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Abstract

We consider the reversible exclusion process with reservoirs on arbitrary networks. We

characterize the spectral gap, mixing time, and mixing window of the process, in terms of

certain simple statistics of the underlying network. Among other consequences, we establish a

non-conservative analogue of Aldous’s spectral gap conjecture, and we show that cutoff occurs if

and only if the product condition is satisfied. We illustrate this by providing explicit cutoffs on

discrete lattices of arbitrary dimensions and boundary conditions, which substantially generalize

recent one-dimensional results. We also obtain cutoff phenomena in relative entropy, Hilbert

norm, separation distance and supremum norm. Our proof exploits negative dependence in

a novel, simple way to reduce the understanding of the whole process to that of single-site

marginals. We believe that this approach will find other applications.
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1 Introduction

The exclusion process [30, 20] is a classical model of interacting random walks in which indis-

tinguishable particles attempt to evolve independently on a graph, except that their jumps are

canceled if the destination is already occupied. Here we consider the non-conservative variant of

the model, where particles may additionally be created and annihilated at certain vertices, mod-

eling contact with an external reservoir. We refer the reader to the papers [4, 18] and the more

recent works [11, 12] for motivations and background on this process.

1.1 Setup

Networks. Let us first specify the geometry of the model and introduce some terminology.

Throughout the paper, we consider a network G = (V, c, κ) consisting of

• a finite set V whose elements are called vertices;

• a symmetric array c : V × V → R+, whose entries are called conductances;

• a function κ : V → R+, whose entries are called external rates.

The support of c(·, ·) constitutes the set of edges of the network, along which particles can move.

The support of κ(·) represents the boundary of the network, where particles can be created or

annihilated due to contact with an external reservoir. To ensure irreducibility, we will always

assume that the network G is connected, and that its boundary is not empty. A simple way to

produce networks consists in “cutting them out” from some fixed, locally finite graph G = (V,E).

More precisely, we choose a finite connected subset V ⊂ V and, for i, j ∈ V , we set

c(i, j) := 1{i,j}∈E and κ(i) :=
∑

k∈V\V

1{i,k}∈E.

We call G = (V, c, κ) the network induced by V in G. An important example to have in mind,

and to which we shall come back later, is the network induced by an hypercube V = [n]d in the

d−dimensional square lattice G = Z
d.

State space and generator. As usual, the state of the system is represented by a binary vector

x = (xi)i∈V , with xi = 1 if the vertex i is occupied and xi = 0 if it is empty. We let xi↔j, xi,1 and

xi,0 denote the vectors obtained from x by respectively swapping the i−th and j−th coordinates

(exchange), resetting the i−th coordinate to 1 (creation), and resetting it to 0 (annihilation).

With this notation, the exclusion process with reservoir density ρ ∈ (0, 1) on the network G is the
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continuous-time Markov chain with state space X = {0, 1}V and whose infinitesimal generator L

acts on observables f : X → R as follows:

(L f)(x) :=
1

2

∑

i,j∈V

c(i, j)
[

f(xi↔j)− f(x)
]

+
∑

i∈V

κ(i)
[

ρf(xi,1) + (1− ρ)f(xi,0)− f(x)
]

.

In words, every pair of vertices {i, j} exchange contents at rate c(i, j), and every vertex i resamples

its content afresh at rate κ(i) according to Bρ, the Bernoulli distribution with mean ρ.

Convergence to equilibrium. The generator L is clearly irreducible and reversible w.r.t. the

product measure π = B⊗V
ρ . As a consequence, the associated semi-group (Pt)t≥0 mixes:

∀x, y ∈ X , Pt(x, y) −−−→
t→∞

π(y).

The time-scale on which this convergence occurs is measured by the so-called mixing times

tmix(ε) := min

{

t ≥ 0: max
x∈X

‖Pt(x, ·) − π‖tv ≤ ε

}

, ε ∈ (0, 1), (1)

where ‖µ−π‖tv = maxA⊆X |µ(A)−π(A)| denotes the total-variation distance between two proba-

bility measures µ, π on X . The following stronger measures of discrepancy will also be considered:

• Separation distance: sep(µ, π) := maxx∈X

(

1− µ(x)
π(x)

)

;

• Relative entropy: dkl(µ||π) :=
∑

x∈X
µ(x) log µ(x)

π(x) ;

• Hilbert norm: ‖µπ − 1‖2L2
π

:=
∑

x∈X
π(x)

(

µ(x)
π(x) − 1

)2
;

• Supremum norm : ‖µπ − 1‖∞ := maxx∈X

∣

∣

∣

µ(x)
π(x) − 1

∣

∣

∣.

We refer the reader to the books [25, 19]) for details on those natural quantities. Understanding

how the fundamental parameter tmix(ε) depends on the size and geometry of the underlying network

constitutes a natural and important question, to which the present paper is devoted.

State of the art. While the convergence to equilibrium of the exclusion process without reservoirs

has received a considerable attention (see, e.g., [31, 6, 26, 27, 16, 15, 17, 2, 13]), only very little

has been said about the non-conservative version of the model. In fact, there seems to be only

two examples of networks on which the mixing time of the exclusion process with reservoirs is

known. The first is the segment of length n with a reservoir at one end (V = [n], c(i, j) = 1|i−j|=1,

κ(i) = 1i=n), for which Gantert, Nestoridi and Schmid [11] recently established the estimate

tmix(ε) =
2n2 log n

π2
+ o(n2 log n), (2)
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as n → ∞, for any fixed ε, ρ ∈ (0, 1). The proof crucially relies on a coupling used by Lacoin for

the conservative version of the problem [16], which seems specific to the one-dimensional setup.

The second example is the variant of the above network where reservoirs are present at both ends

of the segment (κ(i) = 1i=1 + 1i=n). Using a new and promising application of Yau’s celebrated

relative entropy method [32], Gonçalves, Jara, Marinho and Menezes [12] proved that

tmix(ε) =
n2 log n

2π2
+ cn2 + o(n2), (3)

as n→ ∞, where c = c(ε, ρ) ∈ R is an explicit constant. In both cases, the remarkable fact that the

leading order term does not depend on ε ∈ (0, 1) reflects a sharp transition to equilibrium known

as a cutoff, see [8] for an introduction. We emphasize that the works [11, 12] are not limited to

the above estimates: [11] initiates the more delicate study of the non-reversible setup, where the

reservoir densities differ at the two end-points of the segment, while [12] provides a very detailed

picture of the system started from any smooth initial condition. To the best of our knowledge,

however, the current understanding of the mixing properties of the exclusion with reservoirs is

limited to the two aforementioned one-dimensional networks.

Our contribution. In the present paper, we consider the exclusion process on an arbitrary

network G. In this level of generality, we determine the spectral gap, mixing time, and mixing

window of the process, in terms of certain simple spectral statistics of G. As a by-product, we

completely characterize the occurrence of the cutoff phenomenon, and obtain multi-dimensional

generalizations of (2) and (3). We also establish cutoff phenomena in relative entropy, Hilbert

norm, separation distance and supremum norm. Our proof exploits negative dependence in a

novel, simple way to reduce the understanding of the whole process to that of single-site marginals.

We believe that this approach will find other applications.

1.2 Results

The main message of our paper is that the mixing properties of the high-dimensional operator L

are entirely governed by those of a much lower-dimensional object, namely the V × V matrix

∆(i, j) :=

{

c(i, j) if j 6= i

−κ(i)−
∑

k∈V c(i, k) if j = i.

We call ∆ the Laplace matrix of the network G = (V, c, κ). It describes the evolution of a single

random walker moving on V according to the conductances c(·, ·) and killed at the space-varying

rate κ(·). Writing τ for the time at which the walker is killed, we consider the key statistics

zi(t) := Pi (τ > t) ,
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where the notation Pi indicates that the walk starts at i. Note that z solves the differential equation

dz

dt
= ∆z, z(0) = 1, (4)

i.e. z(t) = et∆1. Our main result asserts that the distance to equilibrium of the exclusion process

with reservoirs at any time t is uniformly controlled, in a two-sided way, by the simple quantity

‖z(t)‖2 :=
∑

i∈V z
2
i (t). Below and throughout the paper, we use the following short-hands:

ρ⋆ := min (ρ, 1− ρ) , x⋆ :=

{

1 if ρ ≤ 1
2

0 else.

Theorem 1 (Two-sided estimate). From the extremal initial state x⋆, we have the lower-bound

‖Pt(x⋆, ·)− π‖
tv

≥
‖z(t)‖2

4 + ‖z(t)‖2
,

at any time t ≥ 0. Conversely, we have the uniform Hilbert-norm upper-bound

max
x∈X

∥

∥

∥

∥

Pt(x, ·)

π
− 1

∥

∥

∥

∥

L2
π

≤

√

exp

(

‖z(t)‖2

ρ⋆

)

− 1.

The first estimate asserts that ‖z(t)‖ needs to be small in order for the exclusion process to be

well-mixed, at least from the extremal initial state x⋆. The second (and much more surprising)

bound asserts that this condition actually also suffices to guarantee mixing from any initial condi-

tion, even when the distance to equilibrium is measured in the strong L2
π−norm. Thus, the mixing

time of the process is essentially the time at which ‖z(t)‖ becomes small. In order to study this

quantity, observe that (4) implies the spectral expression

‖z(t)‖2 =

|V |
∑

k=1

e−2λkt〈ψk,1〉
2, (5)

where 0 < λ1 ≤ . . . ≤ λ|V | denote the eigenvalues of the symmetric positive-definite matrix −∆,

and ψ1, . . . , ψ|V | a corresponding orthonormal basis of eigenvectors. It follows that the mixing

properties of our interacting particle system are entirely dictated by the spectral statistics of ∆

and, most particularly, by the Perron eigen-pair (λ1, ψ1), henceforth denoted simply (λ, ψ). This

has a number of important consequences, which we now enumerate (see Section 3.3 for details).

Spectral gap. The most fundamental parameter of a reversible Markov generator L is arguably

its spectral gap or Poincaré constant, defined as the second smallest eigenvalue of −L . This

constant provides quantitative controls on a variety of properties of the process, including concen-

tration of measure (via Poincaré’s inequality), isoperimetry (via Cheeger’s inequality) and mixing

(via contraction in the L2
π−norm), see the books [25, 19] for details. Our main estimate implies

the following pleasant surprise, which does not seem to have been noted before.
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Corollary 2 (Spectral gap). The spectral gap of the exclusion process with reservoir density ρ ∈

(0, 1) on G coincides with the smallest eigenvalue λ of the matrix −∆.

Recall that L is a 2|V |−dimensional operator describing the joint evolution of many interacting

particles, while ∆ is a |V |−dimensional matrix describing the motion of a single particle. The

drastic dimensionality reduction stated in Corollary 2 can be seen as a non-conservative analogue

of the celebrated Aldous’ spectral gap conjecture, now proved by Caputo, Liggett and Richthammer

[6]. See Hermon and Salez [14] for a similar conclusion in the case of the Zero-Range process.

Corollary 2 can be used to explicitly compute the spectral gap in various examples, see Section 1.3.

Window and cutoff. A second notable consequence of Theorem 1 is the following universal

estimate on the width of the mixing window, i.e., the time-scale during which the system moves

from being barely mixed to being completely mixed.

Corollary 3 (Mixing window). There is a constant c = c(ε, ρ), not depending on G, such that

tmix(ε)− tmix(1− ε) ≤
c

λ
.

This result implies the following characterization of cutoff for exclusion processes with reservoirs.

Here and throughout the paper, when considering a sequence of networks (Gn)n≥1 instead of a fixed

network G, we naturally index all relevant quantities by n (e.g., |Vn|, t
(n)
mix

, λn, ψn).

Corollary 4 (Characterization of cutoff). Consider the exclusion process with fixed reservoir den-

sity ρ ∈ (0, 1) on a sequence of networks (Gn)n≥1. Then the cutoff phenomenon

∀ε ∈ (0, 1),
t
(n)
mix(1− ε)

t
(n)
mix(ε)

−−−→
n→∞

1, (6)

occurs if and only if the sequence satisfies the so-called “product condition”:

λn × t
(n)
mix(1/4) −−−→

n→∞
+∞. (7)

Moreover, this remains valid if ρ varies with n, as long as it stays bounded away from 0 and 1.

The value 1/4 appearing in (7) is arbitrary, and can be replaced by any other precision ε ∈ (0, 1).

The interest of this criterion is that it only involves orders of magnitude: unlike the definition (6),

it can be checked without having to determine the precise pre-factor in front of mixing times. The

product condition is well known to be necessary for cutoff, along any sequence of reversible chains

[19, Proposition 18.4]. In the 2004 AIM workshop on mixing times, Peres [28] conjectured that it

is also sufficient. Unfortunately, counter-examples have been constructed; see [7, Section 6] or [19,
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Example 18.7]. However, sufficiency has been established for all birth-and-death chains [9] and,

more generally, all random walks on trees [3]. Corollary 4 adds the exclusion process with reservoirs

to this short list. For general chains, finding an effective sufficient criterion for cutoff remains the

most fundamental problem in the area of mixing times. See [29] for a first step in this direction.

Mixing time. Corollary 4 can be used to predict the occurrence of a cutoff, but does not say

where it occurs. Fortunately, Theorem 1 also implies sharp mixing-time estimates. We start with

the following universal upper-bound.

Corollary 5 (Upper-bound). There is a constant c = c(ε, ρ), not depending on G, such that

tmix(ε) ≤
log |V |+ c

2λ
. (8)

Moreover, this remains valid if the distance to equilibrium is measured in the stronger L2
π sense.

This result essentially asserts that the mixing time of the whole system is at most that of |V |

independent random walkers. Proving a similar result for the conservative version of the model

constitutes a long-standing open problem, see Oliveira [27], Alon and Kozma [2], or Hermon and

Pymar [13] for partial progress. The generic bound (8) happens to be sharp in many cases, as we

will now see. Recall that ψ denotes the eigenvector of −∆ corresponding to the smallest eigenvalue

λ. By the Perron-Frobenius theorem, ψ is the only eigenvector (up to scalar multiplication) whose

coordinates all have the same sign. The normalized vector ψ := ψ/〈ψ,1〉 is known as the quasi-

stationary distribution of the network G: it is the large-time limit of the distribution of a random

walker on G conditioned on not having been killed yet (see, e.g., [1, Section 3.6.5]).

Corollary 6 (Lower-bound). There is a constant c = c(ε), not depending on G, ρ, such that

tmix(ε) ≥
log
(

〈ψ,1〉2
)

− c

2γ
. (9)

Note that the quantity 〈ψ,1〉2 = 1
‖ψ‖2

measures how balanced the unit vector ψ is: it ranges

from 1 (when ψ concentrates on a single entry) to |V | (when all entries of ψ are equal). In particular,

the bounds (8) and (9) match as soon as ψ is sufficiently delocalized, in the following precise sense.

Corollary 7 (Delocalization implies cutoff). Consider the exclusion process with fixed reservoir

density ρ ∈ (0, 1) on any sequence of networks (Gn)n≥1 satisfying the delocalization condition

〈ψn,1〉
2 ≥ |Vn|

1−o(1).

Then, cutoff occurs at the following time:

t
(n)
mix(ε) ∼

n→∞

log |Vn|

2λn
. (10)

Here again, this remains valid if ρ varies with n, as long as it is bounded away from 0 and 1.
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Other metrics. Finally, let us briefly discuss what happens when the total-variation distance

appearing in (1) is replaced by one of the stronger divergences mentioned above. First recall that,

for any measure µ ∈ X , we have

2‖µ − π‖2
tv

≤ dkl(µ||π) ≤
∥

∥

∥

µ

π
− 1
∥

∥

∥

2

L2
π

,

where the first inequality is Pinsker’s inequality and the second is simply log u ≤ u − 1. As a

consequence, the total-variation cutoff announced in Corollary 7 also occurs in relative entropy and

in the Hilbert norm. However, it turns out that when the distance to equilibrium is measured in

separation distance or in the supremum norm, one has to wait twice longer. More precisely, our

methods imply the following analogue of Theorem 1, in which ‖z(t)‖2 is essentially replaced with

‖z(t/2)‖2. Note that the separation distance is, always a lower bound on the supremum distance.

Corollary 8 (Separation and supremum norm). In separation distance, we have the lower-bound

sep (Pt(x⋆, ·), π) ≥

∥

∥z
(

t
2

)∥

∥

2

1 +
∥

∥z
(

t
2

)∥

∥

2 ,

for any t ≥ 0. On the other hand, the supremum norm satisfies the upper-bound

max
x,y∈X

∣

∣

∣

∣

Pt(x, y)

π(y)
− 1

∣

∣

∣

∣

≤ exp

(
∥

∥z
(

t
2

)∥

∥

2

ρ⋆

)

− 1.

In particular, the total-variation cutoff announced in Corollary 7 also holds in separation distance

and in the uniform norm, but without the 2 in the denominator of (10).

1.3 Examples

To illustrate the above results, we now specialize them to two important examples. The first one is

the network induced by an arbitrary box V = [n1]×· · ·× [nd] in the d−dimensional lattice G = Z
d.

We call this network the box of dimensions n1 × · · · × nd with open boundaries. Note that the

special case d = 1 is precisely the model studied in [12], for which (3) was established. The second

example is the natural semi-open variant where the ambient lattice G = Z
d is replaced by the

d−dimensional semi-lattice G = N
d, where N = {1, 2, . . .}. The special case d = 1 is then precisely

the one for which (2) was established in [11]. Our results imply the following high-dimensional

generalization of those two results.

Corollary 9 (Spectral gap, mixing time and cutoff on boxes). For the exclusion process with

reservoir density ρ ∈ (0, 1) on a box of dimension n1 × · · · × nd with open boundaries, we have

λ = 2
d
∑

k=1

[

1− cos

(

π

nk + 1

)]

, ψ(i1, . . . , id) =
d
∏

k=1

√

2

nk + 1
sin

(

πik
nk + 1

)

,
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while for the semi-open variant, we have

λ = 2
d
∑

k=1

[

1− cos

(

π

2nk + 1

)]

, ψ(i1, . . . , id) =
d
∏

k=1

√

4

2nk + 1
sin

(

πik
2nk + 1

)

.

Consequently, in both cases, the total-variation mixing time satisfies

log |V | − cd

2λ
≤ tmix(ε) ≤

log |V |+ c

2λ
,

where c = c(ε, ρ) does not depend on d, n1, . . . , nd. In particular, there is cutoff at time (10) along

any sequence of boxes (Gn)n≥1 with diverging average logarithmic side-length, i.e.

log |Vn|

dn
−−−→
n→∞

+∞.

For example, if Gn denotes the box of dimension n× · · · × n with open boundaries, then

t
(n)
mix(ε) =

n2 log n

2π2
+O(n2),

where the implicit constant depends only on ε, ρ ∈ (0, 1). For the semi-open version, we obtain

t
(n)
mix(ε) =

2n2 log n

π2
+O(n2).

We emphasize that those estimates are valid even if the ambient dimension d = dn varies with n.

The reservoir density ρ is allowed to vary as well, as long as it is bounded away from 0 and 1.

Moreover, a cutoff also occurs at the above times when the distance to equilibrium is measured in

relative entropy or Hilbert norm, and twice later when measured in separation or uniform norm.

One could also consider the hybrid case where the box has open boundaries in certain directions

and semi-open boundaries in others. The above expressions for λ, ψ adapt in the obvious way. For

example, on a n× n grid with boundaries on three of the four sides, one finds

tmix(ε) =
4n2 log n

5π2
+O(n2).

Finally, we emphasize that boxes are just a particular example chosen for comparison with the

existing literature [12, 11]: our general results will yield explicit asymptotics on any network for

which we can compute or estimate the spectral statistics λ and ψ. This is particularly easy in the

case of Cartesian products, thanks to an obvious tensorization property of ∆ (see (24) below).

2 Perturbations of product measures

Without loss of generality, we henceforth assume that the vertex set V is [n] = {1, . . . , n}. Theorem

1 happens to be a special case of a new and general two-sided estimate, which is valid for all

negatively dependent perturbations of product measures. We establish this general result in the

present section, and will specialize it to the exclusion process with reservoirs in Section 3.
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2.1 Framework

To what extent can a random binary vector be statistically distinguished from a perturbed version

where a few coordinates have been modified? To formalize this question, consider a random binary

vector X⋆ = (X⋆
1 , . . . ,X

⋆
n) distributed according to the reference measure π = B⊗n

ρ , and let (Y,Z)

be an arbitrary pair of random binary vectors, independent of X⋆. We think of (Y,Z) as noise

variables, which we use to perturb X⋆ as follows: Z indicates which coordinates of X⋆ are to be

modified, and Y specifies the values to be used for replacement. Specifically, for i ∈ [n], we set

Xi := (1− Zi)X
⋆
i + ZiYi. (11)

At least intuitively, the law µ of the perturbed vector X = (X1, . . . ,Xn) should be close to the ref-

erence law π as long as the support of Z (the perturbed region) is sufficiently small and delocalized,

regardless of the noise Y . Our goal here is to quantify this statement by a precise estimate on the

distance ‖µ− π‖tv, as a function of the mean noise vector

z := (E[Z1], . . . ,E[Zn]) .

We will see that, for a broad class of perturbations, the correct answer is given in a two-sided way

by the Euclidean norm ‖z‖ =
√

z21 + · · · + z2n.

2.2 Upper-bound

A naive way to quantify the impact of the perturbation consists in using the Wasserstein bound

‖µ − π‖tv ≤ E

[

n
∑

i=1

|Xi −X⋆
i |

]

≤
n
∑

i=1

E[Zi] = 〈z,1〉. (12)

Albeit simple and general, this estimate is too pessimistic, because it only focuses on the total size

of the perturbed region Z, and not on its localized/delocalized nature in space: intuitively, zeroing a

fixed, deterministic entry should be much easier to detect (in total-variation distance) than zeroing

a uniformly chosen entry. Yet, (12) does not distinguish at all between those two situations.

To get a feeling of how much better the answer could be for delocalized perturbations, let us

investigate the elementary but instructive case where the coordinates of Z are independent, while

Y is deterministically equal to the extremal vector x⋆. Under this simplifying assumption, the

resulting law π is clearly a product measure, so an easy and classical computation yields

‖µ − π‖tv ≤
1

2

∥

∥

∥

µ

π
− 1
∥

∥

∥

L2
π

=
1

2

√

√

√

√

n
∏

i=1

(

1 +
1− ρ⋆
ρ⋆

z
2
i

)

− 1 (13)
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In the small-perturbation regime where z → 0, the right-hand side decays like ‖z‖, which constitutes

a considerable improvement over the linear dependency predicted by (12).

Of course, the explicit computation of the L2
π−norm in (13) crucially relies on independence,

and getting sharp estimates beyond the product case constitutes a notoriously challenging task.

For certain perturbations of spin systems, a sophisticated and powerful approach called information

percolation was developed by Lubetzky and Sly in an impressive series of papers [21, 22, 24, 23].

Here our main – and much more elementary – finding is that the trivial bound (13) still holds if

one assumes that the coordinates of Z are negatively dependent (ND) in the following sense:

∀S ⊆ [n], E

[

∏

i∈S

Zi

]

≤
∏

i∈S

E[Zi]. (14)

More precisely, we have the following universal upper-bound.

Lemma 10 (Upper-bound on the impact of ND perturbations). If Z is ND, then

∥

∥

∥

µ

π
− 1
∥

∥

∥

L2
π

≤

√

√

√

√

n
∏

i=1

(

1 +
1− ρ⋆
ρ⋆

z2i

)

− 1.

Proof. Since X⋆ is independent of (Y,Z) and has law π = B⊗n
ρ , we have

µ(y) = E

[(

∏

i/∈Z

Bρ(yi)

)(

∏

i∈Z

1Yi=yi

)]

.

Denoting by (Y ′, Z ′) an independent copy of (Y,Z), we deduce that

µ2(y) = E

[(

∏

i/∈Z

Bρ(yi)

)(

∏

i/∈Z′

Bρ(yi)

)(

∏

i∈Z

1Yi=yi

)(

∏

i∈Z′

1Y ′

i
=yi

)]

.

Dividing through by π(y) = Bρ(y1) · · ·Bρ(yn) and simplifying, we obtain

µ2(y)

π(y)
= E

[(

∏

i∈Z∩Z′

1

Bρ(yi)

)(

∏

i/∈Z∪Z′

Bρ(yi)

)(

∏

i∈Z

1Yi=yi

)(

∏

i∈Z′

1Y ′

i
=yi

)]

≤ E





1

ρ
|Z∩Z′|
⋆

(

∏

i/∈Z∪Z′

Bρ(yi)

)(

∏

i∈Z

1Yi=yi

)





∏

i∈Z′\Z

1Y ′

i
=yi







 ,

because min {Bρ(0),Bρ(1)} = ρ⋆. Summing over all y ∈ {0, 1}n, we arrive at

∥

∥

∥

µ

π

∥

∥

∥

2

L2
π

≤ E

[

1

ρ
|Z∩Z′|
⋆

]

.

11



Finally, recalling that Z,Z ′ are i.i.d. and satisfy (14), we can write

E

[

1

ρ
|Z∩Z′|
⋆

]

= E

[

n
∏

i=1

(

1 +
1− ρ⋆
ρ⋆

ZiZ
′
i

)

]

=
∑

S⊆[n]

(

1− ρ⋆
ρ⋆

)|S|

E

[

∏

i∈S

ZiZ
′
i

]

≤
∑

S⊆[n]

(

1− ρ⋆
ρ⋆

)|S|
(

∏

i∈S

E [Zi]

)2

=
n
∏

i=1

(

1 +
1− ρ⋆
ρ⋆

z
2
i

)

.

Since
∥

∥

µ
π − 1

∥

∥

2

L2
π

=
∥

∥

µ
π

∥

∥

2

L2
π

− 1, the claim is proved.

Remark 1 (Sharpness). As already explained (or deduced from a careful examination of the above

proof), the inequality in Lemma 10 is an equality when the coordinates of Z are independent, while

Y is deterministically set to x⋆. Thus, Lemma 10 is sharp, and states that the L2 impact of

negatively-dependent perturbations is maximized in the product case.

We now complement the above upper-bound with a matching lower-bound.

2.3 Lower-bound

Lemma 10 states that µ is uniformly close to π (even in the strong L2
π sense) whenever ‖z‖ is small.

Conversely, we now show that µ is uniformly far from π whenever ‖z‖ is large, at least in the

extreme case Y = x⋆. We here only need the special case |S| = 2 of the ND condition (14), namely

∀i 6= j, Cov(Zi, Zj) ≤ 0. (15)

Lemma 11 (Matching lower bound). Assume that Z satisfies (15), and that Y = x⋆. Then,

‖µ− π‖tv ≥
‖z‖2

4 + ‖z‖2
.

Proof. A simple way to bound total variation from below consists in applying the general inequality

‖µ− π‖tv ≥
(E[f(X)]− E[f(X⋆)])2

(E[f(X)]− E[f(X⋆)])2 + 2Var[f(X)] + 2Var [f(X⋆)]
, (16)

to an appropriate distinguishing statistics f : {0, 1}n → R, see [19, Proposition 7.8]. Here we choose

f(x) :=
n
∑

i=1

zi(xi − ρ),

12



where we recall that zi := E[Zi]. Since the coordinates of X⋆ are i.i.d. with law Bρ, we have

E[f(X⋆)] = 0;

Var[f(X⋆)] = ρ(1− ρ)‖z‖2 ≤
‖z‖2

4
.

On the other hand, we know that Xi = (1 − Zi)X
⋆
i + Zi1ρ<1/2 with X⋆, Z independent. Thus,

E[Xi] = ρ+ zi(1ρ<1/2 − ρ), Cov(Xi,Xj) = (1− ρ⋆)
2Cov(Zi, Zj) ≤ 0 for i 6= j, and

E
2[f(X)] = ‖z‖4(1ρ<1/2 − ρ)2 ≥

‖z‖4

4
;

Var[f(X)] ≤
n
∑

i=1

z
2
iVar(Xi) ≤

‖z‖2

4
.

Inserting those estimates into (16) readily yields the claimed bound.

3 Application to exclusion with reservoirs

We now show that our general perturbation theory for negatively-dependent measures applies to

the special case of the exclusion process with reservoirs. More precisely,

1. We show in Section 3.1 that at any given time t ≥ 0 and from any given initial state x ∈ X ,

the distribution µ = Pt(x, ·) of the system is a perturbation of the equilibrium measure π in

the sense of Definition (11), for a certain noise vector (Y,Z) that we explicitate.

2. We show in Section 3.2 that the perturbed region Z is negatively-dependent in the sense of

Assumption (14), and that its marginals satisfy (4), thereby implying Theorem 1.

3. Finally, in Section 3.3, we detail the arguments that lead from Theorem 1 to Corollaries 2-9.

3.1 Graphical construction

Let X = (X(t))t≥0 be an exclusion process with reservoir density ρ on G, starting from an arbitrary

state x ∈ X . The graphical construction provides a standardized representation of X in the form

X := Ψ
(

x, (Ξi)1≤i≤n, (Ξij)1≤i<j≤n, (ξk)k≥1

)

, (17)

where the variables Ξ1, . . . ,Ξn,Ξ11, . . .Ξnn, ξ1, ξ2, . . . are independent and as follows:

• Ξij is a Poisson point process of rate c(i, j) specifying the exchange times between i and j.

• Ξi is a Poisson point process of rate κ(i) specifying the resampling times at site i.

13



• ξk is a Bρ−variable specifying the new value to be assigned when the k−th resampling occurs.

From this data, the trajectory X = (X(t))t≥0 is deterministically obtained as the unique right-

continuous, {0, 1}n−valued function which equals x at time 0, is constant outside the locally finite

set Ξ := Ξ1 ∪ . . . ∪ Ξn ∪ Ξ11 ∪ . . . ∪ Ξnn, and jumps at t ∈ Ξ as follows:

(i) if t ∈ Ξij, then X(t) = (X(t−))
i↔j

.

(ii) if t ∈ Ξi and t is the k−th smallest point in Ξ1 ∪ . . . ∪ Ξn, then X(t) = (X(t−))
i,ξk .

This rigorously specifies the measurable map Ψ appearing in (17). We may now couple X with a

stationary process X⋆ by setting

X⋆ := Ψ
(

ζ, (Ξi)1≤i≤n, (Ξi,j)1≤i<j≤n, (ξk)k≥1

)

, (18)

where ζ denote a π−distributed random variable independent of Ξ1, . . . ,Ξn,Ξ11, . . .Ξnn, ξ1, ξ2, . . ..

In order to compare X and X⋆, we introduce two auxiliary processes:

Y := Ψ (x, (Ξi)1≤i≤n, (Ξi,j)1≤i<j≤n,0) ;

Z := Ψ (1, (Ξi)1≤i≤n, (Ξi,j)1≤i<j≤n,0) .

Note that Y,Z are exclusion processes with reservoir density ρ = 0 starting from x and 1, respec-

tively. The next lemma shows that at any time t ≥ 0, the random vector X(t) is the perturbation

of X⋆(t) induced by the noise (Y (t), Z(t)), in the sense of Definition (11).

Lemma 12 (Perturbative structure of the exclusion process). At any time t ≥ 0, the random vector

X⋆(t) is π−distributed and independent of (Y,Z). Moreover, we have

∀i ∈ [n], Xi(t) = (1− Zi(t))X
⋆
i (t) + Zi(t)Yi(t). (19)

Finally, in this formula, we can replace Yi(t) by 1 when x = 1, and by 0 when x = 0.

Proof. The law π = B⊗n
ρ is trivially preserved under swapping two coordinates or replacing a coor-

dinate with a fresh Bρ−distributed variable. Thus, the conditional law of X⋆(t) given the point pro-

cesses Ξ1, . . . ,Ξn,Ξ11, . . .Ξnn is π. Since Y,Z are measurable functions of Ξ1, . . . ,Ξn,Ξ11, . . .Ξnn,

the first claim follows. For the second, it suffices to note that the identity (19) holds at time t = 0

(both sides being equal to xi) and is preserved at each discontinuity time t ∈ Ξ (in case (i) above,

the transposition i↔ j is simultaneously applied to the four vectors X⋆(t),X(t), Y (t), Z(t), and in

case (ii) we have Zi(t) = 0 and Xi(t) = X⋆
i (t) = ξk). Finally, observe that the process Y is equal

to Z in the case x = 1, and to 0 in the case x = 0.
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Remark 2 (Strong stationary time). The above lemma readily implies that the random variable

T := inf {t ≥ 0: Z(t) = 0} is a strong stationary time, i.e.

∀(t, y) ∈ R+ × X , P(X(t) = y, T ≤ t) = π(y)P(T ≤ t).

In particular, this classically implies the separation-distance bound

∀t ∈ R+, sep (Pt(x, ·), π) ≤ P(T > t),

with equality in the extreme cases x = 0 and x = 1; see [19, Lemma 6.12 and Proposition 6.14].

3.2 Analysis of the perturbed region

In order to apply the results of Section 2, we must verify that at any time t ≥ 0, the perturbed

region Z(t) meets our negative dependence (ND) requirement (14). By construction, the process

Z = (Z(t))t≥0 is an exclusion process with reservoir density ρ = 0, starting from Z(0) = 1. Thus,

the claim is a special case of the following general result which, for the conservative variant of the

model, was established by Liggett [20, Proposition VIII.1.7] (see Borcea, Brändén and Liggett [5,

Proposition 5.1] for a considerable refinement).

Lemma 13 (Negative dependence for exclusion with reservoirs). Let X = (X(t))t≥0 denote an

exclusion process with reservoir density ρ ∈ [0, 1] on an arbitrary network G, and suppose that the

initial random vector X(0) is ND. Then, so is X(t) for all t ≥ 0.

Proof. Recall that the law µ(t) of X(t) is given by µ(t) = µ(0)etL , where L is the generator defined

in the introduction. Thus, we want to show that L is ND-preserving in the following sense:

µ is ND =⇒
(

∀t ≥ 0, µetL is ND
)

.

Here is a simple observation that will substantially reduce our task: if L1,L2 are two ND-preserving

generators on {0, 1}n, then so is any superposition of the form L = λ1L1 + λ2L2 with λ1, λ2 ≥ 0.

Indeed, Trotter product formula [10, p. 33] asserts that for all t ≥ 0,

et(λ1L1+λ2L2) = lim
k→∞

(

e
λ1t

k
L1e

λ2t

k
L2

)k
,

and the claim follows because the ND property is preserved under weak convergence. Consequently,

we only need to separately prove Lemma 13 in the following three elementary cases:

(i) L f(x) = f(xi,1)− f(x) (creation at i)

(ii) L f(x) = f(xi,0)− f(x) (annihilation at i)
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(iii) L f(x) = f(xi↔j)− f(x) (exchange between i and j)

To do so, we suppose that X(0) is ND. In case (i)-(ii), we have the representation

X(t) =

{

X(0)i,b if N (t) ≥ 1

X(0) else,

where (N (t))t≥0 denotes a unit-rate Poisson process independent of X(0), and with b = 1 in the

creation case and b = 0 in the annihilation case (ii). Thus, the desired inequality

E

[

∏

k∈S

Xk(t)

]

≤
∏

k∈S

E [Xk(t)] (20)

is trivially satisfies if the set S does not contain i. On the other hand, if S contains i, then

E

[

∏

k∈S

Xk(t)

]

= b(1− e−t)E





∏

k∈S\{i}

Xk(0)



 + e−tE

[

∏

k∈S

Xk(0)

]

≤ b(1− e−t)
∏

k∈S\{i}

E[Xk(0)] + e−t
∏

k∈S

E[Xk(0)]

=
∏

k∈S

E[Xk(t)],

as desired. In case (iii), we have

X(t) =

{

X(0)i↔j if N (t) is odd

X(0) else

In particular, (20) trivially holds if S contains neither i nor j. On the other hand, if S contains i

but not j (or vice versa), then writing θt = P(N (t) is even), we have

E

[

∏

k∈S

Xk(t)

]

= θtE



Xj(0)
∏

k∈S\{i}

Xk(0)



 + (1− θt)E

[

∏

k∈S

Xk(0)

]

≤ θtE[Xj(0)]
∏

k∈S\{i}

E [Xk(0)] + (1− θt)
∏

k∈S

E [Xk(0)]

=
∏

k∈S

E [Xk(t)] ,

as desired. Finally, if S contains both i and j, then

E

[

∏

k∈S

Xk(t)

]

= E

[

∏

k∈S

Xk(0)

]

≤
∏

k∈S

E[Xk(0)] = E[Xi(0)]E[Xj(0)]
∏

k∈S\{i,j}

E[Xk(0)],
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so, the desired inequality (20) boils down to E[Xi(0)]E[Xj(0)] ≤ E[Xi(t)]E[Xj(t)]. But since

E[Xi(t)] = (1− θt)E[Xi(0)] + θtE[Xj(0)]

E[Xj(t)] = (1− θt)E[Xj(0)] + θtE[Xi(0)],

the claim further simplifies to θt(1− θt) (E[Xi(0)]− E[Xj(0)])
2 ≥ 0, which clearly holds.

To establish Theorem 1, it now only remains to prove that the marginals zi(t) := E[Zi(t)] satisfy

the differential equation (4). This is exactly the special case ρ = 0,X(0) = 1 of the following result.

Lemma 14 (Single-site marginals). Let X = (X(t))t≥0 denote an exclusion process with reservoir

density ρ ∈ [0, 1] on an arbitrary network G. Then, the mean function z : t 7→ E[X(t)] solves

dz

dt
= ∆(z− ρ).

Proof. Dynkin’s formula asserts that for any observable f : X → R,

d

dt
E[f(X(t))] = E [(L f)(X(t))] .

Now, for the i−th projection f(x) = xi, we readily compute

∀x ∈ X , (L f)(x) = −κ(i) (xi − ρ) +

n
∑

j=1

c(i, j) (xj − xi) . (21)

Since the right-hand side is precisely the i− th coordinate of the vector ∆(x− ρ), we are done.

3.3 Putting things together

We now have all the ingredients needed to prove the results announced in the introduction.

Proof of Theorem 1. Consider the perturbation (X⋆(t),X(t), Y (t), Z(t)) defined in Section 3.1 and

analyzed in Section 3.2. For this perturbation, Lemma 10 reads

∥

∥

∥

∥

Pt(x, ·)

π
− 1

∥

∥

∥

∥

L2
π

≤

√

√

√

√

n
∏

i=1

(

1 +
1− ρ⋆
ρ⋆

z2i

)

− 1

≤

√

exp

(

1− ρ⋆
ρ⋆

‖z‖2
)

− 1

≤

√

exp

(

‖z‖2

ρ⋆

)

− 1.

Since x ∈ X is arbitrary, the upper-bound is proved. The lower bound is precisely Lemma 11 .
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Proof of Corollary 2. The spectral expansion (5) implies

∀t ≥ 0, ‖z(t)‖2 ≤ |V |e−2λt. (22)

Inserting this into the upper-bound provided by Theorem 1 and letting t→ ∞, we see that

max
x∈X

∥

∥

∥

∥

Pt(x, ·)

π
− 1

∥

∥

∥

∥

L2
π

≤ e−λt+o(t).

Since the spectral gap γ(L ) of a reversible generator L coincides with the asymptotic exponential

decay rate of the distance to equilibrium, we deduce that γ(L ) ≥ λ. Conversely, consider the

function f : X → R defined by f(x) := 〈ψ, x− ρ〉 for all x ∈ X . Recalling (21), we have

(L f)(x) = 〈ψ,∆(x− ρ)〉

= 〈∆ψ, x− ρ〉

= −λ〈ψ, x− ρ〉

= −λf(x),

where the second line uses the symmetry of ∆. Thus, −λ is an eigenvalue of L , hence γ(L ) ≤ λ.

Proof of Corollary 3. Fix ε ∈ (0, 12 ) and set t := tmix(1− ε). By the lower-bound in Theorem 1,

‖z(t)‖2

4 + ‖z(t)‖2
≤ 1− ε.

This implies that ‖z(t)‖2 ≤ 4/ε, so the upper-bound in Theorem 1 yields

max
x∈X

∥

∥

∥

∥

Pt(x, ·)

π
− 1

∥

∥

∥

∥

L2
π

≤ exp

(

2

ερ⋆

)

.

Since the spectral gap λ of a reversible generator L coincides with the exponential contraction rate

of the L2
π−distance to equilibrium, we deduce that for all s ≥ 0,

max
x∈X

∥

∥

∥

∥

Pt+s(x, ·)

π
− 1

∥

∥

∥

∥

L2
π

≤ exp

(

2

ερ⋆
− λs

)

.

Choosing s = 3
λερ⋆

makes the right-hand side less than ε. Recalling the Cauchy-Schwarz inequality

‖µ− π‖tv ≤
1

2

∥

∥

∥

µ

π
− 1
∥

∥

∥

L2
π

, (23)

valid for any probability measure µ on X , we conclude that tmix(ε) ≤ t + s. This is exactly the

claim, with c := 3/(ερ⋆)
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Proof of Corollary 4. It is classical that the product condition is necessary for cutoff, see [19, Propo-

sition 18.4]. Conversely, if the product condition holds, then by Corollary 3 we have

t
(n)
mix

(1/4) ≫ t
(n)
mix

(ε) − t
(n)
mix

(1− ε),

for any fixed ε ∈ (0, 14), which precisely mean that there is cutoff.

Proof of Corollary 5. Fix c ≥ 0 and set t := log |V |+c
2λ . In view of (22), we have ‖z(t)‖2 ≤ e−c.

Consequently, the upper-bound in Theorem 1 implies

max
x∈X

∥

∥

∥

∥

Pt(x, ·)

π
− 1

∥

∥

∥

∥

L2
π

≤

√

exp

(

e−c

ρ⋆

)

− 1.

Choosing c = c(ε, ρ) such that the right-hand side equals ε concludes the proof.

Proof of Corollary 6. Fix ε ∈ (0, 1) and set t = tmix(ε). By the lower bound in Theorem 1, we have

‖z(t)‖2

4 + ‖z(t)‖2
≤ ε,

which implies ‖z(t)‖2 ≤ 4
1−ε . On the other hand, we have ‖z(t)‖2 ≥ 〈ψ,1〉2e−2λt, by (5). Combining

these two inequalities, we deduce that

t ≥
1

2λ
log

(

〈ψ,1〉2(1− ε)

4

)

.

This is precisely the claim, with c := log 4
1−ε .

Proof of Corollary 7. The claim readily follows from Corollaries 5 and 6.

Proof of Corollary 8. An easy and classical consequence of reversibility (see [25, p. 120]) is that

∣

∣

∣

∣

Pt(x, y)

π(y)
− 1

∣

∣

∣

∣

≤

∥

∥

∥

∥

Pt/2(x, ·)

π(·)
− 1

∥

∥

∥

∥

L2
π

∥

∥

∥

∥

Pt/2(y, ·)

π(·)
− 1

∥

∥

∥

∥

L2
π

,

for all t ≥ 0 and x, y ∈ X . Thus, the claimed upper-bound follows from Theorem 1. We now turn

to the lower-bound from x = x⋆. Using the short-hand S := 〈Z(t),1〉, we have by Remark 2,

sep (Pt(x⋆, ·), π) = P (S > 0)

≥
E
2 [S]

Var (S) + E2 [S]

≥
E [S]

1 + E [S]
,
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where the second line uses Cantelli’s one-sided improvement of Chebychev’s inequality, and the

third the fact that Var (S) ≤ E[S] when S is a sum of negatively correlated Bernoulli random

variables. To conclude, it only remains to note that

E[S] = 〈z(t),1〉 = ‖z(t/2)‖2,

because z(t) = et∆1 and ∆ is symmetric.

Proof of Corollary 9. By the Perron-Frobenius theorem, ψ is characterized as the only eigenvector

of ∆ all of whose coordinates have the same sign. Thus, it is enough to check that the formula for

ψ proposed in the claim defines an eigenvector. This is well known (and immediate to check) in the

case d = 1. The general case follows by observing that the Laplace matrix ∆ = ∆(n1,...,nd) of a box

of dimensions n1 × . . .× nd (either with open, or with semi-open boundaries) tensorizes as follows:

∆(n1,...,nd) = ∆(n1) ⊕ · · · ⊕∆(nd), (24)

where ⊕ denotes the Kronecker sum of matrices. The rest of the claim is a straightforward appli-

cation of our general results listed above.
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