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A B S T R A C T
A retention strategy based on an enlightened lapse modelization can be a powerful profitability lever
for a life insurer. Some machine learning models are excellent at predicting lapse, but from the insurer’s
perspective, predicting which policyholder is likely to lapse is not enough to design a retention strategy.
Changing the classical classification problem to a regression one with an appropriate validation metric
based on Customer Lifetime Value (CLV) has recently been proposed. In our paper, we suggest several
improvements and apply them to a sizeable real-world life insurance dataset.
We include the risk of death in the study through competing risk considerations in parametric and
tree-based models and show that further individualization of the existing approach leads to increased
performance. We show that survival tree-based models can outperform parametric approaches and
that the actuarial literature can significantly benefit from them. Then, we compare how this framework
leads to increased predicted gains for the insurer regardless of the retention strategy. Finally, we discuss
the benefits of our modelization in terms of commercial and strategic decision-making for a life insurer.

1. Introduction
In life insurance, « lapse risk » or « persistency risk »

is the risk that the policyholder will cancel the contract at
a time other than when the issuer expected when pricing
the contract (KPMG (2020)). This risk is not considered an
insurance risk because the payment to the policyholder "is
not contingent on an uncertain future event that adversely
affects the policyholder". However, lapse management is
still undoubtedly a primary concern for life insurers. Lapses
may substantially affect a company’s solvency, its future
profits and cash flows (Buchardt (2014); Buchardt et al.
(2015)) or its Asset and Liabilities Management (ALM)
(Kim (2005); Gatzert and Schmeiser (2008); Eling and
Kochanski (2013); Eling and Kiesenbauer (2014)). The
importance of measuring lapse and churn behaviours is
global; it goes from yielding individual estimations of the
Customer Lifetime Values (CLV) to being an estimator of
a firm’s profitability (Gupta and Lehmann (2006); Gupta
(2009)) or strength (Ascarza et al. (2018)). Therefore for
a life insurer, an enlightened lapse management strategy
(LMS) is critical for successful monitoring and steering.
Part of the literature on lapse management adopts an economic-
centred point of view (Dar and Dodds (1989); Kuo et al.
(2003); Kagraoka (2005); Cox and Lin; Kiesenbauer (2012);
Russell et al. (2013); Sirak (2015); Vasudev et al.; Nolte and
Schneider (2017); Poufinas and Michaelide (2018); Yu et al.
(2019)); we refer the reader to the complete bibliometric
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analysis on this topic by Shamsuddin et al. (2022) for a sum-
marized view of all these references. This economic-centred
research aims to determine lapse factors like interest rates,
gross domestic product, or unemployment rates. They are
driven by economic hypotheses such as the emergency fund
hypothesis (lapsing is a way of constituting an emergency
fund), the policy replacement hypothesis (lapsing will occur
when one changes its policy) or the interest rate hypothesis
(lapsing depends strongly on rate change and arbitration).
On the other hand, a large part of the literature investigates
the individual determinants of lapse with policyholder-
centred approaches. Micro-oriented features such as poli-
cyholder’s personal information or the policy characteristics
have shown to give valuable insights into lapse behaviour
(Renshaw and Haberman (1986); Milhaud et al. (2011);
Eling and Kiesenbauer (2014); Hwang et al. (2022)). Ćurak
et al. (2015) as well as Gemmo and Götz (2016)’s works
indicate that policyholders’ features such as age and the
number of beneficiaries are significant lapse factors, whereas
Sirak (2015) dismissed those results. More recently, Loisel
et al. (2021) proposed a comparison of lapse management
strategies based on an innovative evaluation metric derived
from the Customer Lifetime Value (CLV). Hu et al. (2021)
investigated the benefits of incorporating spatial analysis
in lapse modelling, and Azzone et al. (2022) showed with
an approach based on random forests that microeconomic
features such as the company’s commercial approach for
instance - is determining in the lapse decision. In contrast,
macro-economical features only have a limited effect. This
variety of results – sometimes contradicting each other –
demonstrates the active interest in this research problem.
This paper focuses on lapse management strategy and re-
tention targeting. As in Ascarza et al. (2018); Loisel et al.
(2021), our goal is not only to model the lapse behaviour
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CLV-based lapse management strategy

but rather to select a retention strategy that would create
more profitable policyholders whether the strategy targets
them or not. This work shows that a well-chosen strategy,
based on individualized CLV and directed toward a well-
chosen target, increases the insurer’s expected profitability.
A critical concept that motivates many CLV-driven deci-
sions is that customers should be judged as assets based on
their future profitability for the insurer. Thus, since retention
often serves as the basis for CLV modelizations (Gupta
et al. (2006); Donkers et al. (2007); Lemmens and Gupta
(2020) - sometimes specifically designed for targeting tasks
(von Mutius and Huchzermeier (2021)) - and since CLV
considerations should drive retention management, it seems
natural to extend the existing life insurance application
linking those topics together. We make decision-making a
central concern of our work and suggest proactive lapse
management tools allowing the insurer to undertake actions
to prevent the causes of lapse; that is opposed to a reactive
management approach where decisions are taken after lapses
and aim at recapturing lost policyholders.
The goal of this paper is to create an individualized CLV
model that will be used to enhance classical binary churn
models. We will then have a model for lapse management
strategy and retention targeting that we further improve with
tree-based survival analysis and competing risks consider-
ations. The global framework is directly inspired by Loisel
et al. (2021). We try in this paper to build from that existing
work and bring our contributions and extensions to that topic
without dismantling the building blocks it represents. We
model an individual future CLV with a survival model for
which the risks of death and lapse are treated as mutually
exclusive competing risks. For this purpose, we introduce
parametric approaches - Cox cause-specific and subdis-
tribution models - as well as tree-based survival models
- Random Survival Forest (RSF) and Gradient boosting
survival analysis. We focus here on tree-based models
as they can often be considered state-of-the-art models
(Grinsztajn et al. (2022)). Thus we introduce tree-based
machine learning algorithms for binary prediction, including
Classification and Regression Tree (CART), Random forests
(RF), and Extreme Gradient Boosting (XGBoost) to lapse
behaviour modelling. CART and XGBoost (Milhaud et al.
(2011); Loisel et al. (2021)) were used in the literature for
lapse modelling but have yet to be applied to predicting
life insurance lapses in a competing risk setting. To our
knowledge, while Random Survival Forest has been used for
churn prediction recently (Routh et al. (2021)), both RSF and
Gradient boosting survival analysis have never been used for
that purpose before in an actuarial context. Our contribution
to the actuarial literature is twofold. First, we detail a two-
step lapse management modelization: we fit parametric and
tree-based competing risk individual survival models to
estimate individualized future CLVs that are part of an
evaluation metric for tree-based lapse management models.
Second, this work includes a business-oriented discussion
of the results achieved by this framework, which is missing

from existing similar approaches.
The results and discussions show that a CLV-based lapse
management strategy very often outperforms a more clas-
sical binary classification approach, even with competing
risks and individualized considerations. When the latter
yields profitable retention gain, the former can produce
higher profits, up to more than 60%. If a loss-inducing
retention strategy is considered, our methodology limits the
loss considerably, often setting 0 as a floor limit or even
turning it into a profit-inducing retention strategy. Sensitivity
analysis explores the influence of conjectural and structural
parameters.
The rest of this paper is structured as follows. We briefly
outline the data used in our study in Section 2. In Section
3, we then introduce the binary classification models we
selected and detail our study’s methodology, describing
the classical and CLV-based performance measures and
discussing substantial parametrization improvements over
existing approaches. Then, Section 4 details our two-step
methodology, with the parametric and non-parametric mod-
elizations of individual survival predictions, in a competing
risks framework and then their implementation in the tree-
based classification approaches considered. Section 5 is
dedicated to presenting the real-life application we con-
sidered and the different results it produces. Those results
are analyzed and discussed in Section 6 with commercial
and strategical decision-making orientations. Eventually,
Section 7 concludes this paper.

2. Data
We apply our framework to a real-world insurance

portfolio. For privacy reasons, all the data, statistics, product
names and perimeters presented in this paper have been
either anonymized or modified. All analyses, discussions
and conclusions remain unchanged.
We illustrate our methodology with a life insurance portfolio
from a french insurer contracted between 1997 and 2018.
Each record in the data set represents a unique policy for a
unique policyholder. In the following sections, we will often
refer to a unique pair of policy and policyholder by the term
"subject". The dataset contains 251,325 rows with 248,737
unique policies and 235,076 unique policyholders. It means
that some policies are shared between several policyholders
and that one individual can detain several insurance policies.
The dataset contains 43 covariates described in Table 1.
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Table 1
Data set description

Covariates (Numerical, Categorical, Date) Description

ID
CDI_ID_PERSONNE Policyholder (PH) unique ID
CDI_ID_CONTRAT Policy unique ID

PH-level informations

CDI_DT_NAISSANCE PH’s birth date (main PH when several poliholders owns one policy)
Age_souscription PH’s age at subscription
Nb_Contrats Number of different policies owned by the policyholder
CDI_CD_SEXE PH’s gender (1=Female; 2=Male; other=Non precised)
CDI_DESTINATAIRE_COURRIER Anonymised PH’s name
CDI_NUM_ET_NOM_VOIE Anonymised PH’s adress
CDI_CD_POSTAL Anonymised PH’s post code
CDI_COMMUNE Anonymised PH’s city of residence
CDI_TOP_ASSURE Binary: 1 if PH is the main PH on the policy, 0 otherwise

Policy-level informations

CDI_TYPE_PRODUIT Type of product ("Top-end product" or "Classical product")
CDI_NOM_PRODUIT Name of life insurance product ("Product 1", "Product 2" or "Product 3")
CDI_PARTENAIRE Name of the insurance distributor
CDI_DATE_DEB_CONTRAT Policy’s start date
CDI_DATE_FIN_CONTRAT Policy’s end date
START_YEAR Policy’s start year
END_YEAR Policy’s end year
SENIORITY Policy’s seniority (final seniority if the policy is ended, current seniority otherwise)
STATE Policy’s state ("Active", "Lapsed", or "Death" if the policy ended following PH’s death)
YEAR Last year of observation

External data DISCOUNT RATE Discount rate corresponding to the last year of observation

Policy’s cumulated financial flows

TOTAL_PREMIUM_AMOUNT Total face amount of the policy
TOTAL_EURO_PREMIUM_AMOUNT Face amount of the policy in euros
TOTAL_UC_PREMIUM_AMOUNT Face amount of the policy in units of account
ARBITRATION_EURO Cumulated arbitration amount of the policy in euros
ARBITRATION_UC Cumulated arbitration amount of the policy in units of account
FEES_EURO Cumulated fees amount of the policy in euros
FEES_UC Cumulated fees amount of the policy in units of account
OTHER_EURO Cumulated other part of the face amount of the policy in euros
OTHER_UC Cumulated other part of the face amount of the policy in units of account
PREMIUM_EURO Cumulated payments amount of the policy in euros
PREMIUM_UC Cumulated payments amount of the policy in units of account
PROFIT SHARING_EURO Cumulated profit sharing amount of the policy in euros
PROFIT SHARING_UC Cumulated profit sharing amount of the policy in units of account
CLAIM_EURO Cumulated partial or total lapsed amount of the policy in euros
CLAIM_UC Cumulated partial or total lapsed amount of the policy in units of account

Covariates derived from financial flows

%TOTAL_UC_PREMIUM_AMOUNT Percentage of the face amount in units of account
%TOTAL_EURO_PREMIUM_AMOUNT Percentage of the face amount in euros
%CLAIM_UC Percentage of the face amount in units of account that was lapsed
%CLAIM_EURO Percentage of the face amount in euros that was lapsed
%CLAIM Percentage of the total face amount that was lapsed

Target covariate EVENT Policy’s state (0=Active, 1=Lapsed, 2 ended following PH’s death)

The data set represents policies that are majority owned
by men (57.4%) for a mean censored seniority time of 13.4
years. Three products are present in the dataset. Product one
was chosen by 72% of policyholders, product 2 by 25% and
product 3 by 3%.
Regarding their state, 61% of the policies are still active,
22% lapsed, and 17% ended after the PH’s death. We chose
here to present the distribution of the variable SENIORITY
as it is the response variable in our survival models. Its mod-
elization has a critical influence on CLV, thus, on our lapse
management strategy framework. We also chose to show the
distribution of the variable TOTAL PREMIUM AMOUNT
representing the most recent observed face amount for every
subject, as it is a known determinant of lapse behaviour.
We are aware that this covariate is a rather dynamic one
as its value is updated at every payment, total or partial
lapse, profit sharing, arbitration or even fees movements on
a policy, and only considering its most recent value ignores
a large part of the insights it can provide. Without any better
option, we can only use TOTAL PREMIUM AMOUNT as it
is and defer any dynamic considerations for future work.

The seniorities and most recent face amount recorded before
the potential end of the policy are distributed as in Figure 1:

Figure 1: Seniorities and face amounts distributions
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Without further analyzing the data, we can note several
things. First, we can see that the mean censored seniority
of 13.4 years is not equally distributed among our subjects.
Active contracts tend to be older than lapsed ones, them-
selves older than policies that ended with the policyholder’s
death. That emphasizes the importance of several contribu-
tions, and the apparent difference in seniority regarding the
cause of the policy’s termination encourages a competing
risks approach to analyze survival. Moreover, if we suspect
that lapse and death are highly dependent on individual
characteristics - such as the policyholder’s age, for instance
- this also supports an individualized survival analysis.
Eventually, we can see that the last face amount observed
is significantly lower for lapsed policies. It confirms our
first intuitions, and the face amount will be included in our
modelization.
Among the covariates introduced in Table 1, several ones
play a central part in our two-step modelization:
For the competing risks survival analysis step, SENIOR-
ITY will be the response variable, and all other covariates
including individual data and financial flows are potential
explanatory variables.
The binary classification second step aims at predicting the
EVENT outcome with minor transformations explained in
Section 3 below. This prediction is based on the covariates
underlined in Table 1.

3. Framework
The next section describes a modelization that follows

Loisel et al. (2021)’s work. Our contributions place our work
in a framework that differs from it in ways that will be made
explicit, yet we chose to use a majority of their existing
notations here.
Usual lapse management models based on classification
aim to predict whether a policyholder will lapse. They may
perform very well at that specific task, but it only reflects
some aspects of this economic problem. Indeed, we can
easily imagine that many policyholders may be predicted
as "lapsers" but may not be profitable to the insurance
company. In that case, keeping such policyholders would
be absurd, and an efficient model should not predict them
as targets. Targeting policyholders is an economic problem
that requires an economic measure to assess. We propose
to consider a measure based on the discounted expected
profit of all the policies, in other words, the sum of all
(CLVs). Optimizing a lapse, churn or any other prediction
task with business-related measures is not new. However, to
our knowledge, none of the existing approaches uses indi-
vidualized future CLVs and models the profit of retention
strategy by accounting for competing risks or using survival
tree-based models.
CLV is a well-studied subject in marketing and business
economics in general and has also been modelled in an
insurance context. For a given subject 𝑖, her future (CLV)

at horizon 𝑇 can be modelled as follows:

𝐹𝐶𝐿𝑉𝑖
(

𝒑𝑖,𝑭 𝑖, 𝒓𝑖,𝒅, 𝑇
)

=
𝑇
∑

𝑡=0

𝑝𝑖,𝑡𝐹𝑖,𝑡𝑟𝑖,𝑡
(

1 + 𝑑𝑡
)𝑡 .

With 𝑡 in years, 𝑡 = 0 represents the last observation point
for subject 𝑖. The quantity 𝑝𝑖,𝑡 is her profitability ratio as a
proportion of 𝐹𝑖,𝑡, representing her face amount observed
at time 𝑡. The quantity 𝑟𝑖,𝑡 is the 𝑖-th subject’s probability of
still being active at time 𝑡 and naturally, 𝑑𝑡 is the discount rate
at time 𝑡, common to every subject. It is worth pointing out
that 𝐹𝐶𝐿𝑉𝑖 does not represent the global profit generated by
subject 𝑖 from her policy’s first year until time 𝑇 ; it represents
the future 𝑇 years of profit.
We suggest a modelization of the insurer’s estimated profit
- or loss - resulting from a lapse management strategy. In
order to do that, we will compare the expected value of the
portfolio before and after applying a given strategy. We are
aware that there could be infinite ways to design a retention
campaign: offering a punctual incentive, recurrent services
or more profit sharing, for instance. Here, we define what we
will consider a lapse management strategy (LMS):

Definition 1 (Lapse management strategy (LMS)).
A T-years lapse management strategy is mod-

elled by the offer of an incentive 𝛿𝑖 to subject 𝑖
if she is targeted. The incentive is expressed as a
percentage of her face amount and is accepted with
probability 𝛾𝑖. Contacting the targeted policyholder
has a fixed cost 𝑐. A targeted subject who accepts
the incentive will be considered as an "acceptant"
who will never lapse, and her probability of being
active at year 𝑡 ∈ [0, 𝑇 ] is denoted 𝑟acceptant

𝑖,𝑡 .
Conversely, a subject who refuses the incentive and
prefers to lapse will be considered as a "lapser",
and her probability of being active at year 𝑡 is
denoted 𝑟lapser

𝑖,𝑡 . A lapse management strategy is
uniquely defined by the parameters (𝒑, 𝜹, 𝜸, 𝑐, 𝑇 )

Even if this definition is already a simplification of any real-
life insurance retention strategy, various constraints and the
data and tools at the insurer’s disposal do not always allow to
conduct such a study. In the following section, we consider
a simplified version of this framework by assuming that
𝑝𝑖,𝑡, 𝐹𝑖,𝑡, and 𝑑𝑡 remain constant across time, and denoted
𝑝𝑖, 𝐹𝑖 and 𝑑 hereafter, with 𝐹𝑖 being the most recent face
amount observed for subject 𝑖. Moreover, we set 𝛾𝑖 and 𝛿𝑖 to
be the same for all subjects and denoted as 𝛾 and 𝛿 hereafter.
Finally, the last observed state of subject 𝑖 is denoted 𝑦𝑖, with
𝑦𝑖 = 1 if the policy is lapsed, 𝑦𝑖 = 0 otherwise.
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With those considerations, we can then define the control
portfolio’s future value as follows:
𝐹𝐶𝑃𝑉 (𝒑, 𝛿, 𝛾, 𝑐, 𝑇 ) =

𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝑝𝑖, 𝐹𝑖, 𝒓
acceptant
𝑖 , 𝑑, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 0
)

+
𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝑝𝑖, 𝐹𝑖, 𝒓
lapser
𝑖 , 𝑑, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 1
)

It represents the hypothetical value of the portfolio, consid-
ering that:

• every subject that did not lapse up to her last observa-
tion point - 𝑦𝑖 = 0 at 𝑡 = 0 - has a vector of retention
probabilities of 𝒓acceptant

𝑖 ;
• every subject that has been observed to lapse - 𝑦𝑖 = 1

at 𝑡 = 0 - has a vector of retention probabilities of
𝒓lapser
𝑖

Remark 1. It is important to note that this does not reflect
the actual future value of the portfolio - as the future CLV of
lapsers should be 0 - but rather its hypothetical expected fu-
ture value given the nature (lapser or not) of every subject but
not their actual states (actually lapsed or not). It represents
this hypothetical future CLV of all subjects if no customer
relationship management about lapses is carried out.

A classification algorithm would take the lapse indicator
𝑦𝑖 as a target variable and yield predictions 𝑦̂𝑖. Given a lapse
management strategy and such a classification algorithm, we
define the lapse managed portfolio future value by:

𝐹𝐿𝑀𝑃𝑉 (𝒑, 𝛿, 𝛾, 𝑐, 𝑇 ) =
𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝒑, 𝐹𝑖, 𝒓
acceptant
𝑖 ,𝒅, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 0, 𝑦̂𝑖 = 0
)

+
𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝒑, 𝐹𝑖, 𝒓
lapser
𝑖 ,𝒅, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 1, 𝑦̂𝑖 = 0
)

+
𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝒑 − 𝜹, 𝐹𝑖, 𝒓
acceptant
𝑖 ,𝒅, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 0, 𝑦̂𝑖 = 1
)

+ 𝛾 ⋅
𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝒑 − 𝜹, 𝐹𝑖, 𝒓
acceptant
𝑖 ,𝒅, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 1, 𝑦̂𝑖 = 1
)

+ (1 − 𝛾) ⋅
𝑛
∑

𝑖=1

𝐹𝐶𝐿𝑉𝑖
(

𝒑, 𝐹𝑖, 𝒓
lapser
𝑖 ,𝒅, 𝑇

)

⋅ 𝟏
(

𝑦𝑖 = 1, 𝑦̂𝑖 = 1
)

−
𝑛
∑

𝑖=1
𝑐 ⋅ 𝟏

(

𝑦̂𝑖 = 1
)

Clearly, the sums appearing in the formulas above could
be grouped to make them more concise. We chose not to do
so for the sake of visualization: we can distinctly see each
possible case in each summand.
Then, we define the economic metric of the algorithm as the
retention gain, the future profit generated by the retention
management strategy over 𝑇 years:
𝑅𝐺(𝒑, 𝛿, 𝛾, 𝑐, 𝑇 ) = 𝐹LMPV(𝒑, 𝛿, 𝛾, 𝑐, 𝑇 )−𝐹𝐶𝑃𝑉 (𝒑, 𝛿, 𝛾, 𝑐, 𝑇 )

that can be simplified as follows:

𝑅𝐺(𝒑, 𝛿, 𝛾, 𝑐, 𝑇 ) =
𝑛
∑

𝑖=1

[

𝛾
[

𝐹𝐶𝐿𝑉𝑖
(

𝒑 − 𝜹, 𝐹𝑖, 𝒓
acceptant
𝑖 ,𝒅, 𝑇

)

− 𝐹𝐶𝐿𝑉𝑖
(

𝒑, 𝐹𝑖, 𝒓
lapser
𝑖 ,𝒅, 𝑇

) ]

⋅ 𝟏
(

𝑦𝑖 = 1, 𝑦̂𝑖 = 1
)

− 𝐹𝐶𝐿𝑉𝑖
(

𝜹, 𝐹𝑖, 𝒓acceptant ,𝒅, 𝑇
)

⋅ 𝟏
(

𝑦𝑖 = 0, 𝑦̂𝑖 = 1
)

]

−
𝑛
∑

𝑖=1
𝑐 ⋅ 𝟏

(

𝑦̂𝑖 = 1
)

This evaluation metric can now be derived into an
individual retention gain measure. More specifically, we
define 𝑧𝑖 as:

𝑧𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− 𝐹𝐶𝐿𝑉𝑖
(

𝛿, 𝐹𝑖, 𝒓
acceptant
𝑖 , 𝑑, 𝑇

)

− 𝑐 if 𝑦𝑖 = 0

𝛾 ⋅
[

𝐹𝐶𝐿𝑉𝑖
(

𝒑 − 𝛿, 𝐹𝑖, 𝒓
acceptant
𝑖 , 𝑑, 𝑇

)

if 𝑦𝑖 = 1

− 𝐹𝐶𝐿𝑉𝑖
(

𝑝, 𝐹𝑖, 𝒓
lapser
𝑖 , 𝑑, 𝑇

) ]

− 𝑐

That last equation can seem obscure. It only assigns to
each individual the expected profit or loss that would result
from targeting her with a given lapse management strategy.
A positive amount for subject 𝑖 means that targeting her
would generate profit, whereas a negative one would lead
to a loss for the insurer. We can take the example of a
hypothetical scenario where 𝑝𝑖 = 3%, 𝛿 = 0.05%, 𝛾 = 10%
and 𝑐 = 10 euros. It would generate 𝑧𝑖s taking values from
−234, 614€ to 53, 066€ with a mean of −218€ and a median
of −55€. Different scenarios would result in very different
distributions for the 𝑧𝑖’s.

Eventually, we define 𝑦̃𝑖 as a binary target variable indi-
cating for policyholder 𝑖 if the individual expected retention
gain resulting from a given retention strategy is a profit or a
loss. More specifically, we define 𝑦̃𝑖 as:

𝑦̃𝑖 =
{

1 if 𝑧𝑖 > 0
0 if 𝑧𝑖 ≤ 0 ,

Remark 2. A subject in the dataset for which 𝑦𝑖 = 0 would
produce 𝑦̃𝑖 = 0, whereas one for which 𝑦𝑖 = 1 could produce
𝑦̃𝑖 = 0 or 𝑦̃𝑖 = 1. In other words, it is never profitable for the
insurer to offer an incentive to a subject that would not have
lapsed. On the other hand, offering that same incentive to a
lapser can be profitable. However, depending on the subject’s
features and the lapse management strategy parameters, it
can also lead to a loss.
We can now include 𝑦̃𝑖 as a new binary target variable in our
models and directly consider 𝑅𝐺 as the global evaluation
metric in the tree-based models we consider.
We can now compare two models: the classical one with 𝑦𝑖as a target variable and accuracy as the evaluation metric;
and the CLV-augmented one with 𝑦̃𝑖 as a target variable and
𝑅𝐺 as the evaluation metric.
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Intuitively, the former tries to predict whether a policy-
holder will lapse and tune its parameters by minimizing the
misclassification rate. On the other hand, the latter aims at
predicting whether applying a given retention strategy to the
𝑖-th individual will be profitable for the insurer and tune
its parameters by maximizing the global expected retention
gain.

4. Methodology
In Section 3, we described a business-oriented frame-

work, augmenting lapse management strategy with an evalu-
ation metric based on the future CLV of every subject. Eval-
uating this metric requires computing 𝑟acceptant and 𝑟lapser,
the matrices of size (𝑛, 𝑇 + 1) containing for every subject,
survival probabilities that we detail below.
Given this framework, we propose a two-step methodology:
firstly, we detail how this survival analysis is carried out to
model those retention parameters, and secondly, we explain
how we use them for training tree-based classification mod-
els.
4.1. Step 1: Modelling 𝑟acceptant and 𝑟lapser

We recall that a given subject’s policy can end with lapse
or death, and the policy is considered active if competing
events are yet to occur. Furthermore, while a lapser’s policy
can end with lapse or death, whatever comes first, an
acceptant one can only end with death.
𝑟lapser represents the probability that the policy of subject 𝑖
is still active at time 𝑡, given that the subject is labeled as
a lapser - EVENT = 1 - at 𝑡 = 0. Predicting these overall
conditional survival probabilities with competing risks can
be achieved by creating a combined outcome: the policy
ends with death or lapse, whichever comes first. In order to
compute 𝑟lapser in practice, we recode the competing events
as a combined event. This approach is compatible with any
survival analysis method regarding statistical guarantees.
Conversely, 𝑟acceptant represents the probability that the
policy of subject 𝑖 is still active at time 𝑡, given that the
subject is not labelled as a lapser - EVENT = 0 or 2 - at 𝑡 = 0.
This modelization is more complex as we must dissociate
the risks of lapse and death. These causes being mutually
exclusive, a competing risks methodology is well-suited to
estimate 𝑟acceptant (Laurent et al. (2016)).
4.1.1. Competing risks frameworks

We are aware that the context of our modelization re-
quires competing risk setting. As detailed in Appendix A.5,
several regression models exist to estimate the global hazard
and the hazard of one risk in such settings: cause-specific and
subdistribution modelizations. They account for competing
risks differently, obtaining different hazard functions and
thus have distinct advantages, drawbacks and interpreta-
tions. TheseThese differences are discussed in Milhaud
and Dutang (2018), where the authors also considered a
competing risk framework for lapse prediction.
After discussions detailed in Appendix A.5, the simplicity of

a cause-specific approach and the fact that it can be adapted
to any survival method, including tree-based ones, oriented
our choice towards it. We then computed 𝑟acceptant and 𝑟lapser
with three different methods - Cox model, Random Survival
Forest and Gradient Boosting Survival Model - and retained
the best one. These methods are shortly described in the
following sections.

4.1.2. Cox proportional hazard model
One of the most common survival models is the Cox

proportional hazard (CPH) model (Cox). It postulates that
the hazard function can be modelized as the product of a
time-dependent and a covariate-dependent functions. The
hazard function at time 𝑡 for subject 𝑖 with covariate vector
𝑿𝒊, under Cox proportionnal hazard model can be expressed
as:

𝜆(𝑡|𝑋1
𝑖 , 𝑋

2
𝑖 ,…)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
hazard function

= 𝜆(𝑡|𝑿𝒊) =

baseline hazard
⏞⏞⏞
𝜆0(𝑡) 𝑒

log-partial hazard
⏞⏞⏞⏞⏞
(

𝑿𝒊 ⋅ 𝛽𝑖
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
partial hazard

It is crucial to note that in this model, the hazard function is
the product of the baseline hazard, which only varies with
time, and the partial hazard, which only varies depending
on the covariates. The parameters of this model are the 𝛽,
and they can easily be estimated with a maximum likelihood
approach. Their estimation can be carried out without having
to model 𝜆0(𝑡) - which is why CPH is considered semi-
parametric.
We use Python and lifelines (Davidson-Pilon (2019)) to
implement it. We specify a spline estimation for the baseline
hazard function. We select the covariates and model param-
eters using AIC (Akaike (1973)) and use the concordance
index (Harrell et al. (1982)) to compare CPH to other
models. The concordance index - or Harrel’s c-index or
simply c-index - is a metric to evaluate the predictions made
by a survival model. It can be interpreted as a generalization
of the area under a receiver operating characteristic (ROC)
curve (Hanley and McNeil (1982)) - or AUC - in a survival
setting with censored data.

4.1.3. Random Survival Forest
Survival trees have been extensively studied for a long

time, and a complete review of such existing methods up
to 2011 can be found in Bou-Hamad et al. (2011). The
most important thing to understand is that a survival tree
can be created by modifying the splitting criterion of a
regular tree. Most survival tree algorithms are designed
with a split function that aims to maximize the separation
of the resulting child nodes in terms of survival profiles.
This separation between nodes is estimated by maximizing
the log-rank statistic (Mantel (1966); LeBlanc and Crowley
(1993)). Each terminal node of a survival tree contains a
survival profile from which we can derive the survival and
cumulative hazard function.
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An RSF is the counterpart of a random forest (see Ap-
pendix A.6.2) for such survival trees. It has been developed
in Ishwaran et al. (2008) and extended for competing risks a
few years after (Ishwaran et al.). A prediction with RSF for
a given subject is made by getting his/her survival profile in
each tree in the forest. His/her corresponding survival and
cumulative hazard function are estimated in each tree with
Kaplan-Meier and Nelson-Aalen estimators, respectively.
Eventually, the aggregation of those single-tree estimates
constitutes the RSF’s prediction.
We use Python and sksurv (Pölsterl (2020)) to implement
RSF, and we tune and evaluate our model using the concor-
dance index.
Remark 3. Sksurv allows us to use RSF with a cause-
specific consideration of the competing risks. To this day,
sksurv does not have a subdistribution competing risks
model, whereas its R implementation randomForestSRC
does (Ishwaran and Kogalur (2007)).
Moreover, a severe limitation of that approach is that pre-
dictions can only be made at time points observed in the
training set. Concretely, this prevents us from using RSF to
extrapolate survival and hazard functions to unobserved time
points.
4.1.4. Gradient Boosting Survival Model

In the same way Random Forest has a survival coun-
terpart, this is also true for Gradient Boosting approaches.
An essential distinction between classical boosting algo-
rithms(see Appendix A.6.3) and Gradient Boosting Survival
Model (GBSM) lies in its loss function. The loss function
that we use with GBSM is the partial likelihood loss of a
CPH model, and the optimization in such a model is achieved
by maximizing a slightly modified log-partial likelihood
function:

argmin
𝑓

𝑛
∑

𝑖=1
𝛿𝑖

[

𝑓 (𝑿𝒊) − log

(

∑

𝑗∈≥𝑖

𝑒(𝑓 (𝑿𝒋))

)]

Where 𝛿𝑖 is the event indicator and 𝑓 (𝑿𝒊) is GBSM’s
prediction for the 𝑖-th subject, with a covariate vector 𝑿𝒊.
𝑔𝑖 is the tree leaf including subject 𝑖.
Similarly to RSF, we use Python and sksurv (Pölsterl (2020))
to implement GBSM. We tune and evaluate our model using
the concordance index. Remark 3 also applies here.

4.1.5. Final modelization choice
Our analysis shows that, based on concordance index,

RSF and GSBM both outperformed a semiparametric Cox
model in our study case. Regarding interpretability, we note
that the feature importance analysis is very similar between
the three models. All the details about the final concordance
index scores, covariates importance and various plot for
further analysis are available in Appendix A.6.

In the following sections, we decide to retain
GBSM for the modelization of 𝑟acceptant and 𝑟lapser
as it has the best concordance index.

Remark 4. As this study aims to be business-oriented and
favour real-life decision-making, it is crucial to note that the
computation times for fitting these different models are very
different and could potentially be a huge constraint for real
operational deployment. Specific computation times differ
greatly depending on various factors, such as the number
of subjects or features considered, the computation power
or parallelization ability at disposal, for instance. However,
we can still give here an order of magnitude for those
differences. If the tuning and fitting process for CPH can last
a few tens of seconds, it lasts hours for RSF and tens of hours
for GBSM.
4.2. Step 2: Classification tasks

Our work focuses on lapse management with tree-based
models. It aims to answer the question: which policyholders
would be worth targeting with a lapse management strategy
to maximize the expected T-year profit for the insurer?
We will consider a single tree built with Breiman’s CART
algorithm, Random Forest, XGBoost, and RE-EM trees.
The following sections detail how those different approaches
work. Those models will be compared on two different
classification tasks; and tuned with two different evaluation
metrics, a statistical metric and a business-related one.
On 𝑦𝑖 First, we will use a classical lapse prediction frame-
work to model the policyholder’s behaviour. Each policy-
holder will be labelled as a lapser or a non-lapser with a
binary outcome 𝑦𝑖. Our first batch of models will be trained
with 𝑦𝑖 as a response variable and produce predictions 𝑦̂𝑖.
Accuracy(𝑦, 𝑦̂), which is undoubtedly the most intuitive
performance measure for binary classification, is defined
as the proportion of correctly predicted observations over
all observations. It is widely used for churn analysis and
appears to be a satisfying performance measure for relatively
balanced outcomes in binary classification problems. We
will use it as an evaluation metric in a 10-fold cross-
validation step for tuning our models.
We know that more complex statistical evaluation metrics
can be used for binary classification, such as the F𝛽Scorefamily, the AUC under the ROC, the Brier Score, or the
lift curve. In this paper, and similarly to a vast part of the
applied binary classification literature, we will only select,
evaluate and discuss the models in the light of the metrics
we introduced.

On 𝑦̃𝑖 Secondly, we will use the CLV-Augmented lapse
prediction framework, detailed in Section 3. Each policy-
holder will be labelled as a targeted lapser or a non-targeted
policyholder with the binary outcome 𝑦̃𝑖 and prediction for
that outcome are denoted ̂̃𝑦𝑖.
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Remark 5. Note that whenever 𝑦𝑖 = 0, we also have 𝑦̃𝑖 = 0.
In other words, if subject 𝑖 does not intend to lapse, it is never
worth proposing her an incentive: the subject will accept it
with probability 1 and would not have lapsed.
On the other hand, when 𝑦𝑖 = 1, it corresponds to either
𝑦̃𝑖 = 1 or 𝑦̃𝑖 = 0. In other words, if subject 𝑖 is labelled as a
lapser, it does not necessarily mean it is worth targeting her.
From the insurer’s point of view, some policies are better off
lapsed. 𝑦̃ can be seen as a more detailed version of 𝑦𝑖 as it
carries not only behavioural information regarding lapse but
also a profitability one.
We thus train a second batch of models with 𝑦̃𝑖 as a response
variable. We use 𝑅𝐺 as an evaluation metric in a 10-fold
cross-validation step for tuning these models.

Summary of our methodology: First, we train a
CART, RF and XGBoost models with 𝑦𝑖 as a binary
target variable and accuracy as a tuning evaluation
metric.
Then we train them with 𝑦̃𝑖 as a binary target
variable and 𝑅𝐺 as a tuning evaluation metric.
Finally, we train and test all six models on different
random samples of our dataset and keep track of the
model’s classification performance on all of them
and for various retention strategies for compari-
son’s sake.

The sections below briefly introduce the tree-based model
we selected before displaying how they performed in various
lapse management scenarios.
4.2.1. CART

CART (Classification And Regression Trees) is an algo-
rithm developed by Breiman et al. (1984) that consists of re-
cursively partitioning the covariate space. It is a widespread,
intuitive and flexible algorithm that handles regression and
classification problems.
4.2.2. Random forest

A natural idea to correct CART’s instability and enhance
its prediction accuracy is the aggregation of a significant
number of single trees, each grown on different subsamples
of the dataset. A random forest (RF by Breiman (2001)) is
a tree-based bagging procedure where each tree is grown on
randomly drawn observations and contains splits consider-
ing only randomly drawn covariates.
4.2.3. XGBoost

Other tree-based approaches have been designed to
reduce the instability of a single tree model. Model boosting
is an adaptative technique, first developed by Freund et
Shapire (Freund and Schapire (1996)), that does not rely on
the aggregation of independent weaker models but rather
on the aggregation of weak models built sequentially, one
after the other. XGBoost (Chen and Guestrin (2016)) is a
widespread and performant tree-boosting model that relies
on a gradient boosting step and provides a very optimized

parallelized procedure. It is considered a state-of-the-art
library for various prediction problems.
The interested reader can find more detailed explanations
about CART, RF and XGBoost mechanisms in Appendix A.1.
For these modelizations, we used Python and sklearn (Pe-
dregosa et al. (2011)).

5. Real-life application
Based on the real life-insurance dataset at our disposal

(described in Section 2), we use the survival model we
selected and estimate 𝑟acceptant and 𝑟lapser for every individ-
ual. This allows us to compute the individual CLVs, RGs,
𝑧𝑖’s and 𝑦̃𝑖. We have already defined what a strategy is
(see Definition 1), and we can thus apply our classification
methodology to various retention strategies.
5.1. Considered lapse management strategies

The strategies considered are based on several criteria.
First, we selected realistic strategy parameters and time
horizons based on actual retention campaigns led by life
insurers. Moreover, we chose to present strategies that
illustrate the exhaustive list of conclusions and discussions
that are carried out in the next section. Finally, we also
incorporated strategies that are "obviously bad" in the sense
that such strategies would necessarily lead to a loss for
the insurer. Such extreme scenarios will supplement our
discussions.
Results related to the 32 considered LMS are given in
Section 5.2. Related comments on how to read these tables
are given in Section 5.3.

Scenarios p 𝛿 𝛾 c d T
1 2.50% 0.04% 25% 10 1.50% 5
2 2.50% 0.04% 25% 100 1.50% 5
3 2.50% 0.04% 25% 100 1.50% 20
4 2.50% 0.04% 5% 10 1.50% 5
5 2.50% 0.04% 5% 100 1.50% 20
6 2.50% 0.10% 25% 10 1.50% 20
7 2.50% 0.10% 25% 100 1.50% 20
8 2.50% 0.10% 5% 100 1.50% 20
9 1.50% 0.04% 25% 10 1.50% 20
10 1.50% 0.04% 25% 100 1.50% 5
11 1.50% 0.04% 5% 10 1.50% 20
12 1.50% 0.04% 5% 100 1.50% 5
13 1.50% 0.20% 20% 10 1.50% 5
14 1.50% 0.10% 25% 100 1.50% 5
15 1.50% 0.10% 5% 10 1.50% 20
16 1.50% 0.10% 5% 100 1.50% 5
17 1.50% 0.10% 5% 100 1.50% 20
18 2.50% 0.08% 20% 10 1.50% 20
19 2.50% 0.08% 20% 100 1.50% 5
20 2.50% 0.08% 20% 100 1.50% 20
21 2.50% 0.08% 10% 10 1.50% 20
22 2.50% 0.08% 10% 100 1.50% 20
23 2.50% 0.20% 20% 100 1.50% 5
24 2.50% 0.20% 20% 100 1.50% 20
25 2.50% 0.20% 10% 10 1.50% 20
26 2.50% 0.20% 10% 100 1.50% 20
27 1.50% 0.08% 20% 10 1.50% 5
28 1.50% 0.08% 20% 100 1.50% 5
29 1.50% 0.08% 10% 100 1.50% 5
30 1.50% 0.20% 20% 100 1.50% 5
31 1.50% 0.20% 10% 10 1.50% 20
32 1.50% 0.20% 10% 100 1.50% 20

Table 2: All considered LMS
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5.2. Numerical results
N° time (s) Model % target diff Accuracy Retention gain RG/target Improvement𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖

1 4949
CART

62.6%
92.3% 85.3% 114 661 219 655 4.48 38.20 91.6%

RF 92.9% 85.4% 232 314 287 884 9.82 56.65 23.90%
XGB 93.4% 85.8% 243 365 324 952 9.61 54.64 33.50%

2 4603
CART

93.5%
92.3% 83.3% - 2 187 622 - 8 224 - 85.52 - 31.09 99.60%

RF 92.9% 83.4% - 1 900 265 45 483 - 80.18 194.35 102.40%
XGB 93.4% 83.5% - 2 032 650 77 481 - 80.39 174.44 103.80%

3 5555
CART

55.4%
92.3% 86.5% 4 789 814 5 117 844 187.00 577.74 6.80%

RF 92.9% 86.4% 4 463 796 4 255 175 188.47 566.05 -4.70%
XGB 93.4% 86.8% 5 032 706 5 433 366 198.92 610.26 8.00%

4 4753
CART

86.7%
92.3% 83.6% - 514 477 - 112 372 - 20.08 - 86.48 78.20%

RF 92.9% 83.4% - 323 544 - 3 937 - 13.65 - 28.28 98.80%
XGB 93.4% 83.3% - 383 004 - - 15.14 - 100.00%

5 5164
CART

82.8%
92.3% 84.0% - 1 966 473 - 46 323 - 76.83 - 22.31 97.60%

RF 92.9% 84.0% - 1 477 229 253 885 - 62.32 149.67 117.20%
XGB 93.4% 84.1% - 1 621 796 273 243 - 64.14 117.83 116.80%

6 6075
CART

29.1%
92.3% 89.7% 4 614 513 4 483 831 180.36 266.33 -2.80%

RF 92.9% 89.9% 4 973 929 4 328 724 210.01 280.90 -13.00%
XGB 93.4% 90.7% 5 354 770 5 368 917 211.69 301.57 0.30%

7 5534
CART

57.9%
92.3% 86.2% 2 312 231 3 310 314 90.36 412.71 43.20%

RF 92.9% 86.1% 2 841 351 3 129 652 120.01 465.74 10.10%
XGB 93.4% 86.6% 3 078 755 3 825 920 121.69 475.53 24.30%

8 5096
CART

84.5%
92.3% 83.8% - 3 778 933 - 734 773 - 147.49 - 418.58 80.60%

RF 92.9% 83.5% - 2 513 261 8 914 - 106.03 20.13 100.40%
XGB 93.4% 83.6% - 2 920 405 34 492 - 115.47 45.75 101.20%

9 6452
CART

12.1%
92.3% 91.3% 52 090 240 47 706 070 2 034.15 2 170.64 -8.40%

RF 92.9% 91.9% 46 171 160 42 049 900 1 949.05 2 082.36 -8.90%
XGB 93.4% 92.5% 51 629 950 52 606 740 2 040.95 2 339.70 1.90%

10 4913
CART

64.9%
92.3% 85.2% 2 798 173 3 182 143 109.11 481.60 13.70%

RF 92.9% 85.2% 2 502 903 2 743 070 105.69 554.76 9.60%
XGB 93.4% 85.6% 2 920 720 3 438 303 115.40 576.64 17.70%

11 6199
CART

23.9%
92.3% 90.2% 9 335 438 8 527 444 364.60 454.78 -8.70%

RF 92.9% 90.6% 8 570 307 7 931 029 361.80 460.42 -7.50%
XGB 93.4% 91.2% 9 518 466 9 581 934 376.27 501.56 0.70%

12 4601
CART

89.5%
92.3% 83.6% - 1 819 600 135 305 - 71.15 121.80 107.40%

RF 92.9% 83.5% - 1 575 489 159 620 - 66.48 215.65 110.10%
XGB 93.4% 83.7% - 1 668 346 228 226 - 65.99 208.69 113.70%

13 5379
CART

31.0%
92.3% 89.2% 4 160 423 3 882 623 162.44 241.06 -6.70%

RF 92.9% 89.5% 4 018 432 3 666 219 169.65 249.54 -8.80%
XGB 93.4% 90.0% 4 455 108 4 410 629 176.09 267.87 -1.00%

14 4887
CART

66.7%
92.3% 85.1% 1 858 140 2 575 538 72.44 442.86 38.60%

RF 92.9% 85.0% 1 885 853 2 387 018 79.65 531.25 26.60%
XGB 93.4% 85.4% 2 179 093 2 879 880 86.09 544.35 32.20%

15 6179
CART

24.4%
92.3% 90.3% 7 522 978 7 058 487 293.94 382.06 -6.20%

RF 92.9% 90.6% 7 534 275 7 068 293 318.08 411.80 -6.20%
XGB 93.4% 91.2% 8 219 857 8 265 167 324.94 442.88 0.60%

16 4627
CART

90.2%
92.3% 83.6% - 2 506 749 - 139 983 - 97.95 - 121.44 94.40%

RF 92.9% 83.5% - 1 969 564 73 101 - 83.10 111.49 103.70%
XGB 93.4% 83.6% - 2 160 719 76 641 - 85.45 93.28 103.50%
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N° time (s) Model % target diff Accuracy Retention gain RG/target Improvement𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖

17 5679
CART

51.3%
92.3% 86.8% 5 220 695 5 811 833 203.94 583.55 11.3%

RF 92.9% 86.9% 5 401 696 5 269 505 228.08 605.69 -2.40%
XGB 93.4% 87.4% 5 943 841 6 682 230 234.94 670.03 12.40%

18 6074
CART

29.7%
92.3% 89.7% 3 862 156 3 397 247 150.95 203.11 -12.00%

RF 92.9% 89.9% 4 127 224 3 550 730 174.26 230.67 -14.00%
XGB 93.4% 90.6% 4 451 686 4 408 819 175.99 250.17 -1.00%

19 4528
CART

96.6%
92.3% 83.2% - 2 929 448 - 85 465 - 114.46 - 1 482.06 97.10%

RF 92.9% 83.3% - 2 413 433 3 724 - 101.84 - 108.33 100.20%
XGB 93.4% 83.3% - 2 642 119 9 092 - 104.47 93.79 100.30%

20 5476
CART

60.9%
92.3% 85.9% 1 559 874 2 471 262 60.95 329.63 58.40%

RF 92.9% 85.8% 1 994 645 2 517 111 84.26 422.45 26.20%
XGB 93.4% 86.3% 2 175 670 3 089 897 85.99 422.77 42.00%

21 5906
CART

36.6%
92.3% 88.8% 705 721 922 490 27.69 60.21 30.70%

RF 92.9% 88.9% 1 352 182 1 269 349 57.11 97.63 -6.10%
XGB 93.4% 89.6% 1 342 882 1 428 722 53.09 96.76 6.40%

22 5278
CART

73.2%
92.3% 84.6% - 1 596 562 169 852 - 62.31 41.78 110.60%

RF 92.9% 84.6% - 780 396 637 625 - 32.89 194.52 181.70%
XGB 93.4% 85.0% - 933 133 780 845 - 36.91 188.79 183.70%

23 4229
CART

99.2%
92.3% 83.3% - 4 683 072 - 48 985 - 182.86 - 1 186.22 99.00%

RF 92.9% 83.3% - 3 536 046 - - 149.21 - 100.00%
XGB 93.4% 83.3% - 4 000 747 - - 158.17 - 100.00%

24 5391
CART

66.8%
92.3% 85.0% - 3 062 732 - 388 289 - 119.35 - 80.44 87.30%

RF 92.9% 84.7% - 957 039 710 688 - 40.29 220.55 174.30%
XGB 93.4% 85.3% - 1 404 561 834 198 - 55.52 163.88 159.40%

25 5851
CART

43.0%
92.3% 87.8% - 3 251 762 - 1 761 821 - 126.63 - 143.20 45.80%

RF 92.9% 86.4% - 1 013 089 79 273 - 42.69 11.90 107.80%
XGB 93.4% 83.3% - 1 582 006 4 396 - 62.52 287.68 100.30%

26 5182
CART

78.0%
92.3% 84.2% - 5 554 044 - 1 491 522 - 216.63 - 549.23 73.10%

RF 92.9% 83.6% - 3 145 668 52 475 - 132.69 84.54 101.70%
XGB 93.4% 83.3% - 3 858 022 - - 152.52 - 100.00%

27 5324
CART

32.7%
92.3% 88.9% 3 361 471 3 037 200 131.25 191.31 -9.60%

RF 92.9% 89.3% 3 241 680 2 911 023 136.86 204.43 -10.20%
XGB 93.4% 89.6% 3 596 593 3 546 671 142.15 222.04 -1.40%

28 4853
CART

70.3%
92.3% 84.7% 1 059 189 1 813 631 41.25 392.14 71.20%

RF 92.9% 84.8% 1 109 101 1 808 616 46.86 474.33 63.10%
XGB 93.4% 85.0% 1 320 578 2 141 271 52.15 482.34 62.10%

29 4746
CART

81.4%
92.3% 84.1% - 1 165 404 458 223 - 45.60 172.83 139.30%

RF 92.9% 84.0% - 855 770 525 335 - 36.09 288.55 161.40%
XGB 93.4% 84.1% - 890 871 645 445 - 35.26 310.86 172.50%

30 4811
CART

73.9%
92.3% 84.3% - 694 436 751 404 - 27.16 226.99 208.20%

RF 92.9% 84.4% - 13 512 1 018 369 - 0.51 356.48 7637.00%
XGB 93.4% 84.7% - 38 050 1 253 252 - 1.55 345.94 3393.70%

31 6243
CART

20.5%
92.3% 90.7% 14 747 500 13 838 380 576.23 690.22 -6.20%

RF 92.9% 91.1% 14 816 830 13 378 460 625.54 743.34 -9.70%
XGB 93.4% 91.5% 16 146 490 16 169 440 638.30 814.80 0.10%

32 5865
CART

41.4%
92.3% 88.0% 12 445 210 11 693 070 486.23 884.49 -6.00%

RF 92.9% 88.3% 12 684 250 11 381 260 535.54 971.28 -10.30%
XGB 93.4% 88.8% 13 870 470 14 101 470 548.30 1 048.38 1.70%
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5.3. Comments
Several terms in the two previous tables need to be
explained. "% target diff" represents how different 𝑦 and
𝑦̃ are. It is the percentage of subjects for which 𝑦𝑖 = 1
and 𝑦̃𝑖 = 0 : in other words, the proportion of lapsers not
worth targeting with a given strategy. Then the table shows
the 10-fold cross-validated mean accuracies, retention
gains and RG/target with two methodologies: the columns
denoted 𝑦𝑖 represent the metrics obtained by a model with
𝑦𝑖 as a response variable and accuracy as an evaluation
metric, and the columns denoted 𝑦̃𝑖 represent the metric
obtained by a model with 𝑦̃𝑖 as a response variable and
𝑅𝐺 as an evaluation metric. RG/target represents the
achieved retention gain for every targeted individual, for
𝑦𝑖, it is 𝑅𝐺∕

∑

𝑖 𝑦𝑖, for 𝑦̃𝑖 it is 𝑅𝐺∕
∑

𝑖 ̂̃𝑦𝑖. Eventually,
"Improvement" represents the percentage of improvement
between the 𝑅𝐺 obtained with a classification on 𝑦𝑖 and the
gain obtained with a classification on 𝑦̃𝑖. 1

Some LMS are worth focusing on. For every strategy,
we can display its results when trained on random samples
of the dataset: the boxplots below summarize some typical
key results illustrated by several strategies. Those results
will be discussed in the Section 6.

Figure 2: Strategy n°1: (Positive result on 𝑦𝑖 and an improved
result on 𝑦̃𝑖.)

1In order to account for negative retention gains, the improvement
is computed with an absolute value for the denominator. This leads to a
rather unintuitive improvement measure whenever one of the models yields
negative RG and the other positive RG.

Figure 3: Strategy n°4: (Very negative result on 𝑦𝑖 and a loss-
limiting result on 𝑦̃𝑖.)

Figure 4: Strategy n°30: (Negative result on 𝑦𝑖 and positive
one on 𝑦̃𝑖)
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Figure 5: Strategy n°21: (High positive result on 𝑦𝑖 slightly
improved with 𝑦̃𝑖.)

Figure 6: Strategy n°13: (Results on 𝑦𝑖 better than results on
𝑦̃𝑖.)

Remark 6. With considerable computation power and great
parallelization, the results for all strategies - see other strate-
gies in Appendix A.7 - were obtained with a wall time of less
than 4 days and a CPU time of more than 100 days.

6. Discussion
6.1. General statements
RF and XGBoost perform globally better than CART
in terms of mean accuracy and RG. It is true for all 32
LMS considered in Table 1. Globally, XGBoost is more
consistent and is the best model in most scenarios, both with
and without the CLV-based measure. It is only outperformed
by RF in strategies n°25 and 26.
The vast majority of strategies, including all the realistic
ones, show that a classification on 𝑦̃𝑖 produces a targeting
that yields better RG than a classification on 𝑦𝑖. Conversely,
a classification on 𝑦𝑖 produces a targeting that yields better
accuracies regarding whether a policyholder will churn
than a classification on 𝑦̃𝑖. These results were expected
because of the models’ respective objectives. Even if it is
not surprising, it once again shows that for an insurer, lapse
prediction and lapse management strategy are two very
different prediction problems, often treated as similar ones.
Our CLV-augmented modelization shows different
behaviour depending on the strategy considered. As
highlighted by Figure 2, a model on 𝑦𝑖 is greatly improved
by our framework regarding RG and RG/target. Conversely,
its accuracy in lapse prediction is not optimal.
An attractive property of our framework can be observed in
Figure 3: it yields loss-limiting targeting. When the LMS
considered is too aggressive, it will usually prefer to predict
that an LMS should not be applied at all (∀𝑖, ̂̃𝑦𝑖 = 0), thus
generating a 𝑅𝐺 around 0€. This is made evident in some
extreme strategies (like LMS n°23 for instance).
On less extreme strategies, it shows to yield substantial
improvement when classification on 𝑦𝑖 gives negative RG.
That observation confirms what was already pointed out by
Loisel et al. (2021): it can even turn a negative 𝑅𝐺 into a
positive one (see LMS n°5, 12, 22, 24, 29 and 30 - Figure 4)
.
Our framework also improves a strategy where a
classification on 𝑦𝑖 gives high RG. However, the
improvement decreases as the difference between the
number of lapsers and the number of lapsers that would
be profitable if retained is sizeable. An example of that is
shown in Figure 5.
Finally, we can generate LMS for which our framework
does not improve the expected RG. It is the case in LMS
n°13, 18 or 27 (See e.g Figure 6). In LMS n°13, we can see
that the mean of the RG is not improved, but the median
is. In all those cases, the RG per target produced by the
CLV-augmented model is greatly improved, indicating
that a CLV-augmented strategy prefers to target fewer
policyholders but only those who would generate high
future profits.
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This last observation explains why a CLV-augmented
LMS generates higher RGs when the cost of contact c is
considerable. Indeed, the more costly a contact is, the more
precise and specific a targeting strategy should be.
Generally, if we consider our various LMS, excluding
LMS n°30 that has a very high improvement ratio:

The average observed RG improvement of a CLV-
augmented framework over the classical lapse one is
57,9%a. If we weight these results by the expected RGs,
the average improvement is still 31,7%.

aUsing XGBoost

6.2. Marketing decision making
We already pointed out that the improvement of a lapse
management strategy including CLV grows with the
proportion of lapsers with a negative CLV (see Figure 26
in Appendix A.7). Models resulting from our framework do
not consider them as good targets. In fact, there is a Pearson
correlation coefficient of 77% between RG improvement
and the proportion of target differences among the LMS
detailed in Table 12. Of course, as the improvement ratio has
no clear interpretation in some cases, this analysis should be
carried out in more depth, separating the cases where both
RG - with and without the inclusion of CLV - are positive
from the cases where one of them is negative. By doing so,
we observe that the Pearson correlation coefficient for LMS
yielding positive RG regardless of the inclusion of CLV is
even higher: 83%.
In terms of targeting, it seems crucial to understand
what differentiates a subject for which 𝑦𝑖 = 1 and 𝑦̃𝑖 = 0
from the others. An investigation of such policyholder’s
profile can be carried out for every lapse management
strategy. We take the example of LMS n°1, where 62,6% of
policyholders were in that case (see Section 5.2). With that
strategy, the profile of non-targeted lapsers indicates that :

• 57.2% of them are men, similar to the entire dataset,
• 76.4% of them contracted product n°1 whereas 72%

of all policyholders chose it,
• the mean seniority of their policy is 10.4 years com-

pared to the 13.4 years for the complete dataset,
• the mean face amount of such policies is 12,156,

whereas the average face amount for all considered
policies is 40,263.

In that strategy, our framework indicates that marketing
efforts on low seniority policyholders with low face amount
policies are inefficient. Of course, this conclusion is only
valid for the considered LMS; however, our framework
allows us to conduct such analysis for any LMS and interpret
the results at an individualized level.

2Taking the results of XGBoost and excluding LMS n°30 that has a
very high improvement ratio.

6.3. Management rules decision making
Sensitivity analysis of those results can highly benefit man-
agement rules decision-making. This framework serves as
a tool that compares future hypothetical lapse management
strategies in order to choose the best one - among realistic
scenarios -. It can also be used to tune a given strategy by
answering questions like:

• For which incentive 𝛿 the retention strategy becomes
profitable ?

• For which acceptance probability 𝛾 the retention strat-
egy becomes profitable ?

• With a given budget, what is the optimal list of policies
that should be targeted?

• At which horizon 𝑇 , the retention strategy become
profitable ? In other words, when can the insurer
expect a return on investment?

Answering these questions constitutes a 1-parameter sensi-
tivity analysis. In our framework, six parameters influence
the expected retention gain (𝑝, 𝛿, 𝛾, 𝑐, 𝑑, 𝑇 ).
We can argue that among them are three structural parame-
ters that are insurer’s dependent and not linked to the external
state of the world: 𝛿, 𝛾 and 𝑐. Among them, the contact cost
𝑐 is more or less fixed and can not be easily changed by the
insurer. Conversely, 𝛿 and 𝛾 are to be chosen by the insurer.
Moreover, they also are correlated with management and
commercial efficiency - an efficient campaign impacts the
final 𝛾 - and correlated together: the higher the incentive 𝛿,
the higher the probability of acceptance 𝛾 .
By fixing all other parameters and trying various combina-
tions of 𝛿 and 𝛾 we obtain the following 3D surfaces:

Figure 7: 3d plot (𝛿, 𝛾 , RG)

This surface is not surprising and indicates that the higher
the acceptance rate and the lower the incentive, the higher
the retention gain. The surface gradient can give powerful
insights on the most efficient commercial efforts to make:
is it better for the insurer to propose lower incentives and
manage to conserve the same acceptance probability or to
put commercial effort into improving the acceptance proba-
bility for the same proposed incentive? This surface directly
addresses this question.
Remark 7. Of course, the interdependency of those param-
eters should make some part of this surface unrealistic from
a management decision-making point of view. The insurer
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should consider such dependencies when designing a lapse
management strategy.
Among the six parameters are also three conjectural pa-
rameters that depend on the external state of the world:
the insurer’s profitability 𝑝 (that depends on competition,
macroeconomic considerations or regulation), the discount
rate 𝑑 and the time horizon 𝑇 (that can be driven by the
insurer’s vision but also by regulation3). Among them, we
chose to fix 𝑝 and let 𝑑 and 𝑇 vary. Moreover, 𝑝 and 𝑇 are
obviously interdependent and considered through the man-
agement’s prospective view of the conjecture’s evolution. A
given interest rate scenario should represent a curve on the
following surface:

Figure 8: 3d plot (d, T, RG)
This surface is less smooth than the one displayed in Figure 7
and seems to indicate a more unstable relationship between
RG and the conjectural parameters. An explanation of that
behaviour can be that those surface points are generated
by running our framework on a random subsample of our
dataset, for computation time considerations. Generating the
same surface with more policyholders is likely to give a
smoother behaviour.
Remark 8. Of course, the interdependency of 𝑇 and 𝑑
should make some part of this surface unrealistic from an
actuarial point of view. Actuarial rate projections would give
precise plausible scenarios on this surface. Such consider-
ations should be taken into account by the insurer when
designing a lapse management strategy.
Remark 9. The insurer can also use our framework to
measure the retention gain to be expected at different time
horizons obtained by existing retention campaigns. In that
case, the insurer would have to neutralize the effect of the
existing LMS in order to estimate the control portfolio’s
future value. We leave this remark as future work for applied
risk management research.

3The ORSA time horizon with the strategic and the long-term business
planning time horizon should be both considered.

7. Conclusion, limitations and future work
The work carried out in this paper shows that including
CLV in lapse management strategy can largely benefit
an insurer’s decision-making ability regarding lapse
management strategy. We showed that survival tree-based
models can outperform parametric approaches in such
actuarial contexts. Then, our comparison of tree-based
models on different lapse management strategies indicated
that our CLV-based framework leads to increased predicted
gains for any realistic scenario and acts as a loss-limiting
targeting approach, regardless of the retention strategy.
Finally, the discussion section highlighted the fact that our
modelization can give insights to the life insurer regarding
commercial and strategic decision-making.
The framework and methodologies described in this paper
suffer some limitations. For instance, we can argue that
following one single fixed strategy for every policyholder
is unrealistic. We could easily imagine an extension of our
models to individualized lapse management strategies that
would vary between subjects, but that could also be adjusted
with time. There is also room for improvement regarding
the correlations of LMS parameters: gamma and delta
are evidently interdependent parameters for an insurance
company, and this interdependency could be considered.
This paper defines a practical management tool for life
insurers as those models can be used to measure the 𝑅𝐺
and improve real strategies used in existing retention
campaigns. Finally, our vision of CLV, and by extension,
our whole methodology design could be improved by using
longitudinal data that would yield time-dynamic results. We
leave those two last observations for future work.
A real-life comparison between an actual retention
strategy targeting and both the naïve and CLV-improved
methodologies could be insightful for the insurer4.
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A. Appendix
A.1. CART
For visualization’s sake, we can show below an example of a
CART model partitioning (𝑥1, 𝑥2), the space defined by two
covariates along different thresholds (𝑑1, 𝑑2, ...):

𝑋1 ≤ 𝑑1 ?

𝑋2 ≤ 𝑑2 ?

𝑌1 𝑌2

YES

𝑥2 ≤ 𝑑3 ?

𝑥1 ≤ 𝑑4 ?

𝑌3 𝑌4

𝑥1 ≤ 𝑑5 ?

⋮ ⋮

𝑦̂𝑛 𝑦̂𝑚

NO

𝑥2

𝑥1

𝑑3 𝑑2

𝑑1

𝑑4

𝑑5

𝑦̂1 𝑦̂2

𝑦̂3

𝑦̂4

…

…

Generally speaking, there are far more than two covariates
which makes the space partitioning representation difficult.
Summarizing this cutting with a binary tree is obviously
a very interpretable way of displaying the modelization: a
node 𝑔 is identified with a subregion of  it represents. The
first step of fitting a CART tree on a dataset  = (𝒙𝒊, 𝑦𝑖)𝑛𝑖=1,
where 𝒙𝒊 is the vector of covariates for the 𝑖-th subject and
𝑦𝑖 its response variable is applying a splitting procedure
until a stopping criteria is met. Various splitting criteria
exist depending on the nature of the prediction problem
to solve. As we will work with both classification and
regression settings, it seems natural to explicit both splitting
mechanisms here.
In a classification context, let’s define 𝑝𝑖, 𝑖 ∈ {1,… , 𝑃 } as
the proportion of observation of class 𝑖 in . We extend this
idea by defining 𝑝𝑖(𝑔) as the proportion of observation of
class 𝑖 in (𝑔), the collection of observations in node 𝑔.
An impurity function 𝜙, is a function defined for 𝑝𝑖,
𝑖 ∈ {1,… , 𝑃 }, with 𝑝𝑖 ≥ 0 and ∑

𝑖 𝑝𝑖 = 1 such that
𝜙(𝑝1,… , 𝑝𝑃 ) is positive, the minimum of 𝜙 is reached
whenever any of the 𝑝𝑖 = 1, then 𝜙(𝑝1,… , 𝑝𝑃 ) = 0, its
maximum is reached for 𝜙( 1𝑃 ,… , 1

𝑃 ) and it is symmetric
with regard to its arguments.
For CART, usual classification impurities are:

• Entropy : 𝜙(𝑝1,… , 𝑝𝑃 ) = −
∑

𝑖
𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)

• Gini index:𝜙(𝑝1,… , 𝑝𝑃 ) = 1 −
∑

𝑖<𝑗 𝑝𝑖𝑝𝑗

For a given node 𝑔 with  (𝑔) observations, the impurity of
the node is given by 𝐼(𝑔) = 𝜙(𝑝1(𝑔),… 𝑝𝑃 (𝑔)).At each node of a CART, the optimal split is chosen as the
split that reduces the impurity the most. That is to say, the
split that maximizes the following gain function by splitting
the parent node 𝑔𝑝 into the two child nodes 𝑔𝑙 and 𝑔𝑟:

𝐺(𝑔𝑝; 𝑔𝑙, 𝑔𝑟) = 𝐼(𝑔𝑝) −

(

 (𝑔𝑙)
 (𝑔𝑝)

𝐼(𝑔𝑙) +
 (𝑔𝑟)
 (𝑔𝑝)

𝐼(𝑔𝑟)

)

,

This splitting procedure allows growing the tree until
a splitting criterion - such as a maximal depth or a minimal
number of observations in the terminal nodes - is met. A
tree grown following this step is called a maximal tree.
Usually, the maximal tree is not an efficient model as
it leads to a very thin partitioning of  that does not
produce good predictions for test observations. The bias
of the maximal tree is low, but its variance is very high.
Breiman suggested a method to select an optimal subtree of
the maximum tree that would be deep enough to produce
low-bias prediction but small enough to generalize well
to new data. The idea is to penalize the performance of
the subtrees by the number of terminal nodes they have,
allowing to construct a sequence of optimal subtrees
depending on the strength of the penalization. That pruning
phase intends to find the sequence of best trees of 1, 2,… 𝑙
leaves. The optimal tree is then selected among this
sequence, by cross-validation.
This method leads to a clear and interpretable modelization
that is not sensitive to outliers and can handle missing
values. This makes CART a valid choice of modelization
for real business applications. In contrast, the predictions
obtained with CART are very sensitive to changes in the
training set, which makes it an unstable model. This lack of
stability led to the design of more elaborate procedures to
design tree-based models, such as the Bagging and Boosting
techniques detailed in the following sections.

A.2. Random forest
In the random forest algorithm, 𝑞 covariates are randomly
selected among the 𝑝 available features at each node. At
each node, only those 𝑞 covariates are considered to find the
optimal split.
Let’s define Θ𝑜𝑏𝑠, the random variable representing the
bootstrap over observations of  and Θ𝑐𝑜𝑣(𝑞), the random
variable representing the random drawings of 𝑞 covariates
over the 𝑝 available features at each node. We assume that
Θ𝑜𝑏𝑠 and Θ𝑐𝑜𝑣(𝑞) are independent of . The 𝑖-th realisations
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

(Θ1
𝑜𝑏𝑠)

⋮

(Θ𝑖
𝑜𝑏𝑠)

⋮

 ((Θ1
𝑜𝑏𝑠),Θ

1
𝑐𝑜𝑣(𝑞))

(Θ𝑁𝑡𝑟𝑒𝑒𝑠
𝑜𝑏𝑠 )

⋮

 ((Θ𝑖
𝑜𝑏𝑠),Θ

𝑖
𝑐𝑜𝑣(𝑞))

⋮

 ((Θ𝑁𝑡𝑟𝑒𝑒𝑠
𝑜𝑏𝑠 ),Θ𝑁𝑡𝑟𝑒𝑒𝑠

𝑐𝑜𝑣 (𝑞))

Random forest outcome

boo
tstr

ap
aggregation

single tree

Figure 9: Random forest mechanism

of those bootstrap steps are denoted Θ𝑖
𝑜𝑏𝑠 et Θ𝑖

𝑐𝑜𝑣(𝑞).
(Θ𝑖

𝑜𝑏𝑠) would then be a subsample of  and
 ((Θ𝑖

𝑜𝑏𝑠),Θ
𝑖
𝑐𝑜𝑣(𝑞)) the maximal tree grown with

CART algorithm from this subsample with the 𝑝 features
considered at each node, selected with Θ𝑖

𝑐𝑜𝑣(𝑞). The
mechanism of a random forest built over 𝑁𝑡𝑟𝑒𝑒𝑠 trees is
summarized below:
The parameter 𝑞 is fixed in advance and is constant among
trees of the same forest. The fact that the random feature
selection happens at each node of a tree ensures that every
tree deep enough is grown by considering almost surely
every covariate. This algorithm, with two different bootstrap
procedures, has been developed by Breiman (1996) and
Amit and Geman (1997) and synthesized in Breiman (2001).
When predicting the forest outcome for an observation, the
aggregation step consists of propagating the observation
through every tree in the forest. The prediction of the
forest is the majority vote among all trees of the mean
outcomes of each individual tree respectively, in a
classification or a regression context. In other words, let
ℎ𝑖(𝑥) = ℎ𝑖(𝑥,(Θ𝑖

𝑜𝑏𝑠),Θ
𝑖
𝑐𝑜𝑣(𝑞)) denote the prediction of

the observation 𝑥 given by the 𝑖-th tree, grown with the
bootstrap realizations Θ𝑖

𝑜𝑏𝑠 and Θ𝑖
𝑐𝑜𝑣(𝑞), the prediction of

the random forest is 𝑅𝐹 (𝑥):

𝑅𝐹 (𝑥) = 𝑚𝑜𝑑𝑒(ℎ1(𝑥),… , ℎ𝑁𝑡𝑟𝑒𝑒𝑠
(𝑥)), for classification

𝑅𝐹 (𝑥) = 1
𝑁𝑡𝑟𝑒𝑒𝑠

𝑁𝑡𝑟𝑒𝑒𝑠
∑

𝑖=1
ℎ𝑖(𝑥), for regression

Theoretical guarantees on random forests exist and often
rely on the hypothesis that all the trees within the forest are
independent. The bootstrap procedure aims at diminishing
the correlations between different trees to get closer to that

assumption.

A.3. XGBoost
If tree-based boosting approaches share with bagging
the global concept of aggregating weak predictions, the
construction of each tree is very different. For boosting
techniques, it relies on a recursive relation: a first tree is
grown, then a second one that will put more weight on
poorly predicted observations, and so on: single trees are
grown iteratively such that each subsequent tree aims at
reducing the errors of the previous one. Intuitively, the goal
of boosting thought iterations is to focus on regions of the
original dataset that yield poor predictions.
All those weak single trees build iteratively and then
aggregated with a weighted mean, with weights related to
their accuracy.
Generally, let 𝒘𝒊 = (𝑤1, ..., 𝑤𝑛), ∀𝑖 ∈

[

1, ..., 𝑁𝑡𝑟𝑒𝑒𝑠
] be the

vector of observations weights during the 𝑖-th iteration of
the boosting algorithm. We initialize: 𝒘𝟏 = ( 1𝑛 , ...,

1
𝑛 ), let

𝒘𝒊 be the original dataset, with observations weighted
by 𝒘𝒊. Let  (𝒘𝒊)5 be the tree grown from 𝒘𝒊 . The final
model is denoted ().
"The predictions are combined in an additive manner, where
the addition of each base model improves (or “boosts”) the
overall model. Therefore, the overall model f is an additive
model of the form:"

𝑓 (𝐱) =
𝑀
∑

𝑚=1
𝛽𝑚𝑔(𝐱; 𝜃𝑚),

"where M>0 denotes the number of base learners, and
𝛽𝑚 ∈  is a weighting term. The function g refers to a base
learner and is parameterized by the vector 𝜃. Individual

5This notation is clearly simplified and does not take other parameters
into account
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𝑤1  (𝑤1)

𝑤2  (𝑤2)

... ...

𝑤𝑁𝑡𝑟𝑒𝑒𝑠  (𝑤𝑁𝑡𝑟𝑒𝑒𝑠 ) ()

Figure 10: Tree-boosting mechanism

base learners differ in the configuration of their parameters
𝜃, which is indicated by a subscript m."
We can illustrate the mechanism of a boosting algorithm
like so:
There are many boosting techniques adapted to trees, and
the main difference between them can be their method of
weighting training data points or the hypotheses they rely
on. In this paper, we will only consider the library XGBoost
as it is regarded as one of the most competitive boosting
algorithms in terms of prediction accuracy, computation
time, and flexibility XGBoost has been developed by Chen
and GuestrinChen and Guestrin (2016) and relies on a
gradient boosting procedure. One of the main advantages of
XGBoost resides in its optimization, as it can be finely tuned
through numerous parameters and benefits significantly
from parallel computation.

A.4. Confusion matrix and evaluation metrics
Obviously, with a binary outcome, an observation can be
well classified or misclassified in only four ways: a churned
observation can be classified as such or misclassified, and an
active observation can be classified as such or misclassified.
A confusion matrix is essentially a table containing the
number of observations𝑁(𝑗, 𝑘) in the test set that fall in each
of those possibilities:

𝑁(𝑗, 𝑘) =
𝑁
∑

𝑖=1
𝟏
(

𝑦𝑖 = 𝑗, 𝑦̂𝑖 = 𝑘
)

.

Real outcome 𝑦
1 0 Total

Predicted outcome 𝑦̂ 1 𝑁(1, 1) 𝑁(0, 1) 𝑁(−, 1)
0 𝑁(1, 0) 𝑁(0, 0) 𝑁(−, 0)6
Total 𝑁(1,−) 𝑁(−, 0) 𝑛

𝑁(1, 1), 𝑁(1, 0), 𝑁(0, 1), 𝑁(0, 0) are respectively called
the number of true positive, false negative, false positive

and true negative.
From this number, we can derive several well-used
metrics:

Accuracy(𝑦, 𝑦̂) =
𝑁(1, 1) +𝑁(0, 0)

𝑛

Precision(𝑦, 𝑦̂) =
𝑁(1, 1)

𝑁(1, 1) +𝑁(0, 1)
=

𝑁(1, 1)
𝑁(−, 1)

Recall(𝑦, 𝑦̂) =
𝑁(1, 1)

𝑁(1, 1) +𝑁(1, 0)
=

𝑁(1, 1)
𝑁(1,−)

F1Score(𝑦, 𝑦̂) =
𝑁(1, 1)

𝑁(1, 1) + 𝑁(1,0)+𝑁(0,1)
2

= 2
1

recall +
1

precision

= 2 ⋅
recall ⋅ precision
recall + precision

Accuracy(𝑦, 𝑦̂) is undoubtedly the most intuitive
performance measure, and it is defined as the proportion
of correctly predicted observations over all observations.
It is widely used for churn analysis but appears to be a
satisfying performance measure for balanced datasets,
which is debatable in our case.
Precision(𝑦, 𝑦̂) measures the proportion of observations
that actually churned among the observations predicted as
churners: the higher this metric, the lower the false positive
rate.
Recall(𝑦, 𝑦̂) measures the proportion of observations that
were correctly identified as churners among the actually
churned observations. The higher this metric, the lower
the false-negative rate, which is of great interest for churn
predictions that lead to the application of a retention
strategy. The real-world retention strategies are often
limited by budget or deployment constraints; a low recall
would mean that a significant part of the retention budget
was spent on policyholders that were not churners. It is
often preferable to target a smaller number of policyholders
with a more substantial proportion of churners at the risk
of missing a lot of them than targeting a more significant
number of policyholders with a lower proportion of
churners, even if that means that more churners were
identified as such.
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Lastly, F1Score can be seen as a weighted average between
precision and recall. It measures a model’s ability to predict
churners in terms of both precision and recall. It is usually
more efficient than accuracy in the presence of uneven
class distribution. Accuracy seems to perform better if false
positives and false negatives have similar costs, which is
arguably not the case in our study.

A.5. Competing risk framework
There are several regression models to estimate the global
hazard and the hazard of one risk in settings where
competing risks are present: modeling the cause-specific
hazard and the subdistribution hazard function. They
account for competing risks differently, obtaining different
hazard functions and thus distinct advantages, drawbacks,
and interpretations. We will here quickly introduce those
approaches’ theoretical and practical implications and
justify which one we will use in our modelizations.
In Cause-specific regression, each cause-specific hazard is
estimated separately, in our case, the cause-specific hazards
of lapse and death, by considering all subjects that experi-
enced the competing event as censored: We remind that 𝐽𝑇 =
0 corresponds to an active subject that did not experience
lapse 𝐽𝑇 = 1 or death 𝐽𝑇 = 2. The cause-specific hazard
rates regarding the 𝑗-th risk (𝑗 ∈ [1,… 𝐽 ]) are defined as:

𝜆𝑇 ,𝑗(𝑡) = lim
𝑑𝑡→0

𝑃
(

𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡, 𝐽𝑇 = 𝑗 ∣ 𝑇 ≥ 𝑡
)

𝑑𝑡

We can recover the global hazard rate as 𝜆𝑇 ,1(𝑡) + ⋯ +
𝜆𝑇 ,𝐽 (𝑡) = 𝜆𝑇 (𝑡), and derive the global survival distribution
of 𝑇 as

𝑃 (𝑇 > 𝑡) = 1 − 𝐹𝑇 (𝑡) = 𝑆𝑇 (𝑡)

= exp
(

−∫

𝑡

0

(

𝜆𝑇 ,1(𝑠) +⋯ + 𝜆𝑇 ,𝐽 (𝑠)
)

𝑑𝑠
)

This approach aims at analysing the cause-specific "distri-
bution" function: 𝐹𝑇 ,𝑗(𝑡) = 𝑃

(

𝑇 ≤ 𝑡, 𝐽𝑇 = 𝑗
). In practice,

it is called the Cumulative Incidence Function (𝐶𝐼𝐹 ) for
cause 𝑗 and not a distribution function since 𝐹𝑇 ,𝑗(𝑡) →

𝑃
(

𝐽𝑇 = 𝑗
)

≠ 1 as 𝑡 → +∞. By analogy with the clas-
sical survival framework, the 𝐶𝐼𝐹 can be characterized as
𝐹𝑇 ,𝑗(𝑡) = ∫ 𝑡

0 𝑓𝑇 ,𝑗(𝑠)𝑑𝑠7, where 𝑓𝑇 ,𝑗 is the improper8 density
function for cause 𝑗. It follows that:

𝑓𝑇 ,𝑗(𝑠) = lim
𝑑𝑡→0

𝑃
(

𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡, 𝐽𝑇 = 𝑗
)

𝑑𝑡
= 𝜆𝑇 ,𝑗(𝑡)𝑆𝑇 (𝑡)

The equation above is self-explanatory: the probability of
experiencing cause 𝑗 at time 𝑡 is simply the product of

7We suppose that 𝑇 has a continuous distribution
8Because derived from the 𝐶𝐼𝐹 , an improper cumulative distribution

function

surviving the previous time periods by the cause-specific
hazard at time 𝑡. We finally obtain the 𝐶𝐼𝐹 for cause 𝑗 as:

𝐹𝑇 ,𝑗(𝑡) = ∫

𝑡

0
𝜆𝑇 ,𝑗(𝑠) exp

(

−∫

𝑠

0
𝜆𝑇 (𝑢)𝑑𝑢

)

𝑑𝑠.

There are several advantages to that approach. First of all,
cause-specific hazard models can be easily fit with any
classical implementation of CPH by simply considering
as censored any subject that experienced the competing
event. Then the 𝐶𝐼𝐹 is clearly interpretable and summable
𝑃 (𝑇 ≤ 𝑡) = 𝐹𝑇 ,1(𝑠) + ⋯ + 𝐹𝑇 ,𝐽 (𝑠)9. On the other hand,
the 𝐶𝐼𝐹 estimation of one given cause depends on all
other causes: it implies that the study of a specific cause
requires estimating the global hazard rate, and interpreting
the effects of covariates on this cause is difficult. Indeed,
part of the effects on a specific cause comes from the
competing causes, but in our setting, we are only interested
in the prediction of the survival probabilities, not their
interpretation as such.
We have introduced it at the beginning of this section;
another approach is often considered to analyze competing
risks and derive a cause-specific 𝐶𝐼𝐹 . This other approach,
called the subdistribution hazard function of Fine and Gray
regression, works by considering a new competing risk
process 𝜏. Without loss of generality, let’s consider death as
our cause of interest:

𝜏 = 𝑇 × 𝟙𝐽𝑇=2 +∞ × 𝟙𝐽𝑇≠2.

It has the same as 𝑇 regarding the risk of death, 𝑃 (𝜏 ≤ 𝑡) =
𝐹𝑇 ,2(𝑡) and a mass point at infinity 1−𝐹𝑇 ,2(∞), probability to
observe other causes (𝐽𝑇 ≠ 2

) or not to observe any failure.
In other words, if the previous approach considered every
subject that experienced competing events as censored, this
approach considers a new and artificial at-risk population.
This last consideration is made clear when deriving the
hazard rate of 𝜏:

𝜆𝜏 (𝑡) = lim
𝑑𝑡→0

𝑃
(

𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡, 𝐽𝑇 = 2 ∣ {𝑇 ≥ 𝑡} ∪
{

𝑇 ≤ 𝑡, 𝐽𝑇 ≠ 2
})

𝑑𝑡
.

Finally, we obtain the 𝐶𝐼𝐹 for the risk of death as:

𝐹𝑇 ,2(𝑡) = 1 − exp
(

−∫

𝑡

0
𝜆𝜏 (𝑠)𝑑𝑠

)

.

This subdistribution approach resolves the most important
drawback to cause-specific regression, as the coefficients
resulting from it do have a direct relationship with the
cumulative incidence: estimating the 𝐶𝐼𝐹 for a specific
cause does not depend on the other causes, which makes
the interpretation of 𝐶𝐼𝐹 easier. The subdistribution hazard
models can be fit in R by using the crr function in the
cmprsk package or using the timereg package. Still, to our
knowledge, there is no implementation of a Fine and Gray
model in Lifelines or, more generally, Python. We can also

9unlike to the function 1 − exp
(

− ∫ 𝑡
0 𝜆𝑇 ,𝑗 (𝑢)𝑑𝑢

)

.
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note that these two approaches are linked,Putter et al. and the
link between 𝜆𝜏 (𝑡) and 𝜆𝑇 ,𝑗(𝑡) is given by:

𝜆𝜏 (𝑡) = 𝑟𝑗(𝑡)𝜆𝑇 ,𝑗(𝑡), with 𝑟𝑗(𝑡) =
𝑃 (𝐽𝑇 = 0)
𝐽
∑

𝑝≠𝑗
𝑃 (𝐽𝑇 = 𝑝)

In other words, if the probability of any competing risk is
low, the two approaches give very close results.

A.6. Survival modelizations results
𝑟𝑙𝑎𝑝𝑠𝑒𝑟𝑖,𝑡 represents the probability that the policy of subject
𝑖 is still active at time 𝑡, given that it was active at its last
observed time. Predicting the overall conditional survival
with the competing risks, in that case, can be achieved by
creating a combined outcome. The policy ends with death
or lapse, whichever comes first, and to compute 𝑟𝑙𝑎𝑝𝑠𝑒𝑟, we
recode the competing events as a combined event. In terms of
statistical guarantees, this approach is compatible with any
survival analysis method.
In the following sections of this appendix, 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡𝑖,𝑡 indicates
the probability of survival for subject 𝑖 at time 𝑡 given that
it will not lapse. In other words, it is the survival probability
regarding only the risk of death. As detailed in Section 4.1.1,
this corresponds to the cause-specific survival probability
for death. It is to be noted that the density from which we
derive our survival probabilities is improper as it derives
itself from the 𝐶𝐼𝐹 , which is not a proper distribution func-
tion.10. Therefore, any conclusion about those probabilities
should be drawn with care. Our modelization is derived from
a Cox cause-specific hazard regression with a spline baseline
hazard from the Python library Lifelines. Similarly to 𝑟𝑙𝑎𝑝𝑠𝑒𝑟,
covariates selection and tuning are performed by minimizing
AIC.
A.6.1. Cox-model
We first decide to estimate survival with a Cox Propor-
tional hazard model with a spline baseline hazard from the
Python library Lifelines. Covariate selection and tuning are
performed by minimizing AIC. Here is what 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡, the
vector of cause-specific probabilities, looks like, and we can
compare it to 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 on some subjects:

10as it does not tend to 1 as 𝑡 goes to +∞

Figure 11: 10 policyholders’ survival curve for 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 with
Cox model

Figure 12: 10 policyholders’ survival curve for 𝑟𝑙𝑎𝑝𝑠𝑒𝑟
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The effect of various covariates on the survival outcome can
be found below:

Figure 13: Coefficient plot for 𝑟𝑙𝑎𝑝𝑠𝑒𝑟

Figure 14: 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 trajectories for different products

Figure 15: 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 trajectories by gender

Figure 16: 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 trajectories for different ages

Figure 17: 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 trajectories for different face amounts
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Figure 18: Coefficient plot for 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡

Figure 19: 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 trajectories by gender

Figure 20: 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 trajectories for different ages

Figure 21: 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 trajectories for different face amounts
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A.6.2. RSF
We obtain better results than Cox in terms of concordance
index at the cost of very high computation time for
one training with one set of parameters - 5days without
parallelisation, 4 hours with - compared to a few seconds
for cox model.
Some of the results we obtain are displayed below:

Figure 22: 10 policyholders’ survival curve for 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 with
RSF

Figure 23: 10 policyholders’ survival curve for 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 with
RSF

Weight Feature
0.3148 ± 0.0064 Age_souscription
0.0100 ± 0.0008 CDI_CD_SEXE_1
0.0091 ± 0.0014 PRODUIT_2
0.0077 ± 0.0006 TOTAL_PREMIUM_AMOUNT
0.0013 ± 0.0004 Nb_Contrats
0.0010 ± 0.0003 PRODUIT_3
Table 3: Covariates importance for 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 with RSF

Weight Feature
0.1838 ± 0.0045 Age_souscription
0.0415 ± 0.0018 TOTAL_PREMIUM_AMOUNT
0.0083 ± 0.0011 CDI_CD_SEXE_1
0.0026 ± 0.0013 PRODUIT_2
0.0022 ± 0.0006 PRODUIT_3
0.0020 ± 0.0006 Nb_Contrats

Table 4: Covariates importance for 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 with RSF

A.6.3. XGSB
We obtain better results than Cox and slightly better results
than RSF in terms of concordance index at the cost of even
higher computation time for one training with one set of
parameters - 10h with great parallelisation - compared to a
few seconds for Cox model.
Some of the results we obtain are displayed below:

Figure 24: 10 policyholders’ survival curve for 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 with
GBSM

Figure 25: 10 policyholders’ survival curve for 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 with
GBSM

Weight Feature
0.3274 ± 0.0071 Age_souscription
0.0104 ± 0.0006 TOTAL_PREMIUM_AMOUNT
0.0100 ± 0.0008 CDI_CD_SEXE_1
0.0025 ± 0.0005 PRODUIT_2
0.0005 ± 0.0001 Nb_Contrats
0.0000 ± 0.0001 PRODUIT_3
Table 5: Covariates importance for 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡 with GBSM

Weight Feature
0.1872 ± 0.0039 Age_souscription
0.0438 ± 0.0020 TOTAL_PREMIUM_AMOUNT
0.0134 ± 0.0014 PRODUIT_2
0.0076 ± 0.0009 CDI_CD_SEXE_1
0.0051 ± 0.0006 PRODUIT_3
0.0011 ± 0.0004 Nb_Contrats
Table 6: Covariates importance for 𝑟𝑙𝑎𝑝𝑠𝑒𝑟 with GBSM
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A.6.4. Final survival model
The final concordance index scores are displayed below:

Concordance Index
𝑟𝑙𝑎𝑝𝑠𝑒𝑟 𝑟𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑡

Cox model 69,5% 80,7%
RSF 71,6% 83,7%

GBSM 73,0% 84,1%
Table 7: Survival models comparison)

A.7. Other LMS results

LMS p 𝛿 𝛾 c d T
A-1 2,50% 0,04% 25% 10 1,50% 5
A-2 2,50% 0,04% 25% 10 1,50% 20
A-3 2,50% 0,04% 25% 100 1,50% 5
A-4 2,50% 0,04% 25% 100 1,50% 20
A-5 2,50% 0,04% 5% 10 1,50% 5
A-6 2,50% 0,04% 5% 10 1,50% 20
A-7 2,50% 0,04% 5% 100 1,50% 5
A-8 2,50% 0,04% 5% 100 1,50% 20
A-9 2,50% 0,10% 25% 10 1,50% 5

A-10 2,50% 0,10% 25% 10 1,50% 20
A-11 2,50% 0,10% 25% 100 1,50% 5
A-12 2,50% 0,10% 25% 100 1,50% 20
A-13 2,50% 0,10% 5% 10 1,50% 5
A-14 2,50% 0,10% 5% 10 1,50% 20
A-15 2,50% 0,10% 5% 100 1,50% 5
A-16 2,50% 0,10% 5% 100 1,50% 20
A-17 1,50% 0,04% 25% 10 1,50% 5
A-18 1,50% 0,04% 25% 10 1,50% 20
A-19 1,50% 0,04% 25% 100 1,50% 5
A-20 1,50% 0,04% 25% 100 1,50% 20
A-21 1,50% 0,04% 5% 10 1,50% 5
A-22 1,50% 0,04% 5% 10 1,50% 20
A-23 1,50% 0,04% 5% 100 1,50% 5
A-24 1,50% 0,04% 5% 100 1,50% 20
A-25 1,50% 0,10% 25% 10 1,50% 5
A-26 1,50% 0,10% 25% 10 1,50% 20
A-27 1,50% 0,10% 25% 100 1,50% 5
A-28 1,50% 0,10% 25% 100 1,50% 20
A-29 1,50% 0,10% 5% 10 1,50% 5
A-30 1,50% 0,10% 5% 10 1,50% 20
A-31 1,50% 0,10% 5% 100 1,50% 5
A-32 1,50% 0,10% 5% 100 1,50% 20
B-1 2,50% 0,08% 20% 10 1,50% 5
B-2 2,50% 0,08% 20% 10 1,50% 20
B-3 2,50% 0,08% 20% 100 1,50% 5
B-4 2,50% 0,08% 20% 100 1,50% 20
B-5 2,50% 0,08% 10% 10 1,50% 5
B-6 2,50% 0,08% 10% 10 1,50% 20
B-7 2,50% 0,08% 10% 100 1,50% 5
B-8 2,50% 0,08% 10% 100 1,50% 20
B-9 2,50% 0,20% 20% 10 1,50% 5

B-10 2,50% 0,20% 20% 10 1,50% 20

LMS p 𝛿 𝛾 c d T
B-11 2,50% 0,20% 20% 100 1,50% 5
B-12 2,50% 0,20% 20% 100 1,50% 20
B-13 2,50% 0,20% 10% 10 1,50% 5
B-14 2,50% 0,20% 10% 10 1,50% 20
B-15 2,50% 0,20% 10% 100 1,50% 5
B-16 2,50% 0,20% 10% 100 1,50% 20
B-17 1,50% 0,08% 20% 10 1,50% 5
B-18 1,50% 0,08% 20% 10 1,50% 20
B-19 1,50% 0,08% 20% 100 1,50% 5
B-20 1,50% 0,08% 20% 100 1,50% 20
B-21 1,50% 0,08% 10% 10 1,50% 5
B-22 1,50% 0,08% 10% 10 1,50% 20
B-23 1,50% 0,08% 10% 100 1,50% 5
B-24 1,50% 0,08% 10% 100 1,50% 20
B-25 1,50% 0,20% 20% 10 1,50% 5
B-26 1,50% 0,20% 20% 10 1,50% 20
B-27 1,50% 0,20% 20% 100 1,50% 5
B-28 1,50% 0,20% 20% 100 1,50% 20
B-29 1,50% 0,20% 10% 10 1,50% 5
B-30 1,50% 0,20% 10% 10 1,50% 20
B-31 1,50% 0,20% 10% 100 1,50% 5
B-32 1,50% 0,20% 10% 100 1,50% 20

Table 8: More LMS

Figure 26: Correlation between the proportion of non-
targeted lapsers and the improvement of a CLV-augmented
LMS
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CLV-based lapse management strategy

N° time (s) Model % target diff Accuracy Retention gain RG/target Improvement𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖

A-1 4949
CART

62,58%
92,3% 85,3% 114 661 219 655 4,48 38,20 91,57%

RF 92,9% 85,4% 232 314 287 884 9,82 56,65 23,92%
XGB 93,4% 85,8% 243 365 324 952 9,61 54,64 33,52%

A-2 6111
CART

26,66%
92,3% 89,8% 7 092 097 6 142 119 277,00 353,83 -13,39%

RF 92,9% 90,2% 6 596 374 5 696 455 278,47 351,02 -13,64%
XGB 93,4% 90,9% 7 308 721 7 432 688 288,92 404,84 1,70%

A-3 4603
CART

93,50%
92,3% 83,3% - 2 187 622 - 8 224 - 85,52 - 31,09 99,62%

RF 92,9% 83,4% - 1 900 265 45 483 - 80,18 194,35 102,39%
XGB 93,4% 83,5% - 2 032 650 77 481 - 80,39 174,44 103,81%

A-4 5555
CART

55,37%
92,3% 86,5% 4 789 814 5 117 844 187,00 577,74 6,85%

RF 92,9% 86,4% 4 463 796 4 255 175 188,47 566,05 -4,67%
XGB 93,4% 86,8% 5 032 706 5 433 366 198,92 610,26 7,96%

A-5 4753
CART

86,72%
92,3% 83,6% - 514 477 - 112 372 - 20,08 - 86,48 78,16%

RF 92,9% 83,4% - 323 544 - 3 937 - 13,65 - 28,28 98,78%
XGB 93,4% 83,3% - 383 004 - - 15,14 - 100,00%

A-6 5803
CART

44,27%
92,3% 87,9% 335 810 517 224 13,17 39,91 54,02%

RF 92,9% 87,9% 655 350 661 021 27,68 61,13 0,87%
XGB 93,4% 88,6% 654 219 729 493 25,86 58,22 11,51%

A-7 4241
CART

99,09%
92,3% 83,3% - 2 816 759 - 10 205 - 110,08 - 384,04 99,64%

RF 92,9% 83,3% - 2 456 122 1 013 - 103,65 66,30 100,04%
XGB 93,4% 83,3% - 2 659 020 243 - 105,14 15,92 100,01%

A-8 5164
CART

82,78%
92,3% 84,0% - 1 966 473 - 46 323 - 76,83 - 22,31 97,64%

RF 92,9% 84,0% - 1 477 229 253 885 - 62,32 149,67 117,19%
XGB 93,4% 84,1% - 1 621 796 273 243 - 64,14 117,83 116,85%

A-9 4781
CART

77,60%
92,3% 83,7% - 825 372 - 161 100 - 32,19 - 127,87 80,48%

RF 92,9% 83,4% - 384 736 8 596 - 16,22 32,12 102,23%
XGB 93,4% 83,6% - 498 263 22 337 - 19,70 35,47 104,48%

A-10 6075
CART

29,10%
92,3% 89,7% 4 614 513 4 483 831 180,36 266,33 -2,83%

RF 92,9% 89,9% 4 973 929 4 328 724 210,01 280,90 -12,97%
XGB 93,4% 90,7% 5 354 770 5 368 917 211,69 301,57 0,26%

A-11 4506
CART

96,56%
92,3% 83,2% - 3 127 655 - 118 886 - 122,19 - 2 230,39 96,20%

RF 92,9% 83,3% - 2 517 315 1 340 - 106,22 87,71 100,05%
XGB 93,4% 83,3% - 2 774 278 736 - 109,70 52,00 100,03%

A-12 5534
CART

57,93%
92,3% 86,2% 2 312 231 3 310 314 90,36 412,71 43,17%

RF 92,9% 86,1% 2 841 351 3 129 652 120,01 465,74 10,15%
XGB 93,4% 86,6% 3 078 755 3 825 920 121,69 475,53 24,27%

A-13 4640
CART

92,91%
92,3% 83,3% - 1 201 626 - 163 056 - 46,87 - 1 838,44 86,43%

RF 92,9% 83,3% - 717 620 - 5 339 - 30,28 - 354,24 99,26%
XGB 93,4% 83,3% - 875 378 508 - 34,60 16,26 100,06%

A-14 5739
CART

47,12%
92,3% 87,3% - 1 476 651 - 831 019 - 57,49 - 77,99 43,72%

RF 92,9% 86,0% - 380 683 126 532 - 16,03 21,14 133,24%
XGB 93,4% 85,5% - 644 389 29 382 - 25,47 7,10 104,56%

A-15 4216
CART

99,61%
92,3% 83,3% - 3 503 908 - 97 263 - 136,87 - 2 354,34 97,22%

RF 92,9% 83,3% - 2 850 198 - - 120,28 - 100,00%
XGB 93,4% 83,3% - 3 151 393 - - 124,60 - 100,00%

A-16 5096
CART

84,46%
92,3% 83,8% - 3 778 933 - 734 773 - 147,49 - 418,58 80,56%

RF 92,9% 83,5% - 2 513 261 8 914 - 106,03 20,13 100,35%
XGB 93,4% 83,6% - 2 920 405 34 492 - 115,47 45,75 101,18%
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N° time (s) Model % target diff Accuracy Retention gain RG/target Improvement𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖

A-17 5390
CART

28,74%
92,3% 89,5% 5 100 456 4 899 479 199,11 279,88 -3,94%

RF 92,9% 89,8% 4 635 482 4 226 648 195,69 276,06 -8,82%
XGB 93,4% 90,2% 5 196 736 5 138 253 205,40 299,27 -1,13%

A-18 6452
CART

12,12%
92,3% 91,3% 52 090 240 47 706 070 2 034,15 2 170,64 -8,42%

RF 92,9% 91,9% 46 171 160 42 049 900 1 949,05 2 082,36 -8,93%
XGB 93,4% 92,5% 51 629 950 52 606 740 2 040,95 2 339,70 1,89%

A-19 4913
CART

64,89%
92,3% 85,2% 2 798 173 3 182 143 109,11 481,60 13,72%

RF 92,9% 85,2% 2 502 903 2 743 070 105,69 554,76 9,60%
XGB 93,4% 85,6% 2 920 720 3 438 303 115,40 576,64 17,72%

A-20 6160
CART

29,03%
92,3% 89,6% 49 787 960 45 366 730 1 944,15 2 616,32 -8,88%

RF 92,9% 90,0% 44 038 580 39 947 830 1 859,05 2 547,89 -9,29%
XGB 93,4% 90,6% 49 353 940 49 789 670 1 950,95 2 796,17 0,88%

A-21 5079
CART

51,69%
92,3% 86,8% 482 682 544 887 18,85 53,99 12,89%

RF 92,9% 86,8% 557 090 554 195 23,52 65,17 -0,52%
XGB 93,4% 87,1% 607 670 624 556 24,01 64,79 2,78%

A-22 6199
CART

23,94%
92,3% 90,2% 9 335 438 8 527 444 364,60 454,78 -8,66%

RF 92,9% 90,6% 8 570 307 7 931 029 361,80 460,42 -7,46%
XGB 93,4% 91,2% 9 518 466 9 581 934 376,27 501,56 0,67%

A-23 4601
CART

89,51%
92,3% 83,6% - 1 819 600 135 305 - 71,15 121,80 107,44%

RF 92,9% 83,5% - 1 575 489 159 620 - 66,48 215,65 110,13%
XGB 93,4% 83,7% - 1 668 346 228 226 - 65,99 208,69 113,68%

A-24 5650
CART

50,83%
92,3% 87,0% 7 033 156 7 124 100 274,60 680,08 1,29%

RF 92,9% 87,0% 6 437 729 6 364 477 271,80 711,89 -1,14%
XGB 93,4% 87,4% 7 242 450 7 840 770 286,27 771,71 8,26%

A-25 5379
CART

30,97%
92,3% 89,2% 4 160 423 3 882 623 162,44 241,06 -6,68%

RF 92,9% 89,5% 4 018 432 3 666 219 169,65 249,54 -8,76%
XGB 93,4% 90,0% 4 455 108 4 410 629 176,09 267,87 -1,00%

A-26 6410
CART

12,52%
92,3% 91,3% 49 612 660 45 948 690 1 937,51 2 083,30 -7,39%

RF 92,9% 91,9% 44 548 720 40 814 960 1 880,59 2 029,68 -8,38%
XGB 93,4% 92,5% 49 676 000 50 549 740 1 963,72 2 260,20 1,76%

A-27 4887
CART

66,67%
92,3% 85,1% 1 858 140 2 575 538 72,44 442,86 38,61%

RF 92,9% 85,0% 1 885 853 2 387 018 79,65 531,25 26,57%
XGB 93,4% 85,4% 2 179 093 2 879 880 86,09 544,35 32,16%

A-28 6047
CART

29,42%
92,3% 89,4% 47 310 370 43 168 880 1 847,51 2 519,41 -8,75%

RF 92,9% 89,9% 42 416 140 38 573 620 1 790,59 2 504,61 -9,06%
XGB 93,4% 90,5% 47 399 990 47 812 830 1 873,72 2 721,63 0,87%

A-29 5070
CART

53,79%
92,3% 86,5% - 204 467 - 5 098 - 7,95 - 1,66 97,51%

RF 92,9% 86,1% 163 014 273 435 6,90 40,30 67,74%
XGB 93,4% 86,8% 115 297 248 982 4,55 28,64 115,95%

A-30 6179
CART

24,36%
92,3% 90,3% 7 522 978 7 058 487 293,94 382,06 -6,17%

RF 92,9% 90,6% 7 534 275 7 068 293 318,08 411,80 -6,18%
XGB 93,4% 91,2% 8 219 857 8 265 167 324,94 442,88 0,55%

A-31 4627
CART

90,18%
92,3% 83,6% - 2 506 749 - 139 983 - 97,95 - 121,44 94,42%

RF 92,9% 83,5% - 1 969 564 73 101 - 83,10 111,49 103,71%
XGB 93,4% 83,6% - 2 160 719 76 641 - 85,45 93,28 103,55%

A-32 5679
CART

51,25%
92,3% 86,8% 5 220 695 5 811 833 203,94 583,55 11,32%

RF 92,9% 86,9% 5 401 696 5 269 505 228,08 605,69 -2,45%
XGB 93,4% 87,4% 5 943 841 6 682 230 234,94 670,03 12,42%
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N° time (s) Model % target diff Accuracy Retention gain RG/target Improvement𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖

B-1 4778
CART

75,89%
92,3% 84,0% - 627 165 - 148 913 - 24,46 - 65,19 76,26%

RF 92,9% 83,7% - 280 855 11 973 - 11,84 9,57 104,26%
XGB 93,4% 84,1% - 366 103 25 099 - 14,47 12,30 106,86%

B-2 6074
CART

29,70%
92,3% 89,7% 3 862 156 3 397 247 150,95 203,11 -12,04%

RF 92,9% 89,9% 4 127 224 3 550 730 174,26 230,67 -13,97%
XGB 93,4% 90,6% 4 451 686 4 408 819 175,99 250,17 -0,96%

B-3 4528
CART

96,60%
92,3% 83,2% - 2 929 448 - 85 465 - 114,46 - 1 482,06 97,08%

RF 92,9% 83,3% - 2 413 433 3 724 - 101,84 - 108,33 100,15%
XGB 93,4% 83,3% - 2 642 119 9 092 - 104,47 93,79 100,34%

B-4 5476
CART

60,93%
92,3% 85,9% 1 559 874 2 471 262 60,95 329,63 58,43%

RF 92,9% 85,8% 1 994 645 2 517 111 84,26 422,45 26,19%
XGB 93,4% 86,3% 2 175 670 3 089 897 85,99 422,77 42,02%

B-5 4708
CART

84,33%
92,3% 83,4% - 857 439 - 159 856 - 33,45 - 218,16 81,36%

RF 92,9% 83,3% - 484 459 40 - 20,44 7,23 100,01%
XGB 93,4% 83,3% - 596 203 897 - 23,57 46,96 100,15%

B-6 5906
CART

36,63%
92,3% 88,8% 705 721 922 490 27,69 60,21 30,72%

RF 92,9% 88,9% 1 352 182 1 269 349 57,11 97,63 -6,13%
XGB 93,4% 89,6% 1 342 882 1 428 722 53,09 96,76 6,39%

B-7 4400
CART

98,49%
92,3% 83,2% - 3 159 722 - 39 633 - 123,45 - 1 230,61 98,75%

RF 92,9% 83,3% - 2 617 037 1 024 - 110,44 0,56 100,04%
XGB 93,4% 83,3% - 2 872 219 295 - 113,57 19,31 100,01%

B-8 5278
CART

73,18%
92,3% 84,6% - 1 596 562 169 852 - 62,31 41,78 110,64%

RF 92,9% 84,6% - 780 396 637 625 - 32,89 194,52 181,71%
XGB 93,4% 85,0% - 933 133 780 845 - 36,91 188,79 183,68%

B-9 4601
CART

94,12%
92,3% 83,3% - 2 380 789 - 113 444 - 92,86 - 840,25 95,24%

RF 92,9% 83,3% - 1 403 468 317 - 59,21 7,96 100,02%
XGB 93,4% 83,3% - 1 724 731 3 980 - 68,17 149,44 100,23%

B-10 5947
CART

35,98%
92,3% 89,0% - 760 449 429 196 - 29,35 29,80 156,44%

RF 92,9% 88,5% 1 175 540 1 354 131 49,71 118,11 15,19%
XGB 93,4% 89,8% 871 455 1 456 080 34,48 96,25 67,09%

B-11 4229
CART

99,16%
92,3% 83,3% - 4 683 072 - 48 985 - 182,86 - 1 186,22 98,95%

RF 92,9% 83,3% - 3 536 046 - - 149,21 - 100,00%
XGB 93,4% 83,3% - 4 000 747 - - 158,17 - 100,00%

B-12 5391
CART

66,76%
92,3% 85,0% - 3 062 732 - 388 289 - 119,35 - 80,44 87,32%

RF 92,9% 84,7% - 957 039 710 688 - 40,29 220,55 174,26%
XGB 93,4% 85,3% - 1 404 561 834 198 - 55,52 163,88 159,39%

B-13 4493
CART

96,30%
92,3% 83,3% - 2 358 179 - 159 922 - 91,98 - 2 793,13 93,22%

RF 92,9% 83,3% - 1 384 098 - - 58,40 - 100,00%
XGB 93,4% 83,3% - 1 705 577 - - 67,42 - 100,00%

B-14 5851
CART

42,98%
92,3% 87,8% - 3 251 762 - 1 761 821 - 126,63 - 143,20 45,82%

RF 92,9% 86,4% - 1 013 089 79 273 - 42,69 11,90 107,82%
XGB 93,4% 83,3% - 1 582 006 4 396 - 62,52 287,68 100,28%

B-15 4040
CART

99,67%
92,3% 83,3% - 4 660 462 - 38 969 - 181,98 - 2 075,03 99,16%

RF 92,9% 83,3% - 3 516 676 - - 148,40 - 100,00%
XGB 93,4% 83,3% - 3 981 592 161 - 157,42 10,53 100,00%

B-16 5182
CART

77,97%
92,3% 84,2% - 5 554 044 - 1 491 522 - 216,63 - 549,23 73,15%

RF 92,9% 83,6% - 3 145 668 52 475 - 132,69 84,54 101,67%
XGB 93,4% 83,3% - 3 858 022 - - 152,52 - 100,00%
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N° time (s) Model % target diff Accuracy Retention gain RG/target Improvement𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖 𝑦𝑖 𝑦̃𝑖

B-17 5324
CART

32,66%
92,3% 88,9% 3 361 471 3 037 200 131,25 191,31 -9,65%

RF 92,9% 89,3% 3 241 680 2 911 023 136,86 204,43 -10,20%
XGB 93,4% 89,6% 3 596 593 3 546 671 142,15 222,04 -1,39%

B-18 6411
CART

13,83%
92,3% 91,1% 39 860 670 37 695 680 1 556,66 1 778,71 -5,43%

RF 92,9% 91,7% 35 787 050 32 345 100 1 510,72 1 654,32 -9,62%
XGB 93,4% 92,0% 39 908 670 40 886 810 1 577,61 1 848,71 2,45%

B-19 4853
CART

70,34%
92,3% 84,7% 1 059 189 1 813 631 41,25 392,14 71,23%

RF 92,9% 84,8% 1 109 101 1 808 616 46,86 474,33 63,07%
XGB 93,4% 85,0% 1 320 578 2 141 271 52,15 482,34 62,15%

B-20 5973
CART

31,76%
92,3% 89,2% 37 558 390 34 068 550 1 466,66 2 125,97 -9,29%

RF 92,9% 89,4% 33 654 470 30 032 580 1 420,72 2 072,47 -10,76%
XGB 93,4% 90,1% 37 632 650 38 008 480 1 487,61 2 277,17 1,00%

B-21 5228
CART

41,79%
92,3% 87,7% 1 136 879 1 179 837 44,40 92,50 3,78%

RF 92,9% 88,1% 1 276 808 1 188 256 53,91 104,81 -6,94%
XGB 93,4% 88,7% 1 385 145 1 356 864 54,74 104,76 -2,04%

B-22 6296
CART

19,52%
92,3% 90,7% 18 704 980 17 177 190 730,55 852,81 -8,17%

RF 92,9% 91,1% 17 182 100 15 732 340 725,34 859,29 -8,44%
XGB 93,4% 91,5% 19 071 370 19 050 020 753,90 939,00 -0,11%

B-23 4746
CART

81,36%
92,3% 84,1% - 1 165 404 458 223 - 45,60 172,83 139,32%

RF 92,9% 84,0% - 855 770 525 335 - 36,09 288,55 161,39%
XGB 93,4% 84,1% - 890 871 645 445 - 35,26 310,86 172,45%

B-24 5845
CART

40,47%
92,3% 88,2% 16 402 700 15 013 310 640,55 1 093,43 -8,47%

RF 92,9% 88,4% 15 049 520 13 423 040 635,34 1 122,81 -10,81%
XGB 93,4% 88,9% 16 795 360 17 144 260 663,90 1 247,50 2,08%

B-25 5274
CART

37,42%
92,3% 88,6% 1 607 847 1 839 864 62,84 126,33 14,43%

RF 92,9% 88,7% 2 119 067 1 923 982 89,49 152,71 -9,21%
XGB 93,4% 89,2% 2 237 965 2 194 469 88,45 155,54 -1,94%

B-26 6425
CART

14,83%
92,3% 91,1% 35 238 060 32 690 970 1 376,37 1 558,26 -7,23%

RF 92,9% 91,6% 32 835 370 29 986 540 1 386,17 1 543,12 -8,68%
XGB 93,4% 92,0% 36 328 440 36 803 630 1 436,10 1 688,53 1,31%

B-27 4811
CART

73,92%
92,3% 84,3% - 694 436 751 404 - 27,16 226,99 208,20%

RF 92,9% 84,4% - 13 512 1 018 369 - 0,51 356,48 7636,98%
XGB 93,4% 84,7% - 38 050 1 253 252 - 1,55 345,94 3393,68%

B-28 5995
CART

32,61%
92,3% 89,1% 32 935 780 29 342 930 1 286,37 1 847,71 -10,91%

RF 92,9% 89,4% 30 702 790 27 725 620 1 296,17 1 933,38 -9,70%
XGB 93,4% 90,0% 34 052 420 34 390 060 1 346,10 2 094,90 0,99%

B-29 5143
CART

47,03%
92,3% 87,3% - 363 861 55 985 - 14,12 3,38 115,39%

RF 92,9% 87,4% 377 170 488 284 15,95 49,62 29,46%
XGB 93,4% 88,0% 275 772 491 567 10,89 44,89 78,25%

B-30 6243
CART

20,47%
92,3% 90,7% 14 747 500 13 838 380 576,23 690,22 -6,16%

RF 92,9% 91,1% 14 816 830 13 378 460 625,54 743,34 -9,71%
XGB 93,4% 91,5% 16 146 490 16 169 440 638,30 814,80 0,14%

B-31 4730
CART

83,83%
92,3% 83,7% - 2 666 144 - 487 716 - 104,12 - 267,75 81,71%

RF 92,9% 83,7% - 1 755 409 139 545 - 74,05 102,66 107,95%
XGB 93,4% 83,7% - 2 000 244 134 199 - 79,11 130,13 106,71%

B-32 5865
CART

41,41%
92,3% 88,0% 12 445 210 11 693 070 486,23 884,49 -6,04%

RF 92,9% 88,3% 12 684 250 11 381 260 535,54 971,28 -10,27%
XGB 93,4% 88,8% 13 870 470 14 101 470 548,30 1 048,38 1,67%
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