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Slepian-Bangs formulas for parameterized density

generator of elliptically symmetric distributions
Habti Abeida and Jean-Pierre Delmas

Abstract

This paper mainly deals with an extension of the matrix Slepian-Bangs (SB) formula to elliptical symmetric

(ES) distributions under the assumption that the arbitrary density generator depends on unknown parameters,

aiming to rigorously quantify and understand the impact of this assumption on ES distributed parametric

estimation models. This matrix SB formula is derived in a unified way within the framework of real (RES) and

circular (C-CES) or noncircular (NC-CES) complex elliptically symmetric distributions, and then compared to

the matrix SB formula obtained with fully known or completely unknown density generators. This new matrix

SB formula involves a common structure to the existing one with a simple corrective coefficient. Closed-form

expressions of this coefficient are given for Student’s t and generalized Gaussian distributions and are each

compared according to different knowledge of the density generator. This allows us to conclude that for an

arbitrary parameterization, the Cramér-Rao bound (CRB) may be very sensitive to the knowledge of the density

generator for super-Gaussian distributions contrary to sub-Gaussian distributions. Finally, we prove that for the

parametrization with an unknown scale factor, the CRB for the estimation of the other parameters of the scatter

matrix does not depend on the type of knowledge of the density generator. This latter result remains true for

the specific noisy linear mixture data model where the parameter of interest is characterized by the range space

of the mixing matrix.

Index Terms

Slepian-Bangs formula, Cramér-Rao bound, Elliptical symmetric distributions, Parametric density generator,

Student’s t and generalized Gaussian distribution, Parametric and semiparametric models.
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I. INTRODUCTION

To assess the performance of many estimation algorithms, it is necessary to derive the Cramer-Rao bound

(CRB), which is a lower bound on the variance of any unbiased estimator of the parameters of interest for

the problem at hand. This bound relies on a parametric probabilistic model of the data which may be either

exact or misspecified. Under the matched model assumption, the CRB is usually computed as the inverse of

the Fisher information matrix (FIM). Fortunately a simple elementwise closed-form expression of this FIM,

called Slepian-Bangs (SB) formula has been derived for the real Gaussian distribution in [1] and [2], in which

both the expectation and the covariance are parameterized. Then this formula was extended to the circular

complex Gaussian and non-circular Gaussian case in [3] and [4], respectively. However, in practice, the Gaussian

assumption is not always adapted due to outliers. It is known from the literature that outliers can be modeled by

elliptically symmetric (ES) distributions with heavy tails. The Gaussian-based SB formula was later extended

to circular complex ES (C-CES) distributions (see e.g., [5]–[7]) in [8] and [9] and to noncircular complex

ES (NC-CES) distributions [10]. We remind here the elliptically symmetric (ES) distributions encompass the

Gaussian, the generalized Gaussian and all the compound Gaussian distributions, such as the Student’s t and

K-distributions, as special cases. Because of their great flexibility in modeling both heavy-tailed and light-tailed

non-Gaussian distributed data, these distributions have been used in a variety of applications, in particular in

the radar and array signal processing fields (see [7] and references therein).

In all above references on the derivations of SBs, the density generator is assumed to be perfectly known.

Unlike this case, when considered as a nuisance parameter, an extension of SB formula was proposed in [11] in

the context of semiparametric estimation for C-CES distributions. However, when the data model is misspecified

by the parametric probabilistic model, the SB formula was generalized in [12] and [13] for the Gaussian model

and then extended in [14] to C-CES distributions.

Given a particular ES distribution, its density generator might depend on some extra parameters (e.g., shape

and scale parameters for the Student’s t distribution) that are in general unknown. In this context, closed-form

expressions of the FIM for the estimation of these parameters along with the symmetry center and scatter

matrix for the circular Student’s t and generalized Gaussian distribution have been derived in [15]–[17] where

the trace of the scatter matrix is constrained. In this paper, we rather consider these extra parameters of the

density generator as unknown nuisance parameters and we are interested in the FIM for the estimation of

the parameters parameterizing the symmetry center and scatter matrix which is constrained to be equal to the

covariance matrix. The derived SB formula is compared to that for which the density generator is fully known

or completely unknown. This new SB formula involves a common structure to the existing one with a simple

corrective coefficient. Closed-form expressions of this coefficient are given for Student’s t and generalized
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Gaussian distributions and are each compared according to different knowledge of the density generator. This

allows us to conclude that for an arbitrary parameterization, the CRB may be very sensitive to the type of

knowledge of the density for super-Gaussian distributions contrary to sub-Gaussian distributions. Finally, we

prove that if the symmetry center and the scatter matrix have no parameter in common with an unknown scale

factor, the CRB for the estimation of the other parameters of the scatter matrix does not depend on the type

of knowledge of the density generator. The same result is true for the specific noisy linear mixture data model

where the parameter of interest is characterized by the range space of the mixing matrix.

The remainder of this paper is organized as follows. Section II recalls the real to complex representation of

ES distributions useful to be able to deduce the SB formulas for complex data from those for real data. It also

gives a brief reminder of Student’s t and generalized Gaussian distributions under the constraint that the scatter

matrix is equal to the covariance matrix, and of the classic and parametric SB formulas. The parameterized

SB formula is derived in Section III for arbitrary density generators and then for Student’s t and generalized

Gaussian distributions, where comparisons are given for different parameterizations of the symmetric center and

scatter matrix for three types of knowledge of the density generators. The specific model noisy linear mixture

data model where the parameter of interest is characterized by the range space of the mixing matrix is covered

in Section IV. Finally, the paper is concluded in Section V.

The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while the

superscripts T , H and ∗ stand for transpose, conjugate transpose and conjugate. E(.), |.|, Re(.) and Im(.)

are the expectation, determinant, real and imaginary part operators respectively. IN is the identity matrix of

dimension N . vec(·) is the “vectorization” operator that turns a matrix into a vector by stacking the columns

of the matrix one below another which is used in conjunction with the Kronecker product A⊗B as the block

matrix whose (i, j) block element is ai,jB. Finally, Γ(x) and B(x, y) are the usual gamma and beta functions

and x =d y means that the r.v. x and y have the same distribution.

II. PRELIMINARIES ON ELLIPTICALLY SYMMETRIC DISTRIBUTIONS AND SLEPIAN-BANGS FORMULAS

A. RES, C-CES and NC-CES distributions

Consider first the case of a N -dimensional RES distributed random variable (r.v.) x whose probability density

function (p.d.f.) is of the form

p(x) = |Σ|−1/2gr,N [(x− µ)TΣ−1(x− µ)], (1)
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where µ and Σ are the symmetry center and the scatter matrix, respectively, and where the density generator1

gr,N : R+ 7→ R+ satisfies2 δr,N
def
=
∫∞

0 tN/2−1gr,N (t)dt <∞. To derive the SB formula, we assume throughout

this paper that the second-order moments of x are finite. To avoid the scale ambiguity problem between Σ and

gr,N , we here impose the constraint on gr,N such that Σ = E[(x−µ)(x−µ)T ] rather than usual constraints on

Σ that we cannot work on when it is parameterized. The r.v. x admits the following stochastic representation

[18]

x =d µ +
√
Qr,NΣ1/2ur,N , (2)

where Qr,N and ur,N are independent, ur,N is uniformly distributed on the unit real N -sphere and Qr,N has

the p.d.f.

p(q) = δ−1
r,Nq

N/2−1gr,N (q). (3)

An N -dimensional complex r.v. x is CES distributed if and only if the 2N -dimensional r.v. x̄
def
=

(Re(x)T , Im(x)T )T is RES distributed [19]. Depending on whether Ω
def
= E[(x−µ)(x−µ)T ] = 0 or Ω 6= 0, x

is C-CES or NC-CES distributed, respectively. Using the one-to one mapping x̄ 7→ x̃
def
= (xT ,xH)T =

√
2Mx̄

where M
def
= 1√

2

(
I iI

I −iI

)
is unitary, we get (x̄−µ̄)T Σ̄−1(x̄−µ̄) = (x̃−µ̃)HΣ̃−1(x̃−µ̃) and |Σ̄| = 2−2N |Σ̃|

where Σ̄
def
= E[(x̄ − µ̄)(x̄ − µ̄)T ], Σ̃

def
= E[(x̃ − µ̃)(x̃ − µ̃)H ] =

(
Σ Ω

Ω∗ Σ∗

)
, µ̄

def
= (Re(µ)T , Im(µ)T )T ,

µ̃
def
= (µT ,µH)T and the p.d.f. (1) becomes

p(x) = |Σ̃|−1/2gc,N

[
1

2
(x̃− µ̃)HΣ̃−1(x̃− µ̃)

]
, (4)

where gc,N (t)
def
= 2Ngr,2N (2t) which satisfies δc,N

def
=
∫∞

0 tN−1gc,N (t)dt = δr,2N = Γ(N)
πN . From the stochastic

representation (2) where N is replaced by 2N , we get

x =d µ +
√
Qc,N [(Σ̃1/2)1,1uc,N + (Σ̃1/2)1,2u

∗
c,N ], (5)

with Σ̃1/2 def
=

(
(Σ̃1/2)1,1 (Σ̃1/2)1,2

(Σ̃1/2)∗1,2 (Σ̃1/2)∗1,1

)
where closed-form expressions of (Σ̃1/2)1,1 and (Σ̃1/2)1,2 are given in

[10] with Σ̃ = Σ̃1/2(Σ̃1/2)H , Qc,N and uc,N are independent, uc,N is uniformly distributed on the unit complex

N -sphere and Qc,N
def
= 1

2Qr,2N with p.d.f.

p(q) = δ−1
c,Nq

N−1gc,N (q). (6)

1The readers interested in these density generator functions can refer to [7] which gives several examples.
2The usual normalizing constant being included in gr,N (1), δr,N depends here in fact only on N .
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In the particular case where Ω = 0, x is C-CES distributed, and (4) and (5) respectively reduce to

p(x) = |Σ|−1gc,N [(x− µ)HΣ−1(x− µ)] and x =d µ +
√
Qc,NΣ1/2uc,N . (7)

We consider from now on that µ and Σ are parameterized by a parameter α ∈ RM that characterizes (µ,Σ), but

we omit this dependence (µ(α),Σ(α)) to simplify the notations. We also assume that the density generators

are either fully known, known up to unknown parameters β ∈ RL, or completely unknown and interpreted as

infinite-dimensional nuisance parameters. β acts as a nuisance parameter, while α is a parameter of interest

(time delay, direction of arrival, range, impulse response coefficients...) depending on the related problem.

B. Constrained density generators of Student’s t and generalized Gaussian distributions

We give here a brief reminder of the expressions of the density generators of Student’s t and generalized

Gaussian distributions (see [7] for details) under the constraint that the scatter matrices Σ are equal to the

covariance matrices. We note that the Student’s t distribution, which belongs to the subclass of compound

Gaussian distributions, have gained popularity for modeling radar clutter [20] and the generalized Gaussian

distributions have been used for modeling various images or features extracted from these images [21]. These

distributions are used in the illustration of the parameterized SB formulas in Section III-B. From the expressions

of the unconstrained density generators [7], we deduce easily the following expressions that are reduced to a

single parameter:

gνc,N (t) =
2NΓ(N + ν

2 )

πN (ν − 2)NΓ(ν2 )

(
1 +

2t

ν − 2

)−(N+ ν

2
)

and gsc,N (t) =
sΓ(N)[Γ(N+1

s )]N

πNNN [Γ(Ns )]N+1
e

− ts NΓ(Ns )
Γ(N+1

s )


s

, (8)

for Student’s t distribution with ν > 2 degrees of freedom and generalized Gaussian distributions with exponent

s > 0, respectively. The expressions of the associated RES constrained density generators gr,N (t) is related to

gc,N (t) by gc,N (t) = 2Ngr,2N (2t).

C. Classic and semiparametric SB formulas

The purpose of this Subsection is to unify in a common structured matrix formula, the classic and

semiparametric SB formulas relating to C-CES and NC-CES distributions from that of the RES distributions.

For RES distributed data, all the steps of the proof of the classic and semiparametric SB formula for C-

CES distributions given in [8] and [11] (with [14, Appendix B]), respectively, apply by using the identity

E[(yTAy)(yTBy)] = Tr(A)Tr(B) + 2Tr(AB) for any symmetric N × N matrices A and B, and N -
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dimensional zero-mean real-valued Gaussian distributed r.v. y. This allows us to prove that the classic and

semiparametric matrix SB formula for RES distributions have the following structure:

CRB−1(α) = a1
dµT

dαT
Σ−1 dµ

dαT
+

(
dvec(Σ)

dαT

)T(
a2(Σ−T ⊗Σ−1) + a3vec(Σ−1)vecT (Σ−1)

)(dvec(Σ)

dαT

)
, (9)

where a1 = ξr,1,N , a2 = 1
2ξr,2,N for both classic and semiparametric SB formulas and a3

def
= aClas

3 = 1
4(ξr,2,N −

1) [resp., a3
def
= aSePa

3 = − ξr,2,N
2N ] for the classic [resp., semiparametric] SB formula with

ξr,1,N
def
=

E[Qφ2
r,N (Q)]

N
and ξr,2,N

def
=

E[Q2φ2
r,N (Q)]

N(N + 2)
, (10)

where Q def
= Qr,N and φr,N (t)

def
= 2

gr,N (t)
dgr,N (t)

dt .

These classic and semiparametric SB formulas allow us to directly deduce those of NC-CES distributed

data obtained, thanks to the relationship between the representation of real and complex r.v.’s introduced in

Subsection II-A. These SB formulas are similarly structured where µ, Σ, dµT

dαT ,
(
dvec(Σ)
dαT

)T
and vecT (Σ−1) in

(9) are replaced by µ̃, Σ̃, dµ̃H

dαT ,
(
dvec(Σ̃)
dαT

)H
and vecH(Σ̃−1), respectively, where a1 = ξc,1,N and a2 = ξc,2,N

2

for both classic and semiparametric SB formulas and a3
def
= aClas

3 = 1
4(ξc,2,N−1) [resp., a3

def
= aSePa

3 = − ξc,2,N
2N ]

for the classic [resp., semiparametric] SB formula with

ξc,1,N
def
=

E[Qφ2
c,N (Q)]

N
and ξc,2,N

def
=

E[Q2φ2
c,N (Q)]

N(N + 1)
, (11)

where Q def
= Qc,N and φc,N (t)

def
= 1

gc,N (t)
dgc,N (t)

dt . On the other hand, the classic and semiparametric SB formulas

for C-CES distributed data can be deduced directly by replacing Σ̃ by

(
Σ 0

0 Σ∗

)
, yielding the classic and

semiparametric SB formulas proved in [8], [9], and [11], respectively, which are also similarly structured where
dµT

dαT Σ−1 dµ
dαT ,

(
dvec(Σ)
dαT

)T
and vecT (Σ−1) is replaced by Re

(
dµH

dαT Σ−1 dµ
dαT

)
,
(
dvec(Σ)
dαT

)H
and vecH(Σ−1) in (9)

with a1 = 2ξc,1,N and a2 = ξc,2,N for both classic and semiparametric SB formulas and a3
def
= aClas

3 = ξc,2,N−1

[resp., a3
def
= aSePa

3 = − ξc,2,N
N ] for the classic [resp., semiparametric] SB formula.

Note that for real Gaussian distributions, φr,N (t) = −1 and Q is χ2
N distributed which give E(Q) = N

and E(Q2) = N(N + 2), and thus from (10), ξr,1,N = ξr,2,N = 1 and (a1, a2, a
Clas
3 , aSePa

3 ) = (1, 1
2 , 0,−

1
2N ),

which imply that (9) reduces to the well known elementwise classic SB formula [FIM(α)]k,` = dµT

dαk
Σ−1 dµ

dα`
+

1
2Tr(Σ−1 dΣ

dαk
Σ−1 dΣ

dα`
) [1], [2]. Similarly for complex circular and noncircular Gaussian distributions, we get

(a1, a2, a
Clas
3 , aSePa

3 ) = (2, 1, 0,− 1
N ) and (a1, a2, a

Clas
3 , aSePa

3 ) = (1, 1
2 , 0,−

1
2N ), respectively.
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III. PARAMETERIZED SLEPIAN-BANGS FORMULAS

A. Arbitrary density generator

In this Section the density generators gr,N and gc,N are assumed to be known up to unknown parameters

β ∈ RL and here denoted by gβr,N and gβc,N . Consequently the unknown parameter for the RES, C-CES and

NC-CES distributions is (αT ,βT )T ∈ RM+L where β is an unknown nuisance parameter. The following result

is proved in the Appendix.

Result 1: For each RES, C-CES and NC-CES distribution, the classic, semiparametric and parameterized SB

formula have the same structure (9) with identical coefficients a1 and a2 and differ only by their coefficients

a3 given in the parameterized SB formula by a3
def
= aPar

3 = aClas
3 −a4 where a4 = ξTr,3,NΞ−1

r,4,Nξr,3,N for RES

distributions, with

ξr,3,N
def
=

E[Qφr,N (Q)φβr,N (Q)]

N
and Ξr,4,N

def
= E[φβr,N (Q)φβr,N

T
(Q)], (12)

where φβr,N (t)
def
= 1

gβr,N (t)

∂gβr,N (t)

∂β ∈ RL and Q def
= Qr,N , and similarly for C/NC-CES distributions by replacing

r by c, T by H and the associated expression of aClas
3 are given above.

Note that for Gaussian distributions for which the density generator gr,N (t) = 1
(2π)N/2 exp(− 1

2t) has no

parameter, we get aPar
3 = aClas

3 = 0.

In particular, if µ and Σ have no parameters in common with µ and Σ parameterized and characterized by

α1 and α2, respectively, the parameters α1 and α2 are decoupled in the FIM (9). Consequently the CRB for

the estimation of α1 has the common expression

CRB(α1) =

(
a1
dµT

dαT
1

Σ−1 dµ

dαT
1

)−1

(13)

for fully known density generator, known up to parameters and completely unknown density generators, in

contrast to the CRB for the estimation of α2

CRB(α2) =

((
dvec(Σ)

dαT
2

)T(
a2(Σ−T ⊗Σ−1) + a3vec(Σ−1)vecT (Σ−1)

)(dvec(Σ)

dαT
2

))−1

(14)

which generally depends on the type of knowledge about the density generator through the term a3. However,

in the specific parameterization of the scatter matrix Σ = α′2Σ0(α′′2) with unknown scaling factor α′2 and

α2 = (α′2,α
′′
2
T )T , the following result is proved in the Appendix:

Result 2: For each RES, C-CES and NC-CES distribution, where µ and Σ have no common parameters with

the parameterization Σ = α′2Σ0(α′′2) of the scatter matrix, the CRB for the estimation of α′′2 does not depend

on α′2, nor on the type of knowledge about the density generator and is given for RES distributions by the
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expression:

CRB(α
′′

2) =
1

a2

(dvec(Σ0)

dα
′′

2
T

)T(
(Σ−T0 ⊗Σ−1

0 )− 1

N
vec(Σ−1

0 )vecT (Σ−1
0 )

)(
dvec(Σ0)

dα
′′

2
T

)−1

. (15)

In other words, for this specific parametrization, the perfect knowledge or only the knowledge up to unknown

extra parameter of the density generator does not reduce the CRB on α
′′

2 . Similarly to (9), the CRB for C-CES

distributions is deduced from (15), thanks to the relationship between the representation of real and complex

r.v.’s, by replacing
(
dvec(Σ0)

dα
′′
2

T

)T
and vecT (Σ−1

0 ) by
(
dvec(Σ0)

dα
′′
2

T

)H
and vecH(Σ−1

0 ). For the NC-CES distributions,

Σ0,
(
dvec(Σ0)

dα
′′
2

T

)T
and vecT (Σ−1

0 ) must be replaced by Σ̃0,
(
dvec(Σ̃0)

dα
′′
2

T

)H
and vecH(Σ̃−1

0 ).

By contrast, the scale parameter α′2, cannot be estimated in the absence of knowledge of the density generator

due to the intrinsic ambiguity of the parametrization of the p.d.f. of the ES distributions, while the CRB on this

parameter may depend on the knowledge of the density generator (with fully known or known up to unknown

parameters). Moreover, unlike Result 2, the CRB for the estimation of α
′′

2 when the parameter α′2 is known is

given by (16) which depends on the type of knowledge of the density generator through the coefficient a3

CRB(α
′′

2) =

(dvec(Σ0)

dα
′′

2
T

)T(
a2(Σ−T0 ⊗Σ−1

0 ) + a3vec(Σ−1
0 )vecT (Σ−1

0 )
)(dvec(Σ0)

dα
′′

2
T

)−1

, (16)

as illustrated by an example in Subsection III-B.

It follows from Result 1 that for general parameterization of µ and Σ, the comparison of the classical

and semi-parametric SB formulas recalled in subsection II-C and the parameterized SB formula amounts to

comparing the coefficient a3 of the associated SB formulas. Naturally, more knowledge about the density

generator results in a smaller CRB on parameter α, and we must therefore have the following inequalities on

the coefficients a3:

aSePa
3 ≤ aPar

3 ≤ aClas
3 with aPar

3 = aClas
3 −a4. (17)

Note that the inequality aSePa
3 ≤ aClas

3 is equivalent for example for C-CES distributions to the inequality

−
ξc,2,N
N
≤ξc,2,N − 1⇔ ξc,2,N ≥

N

N + 1
, (18)

which is in fact strict. It follows directly from the Cauchy-Schwarz inequality (E(XY ))2 ≤ E(X2) E(Y 2)

with X = Qφc,N (Q) (where Q
def
= Qc,N ) and Y = 1 with equality if and only if the r.v. Qφc,N (Q) is

constant. Since this property is equivalent to gc(t) = ta where a is constant, which cannot satisfy the condition∫∞
0 tN−1gc,N (t)dt <∞, and then the equality can not hold. To go further in the comparison of the coefficient

a3, we consider the following specific distributions.

December 12, 2022 DRAFT
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B. Student’s t and generalized Gaussian distributions

To illustrate Results 1 and 2, we consider the two commonly used Student’s t distribution with ν > 2 degrees

of freedom3 and generalized Gaussian distributions with exponent s > 0 reminded in Subsection II-B. It is

simple to prove that the coefficients ξr,1,N and ξr,2,N , ξc,1,N and ξc,2,N are independent of the constraint on the

density generators for arbitrary distributions. These have been calculated for complex Student’s t or complex

generalized Gaussian distributions by several authors (see e.g., [8], [9], [22]) and given respectively by:

ξSc,1,N =
ν/2

((ν/2)− 1)

(ν/2) +N

((ν/2) +N + 1)
and ξSc,2,N =

(ν/2) +N

(ν/2) +N + 1
, (19)

ξCGc,1,N =
Γ(2 + N−1

s )Γ(N+1
s )

(Γ(1 + N
s ))2

and ξCGc,2,N =
N + s

N + 1
. (20)

In contrast, the coefficients ξr,3,N and ξr,4,N , ξc,3,N and ξc,4,N , naturally, generally depend on the constraint

imposed on the density generators which leads to a relation between the multidimensional parameters of the

standard density generators (e.g., β reduces to the exponent s (8) for the generalized Gaussian distribution where

the standard density generator is parameterized by exponent and scale [7]). The following result concerning

Student’s t and generalized Gaussian distribution is proved in the Appendix:

Result 3: For complex Student’s t and generalized Gaussian distribution, the coefficients ξc,3,N and ξc,4,N

are given respectively by

ξSc,3,N =
N + 1

2
(
ν
2 − 1

) (
ν
2 +N

) (
ν
2 +N + 1

) , (21)

ξSc,4,N =

N−1∑
`=0

1

4(`+ ν
2 )2
−

N
(
ν2

4 +N
(
ν
2 − 2

)
− 2
)

4
(
ν
2 − 1

)2 (ν
2 +N

) (
ν
2 +N + 1

) , (22)

and

ξGGc,3,N =
N + s+N(N + 1)kN,s

Ns
, (23)

ξGGc,4,N =
2N + s

Ns2
+

(N + 1)s (2(N + s) +N(N + 1)kN,s) kN,s +N(N + s)ψ
′ (

1 + N
s

)
s4

, (24)

with kN,s
def
= ψ

(
N
s

)
− ψ

(
N+1
s

)
where ψ(x)

def
= Γ

′
(x)

Γ(x) is the digamma function and ψ
′
(x)

def
= dψ(x)

dx .

For the associated RES distributions, the coefficients ξr,1,N , ξr,2,N , ξr,3,N and ξr,4,N are related to ξc,1,N ,

ξc,2,N , ξc,3,N and ξc,4,N by the relations ξc,1,N = 4ξr,1,2N , ξc,2,N = 4ξr,2,2N , ξc,3,N = 2ξr,3,2N and ξc,4,N =

ξr,4,2N .

3The constraint ν > 2 ensures that the Student’s t distribution has second-order finite moments
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We see that ξc,2,N given by (19) and (20) for respectively complex Student’s t and generalized Gaussian

distributions can be written as

ξSc,2,N =
N

N + 1

(
1 + ν/2N

1 + ν/(2(N + 1))

)
and ξCGc,2,N =

N

N + 1

(
1 +

s

N

)
. (25)

Consequently ξSc,2,N and ξCGc,2,N are very close to N
N+1 and therefore from (17) and (18), the coefficients aSePa

3 ,

aPar
3 and aClas

3 are very close for ν/N � 1 and s/N � 1, respectively. On the contrary, ξc,2,N ≈ 1 and ξc,2,N ≈

s/(N + 1) for respectively ν/N � 1 and s/N � 1. We can deduce that for Student’s t distributions which

possess heavier tails than the Gaussian distribution, the knowledge of the density generator has a slight impact

on the CRB for the estimation of parameters α. On the other hand, for the generalized Gaussian distribution,

this impact is strong for s/N � 1, i.e., for much lighter tailed distributions than Gaussian distribution. To

show the influence of the parameter s on the coefficient a3, aClas
3 = s−1

N+1 and aSePa
3 = − N+s

N(N+1) are compared

to aPar
3 obtained from tedious algebraic manipulation of (23) and (24) with the aid of symbolic algebra and

calculus tools in the vicinity of s =∞ which corresponds to a uniform distribution in an ellipsoid. We get

aSePa
3 < aPar

3 =
N(π2 − 6)− 6

π2N(N + 1)
s(1 + o(1)) < aClas

3 . (26)

This influence is illustrated in Fig.1 which shows a large difference between these coefficients a3.

s
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3

a
3

-20

0

20

40

60

80

100

120

140

a
Clas.

3

a
Par

3

a
SePa

3

Fig.1 Coefficients aSePa
3 , aPar

3 and aClas
3 versus s for N = 6.

We can therefore conjecture that the knowledge of the density generator brings little information on the

parameter α for the heavy-tailed distributions unlike for lighter-tailed distributions.
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To illustrate the impact of the knowledge of the scale factor α′2 on the estimation of the parameter α
′′

2 of

Σ0 for the modeling of Result 2, we assume here that generalized Gaussian distributed data are modeled

as a stationary, zero-mean autoregressive process of first order with one lag correlation α
′′

2 = ρ which gives

[Σ]k,` = [Σ0(ρ)]k,` = ρ|k−`| (with α
′

2 = 1). Fig.2 shows a large difference between the CRB for the estimation

of ρ according to the knowledge available on the density generator. This observed behavior is consistent with

that of Fig. 1 as explained at the end of section III-A, thanks to the sensitivity of the coefficient a3 in (16) to

the knowledge available on the density generator.

s

10-1 100 101 102 103

C
R

B
(ρ

)

10-6

10-5

10-4

10-3

10-2

SePa. CRB

Par. CRB

Clas. CRB

Fig.2 CRB(ρ) versus s for ρ = 0.9 and N = 6.

To reinforce the behavior of the CRB on the parameter of interest ρ under different knowledge on the density

generator, we compare in Fig.3, the CRB on ρ to the mean square error (MSE) (estimated by 2000 runs) of

the associated maximum likelihood (ML) estimator derived from T independent snapshots xt, t = 1, ..., T

identically distributed as in the scenario of Fig.2. More precisely, when α
′

2 is assumed to be unknown, the

semiparametric, parameterized, and classic CRB given by (15) which are equal are compared to the MSE of the

joint ML estimates ρ̂ where (α̂′2, ρ̂, ŝ) = arg maxα′2,ρ,s
∑T

t=1 log p(xt) and to the MSE of the ML estimate ρ̂

obtained from (α̂′2, ρ̂) = arg maxα′2,ρ
∑T

t=1 log p(xt) (given s), where the density generator gsc,N (t) is given by

(8). Similarly, when α
′

2 is assumed to be known, our parameterized CRB and the classic CRB given by (16) are

respectively compared to the MSE of the joint ML estimate ρ̂ where (ρ̂, ŝ) = arg maxρ,s
∑T

t=1 log p(xt) and

to the MSE of the ML estimate ρ̂ = arg maxρ
∑T

t=1 log p(xt) (given s), respectively. Note that these different
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maximizations are derived form simple numerical optimizations because, to the best of our knowledge, there is

no ML algorithm in the literature, despite the sub-optimal approaches proposed in [16], [17] for the Student’s

t distribution.. Fig.3 confirms clearly the efficiency of the ML as these CRBs are very close to the associated

MSE with the ML estimates for T = 500 snapshots.

s

5 10 15 20 25 30 35 40

M
S

E
 &

 C
R

B
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)
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10-6

10-5

10-4
 MSE (α'

2
 unknown and s unknown)

 MSE (α'
2
 unknown and s known)

MSE (α'
2
 known and s unknown)

MSE ( α'
2
 known and s known)

SePar. CRB=Par. CRB=Clas CRB - Eq. (15) 

Par. CRB - Eq.(16)

Clas. CRB - Eq.(16)

Fig.3 CRB(ρ) and MSE(ρ) versus s for ρ = 0.9 and N = 6.

IV. NOISY LINEAR MIXTURE DATA MODEL

We consider here the following model4

xt = A(θ)st + nt ∈ RN ′ (or CN ′), t = 1, ..., T (27)

where the real-valued parameter of interest θ is characterized by the range space of the full column matrix

A(θ). Two assumptions have been commonly used for the signals st and nt.

In the conditional or deterministic model, (st)t=1,..,T are conditioned from an independent zero-mean process

(as it was explained in [25]) and are considered as deterministic nuisance parameters. nt, t = 1, ..., T are zero-

mean, independent RES (or C-CES) distributed with scatter matrix σ2
nIN ′ . In this case x

def
= (xT1 , ..,x

T
T )T ∈ RN

(or CN ) where N = TN ′ is RES (or C-CES) distributed with µ = ((A(θ)s1)T , ..., (A(θ)sT )T )T and Σ =

σ2
nIN with α = (θT ,ρT , σ2

n)T with ρ
def
= (ReT (s1), ImT (s1), ..,ReT (sT ), ImT (sT ))T . This model extends

4This model encompasses many far or near-field, narrow or wide-band DOA models with scalar or vector-sensors for an arbitrary
number of parameters per source and many other models as the bandlimited SISO, SIMO [23] and MIMO [24] channel models.
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also to rectilinear CN-CES5 distributed data. By slightly modifying the end of the proof given in [25] in the

estimation framework of DOA, we obtain the following result.

Result 4: For each RES, C-CES or NC-CES noisy linear mixture distributed conditional model, the CRB for

the estimation of θ is given by a common expression for fully known, known up to parameters and completely

unknown density generators. We get, for example, for C-CES distributed data the following expression:

CRB(θ) =
σ2
n

2Tξc,1,N

[
Re

(
daH(θ)

dθ
(RT

s,T ⊗Π⊥A(θ))
da(θ)

dθ

)]−1

, (28)

where Rs,T
def
= 1

T

∑T
t=1 xtx

H
t , a(θ)

def
= vec(A(θ)) and Π⊥A(θ)

def
= I−A(θ)[AH(θ)A(θ)]−1AH(θ) is the ortho-

complement of the projection matrix on the columns of A(θ).

In the unconditional or stochastic model, both st and nt are assumed zero-mean random, not correlated with

each other such that xt, t = 1, ..., T are zero-mean, independent RES (or C-CES) distributed6 with µ = 0

where the scatter matrix has the following structure

Σ = A(θ)RsA
H(θ) + σ2

nIN , (29)

where Rs is real-valued positive definite symmetric (or Hermitian). Here too α = (θT ,ρT , σ2
n)T but ρ collects

the entries of Rs. This model also extends to NC-CES distributed data with Σ̃ = Ã(θ)RrÃ
H(θ) + σ2

nI2N ,

where here θ is only characterized by the range space of the full column matrix Ã(θ)
def
=

(
A(θ)

A∗(θ)

)
and Rr

is real-valued positive definite symmetric. For this model, the proof given in [10] that the CRB on the DOA

parameter θ is proportional to the CRB for Gaussian distributed data in the context of fully known density

generator, directly extends to known up to parameters and completely unknown density generators because the

proof is based on the structure (9) with µ = 0, irrelevant the value of the coefficient a3. Thus we obtain the

following result.

Result 5: For each RES, C-CES or NC-CES noisy linear mixture distributed unconditional model, the CRB

for the estimation of θ has a common expression for fully known, known up to parameters and completely

unknown density generators. For example for CES distributed data, we get:

CRB(θ) =
σ2
n

2Tξc,2,N

[
Re

(
daH(θ)

dθ
(HT ⊗Π⊥A(θ))

da(θ)

dθ

)]−1

, (30)

5This model can be applied for DOA estimation modeling with rectilinear or strictly second-order sources and for SIMO channels
estimation modeling with BPSK or MSK symbols [26] where θ represents both the localization parameters (azimuth, elevation, range)
and the phase of the sources, and the real and imaginary parts of channel impulse response coefficients, respectively.

6We note that st and nt cannot be both elliptical symmetric distributed as the family of elliptical symmetric distributions is not closed
under summation except for the Gaussian distribution. But fixing both the structure (29) of Σ and the elliptical symmetric distribution of
xt can be considered as good approximations thanks to the flexibility of the family of the elliptical symmetric distributions. Furthermore,
this family of distributions offers robustness to outliers and heavy tailed samples.

December 12, 2022 DRAFT



14

where H
def
= RsA

H(θ)Σ−1A(θ)Rs. Note that (30) reduces to CRB(θ) =

σ2
n

2Tξc,2,N

[
Re
(

(DH
θ Π⊥A(θ)Dθ)�HT

)]−1
for DOA modeling with one parameter per source where

A(θ)
def
= [a1, ...,aK ] where (ak)k=1,...,K are the steering vectors parameterized by the DOA θk with

θ
def
= (θ1, ..., θK)T , and Dθ

def
= [da1

dθ1
, ..., daKdθK

] for K sources. This last expression of CRB was given in [11]

and [27] as semiparametric CRB without noticing that it was equal to the classic CRB.

In other words from Results 3 and 4, the fully knowledge or the functional knowledge (unknown parameter)

does not provide any additional information about the parameter θ unlike arbitrary parameter α.

V. CONCLUSION

This paper rigorously quantifies the impact of the arbitrary density generators depending on unknown

parameters of ES distributed parametric estimation models, by deriving an extension of the SB formula of

the FIM for known elliptical symmetric distributions. This SB formula was derived in a unified way within the

framework of RES, C-CES and NC-CES distributed data. It was then compared to the SB formula obtained

with fully known or completely unknown density generators for different types of the symmetry center and

scatter matrix, in particular for the specific noisy linear mixture data model where the parameter of interest

is characterized by the range space of the mixing matrix. This allows us to conclude, contrary to commonly

known results, that for an arbitrary parameterization, the CRB may be very sensitive to the type knowledge

of the density generator for super-Gaussian distributions contrary to sub-Gaussian distributions. These results

make it possible to know the situations where it is advantageous or not to use all the information available on

the ES distributed data to construct efficient estimators.

APPENDIX

Proof of Result 1

It is well known that the CRB for the estimation of (αT ,βT )T is the inverse of the FIM and thus given

from the matrix inversion lemma by CRB(α) =
(
Iα − Iα,βI

−1
β ITα,β

)−1
, where

(
Iα Iα,β

ITα,β Iβ

)
is the FIM for

(αT ,βT )T and Iα is given by the structured matrix (9) for the RES distribution. Following the derivation of Iα,

it is straightforward to get (Iα,β)k,` = − 1
NE[Qφr,N (Q)φβ`r,N (Q)]Tr( dΣdαkΣ−1) where φβ`r,N (t)

def
= 1

gβr,N (t)

dgβr,N (t)

dβ`
,

Q
def
= Qr,N , which gives the M×L matrix Iα,β =

(
dvec(Σ)
dαT

)T
vec(Σ−1)ξTr,3,N with ξr,3,N

def
=

E[Qφr,N (Q)φβr,N (Q)]

N

where φβr,N (t)
def
= 1

gβr,N (t)

∂gβr,N (t)

∂β . From (1), we get by definition of the FIM for β, Iβ = E[φβr,N (Q)φβr,N
T

(Q)]
def
=

Ξr,4,N . Gathering the expressions of Iα, Iβ , and Iα,β we prove that the CRB for the estimation of α has always

the structure (9) with a1 = 4ξr,1,N , a2 = 2ξr,2,N are the coefficients given for both classic and semiparametric

SB and a3 = aClas
3 − a4 with a4 = ξTr,3,NΞ−1

r,4,Nξr,3,N where ξr,1,N and ξr,2,N are given by (10).
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Using again the real to complex representation introduced in Subsection II-A, it is straightforward to prove

that the parameterized SB formulas for NC-CES and C-CES distributions have also the structure (9) where

a1 and a2 are both equal to those of the classic and semiparametric SB formulas and where a3 is given by

aClas
3 − a4 with a4 = ξTc,3,NΞ−1

c,4,Nξc,3,N with ξc,3,N
def
=

E[Qφc,N (Q)φβc,N (Q)]

N and Ξc,4,N
def
= E[φβc,N (Q)φβc,N

T
(Q)]

where φβc,N (t)
def
= 1

gβc,N (t)

∂gβc,N (t)

∂β and Q def
= Qc,N .

Proof of Result 2

It follows from Result 1 that the FIM associated with the parameter α2 = (α′2,α
′′T

2 )T parameterizing the

scatter matrix Σ = α′2Σ0(α′′2), can be written for RES distributed data in the following partitioned matrix form

FIM(α2) =
1

α′22

 a bT

b C

 (31)

with a = N(a2 + Na3), b = α′2(a2 + Na3)
(
dvec(Σ0)

dα
′′
2

T

)T
(Σ−T0 ⊗ Σ−1

0 )vec(Σ0) and

C = α′22

(
dvec(Σ0)

dα
′′
2

T

)T (
a2(Σ−T0 ⊗Σ−1

0 ) + a3vec(Σ−1
0 )vecT (Σ−1

0 )
)(

dvec(Σ0)

dα
′′
2

T

)
. We note that for the

semiparametric SB formula, a2 = 2ξr,2,N and a3 = −2ξr,2,N
N implies a2 + Na3 = 0 and consequently

FIM(α2) = 1
α′22

(
0 0T

0 C

)
. Thus, CRB(α

′′

2) = α′22C
−1 which gives (15). For the classic and

parametric SB formulas, a2 + Na3 6= 0 and the inverse of the partitioned FIM (31) allows us to

derive CRB(α
′′

2) = α′22[C− ba−1bT ]−1 which also gives (15) not containing the coefficient a3.

Proof of Result 3

Complex Student’s t−distribution

From (8), we get after simple algebraic manipulation

φc,N (t)
def
=

1

gνc,N (t)

dgνc,N (t)

dt
= −2N + ν

ν ′ + 2t
, (32)

φνc,N (t)
def
=

1

gνc,N (t)

∂gνc,N (t)

∂ν
= k′N,ν −

1

2
log

(
1 +

2t

ν ′

)
− Nν ′ − νt
ν ′(ν ′ + 2t)

, (33)

with ν ′ def
= ν − 2 and k′N,ν

def
= 1

2

(
ψ
(
N + ν

2

)
− ψ

(
ν
2

))
.
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Hence with Q = Qc,N

ξc,3,N
def
=

E[Qφc,N (Q)φνc,N (Q)]

N

= −(2N+ν)

N

[
(k′N,ν−N)E

(
Q

ν ′+2Q

)
+
ν

ν ′
E

(
Q2

ν ′+2Q

)
− 1

2
E

(
Q

ν ′+2Q
log

(
1+

2Q

ν ′

))]
,(34)

ξc,4,N
def
= E[φνc,N

2(Q)]

= k′
2
N,ν +

1

4
E

(
log2

(
1 +

2Q

ν ′

))
+

1

ν ′2
E

(
(Nν ′ − νQ)2

(ν ′ + 2Q)2

)
− k′N,ν

[
E

(
log

(
1 +

2Q

ν ′

))
+

2

ν ′
E

(
Nν ′−νQ
ν ′ + 2Q

)]
+

1

ν ′
E

(
(Nν ′−νQ)

(ν ′ + 2Q)
log

(
1 +

2Q

ν ′

))
. (35)

Then, observing that Q =d NF2N,ν where Q is associated with Student’s t distribution without constraint on

Σ and F`,q denotes the F -distribution with ` and q degrees of freedom [7], we have here Q =d
ν−2
ν NF2N,ν .

with p.d.f.

p(q) =
1

((ν/2)− 1)NB(N, ν/2)
qN−1

(
1 +

2q

ν − 2

)−(N+ν/2)

for q ≥ 0 and 0 for q < 0. (36)

Using
∫ +∞

0
tp−1

(1+ 2

s
t)p+q dt =

(
s
2

)p
B(p, q), p > 0, q > 0, s > 0, and thanks to [28], [29]

∫ 1
0 u

x−1(1 −

u)y−1 logp(u) logq(1 − u)du = Bp,q(x, y)
def
= ∂p+q

∂xp∂xqB(x, y) for integers p, q > 0 and q + x, p + y > 0, and

particularly B1,0(x, y) = B0,1(y, x) = B(x, y)(ψ(x) − ψ(x + y)), we get the following expressions of the
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different expectations included in (34) and (35)

E

(
1

ν ′ + 2Q

)
=

ν

ν ′(2N + ν)
,

E

(
1

(ν ′ + 2Q)2

)
=

ν(ν + 2)

ν ′2(2N + ν)(2N + ν + 2)
,

E

(
Q

ν ′ + 2Q

)
=

N

2N + ν
,

E

(
Q2

ν ′ + 2Q

)
=

N(N + 1)

2N + ν
,

E

(
Q

ν ′ + 2Q

)
=

Nν

ν ′(2N + ν)(2N + ν + 2)
,

E

(
Q2

(ν ′ + 2Q)2

)
=

N(N + 1)

(2N + ν)(2N + ν + 2)
,

E

(
log

(
1 +

2Q

ν ′

))
= ψ

(
1−N − ν

2

)
− ψ

(
1− ν

2

)
,

E

(
log2

(
1 +

2Q

ν ′

))
= ψ′

(ν
2

)
− ψ′

(
N

2
+
ν

2

)
+
(
ψ
(ν

2

)
− ψ

(
N +

ν

2

))2
,

E

(
Q

ν ′ + 2Q
log

(
1 +

2Q

ν ′

))
=

N
(
ψ
(
1 +N + ν

2

)
− ψ

(
ν
2

))
2N + ν

,

E

(
1

ν ′ + 2Q
log

(
1 +

2Q

ν ′

))
=

1

ν ′
E

(
log

(
1 +

2Q

ν ′

))
− 2

ν ′
E

(
Q

ν ′ + 2Q
log

(
1 +

2Q

ν ′

))
.

Plugging these expressions of the expectations in (34) and (35) and using ψ′
(
ν
2

)
− ψ′

(
N + ν

2

)
=∑N−1

`=0
1

(`+ ν

2 )
2 allows us to obtain after some tedious algebraic manipulations the values (21) of ξc,3,N and

(22) of ξc,4,N .

Complex generalized Gaussian distribution

From (8), gsc,N (t) is given by

gsc,N (t) = cN,se
−ts/b with b def

=

[
NΓ

(
N
s

)
Γ
(
N+1
s

)]s and cN,s
def
=

sΓ(N)b−N/s

πNΓ
(
N
s

) , (37)

yielding after some algebraic manipulation

φc,N (t)
def
=

1

gsc,N (t)

dgsc,N (t)

dt
= −s

b
ts−1, (38)

φsc,N (t)
def
=

1

gsc,N (t)

∂gsc,N (t)

∂s
= αN,s + (γN,s − βN,s)ts −

1

b
ts log(t), (39)

with αN,s
def
= 1

s2 (s + N(N + 1)kN,s), βN,s
def
=

NkN,s−ψ(N+1

s )
bs and γN,s

def
= log(b)

bs and where kN,s
def
= ψ

(
N
s

)
−

ψ
(
N+1
s

)
where ψ(x)

def
= Γ

′
(x)

Γ(x) is the digamma function.

December 12, 2022 DRAFT



18

Hence with Q = Qc,N

ξc,3,N
def
=

E[Qφc,N (Q)φsc,N (Q)]

N

= − s

Nb

[
αN,sE(Qs) + (γN,s − βN,s)E(Q2s)− 1

b
E(Q2s log(Q))

]
(40)

ξc,4,N
def
= E[φsc,N

2(Q)]

= α2
N,s + (γN,s − βN,s)2E(Q2s) +

1

b2
E(Q2s log2(Q))

+ 2αN,s(γN,s − βN,s)E(Qs)−
2αN,s
b

E(Qs log(Q)) +
2(βN,s − γN,s)

b
E(Q2s log(Q)). (41)

Then observing that Q =d G1/s where G ∼ Gam(N/s, b) [7], the following equalities [15, Eqs. (a.14)-(a.17)]

E(Qs) =
Nb

s

E(Q2s) =
Nb2(N + s)

s2

E(Qs log(Q)) =
Nb

s2
AN,s

E(Q2s log(Q)) =
Nb2(N + s)

s3

(
AN,s +

s

N + s

)
E(Q2s log2(Q)) =

Nb2(N + s)

s4

(
A2
N,s +

2s

N + s
AN,s + ψ

′
(
N + s

s

))
,

where AN,s
def
= log(b) +ψ(N+s

s ) used in (40) and (41), allows us to obtain after some algebraic manipulations

the values (23) of ξc,3,N and (24) of ξc,4,N .
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