 0)}{\sum_{p \neq j}^J P(J_T = p)}$$

In other words, if the probability of any competing risk is low, the two approaches give very close results.

A.2 Survival modelizations results

 $r_{i,t}^{lapser}$ represents the probability that the policy of subject i is still active at time t, given that it was active at its last observed time. Predicting the overall conditional survival with the competing risks, in that case, can be achieved by creating a combined outcome. The policy ends with death or lapse, whichever comes first, and to compute r^{lapser} , we recode the competing events as a combined event. In terms of statistical guarantees, this approach is compatible with any survival analysis method.

In the following sections of this appendix, $r_{i,t}^{acceptant}$ indicates the probability of survival for subject i at time t given that it will not lapse. In other words, it is the survival probability

regarding only the risk of death. As detailed in Section 4.1.1, this corresponds to the cause-specific survival probability for death. It is to be noted that the density from which we derive our survival probabilities is improper as it derives itself from the CIF, which is not a proper distribution function.⁴. Therefore, any conclusion about those probabilities should be drawn with care. Our modelization is derived from a Cox cause-specific hazard regression with a spline baseline hazard from the Python library Lifelines. Similarly to r^{lapser} , covariates selection and tuning are performed by minimizing AIC.

A.2.1 Cox-model

We first decide to estimate survival with a Cox Proportional hazard model with a spline baseline hazard from the Python library Lifelines. Covariate selection and tuning are performed by minimizing AIC. Here is what $r^{acceptant}$, the vector of cause-specific probabilities, looks like, and we can compare it to r^{lapser} on some subjects:

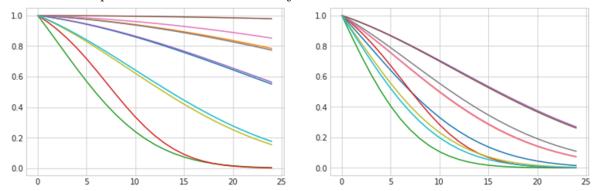


Figure 9: 10 policyholders' survival curve for Figure 10: 10 policyholders' survival curve for $r^{acceptant}$ with Cox model

The effect of various covariates on the survival outcome can be found below:

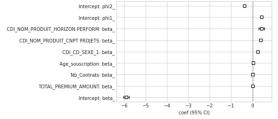
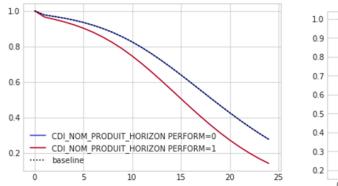
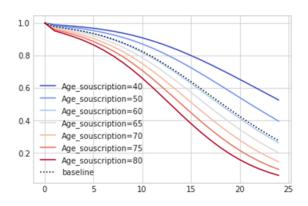



Figure 11: Coefficient plot for r^{lapser}


 $^{^4}$ as it does not tend to 1 as t goes to $+\infty$

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0 5 10 15 20 2

Figure 12: r^{lapser} trajectories for different products

Figure 13: r^{lapser} trajectories by gender

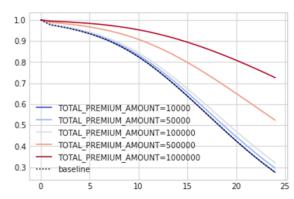


Figure 14: r^{lapser} trajectories for different ages

Figure 15: r^{lapser} trajectories for different face amounts

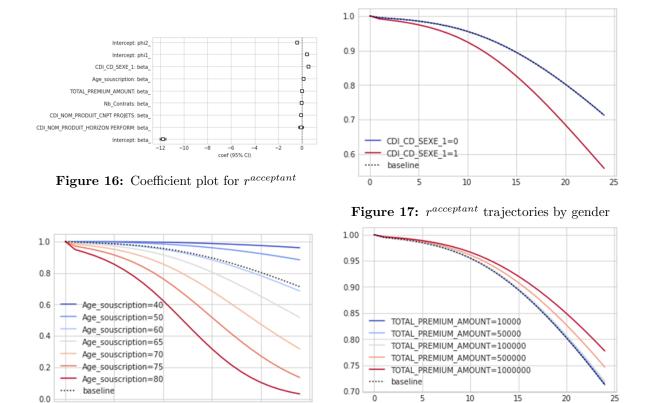


Figure 18: $r^{acceptant}$ trajectories for different ages

Figure 19: $r^{acceptant}$ trajectories for different face amounts

A.2.2 RSF

We obtain better results than Cox in terms of concordance index at the cost of very high computation time for one training with one set of parameters - 5days without parallelisation, 4 hours with - compared to a few seconds for cox model.

Some of the results we obtain are displayed below:

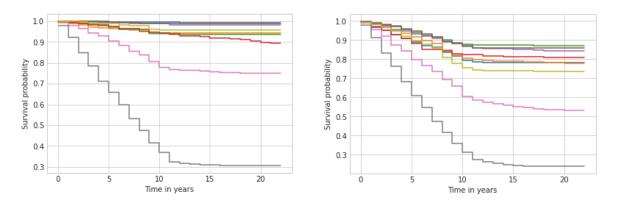


Figure 20: 10 policyholders' survival curve for Figure 21: 10 policyholders' survival curve for $r^{acceptant}$ with RSF

V	Veigl	nt	Feature				
0.3148	±	0.0064	Age_souscription				
0.0100	\pm	0.0008	CDI_CD_SEXE_1				
0.0091	\pm	0.0014	PRODUIT_2				
0.0077	\pm	0.0006	TOTAL_PREMIUM_AMOUNT				
0.0013	\pm	0.0004	Nb_Contrats				
0.0010	\pm	0.0003	PRODUIT_3				

Table 3: Covariates importance for $r^{acceptant}$ with RSF

V	Veigl	$_{ m nt}$	Feature				
0.1838	±	0.0045	Age_souscription				
0.0415	\pm	0.0018	TOTAL_PREMIUM_AMOUNT				
0.0083	\pm	0.0011	CDI_CD_SEXE_1				
0.0026	\pm	0.0013	PRODUIT_2				
0.0022	\pm	0.0006	PRODUIT_3				
0.0020	\pm	0.0006	$Nb_{-}Contrats$				

Table 4: Covariates importance for r^{lapser} with RSF

A.2.3 XGSB

We obtain better results than Cox and slightly better results than RSF in terms of concordance index at the cost of even higher computation time for one training with one set of parameters - 10h with great parallelisation - compared to a few seconds for Cox model. Some of the results we obtain are displayed below:

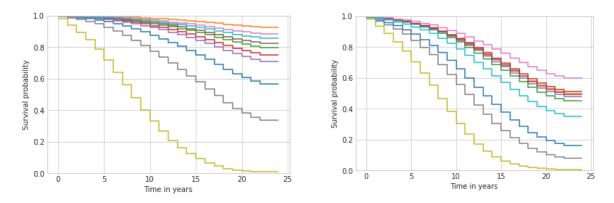


Figure 22: 10 policyholders' survival curve for Figure 23: 10 policyholders' survival curve for $r^{acceptant}$ with GBSM r^{lapser} with GBSM

V	Veigi	nt	Feature				
0.3274	±	0.0071	Age_souscription				
0.0104	\pm	0.0006	TOTAL_PREMIUM_AMOUNT				
0.0100	\pm	0.0008	CDI_CD_SEXE_1				
0.0025	\pm	0.0005	PRODUIT_2				
0.0005	\pm	0.0001	$Nb_{-}Contrats$				
0.0000	\pm	0.0001	PRODUIT_3				

Table 5: Covariates importance for $r^{acceptant}$ with GBSM

V	Veigl	nt	Feature				
0.1872	±	0.0039	Age_souscription				
0.0438	\pm	0.0020	TOTAL_PREMIUM_AMOUNT				
0.0134	\pm	0.0014	PRODUIT_2				
0.0076	\pm	0.0009	CDI_CD_SEXE_1				
0.0051	\pm	0.0006	PRODUIT_3				
0.0011	\pm	0.0004	Nb_Contrats				

Table 6: Covariates importance for r^{lapser} with GBSM

A.2.4 Final survival model

The final concordance index scores are displayed below:

	Concordance Index						
	r^{lapser}	$r^{acceptant}$					
Cox model	$69,\!5\%$	80,7%					
RSF	$71,\!6\%$	83,7%					
GBSM	$73,\!0\%$	84,1%					

Table 7: Survival models comparison)

A.3 Other results

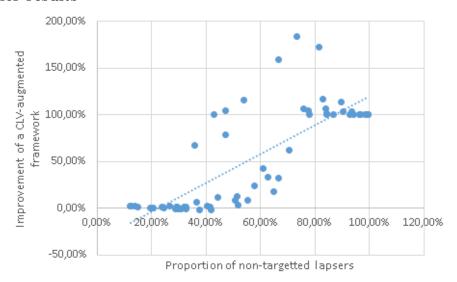


Figure 24: Correlation between the proportion of non-targeted lapsers and the improvement of a CLV-augmented LMS

 $^{^5\}mathrm{Taking}$ the results of XGBoost and excluding LMS n°A-30 that has a very high improvement ratio.

A.4 Complete LMS numerical results

LMS	p	δ	γ	\mathbf{c}	d	${\bf T}$	LMS	p	δ	γ	c	d	Т
A-1	2,50%	0,04%	25%	10	1,50%	5	B-1	2,50%	0,08%	20%	10	1,50%	5
A-2	2,50%	0,04%	25%	10	1,50%	20	B-2	2,50%	0,08%	20%	10	1,50%	20
A-3	2,50%	0,04%	25%	100	1,50%	5	B-3	2,50%	0,08%	20%	100	1,50%	5
A-4	2,50%	0,04%	25%	100	1,50%	20	B-4	2,50%	0,08%	20%	100	1,50%	20
A-5	2,50%	0,04%	5%	10	1,50%	5	B-5	2,50%	0,08%	10%	10	1,50%	5
A-6	2,50%	0,04%	5%	10	1,50%	20	B-6	2,50%	0,08%	10%	10	1,50%	20
A-7	2,50%	0,04%	5%	100	1,50%	5	B-7	2,50%	0,08%	10%	100	1,50%	5
A-8	2,50%	0,04%	5%	100	1,50%	20	B-8	2,50%	0,08%	10%	100	1,50%	20
A-9	2,50%	$0,\!10\%$	25%	10	1,50%	5	B-9	2,50%	$0,\!20\%$	20%	10	1,50%	5
A-10	2,50%	$0,\!10\%$	25%	10	1,50%	20	B-10	2,50%	$0,\!20\%$	20%	10	1,50%	20
A-11	2,50%	$0,\!10\%$	25%	100	1,50%	5	B-11	2,50%	$0,\!20\%$	20%	100	1,50%	5
A-12	2,50%	$0,\!10\%$	25%	100	1,50%	20	B-12	2,50%	$0,\!20\%$	20%	100	1,50%	20
A-13	2,50%	$0,\!10\%$	5%	10	1,50%	5	B-13	2,50%	$0,\!20\%$	10%	10	1,50%	5
A-14	2,50%	$0,\!10\%$	5%	10	1,50%	20	B-14	2,50%	$0,\!20\%$	10%	10	1,50%	20
A-15	2,50%	$0,\!10\%$	5%	100	1,50%	5	B-15	2,50%	$0,\!20\%$	10%	100	1,50%	5
A-16	2,50%	$0,\!10\%$	5%	100	1,50%	20	B-16	2,50%	$0,\!20\%$	10%	100	1,50%	20
A-17	1,50%	0,04%	25%	10	1,50%	5	B-17	1,50%	0,08%	20%	10	1,50%	5
A-18	1,50%	0,04%	25%	10	1,50%	20	B-18	1,50%	0,08%	20%	10	1,50%	20
A-19	1,50%	0,04%	25%	100	1,50%	5	B-19	1,50%	0,08%	20%	100	1,50%	5
A-20	1,50%	0,04%	25%	100	1,50%	20	B-20	1,50%	0,08%	20%	100	1,50%	20
A-21	1,50%	0,04%	5%	10	1,50%	5	B-21	1,50%	0,08%	10%	10	1,50%	5
A-22	1,50%	0,04%	5%	10	1,50%	20	B-22	1,50%	0,08%	10%	10	1,50%	20
A-23	1,50%	0,04%	5%	100	1,50%	5	B-23	1,50%	0,08%	10%	100	1,50%	5
A-24	1,50%	0,04%	5%	100	1,50%	20	B-24	1,50%	0,08%	10%	100	1,50%	20
A-25	1,50%	0,10%	25%	10	1,50%	5	B-25	1,50%	0,20%	20%	10	1,50%	5
A-26	1,50%	$0,\!10\%$	25%	10	1,50%	20	B-26	1,50%	$0,\!20\%$	20%	10	1,50%	20
A-27	1,50%	0,10%	25%	100	1,50%	5	B-27	1,50%	$0,\!20\%$	20%	100	1,50%	5
A-28	1,50%	0,10%	25%	100	1,50%	20	B-28	1,50%	$0,\!20\%$	20%	100	1,50%	20
A-29	1,50%	0,10%	5%	10	1,50%	5	B-29	1,50%	0,20%	10%	10	1,50%	5
A-30	1,50%	0,10%	5%	10	1,50%	20	B-30	1,50%	$0,\!20\%$	10%	10	1,50%	20
A-31	1,50%	0,10%	5%	100	1,50%	5	B-31	1,50%	$0,\!20\%$	10%	100	1,50%	5
A-32	1,50%	0,10%	5%	100	1,50%	20	B-32	1,50%	$0,\!20\%$	10%	100	1,50%	20

Table 8: More LMS

				Accı	ıracy	Retentio	on gain	RG	target	_
N°	time (s)	Model	% target diff	y_i	\widetilde{y}_i	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	Improvement ⁵
		CART		92,3%	85,3%	114 661	219 655	4,48	38,20	91,57%
A-1	4949	RF	$62,\!58\%$	92,9%	$85,\!4\%$	$232\ 314$	287 884	9,82	56,65	$23{,}92\%$
	-0 -0	XGB	3_,3370	$93{,}4\%$	$85,\!8\%$	$243\ 365$	$324\ 952$	9,61	54,64	$33{,}52\%$
		CART		92,3%	89,8%	7 092 097	6 142 119	277,00	353,83	-13,39%
A-2	6111	RF	$26,\!66\%$	92,9%	$90,\!2\%$	$6\ 596\ 374$	5 696 455	278,47	351,02	-13,64%
	0111	XGB	20,0070	$93,\!4\%$	90,9%	$7\ 308\ 721$	$7\ 432\ 688$	288,92	404,84	1,70%
		CART		92,3%	83,3%	- 2 187 622	- 8 224	- 85,52	- 31,09	99,62%
A-3	4603	RF	93,50%	92,9%	$83,\!4\%$	- 1 900 265	$45\ 483$	- 80,18	194,35	102,39%
	XGB	XGB	33,3370	$93{,}4\%$	$83,\!5\%$	- 2 032 650	$77\ 481$	- 80,39	174,44	$103{,}81\%$
		CART		92,3%	86,5%	4 789 814	5 117 844	187,00	577,74	6,85%
A-4	5555	RF	$55,\!37\%$	92,9%	86,4%	$4\ 463\ 796$	$4\ 255\ 175$	188,47	566,05	-4,67%
	0000	XGB	33,3.70	93,4%	$86,\!8\%$	$5\ 032\ 706$	$5\ 433\ 366$	198,92	610,26	7,96%
		CART		92,3%	83,6%	- 514 477	- 112 372	- 20,08	- 86,48	78,16%
A-5	4753	RF	86,72%	92,9%	$83,\!4\%$	- 323 544	- 3 937	- 13,65	- 28,28	98,78%
11 0	1100	XGB	00,1270	$93,\!4\%$	$83,\!3\%$	- 383 004	-	- 15,14	-	100,00%
		CART		92,3%	87,9%	335 810	517 224	13,17	39,91	54,02%
A-6	5803	RF	$44,\!27\%$	92,9%	87,9%	655 350	661 021	27,68	61,13	0,87%
11 0	9009	XGB	44,2170	$93,\!4\%$	$88,\!6\%$	$654\ 219$	$729\ 493$	25,86	58,22	11,51%
		CART		92,3%	83,3%	- 2 816 759	- 10 205	- 110,08	- 384,04	99,64%
A-7	4241	RF	99.09%	92,9%	$83,\!3\%$	- 2 456 122	1 013	- 103,65	66,30	100,04%
11 1	XGB		00,0070	$93,\!4\%$	$83,\!3\%$	- 2 659 020	243	- 105,14	15,92	100,01%
		CART		92,3%	84,0%	- 1 966 473	- 46 323	- 76,83	- 22,31	97,64%
A-8	5164	RF	82,78%	92,9%	84,0%	- 1 477 229	$253\ 885$	- 62,32	149,67	117,19%
11 0	0101	XGB	02,.070	$93{,}4\%$	84,1%	- 1 621 796	273 243	- 64,14	117,83	116,85%
		CART		92,3%	83,7%	- 825 372	- 161 100	- 32,19	- 127,87	80,48%
A-9	4781	RF	77,60%	92,9%	$83,\!4\%$	- 384 736	8 596	- 16,22	32,12	102,23%
	-,	XGB	,,	$93{,}4\%$	$83{,}6\%$	- 498 263	$22\ 337$	- 19,70	$35,\!47$	104,48%
		CART		92,3%	89,7%	4 614 513	4 483 831	180,36	266,33	-2,83%
A-10	6075	RF	29,10%	92,9%	89,9%	$4\ 973\ 929$	$4\ 328\ 724$	210,01	280,90	-12,97%
		XGB	-,	$93,\!4\%$	$90,\!7\%$	$5\ 354\ 770$	$5\ 368\ 917$	211,69	$301,\!57$	$0,\!26\%$
		CART		92,3%	83,2%	- 3 127 655	- 118 886	- 122,19	- 2 230,39	96,20%
A-11	4506	RF	$96,\!56\%$	92,9%	$83,\!3\%$	- 2 517 315	1 340	- 106,22	87,71	100,05%
		XGB	33,3375	$93{,}4\%$	$83,\!3\%$	- 2 774 278	736	- 109,70	52,00	100,03%
		CART		92,3%	86,2%	2 312 231	3 310 314	90,36	412,71	43,17%
A-12	5534	RF	57,93%	92,9%	86,1%	$2\ 841\ 351$	$3\ 129\ 652$	120,01	465,74	10,15%
		XGB		$93{,}4\%$	$86,\!6\%$	$3\ 078\ 755$	$3\ 825\ 920$	121,69	$475,\!53$	$24{,}27\%$
		CART		92,3%	83,3%	- 1 201 626	- 163 056	- 46,87	- 1 838,44	86,43%
A-13	4640	RF	92,91%	92,9%	$83,\!3\%$	- 717 620	- 5 339	- 30,28	- 354,24	99,26%
		XGB	- ,	$93{,}4\%$	$83,\!3\%$	- 875 378	508	- 34,60	16,26	$100{,}06\%$
		CART		92,3%	87,3%	- 1 476 651	- 831 019	- 57,49	- 77,99	43,72%
A-14	5739	RF	$47,\!12\%$	92,9%	86,0%	- 380 683	126532	- 16,03	21,14	$133,\!24\%$
		XGB	1, 12	$93{,}4\%$	$85,\!5\%$	- 644 389	$29\ 382$	- 25,47	7,10	104,56%
		CART		92,3%	83,3%	- 3 503 908	- 97 263	- 136,87	- 2 354,34	97,22%
A-15	4216	RF	99,61%	92,9%	$83,\!3\%$	- 2 850 198	-	- 120,28	-	$100,\!00\%$
		XGB	,	$93,\!4\%$	$83,\!3\%$	- 3 151 393	-	- 124,60	-	$100,\!00\%$
		CART		92,3%	83,8%	- 3 778 933	- 734 773	- 147,49	- 418,58	80,56%
A-16	5096	RF	$84,\!46\%$	$92,\!9\%$	$83,\!5\%$	- 2 513 261	8 914	- 106,03	20,13	$100,\!35\%$
		XGB	- ,,-	$93{,}4\%$	$83{,}6\%$	- 2 920 405	$34\ 492$	- 115,47	45,75	$101{,}18\%$

				Accı	ıracy	Retenti	on gain	RG/t	arget	_
N°	time (s)	Model	% target diff	y_i	$ ilde{ ilde{y}}_i$	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	Improvement ⁵
		CART		92,3%	89,5%	5 100 456	4 899 479	199,11	279,88	-3,94%
A-17	5390	RF	28,74%	92,9%	89,8%	$4\ 635\ 482$	$4\ 226\ 648$	195,69	276,06	-8,82%
11 11	3300	XGB	20,. 170	$93,\!4\%$	$90,\!2\%$	$5\ 196\ 736$	$5\ 138\ 253$	$205,\!40$	299,27	-1,13%
		CART		92,3%	91,3%	52 090 240	47 706 070	2 034,15	2 170,64	-8,42%
A-18	6452	RF	$12,\!12\%$	92,9%	91,9%	46 171 160	42 049 900	1 949,05	2 082,36	-8,93%
11 10	0402	XGB	12,1270	93,4%	$92,\!5\%$	$51\ 629\ 950$	$52\ 606\ 740$	2 040,95	2 339,70	1,89%
		CART		92,3%	85,2%	2 798 173	3 182 143	109,11	481,60	13,72%
A-19	4913	RF	64,89%	92,9%	85,2%	2 502 903	2 743 070	105,69	554,76	9,60%
11 13	XGB		04,0070	93,4%	$85,\!6\%$	2920720	$3\ 438\ 303$	115,40	576,64	17,72%
		CART		92,3%	89,6%	49 787 960	45 366 730	1 944,15	2 616,32	-8,88%
A-20	6160	RF	29,03%	92,9%	90,0%	44 038 580	39 947 830	1 859,05	2 547,89	-9,29%
11-20	0100	XGB	23,0370	93,4%	90,6%	49 353 940	49 789 670	1 950,95	2 796,17	0,88%
		CART		92,3%	86,8%	482 682	544 887	18,85	53,99	12,89%
A-21	5079	RF	51,69%	92,9%	86,8%	557 090	554 195	23,52	65,17	-0,52%
A-21	5015	XGB	31,0370	93,4%	87,1%	607 670	624 556	24,01	64,79	2,78%
-		CART		92,3%	90,2%	9 335 438	8 527 444	364,60	454,78	-8,66%
1 22	6199	RF	DE	92,9%	90,6%	8 570 307	7 931 029	361,80	460,42	-7,46%
A-22	0199	XGB	23,94%	93,4%	91,2%	9 518 466	9 581 934	376,27	501,56	0,67%
		CART		92,3%	83,6%	- 1 819 600	135 305	- 71,15	121.80	107,44%
4 99	4601	RF	90 5107	92,9%	83,5%	- 1 575 489	159 620	- 66,48	215,65	110,13%
A-23	4601	XGB	$89,\!51\%$	93,4%	83,7%	- 1 668 346	228 226	- 65,99	208,69	113,68%
		CART		92,3%	87,0%	7 033 156	7 124 100	274,60	680,08	1,29%
1 04	FCFO	RF	EO 0907	92,9%	87,0%	6 437 729	6 364 477	271,80	711,89	-1,14%
A-24	5650	XGB	$50,\!83\%$	93,4%	87,4%	7 242 450	7 840 770	286,27	771,71	8,26%
		CART		92,3%	89,2%	4 160 423	3 882 623	162,44	241,06	-6,68%
4.05	F070	RF	90.0507	92,3% $92,9%$	89,5%	4 100 423	3 666 219	169,65	241,00 $249,54$	-8,76%
A-25	5379	XGB	30,97%	93,4%	90,0%	4 455 108	4 410 629	176,09	267,87	-1,00%
		CART		92,3%	91,3%	49 612 660	45 948 690	1 937,51	2 083,30	-7,39%
1 00	0.410	RF	10 5007	92,9%	91,9%	49 512 500	40 814 960	1 880,59	2 029,68	-8,38%
A-26	6410	XGB	$12,\!52\%$	93,4%	92,5%	49 676 000	50 549 740	1 963,72	2 260,20	1,76%
		CART		92,3%	85,1%	1 858 140	2 575 538	72,44	442,86	38,61%
1 07	4007	RF	CC C507	92,9%	85,0%	1 885 853	2 373 338	79,65	531,25	26,57%
A-27	4887	XGB	$66,\!67\%$	93,4%	85,4%	2 179 093	2 879 880	86,09	544,35	32,16%
				92,3%						
		CART RF	20 1004	92,3% $92,9%$	89,4% $89,9%$	47 310 370 42 416 140	43 168 880 38 573 620	1 847,51 1 790,59	2 519,41 2 504,61	-8,75% -9,06%
A-28	6047	XGB	$29,\!42\%$	93,4%	90.5%	47 399 990	47 812 830	1 873,72	2 721,63	0,87%
		CART		92,3%	86,5%	- 204 467 163 014	- 5 098	- 7,95	- 1,66	97,51%
A-29	5070	$_{ m XGB}$	53,79%	92,9% $93,4%$	86,1% $86,8%$	115 297	273 435 248 982	6,90 $4,55$	40,30 $28,64$	67,74% $115,95%$
-										
		CART		92,3%	90,3%	7 522 978 7 534 275	7 058 487	293,94	382,06 $411,80$	-6,17%
A-30	6179	$_{ m XGB}$	$24{,}36\%$	92,9% $93,4%$	90,6% 91,2%	8 219 857	7 068 293 8 265 167	318,08 $324,94$	442,88	-6,18% $0,55%$
		CART	01	92,3%	83,6%	- 2 506 749	- 139 983 72 101	- 97,95	- 121,44	94,42%
A-31	4627	$_{ m XGB}$	$90,\!18\%$	92,9% $93,4%$	83,5% $83,6%$	- 1 969 564 - 2 160 719	73 101 76 641	- 83,10 - 85,45	111,49 $93,28$	103,71% $103,55%$
		CART		92,3%	86,8%	5 220 695	5 811 833	203,94	583,55	11,32%
A-32	5679	$_{ m XGB}$	$51{,}25\%$	92,9%	86,9% 87.4%	5 401 696	5 269 505 6 682 230	228,08	605,69	-2,45%
		AGD		93,4%	87,4%	5 943 841	6 682 230	234,94	670,03	12,42%

3.70			~	Accı	ıracy	Retenti	ion gain	RG	target/	
N°	time (s)	Model	% target diff	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	Improvement ⁵
-		CART		92,3%	84,0%	- 627 165	- 148 913	- 24,46	- 65,19	76,26%
B-1	4778	RF	75,89%	$92,\!9\%$	83,7%	- 280 855	11 973	- 11,84	9,57	$104,\!26\%$
		XGB	,	93,4%	84,1%	- 366 103	$25\ 099$	- 14,47	$12,\!30$	$106,\!86\%$
		CART		92,3%	89,7%	3 862 156	3 397 247	150,95	203,11	-12,04%
B-2	6074	RF	29,70%	92,9%	89,9%	$4\ 127\ 224$	$3\ 550\ 730$	174,26	230,67	-13,97%
	-	XGB	- /	93,4%	$90,\!6\%$	$4\ 451\ 686$	$4\ 408\ 819$	175,99	$250,\!17$	-0.96%
		CART		92,3%	83,2%	- 2 929 448	- 85 465	- 114,46	- 1 482,06	97,08%
B-3	4528	RF	$96,\!60\%$	$92,\!9\%$	$83,\!3\%$	- 2 413 433	3724	- 101,84	- 108,33	100,15%
		XGB	,	93,4%	$83,\!3\%$	- 2 642 119	9 092	- 104,47	93,79	100,34%
		CART		92,3%	85,9%	1 559 874	2 471 262	60,95	329,63	58,43%
B-4	5476	RF	60,93%	92,9%	85,8%	1994645	$2\ 517\ 111$	84,26	$422,\!45$	26,19%
		XGB	,	$93,\!4\%$	$86,\!3\%$	$2\ 175\ 670$	$3\ 089\ 897$	85,99	422,77	$42,\!02\%$
		CART		92,3%	83,4%	- 857 439	- 159 856	- 33,45	- 218,16	81,36%
B-5	4708	RF	84,33%	92,9%	$83,\!3\%$	- 484 459	40	- 20,44	7,23	100,01%
		XGB	- ,	$93,\!4\%$	$83,\!3\%$	- 596 203	897	- 23,57	46,96	100,15%
		CART		92,3%	88,8%	705 721	922 490	27,69	60,21	30,72%
B-6	5906	RF	36,63%	$92,\!9\%$	88,9%	$1\ 352\ 182$	$1\ 269\ 349$	57,11	97,63	-6,13%
-		XGB	,	$93,\!4\%$	$89,\!6\%$	$1\ 342\ 882$	$1\ 428\ 722$	53,09	96,76	$6,\!39\%$
		CART		92,3%	83,2%	- 3 159 722	- 39 633	- 123,45	- 1 230,61	98,75%
B-7	4400	RF	98,49%	$92,\!9\%$	$83,\!3\%$	- 2 617 037	1 024	- 110,44	0,56	100,04%
		XGB	,	93,4%	$83,\!3\%$	- 2 872 219	295	- 113,57	19,31	$100,\!01\%$
		CART		92,3%	84,6%	- 1 596 562	169 852	- 62,31	41,78	110,64%
B-8	5278	RF	$73,\!18\%$	92,9%	84,6%	- 780 396	$637\ 625$	- 32,89	194,52	181,71%
_		XGB	,	$93,\!4\%$	85,0%	- 933 133	780 845	- 36,91	188,79	$183,\!68\%$
		CART		92,3%	83,3%	- 2 380 789	- 113 444	- 92,86	- 840,25	95,24%
B-9	4601	RF	$94,\!12\%$	92,9%	$83,\!3\%$	- 1 403 468	317	- 59,21	7,96	$100,\!02\%$
		XGB	01,1270	$93,\!4\%$	$83,\!3\%$	- 1 724 731	3 980	- 68,17	$149,\!44$	$100,\!23\%$
		CART		92,3%	89,0%	- 760 449	429 196	- 29,35	29,80	156,44%
B-10	5947	RF	35,98%	92,9%	$88,\!5\%$	$1\ 175\ 540$	$1\ 354\ 131$	49,71	118,11	15,19%
		XGB	,	$93,\!4\%$	$89,\!8\%$	871 455	$1\ 456\ 080$	34,48	$96,\!25$	67,09%
		CART		92,3%	83,3%	- 4 683 072	- 48 985	- 182,86	- 1 186,22	98,95%
B-11	4229	RF	99,16%	92,9%	$83,\!3\%$	- 3 536 046	-	- 149,21	-	$100,\!00\%$
		XGB	,	$93,\!4\%$	$83,\!3\%$	- 4 000 747	-	- 158,17	-	$100,\!00\%$
		CART		92,3%	85,0%	- 3 062 732	- 388 289	- 119,35	- 80,44	87,32%
B-12	5391	RF	66,76%	92,9%	84,7%	- 957 039	$710\ 688$	- 40,29	$220,\!55$	$174{,}26\%$
		XGB	,	$93,\!4\%$	$85,\!3\%$	- 1 404 561	834 198	- 55,52	$163,\!88$	$159,\!39\%$
		CART		92,3%	83,3%	- 2 358 179	- 159 922	- 91,98	- 2 793,13	93,22%
B-13	4493	RF	96,30%	$92,\!9\%$	$83,\!3\%$	- 1 384 098	-	- 58,40	-	$100,\!00\%$
		XGB	,	$93,\!4\%$	$83,\!3\%$	- 1 705 577	-	- 67,42	-	100,00%
		CART		$92,\!3\%$	87,8%	- 3 251 762	- 1 761 821	- 126,63	- 143,20	45,82%
B-14	5851	RF	42,98%	$92{,}9\%$	$86,\!4\%$	- 1 013 089	79 273	- 42,69	11,90	$107{,}82\%$
		XGB		$93,\!4\%$	$83,\!3\%$	- 1 582 006	4 396	- 62,52	287,68	100,28%
		CART		92,3%	83,3%	- 4 660 462	- 38 969	- 181,98	- 2 075,03	99,16%
B-15	4040	RF	99,67%	$92{,}9\%$	$83,\!3\%$	- 3 516 676	-	- 148,40	-	$100,\!00\%$
		XGB	<u>. </u>	$93,\!4\%$	$83,\!3\%$	- 3 981 592	161	- 157,42	10,53	100,00%
		CART		92,3%	84,2%	- 5 554 044	- 1 491 522	- 216,63	- 549,23	73,15%
B-16	5182	RF	77,97%	$92{,}9\%$	$83{,}6\%$	- 3 145 668	$52\ 475$	- 132,69	84,54	$101,\!67\%$
		XGB	<u> </u>	$93,\!4\%$	$83,\!3\%$	- 3 858 022	-	- 152,52	=	100,00%

B-17	***	time (s)	Model	% target diff	Accuracy		Retention gain		RG/target		. 5
B-17 5324 RF	N°				y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	y_i	$ ilde{y}_i$	Improvement ⁵
CART	B-17	5324	CART	32,66%	92,3%	88,9%	3 361 471	3 037 200	131,25	191,31	-9,65%
B-18						$89{,}3\%$			$136,\!86$,	,
B-18			XGB		$93,\!4\%$	89,6%	3 596 593	3 546 671	142,15	222,04	-1,39%
CART	B-18	6411	CART	13,83%	$92,\!3\%$	91,1%	$39\ 860\ 670$	$37\ 695\ 680$	$1\ 556,\!66$	1778,71	-5,43%
B-19									,	,	
B-19			XGB		93,4%	92,0%	39 908 670	40 886 810	1 577,61	1 848,71	2,45%
CART	B-19	4853		70,34%		$84{,}7\%$	$1\ 059\ 189$	$1\ 813\ 631$,	$392,\!14$	
B-20											
B-20			XGB			85,0%	1 320 578	2 141 271	52,15	482,34	62,15%
B-21 SZGB		5973		31,76%			$37\ 558\ 390$		$1\ 466,66$	$2\ 125,97$,
B-21 5228 RF	B-20								,	,	
B-21 5228 RF			XGB				37 632 650	38 008 480	1 487,61	2 277,17	1,00%
XGB		5228							,		
CART	B-21										
B-22 6296 RF 19,52% 92,9% 91,1% 17 182 100 15 732 340 725,34 859,29 -8,44% XGB 33,36% 91,5% 19 071 370 19 050 020 753,90 939,00 -0,11% B-23 4746 RF 81,36% 92,9% 84,1% -1 165 404 458 223 -45,60 172,83 139,32% 164,39% XGB 81,36% 92,9% 84,0% -855 770 525 335 -36,09 288,55 161,39% 172,45% 164,54% -8,90 871 645 445 -35,26 310,86 172,45% 172,			XGB			88,7%	1 385 145	1 356 864	54,74	104,76	-2,04%
CART	B-22	6296		$19{,}52\%$					$730,\!55$,	
B-23									,	,	
B-23			XGB			91,5%	19 071 370	19 050 020	753,90	939,00	-0,11%
CART	B-23	4746		81,36%	,				,		
CART									,		
B-24 5845 RF			XGB		93,4%	84,1%	- 890 871	645 445	- 35,26	310,86	172,45%
CART		5845		40,47%					,	,	,
CART	B-24										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			XGB		-		16 795 360	17 144 260	663,90	1 247,50	2,08%
Name		5274		37,42%					,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-25										
B-26 6425 RF XGB 14,83% 92,9% 91,6% 92,0% 36 328 340 36 30 1 386,17 1 543,12 1 688,53 1,31% -8,68% 93,4% 92,0% 36 328 440 36 803 630 1 436,10 1 688,53 1,31% B-27 4811 RF RF XGB 73,92% 92,9% 84,3% - 694 436 751 404 - 27,16 226,99 208,20% 93,4% 84,7% - 38 050 1 253 252 - 1,55 345,94 3393,68% B-28 5995 RF XGB 32,61% 92,9% 89,1% 32 935 780 29 342 930 1 286,37 1 847,71 -10,91% 329,37 84,00 00 1 346,10 2 094,90 0,99% 34 052 420 34 390 060 1 346,10 2 094,90 0,99% 34 052 420 34 3											
XGB		6425		14,83%					,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-26								,	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
B-28 XGB 93,4% 84,7% - 38 050 1 253 252 - 1,55 345,94 3393,68% B-28 5995 RF 32,61% 92,3% 89,1% 32 935 780 29 342 930 1 286,37 1 847,71 -10,91% B-28 5995 RF 32,61% 92,9% 89,4% 30 702 790 27 725 620 1 296,17 1 933,38 -9,70% XGB 93,4% 90,0% 34 052 420 34 390 060 1 346,10 2 094,90 0,99% CART 92,3% 87,3% - 363 861 55 985 - 14,12 3,38 115,39% B-29 5143 RF 47,03% 92,9% 87,4% 377 170 488 284 15,95 49,62 29,46% XGB 93,4% 88,0% 275 772 491 567 10,89 44,89 78,25% B-30 6243 RF 20,47% 92,9% 91,1% 14 816 830 13 378 460 625,54 743,34 -9,71% B-31 4730 <td rowspan="3">B-27</td> <td rowspan="3">4811</td> <td></td> <td rowspan="3">73,92%</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>	B-27	4811		73,92%					,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
XGB 93,4% 90,0% 34 052 420 34 390 060 1 346,10 2 094,90 0,99% B-29 5143 RF 47,03% 92,9% 87,4% 377 170 488 284 15,95 49,62 29,46% XGB 93,4% 88,0% 275 772 491 567 10,89 44,89 78,25% B-30 6243 RF 20,47% 92,9% 91,1% 14 747 500 13 838 380 576,23 690,22 -6,16% B-30 6243 RF 20,47% 92,9% 91,1% 14 816 830 13 378 460 625,54 743,34 -9,71% XGB 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14% B-31 4730 RF 83,83% 92,9% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71% B-32 5865 RF 41,41% 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% <tr< td=""><td rowspan="3">B-28</td><td rowspan="3">5995</td><td></td><td rowspan="3">32,61%</td><td></td><td>,</td><td></td><td></td><td>,</td><td></td><td>,</td></tr<>	B-28	5995		32,61%		,			,		,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,		,
B-29 5143 RF XGB 47,03% 92,9% 87,4% 377 170 488 284 15,95 49,62 29,46% 93,4% 88,0% 275 772 491 567 10,89 44,89 78,25% CART 92,3% 90,7% 14 747 500 13 838 380 576,23 690,22 -6,16% XGB 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14% CART 92,3% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71% XGB 83,83% 92,9% 83,7% - 1 755 409 139 545 - 74,05 102,66 107,95% XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%						,					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-29	5143		47,03%							
B-30 6243 RF 20,47% 92,9% 91,1% 14 747 500 13 838 380 576,23 690,22 -6,16% RF 20,47% 92,9% 91,1% 14 816 830 13 378 460 625,54 743,34 -9,71% 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14% CART 92,3% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71% RF 83,83% 92,9% 83,7% - 1 755 409 139 545 - 74,05 102,66 107,95% XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%											
B-30 6243 RF XGB 20,47% 92,9% 91,1% 14 816 830 13 378 460 625,54 743,34 -9,71% 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14% B-31 4730 RF 83,83% 92,9% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71% XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%			XGB				275 772	491 567	10,89	44,89	78,25%
B-31 A730 RF XGB 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14% B-31 4730 RF 83,83% 92,9% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 XGB 81,71% 1755 409 139 545 - 74,05 102,66 107,95% 106,61 CART 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% 12 684 250 11 381 260 535,54 971,28 -10,27%	B-30	6243		20,47%							
B-31 4730 RF 83,83% 92,9% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71% RF 83,83% 92,9% 83,7% - 1 755 409 139 545 - 74,05 102,66 107,95% XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%										,	
B-31 4730 RF XGB 83,83% 92,9% 83,7% - 1 755 409 139 545 - 74,05 102,66 107,95% 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%			XGB				16 146 490	16 169 440	638,30		
XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71% CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%									,		
CART 92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04% B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%	B-31	4730		$83{,}83\%$							
B-32 5865 RF 41,41% 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%											
	B-32	5865		41,41%							
TOD									,		
XGB 93,4% 88,8% 13 870 470 14 101 470 548,30 1 048,38 1,67%			AGB		93,4%	88,8%	13 870 470	14 101 470	548,30	1 048,38	1,67%

⁵In order to account for negative retention gains, the improvement is computed with an absolute value for the denominator. This leads to a rather unintuitive improvement measure whenever one of the models yields negative RG and the other positive RG.