
HAL Id: hal-03902668
https://hal.science/hal-03902668v1

Submitted on 15 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CRYSTAL23: A Program for Computational Solid State
Physics and Chemistry

Alessandro Erba, Jacques Desmarais, Silvia Casassa, Bartolomeo Civalleri,
Lorenzo Donà, Ian Bush, Barry Searle, Lorenzo Maschio, Loredana

Edith-Daga, Alessandro Cossard, et al.

To cite this version:
Alessandro Erba, Jacques Desmarais, Silvia Casassa, Bartolomeo Civalleri, Lorenzo Donà, et al..
CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. Journal of Chemical
Theory and Computation, 2022, �10.1021/acs.jctc.2c00958�. �hal-03902668�

https://hal.science/hal-03902668v1
https://hal.archives-ouvertes.fr


CRYSTAL23: A Program for Computational Solid State Physics and
Chemistry
Alessandro Erba,* Jacques K. Desmarais, Silvia Casassa, Bartolomeo Civalleri, Lorenzo Dona,̀ Ian J. Bush,
Barry Searle, Lorenzo Maschio, Loredana Edith-Daga, Alessandro Cossard, Chiara Ribaldone,
Eleonora Ascrizzi, Naiara L. Marana, Jean-Pierre Flament, and Bernard Kirtman

Cite This: J. Chem. Theory Comput. 2023, 19, 6891−6932 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The CRYSTAL program for quantum-mechanical simulations of materials has been bridging the realm of molecular
quantum chemistry to the realm of solid state physics for many years, since its first public version released back in 1988. This
peculiarity stems from the use of atom-centered basis functions within a linear combination of atomic orbitals (LCAO) approach
and from the corresponding efficiency in the evaluation of the exact Fock exchange series. In particular, this has led to the
implementation of a rich variety of hybrid density functional approximations since 1998. Nowadays, it is acknowledged by a broad
community of solid state chemists and physicists that the inclusion of a fraction of Fock exchange in the exchange-correlation
potential of the density functional theory is key to a better description of many properties of materials (electronic, magnetic,
mechanical, spintronic, lattice-dynamical, etc.). Here, the main developments made to the program in the last five years (i.e., since
the previous release, CRYSTAL17) are presented and some of their most noteworthy applications reviewed.

1. INTRODUCTION
The past decade has witnessed a fast growth of the community
of condensed-matter computational physicists and chemists.
Such a large, diverse, vibrant community relies on robust and
efficient simulation software programs that should be able to
evolve in order to reflect (or ideally anticipate) its needs.
Arguably, density functional theory (DFT) represents the
method of choice in the calculation, interpretation, and
prediction of properties of materials.1−4 Several DFT-based
software packages are available, which provide implemented
algorithms for a rich spectrum of possible applications in
materials science, to name a few, VASP, QUANTUM-ESPRESSO,
ABINIT, CASTEP, WIEN2K, NWCHEM, CP2K, TURBOMOLE, PYSCF,
and others.5−13

In this context, the CRYSTAL package has been bringing some
diversity to the field of computational condensed matter
science since its first public release back in 1988, thanks to
several distinctive features. Among others, (i) the use of atom-
centered local basis functions versus plane waves, (ii) a

quantum-chemistry perspective with the first ever periodic
implementation of the Hartree−Fock (HF) method, and (iii)
an extensive exploitation of space symmetries as well as point
symmetries at all steps of the calculation. The combination of
these three factors allowed for the very efficient implementa-
tion of the infinite Fock exchange series, which then resulted to
be key a few years later to an effective implementation of so-
called “hybrid” exchange-correlation (xc) density functional
approximations (DFAs). Back in 1998, CRYSTAL provided the
community with the first periodic implementation of global
hybrid xc functionals and remains unchallenged in terms of
their computational efficiencies. Nowadays, the effectiveness of
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hybrid xc functionals, with inclusion of a fraction of exact Fock
exchange, over plain DFAs is widely acknowledged for the
description of a variety of properties of materials (electronic
structure, elasticity, linear and nonlinear optical response,
lattice dynamics, etc.). In particular, Fock exchange proves
crucial in the description of magnetism (collinear and
noncollinear magnetization, spin−orbit coupling, spintronics,
etc.).14−25

As developers, we aim at extending the application domain
of DFT methodologies in a solid state context toward larger
(i.e., more realistic) structural models and toward the
description of more complex physical phenomena, with a
higher accuracy. In this review paper, we illustrate the
developments made to the program since its last major release,
namely, CRYSTAL17.26

2. TWO-COMPONENT DENSITY FUNCTIONAL
THEORY AND SPIN−ORBIT COUPLING
2.1. Two-Component Spinor Basis. Relativistic effects in

quantum chemistry and materials physics refer to corrections
to the Schrödinger equation from an account that the speed of
light is finite and constant. Such corrections become
increasingly important moving down the periodic table, to
heavier elements, in which the effective velocities of the
electrons becomes non-negligeable when compared to the
speed of light. Relativistic effects can be classified into two
categories, depending on whether or not they are described
through scalar operators in the Hamiltonian. The first category
comprises scalar-relativistic (SR) effects, and the second is here
loosely referred to as spin−orbit coupling (SOC) effects. While
SR effects have been treatable in CRYSTAL since 1988,27−29 a
treatment of SOC was still lacking.
The reformulation of the (one-component) Schrödinger

equation that is consistent with the postulates of special
relativity is the four-component Dirac equation. In the Dirac
equation, a crystalline orbital (CO) is a 4 × 1 vector function
(a four-component “spinor”), rather than a 1 × 1 scalar
function ψk

Schröd(r) of space (a one-component, 1c, spinor), as
well as the electron quasi-momentum k (i.e., the sampling
point in the first-Brillouin zone, FBZ). More explicitly, a
Schrödinger CO ket reads

| = |dr r r( )k k
Schrod

(1)

while a Dirac ket is decomposed as

| = |
= =

d ar r r( ) , ,
a L S

ak k
, ,

, ,
Dirac

(2)

in which σ is a spin index, and a denotes the so-called “large”
and “small” components of the Dirac wave function, principally
related to positive (electronic) and negative (positronic)
energy solutions of the Dirac equation, respectively.
In quantum chemistry and materials physics, interest is

dominated by the electronic solution of the Dirac equation. It
is therefore common practice to write |ψk⟩ in a basis of two-
component (2c, or Pauli) spinors,

| = |
=

dr r r( ) ,k k
,

,
Pauli

(3)

where ψσ,k
Pauli(r) are components of the 2 × 1 CO vector

ψk
Pauli(r),

=
i

k

jjjjjjjjj

y

{

zzzzzzzzz
r

r

r
( )

( )

( )
k

k

k

Pauli ,
Pauli

,
Pauli

(4)

Comparing eq 1 and eq 3, one immediate consequence is that
the Kohn−Sham equation

| = |F k( )k k (5)

in Pauli spinor representation leads to a 2 × 2 Fock operator,
F̂, instead of a 1 × 1 Fock in the Schrödinger spinor basis. A
relativistic theory including spin is then associated with a two-
component self-consistent field (2c-SCF), rather than 1c-SCF,
procedure. Such a 2c-SCF strategy has recently been
implemented in the CRYSTAL code.30−32

In matrix form, eq 5 in the Schrödinger spinor basis reads

=F C S C Ek k k k k (6)

and in the Pauli spinor basis

=
i

k
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(7)

where Ek is the diagonal matrix of band structure energies
ϵi(k), having size N × N for a calculation with N basis
functions in the Schrödinger spinor basis, or size 2N × 2N in
the Pauli spinor basis. Ck

σ is the N × 2N matrix of expansion
coefficients Cμ,i

σ (k) of the Pauli COs in Bloch functions,

= Cr k r( ) ( ) ( )i ik k, ,
Pauli

, ,
(8)

while for Schrödinger spinors, we make use of the N × N
matrix Ck with elements Cμ,i(k),

= Cr k r( ) ( ) ( )i ik k,
Schrod

, ,
(9)

Finally, in eq 7, Sk
σσ′ and Fk

σσ′ are the N × N spin blocks of the
Bloch function overlap and Fock matrices.

For CRYSTAL, in eqs 8 and 9, the Bloch functions are the
inverse Fourier transform of pure-real atom-centered local
functions (termed atomic orbitals, AOs),

= ·er r g a( )
1

( )k
g

k g
,

(10)

with aμ being the position of the atom on which χμ is centered
in the reference cell 0, 1 is the imaginary unit, and Ω is the
volume of the FBZ. In eq 10, the sum over g is henceforth
understood to extend over the full set of lattice vectors. More
specifically, an AO χμ is here a linear combination of
normalized real-solid-spherical harmonic Gaussian type
functions (RSSH-GTF, see Section 4.1 for an exact
definition).33

2.2. Spin−Orbit Coupling. 2.2.1. Relativistic Effective
Potentials. In the present implementation, relativistic oper-
ators are represented as effective potentials (REP). In this
approach, the many-electron problem is partitioned into one
involving only the core electrons and one describing the core−
valence and valence−valence interactions. The core electron
problem has already been solved using a sufficiently accurate
variant of the four-component Dirac equation (i.e., HF or post-
HF Dirac-Coulomb, Dirac-Coulomb-Breit, or more accurate
variants, possibly including further contributions to the
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electron−electron interaction from quantum electrodynamics).
The solution of the core electron problem allows one to extract
a relativistic effective core potential Ŵ. See refs 34−38 for
exact details on the extraction procedure of Ŵ.
In practice, it is customary (and convenient) to express Ŵ as

a sum of atom-centered monoelectronic operators ŵ,

=W w r a g( )
g (11)

For notational convenience, we drop the dependence of ŵ on
the center μ, lattice vector g, and the electron coordinate r and
simply write ŵ for one of the terms in eq 11. In a Pauli spinor
basis ŵ is again a 2 × 2 matrix with elements ŵσσ′.
As first suggested in ref 34, it is convenient for computa-

tional purposes to write ŵ as a sum of two terms. The first term
v̂ (representing SR effects) is a spin-averaged operator (the so-
called averaged REP, AREP), while the second term û accounts
for all spin-dependent relativistic effects (the so-called spin−
orbit REP, SOREP),

= +w v u0 (12)

where σ̂0 is a 2 × 2 unit matrix. In the end, both the AREP v̂
and SOREP û are written using a sufficiently large sum of
products of angular and radial operators. For the AREP,

=
=

v U P
l

L

l l
0

AREP Schrod

(13a)

while for the SOREP,

=
=

u U P
l

L

l l
1

SOREP Pauli

(13b)

In the present implementation, L has a maximum value of 4.
The radial operators appearing in eqs 13a and 13b consist of a
linear combination of solid Gaussian functions,

=
=

U R C el
k

M

e n
n

k l
RAREP/SOREP

1
,

AREP/SOREP
l

k l k l e n, ,
2

(14)

with Re−n being the electron−core distance. That is to say Re−n
is a shorthand notation for Re−n = |r − aμ− g| for one of the
terms in eq 11. nk,l = 0,1,2,···, as well as Ck,lAREP/SOREP and αk,l are
parameters that are obtained from the solution of the core
electron problem. In the case of the AREP v̂σσ, the operators
P̂lSchröd, being angular projectors onto Schrödinger spinors, are
pure-real. For the SOREP ûσσ′, the angular projectors onto
Pauli spinors P̂lPauli, are instead complex. Matrix elements of the
AREP/SOREP in an AO basis are written as, for instance, for
the SOREP operator,

= | | =u u d ug r r( ) ( )0 g g
(15)

where we have made use of the overlap distribution,

=r r a r g a( ) ( ) ( )g
(16)

Following from eq 16, it is expedient to also introduce the
current overlap distribution ζμν

g (r),

= [ ]

[ ]

r r a r g a

r a r g a

( ) ( ) ( )

( ) ( )

g

(17)

The integrals involved in AREP matrix elements are calculated
using an approach by McMurchie and Davidson.39 The
procedure for SOREP integrals discussed in refs 40 and 41 is
closely related to the same scheme of ref 39. The routines
implemented in CRYSTAL for the SOREP integrals are based on
those of ref 41, and similar routines have also been
implemented in the EPCISO program of ref 42, in part by one
of the present authors. These integrals are evaluated directly in
a Cartesian GTF basis before a final transformation to the
RSSH-GTF basis. This is in contrast to all other integrals in
CRYSTAL, which are instead evaluated directly in the RSSH-
GTF basis, using a scheme first described by Saunders in ref
33, as is briefly reviewed in Section 4.1.

For extended periodic systems, as explained in refs 27−29,
integrals of the form given in eq 15 are selected based on a
screening criterion, employing the adjoined Gaussian χ̃μ of

Figure 1. Availability of relativistic effective small core (SC) and large core (LC) potentials, as well as potentials for super heavy (SH) elements,
including AREP and SOREP operators, for calculations with spin−orbit coupling and associated keywords from the CRYSTAL input.
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shell μ (i.e., an s-type Gaussian with an exponent coinciding
with the lowest one in shell μ, see the CRYSTAL manual for a
more ample discussion). The screening criterion for REPs
makes use of the adjoined Gaussian overlap distribution,

=r r a r g a( ) ( ) ( )g
(18)

and AREP, as well as SOREP integrals, are only evaluated if the
overlap between g and the most diffuse Gaussian defining
the AREP/SOREP in eq 14 is larger than a preset threshold 1
× 10−TOLPSEUD.
In relation to eq 14, different authors use variable definitions

for the coefficients Ck,lSOREP, which can differ by combinations of
factors such as 2/l, 2/(2l + 1), as well as Re−n2 . A series of
keywords (INTERNAL, STUTTGART, COLUMBUS, and
TOULOUSE) are provided to help the user define a SOREP
from the CRYSTAL input, using some of the definitions
appearing in the literature.

2.2.2. Internal Libraries of REPs. New internal libraries of
AREP and SOREP operators are accessible from the CRYSTAL

input, using one of six keywords (STUTSC, STUTLC,
STUTSH, COLUSC, COLULC, and COLUSH), as displayed
in Figure 1. These nearly complete REP libraries have been
implemented, based on the “shape-consistent” potentials of
refs 43−49 and the “energy-consistent” potentials of refs 36
and 50−62. Accompanying molecular basis sets are available in
clickable periodic tables at the cited web addresses.63,64

Corresponding basis sets for solids or low-dimensional
periodic systems to go along with the REPs can be generated
by decontracting the molecular sets and possibly also removing
the most diffuse Gaussian functions. Some periodic basis sets
for use with the STUTSC potentials are also available on the
CRYSTAL website.65

With regard to the STUTSC and STUTLC REPs, these are
the ECPXXMDF ones (where XX is the number of core
electrons effectively treated by the REP, and MDF indicates
“multiconfigurational Dirac-Fock”, usually employing either
the low-frequency or frequency-dependent Dirac−Coulomb−
Breit Hamiltonians), for which most AREP operators are also
available in CRYSTAL format by following the link at ref 63. A
few additional remarks follow:
• The STUTSH potentials correspond to the

ECPXXMDFQ (not the ECPXXMDFB) ones, whose
AREP parts can be found at the same web address.

• For the lanthanide series, “energy-consistent” potentials
including spin−orbit operators are also available from ref
66, to go along with the small-core ECPXXMWB AREPs
available in CRYSTAL format at ref 63. These were,
however, obtained from a very different approach to the
potentials included in the present internal library.

• Finally, we note that the many-body core-polarization
operators of the STUTLC potentials, which provide a
correction for the frozen-core approximation, have not
been implemented.

2.3.3. Spin−Orbit Coupling Operator. Returning to eq 13b,
the symmetries of the complex operators P̂lPauli permit one to
derive the following relations for the SOREP matrix elements
of eq 15 in an AO basis. For the pure imaginary diagonal spin-
blocks,67,68

[ ] = [ ] = [ ] = [ ]u u u ug g g g( ) ( ) ( ) ( )
(19)

where denotes the imaginary part, and for the complex off-
diagonal spin-blocks,

= = [ ]* = [ ]*u u u ug g g g( ) ( ) ( ) ( ) (20)

The complex nature of uμν
σσ(g) leads to a need for restructuring

the calculation of the other contributions to the Fock operator,
as is explored in the following section.
2.3. Hamiltonian Operator in a Pauli Spinor Basis. For

the 2c-SCF program, generally, we consider the following class
of Hamiltonian operators:

= [ + + ] + +F h v J u K V, (21a)

in which V̂σσ′ is defined as one of

=

=

+ =

+ < <

l

m
ooooooo

n
ooooooo

V V V

V V

0 HF, i.e., 1

pure DFA, i.e., 0

(1 ) hybrid, i.e., 0 1

cor exx

cor exx

(21b)

for exchange and correlation (xc) potentials V̂cor
σσ′ and V̂exx

σσ′ from
an as-of-yet unspecified density functional approximation
(DFA), see Sections 2.4 and 2.6 for more details. In eq 21,
ĥ is the scalar monoelectronic valence operator (containing the
valence electronic kinetic and electron−nuclear terms), and v̂
and ûσσ′ (if included in the calculation) are the AREP and
SOREP operators of Section 2.2. Jσ̂σ and K̂σσ′ are the Coulomb
and Fock exchange operators (ξ is the dimensionless global
fraction of Fock exchange). As we see, if written in terms of
Pauli spinors, this leads to so-called “generalized Hartree−
Fock” and “2c DFT” approaches.69 For the Coulomb operator,

= ••|J dk ( )
i

i ik k

bands

, ,
Pauli

, ,
Pauli

F (22a)

and for the Fock exchange operator,

= • | •K dk ( )
i

i ik k

bands

, ,
Pauli

, ,
Pauli

F (22b)

where ΩF is the subvolume inside Ω for which band energies
are below the Fermi level ϵi(k) < εF. In eq 22, we have made
use of Mulliken shorthand notation for bielectronic integrals,
and in eq 22a, for instance, the bullet points are interpreted in
the sense that their matrix-elements read, in a Bloch function
basis,

| | = |J dk ( )
i

i ik k k k k k, ,

bands

, , , ,
Pauli

, ,
Pauli

F (23)

By inserting eq 22 in eq 21 and using also eqs 8 and 10, it is
possible to express the matrix elements of the Hamiltonian in
the Bloch function basis Fμν

σσ(k) as an inverse Fourier transform
of the corresponding matrix in the AO basis Fμν

σσ′(g),

| | = = ·F F e Fk g( ) ( )k k
g

k g
, ,

(24)

where Hermitian matrix elements of the Hamiltonian (and any
other) operator are defined as in eq 15 in an AO basis,

= | | = [ ]* =F F F d Fg g r r( ) ( ) ( )0 g g

(25)
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To reduce the cost of constructing Fμν
σσ(g), the following direct-

space Hermiticity relations are exploited, along with those
already discussed in eqs 19 and 20. For Aμν

σσ(g) = hμν
σσ(g) or

Jμν
σσ(g) or vμν

σσ(g),

= = =A A A Ag g g g( ) ( ) ( ) ( ) (26)

For the xc potential,

= = [ ]* = [ ]*V V V Vg g g g( ) ( ) ( ) ( ) (27)

while for the Fock exchange operator, the only relation is

= [ ]*K Kg g( ) ( ) (28)

In furthering the analysis, it is expedient to write out the
Coulomb and exchange matrices in the AO basis by
introducing the complex single-particle density matrix,

= [ ]* =

× [ ]* [ ]

·P P f d e

C C

g g k

k k k

( ) ( )
1

( ) ( ) ( )

i
i

i i F i

k g
bands

, , (29)

where θ is the Heaviside step function, εF is the Fermi energy,
and 0 < f i < 1 is the fractional occupation of band i. It is
convenient to also introduce the following compact notation
for linear combinations of spin-blocks of P(g):

= +P P Pg g g( ) ( ) ( ) (30a)

and

=P P Pg g g( ) ( ) ( ) (30b)

Then, using eqs 22, 25, 29, and 30, the Coulomb AO matrix is
written as

= [ ] | +J Pg n( ) ( ) ( )
n h

0 g h h n
,

(31)

while the exchange AO matrix reads

= | +K Pg n( ) ( ) ( )
n h

0 h h n g

(32)

and in eqs 31 and 32, we have again made use of the Mulliken
shorthand notation for bielectronic integrals. The Coulomb
AO integral of eq 31, for instance, is invariant to the following
permutations of the AOs:

+ +( ) ( )0 g h h n 0 g h h n (33)

where the first of these permutations, for instance, expresses
the equivalence of the following two integrals:

| = |+ +( ) ( )0 g h h n g 0 h h n

and likewise for the other two permutation relations of eq 33.
The first two permutational symmetries in eq 33 are imposed
through the Hermiticity of the Coulomb, exchange, and
density matrices in eqs 26, 28, and 29. The third permutational
symmetry of eq 33 must be imposed when contracting AO
bielectronic integrals with the density matrix in eqs 31 and 32.
In the present implementation, this contraction is performed
independently for the Coulomb and exchange series. All
permutational symmetries in eq 33 are exploited for the
exchange term, but the third one is not used for the Coulomb
term, for reasons that are explained in the paragraph that
follows.

As in the SR program, the Coulomb series in the 2c-SCF
program is evaluated using a scheme based on Ewald
summation and by approximating the electrostatic Coulomb
potential by a distributed point multipole model, as explained
in ref 70. In this scheme, explicit bielectronic integrals as in eq
31 are only needed if the overlap between

Figure 2. Electronic band structures of W-dichalcogenide monolayers for (A, B) WSe2 with the PBE and PBE0 functionals (C, D) WTe2 with the
PBE and PBE0 functionals. (E, F) PBE0 z component spin-current densities (I) 2D W-dichalcogenide structure. (G, H) z component spin-current
density differences with respect to second variational values for PBE (center panel) and PBE0 (rightmost panel) xc functionals.
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= [ ]

×

Pr n

r h a r h n a

( ) ( )

( ) ( )

h

n

and the adjoined Gaussian overlap distribution r( )g of eq 18
is smaller than a preset tolerance 10−T2 (see CRYSTAL manual
and ref 70 for a more ample discussion). Thus, most of the
bielectronic integrals that would be generated by the third
permutation in eq 33 are not needed for the Coulomb series,
and this permutation has been disregarded entirely in the
present implementation.
Figure 2(A−D) provides electronic band structures of WSe2

and WTe2 W-dichalcogenide monolayers with (solid blue) and
without (dotted black line) SOC, employing the PBE (pure
GGA) and PBE0 (hybrid GGA) functionals.71,72 The layers are
composed of alternating W and chalcogenide atoms in a
buckled-honeycomb arrangement, as shown in Figure 2I).
Computational details are provided in Appendix A. The band
structures display considerable splitting from SOC, especially
for the PBE0 hybrid functional calculations. For instance, the
splitting of the valence band at Γ for WSe2 is doubled (nominal
values of ∼0.125 eV with PBE and ∼0.25 eV with PBE0) when
including a fraction of exact Fock exchange in the functional.
This is no coincidence, as is explained in Sections 2.4 and 2.5
and is rationalized through a theoretical framework known as
spin-current DFT (SCDFT).
2.4. Spin-Current Density Functional Theory. The

Hohenberg−Kohn density functional theory for a Fermionic
system in a Coulomb external field (that is to say, a field
associated with a scalar-multiplicative potential v̂ext) shows that
the energy can be expressed as a unique functional of the
electron density ρ,73

= [ ] +E F v dr r( )HK ext (34)

where FHK is the universal Hohenberg−Kohn functional. A
treatment of more complex external fields leads to a
dependence of the energy functional on a larger set of density
variables, as first shown by Vignale and Rasolt, for the case of
magnetic fields.74,75 With a magnetic field, the energy
functional not only depends on ρ, but also on the three-
dimensional magnetization vector m=[mx, my, mz ] and the
particle-current density j (i.e., the current of the particles),
leading to the so-called current-spin DFT.74,75

For SOC, it was similarly shown in recent years that the
energy is a unique functional of ρ, m, j, but also the three
currents of the three Cartesian components mx, my, mz.

76−78

These new density variables are the so-called spin-current
densities Jx, Jy, and Jz, leading to the spin-current DFT
(SCDFT).76−78 The eight variables of the SCDFT are each
related to one of the eight spin-blocks of the complex single-
particle density matrix,67,79

= [ ]Pr g r( ) ( ) ( )
g

g

(35a)

= [ ]Pj r g r( )
1
2

( ) ( )
g

g

(35b)

where the current overlap distribution g was defined in eq 17,
and the corresponding expressions for the magnetization and
spin-current densities are provided in Appendix B.

The need for spin-current densities for a treatment of SOC
is readily observed from the energy expression originally
derived by Bencheikh for a Fermionic system with SOC in an
arbitrary external static electromagnetic field,76

= [ ]

+ + · + ·

+ · + + ·

+ ·

=

=

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É
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ÑÑÑÑÑÑÑÑÑÑÑÑÄ
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ÅÅÅÅÅÅÅÅ
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Ö
ÑÑÑÑÑÑÑÑ

E F m m m
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d
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d

c
B

c
m d

c
d

j J J J

A A A A r r

A j r r A A r r

A J r r

, , , , , , ,

1
2

1
2

( )

1 ( ) 1
2

2 ( )

1 ( )

x y z
x y z

ext
a x y z

a a

a x y z
a

a
a

a x y z

a a

2 2
, ,

, ,

, , (36)

where Ba is a Cartesian component of the external magnetic
field intensity B =∇ × A, associated with the 3 × 1 vector
potential A. c is the speed of light, and F is the universal
SCDFT functional, including noninteracting kinetic Ts, as well
as Coulomb J and exchange-correlation Exc energy contribu-
tions,

[ ]
= [ ] + [ ] + [ ]

F

T J E

m j J J J

m j J J J m j J J J

, , , , ,

, , , , , , , , , ,

x y z

s
x y z

xc
x y z

(37)

The Aa symbols in eq 36 are vector potentials associated with
SOC. In the absence of a magnetic field, Aa symbols are related
to the SOC operator û through the relation76

= [ · + · ]
=

u
c

A A
a x y z

a a a a

, , (38)

where σ̂a are the complex 2 × 2 Pauli spin matrices. In other
words, Aa are 3 × 1 vector potentials that are defined by a
particular (albeit somewhat unusual) way of writing the SOC
operator through eq 38.

The presence of the last term in eq 36 shows that the spin-
current densities Jx, Jy, and Jz are necessary (along with the
electron density ρ) for writing the energy (and hence also the
universal functional F, see refs 77 and 78 for an explicit
demonstration) in the presence of SOC potentials Aa. On the
other hand, the particle-current density j and magnetization m
only appear in eq 36 through coupling with the vector
potential A associated with an external magnetic field. Hence,
strictly speaking, m and j are only necessary for a calculation
with an external magnetic field. For a field-free 2c-SCF
calculation with SOC, the minimal set of density variables that
should enter the functional F only comprises the electron
density ρ and the three spin-current densities Jx, Jy, and Jz.
Nonetheless, for open-shell (i.e., time-reversal symmetry
breaking) electronic states, j and m can be nonvanishing,
even in the absence of a magnetic field. Therefore, it is still
beneficial to include j and m in the energy functional F for
field-free 2c-SCF calculations on open-shell systems.

This situation is analogous to a treatment of open-shell
systems in spin DFT (SDFT).80 Although not formally
required to include m in the energy functional for a calculation
on open-shell systems without a magnetic field, it is beneficial,
because open-shell systems carry a nonvanishing m.
2.5. Spin-Current Density Functional Theory Made

Practical. In CRYSTAL, SCDFT calculations are made possible
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through hybrid xc functionals.79,81 In this case, the xc energy
Exc of eq 37 has the general form79

[ ] = [ ]

+ [ ] = [ ]

+ [ ]

E E

d E

E

m j J J J m j J J J

r m j J J J m j J J J

m j J J J

, , , , , , , , , ,

, , , , , , , , , ,

, , , , ,

xc
x y z

K
x y z

x y z
K

x y z

x y z

DFA

DFA (39)

where εDFA is the xc energy density from a semilocal DFA of
the SCDFT, and EK is the SCDFT Fock exchange energy, in a
2c spinor basis. As discussed in refs 77 and 79, eq 39 can be
reduced to the following expression by exploiting the short-
range behavior of the exchange hole, in the LDA or GGA of
the SCDFT:

[ ]

= [ ] + [ ]

= [ ] + [ ]

E

E d

E E

m j J J J

m j J J J r m

m j J J J m

, , , , ,

, , , , , ,

, , , , , ,

xc
x y z

K
x y z

K
x y z

LDA or GGA

DFA (40)

which permits one to include particle- and spin-current
densities in the xc energy expression, using standard DFAs of
the SDFT.
In the present implementation in CRYSTAL23, it is also

possible to compare the results of a 2c-SCF SCDFT
calculation with the analogous SDFT calculation, by using
instead an energy expression like81

[ ] = [ ] + [ ]E E dm m r m, , ,xc K LDA or GGA (41)

where the only difference between eq 40 and eq 41 is that in eq
41 EK′ is the SDFT (instead of SCDFT) Fock exchange energy
in the 2c spinor basis, meaning that it is built from only the
electron density ρ and magnetization m, but does not depend
on the current densities. A comparison of predictions from eqs
40 and 41, using the keywords SCDFT and SDFT, allows one

to study the effect of including current densities in the DFA on
calculated properties from the 2c-SCF program.

An example comparison of predictions from eqs 40 and 41
has been reported by Bodo et al.81 for band-structure
calculations on the TaAs Weyl semimetal. The full input
decks are provided in the Supporting Information.82 The
results are summarized in Figure 3. The lack of inversion
center in the I41 md TaAs crystal structure (Figure 3A) results
in spin-splitting of the bands by SOC, whose effect on the
valence band structure is shown in Figure 3B). Without SOC,
the doubly degenerate valence and conduction bands converge
toward a single point, with a 3D linear dispersion relation,
forming a Dirac-like node. Spin-splitting of the Dirac-node by
SOC results in the appearance of a pair of Weyl nodes.
Experimental measurements, using angle-resolved photoem-
ission spectroscopy (ARPES), provide an estimated splitting of
about 0.015 (in units of 2 π/a, see red markers in Figure 3D)
of the Weyl node pair. SDFT calculations, employing an xc
energy expression as in eq 41, grossly underestimate this
splitting at about 0.008 (dashed blue markers in Figure 3 D).
In contrast, the SCDFT calculations, using instead the energy
formula of eq 40, predict a splitting of 0.016, in excellent
quantitative agreement with the experiment. This important
difference in the SCDFT and SDFT calculations is rationalized
with the help of Figure 3C), which provides color maps of the
orbital-relaxation contribution to the spin-current densities of
TaAs. The figure shows that significant spin current densities
are accumulated along the self-consistent field process in the
SCDFT calculations, resulting in a renormalization of the SOC
potential and corresponding enhanced spin-splitting of the
bands. In contrast, the SDFT calculations (top panels of Figure
3C) are completely unable to account for orbital relaxation of
the spin currents, leading to a poor comparison against the
ARPES experimental data.
2.6. Noncollinear Spin Density Functional Theory. In

eq 40, the SCDFT xc energy requires a contribution from an
explicitly paramatrized DFA of the SDFT. The functional

Figure 3. (A) Crystal structure of the I41 md tetragonal phase of TaAs. (B) Effect of SOC on the valence band structure. (C) Orbital-relaxation
contribution to the spin-current densities ΔJi = Jfinali − Jinitiali , with differences taken with respect to second variational values in the DFT (upper
panels) and SCDFT (lower panels). (D) Splitting by SOC of the Dirac-like node into Weyl node pairs in the DFT and SCDFT and comparison
with ARPES experimental values.81
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derivatives of this second term EDFA in eq 40 leads to the xc
potential operator of eq 21,32

= +
=

V
E E

ma x y z a
a

DFA
0

, ,

DFA

(42)

where V̂ is the 2 × 2 xc potential operator in a 2c spinor basis,
with elements V̂σσ′, as in eq 21. In this section, dependence of
ρ(r), ma(r), and derived quantities on the coordinates of an
electron r is dropped for notational convenience. Wherever
integrals over r are used, it is assumed that all quantities
contained within the integral and preceding dr depend on r.
Different SDFT formulations are possible, depending on the

specific details used to calculate the functional derivatives with
respect to magnetization Cartesian components in eq 42. Two
distinct strategies for LDA functionals have been implemented
in CRYSTAL23, while three strategies are available for GGA
functionals. In closed shell systems (i.e., those systems that
maintain time-reversal symmetry), the second term in eq 42 is
vanishing, and all possible formulations coincide.

2.6.1. Collinear Approach. The first (and simplest)
formulation for both LDA and GGA functionals is the
collinear one (V̂ = V̂col), in which functional derivatives are
only calculated with respect to the z component of the
magnetization, thus,

= +V V
E E

m
col

z
z

DFA
0

DFA

(43)

In such a collinear formulation, V̂col is block diagonal, that is to
say V̂σσ′ = δσσ′ V̂σσ. In the LDA,32

=V LDA

(44)

in which = + m( )z
1
2

and = m( )z
1
2

.
In the GGA, it turns out to be convenient to not work

directly with V̂σσ, but rather with its matrix elements Vμν
σσ(g) in

an AO basis, which read32

= +
| |
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+
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2
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(45)

where the overlap distribution ϱμν
g has been defined in eq 16

and32

= [ + ]· [ ]+ m m
1
4 z z

col

(46)

The major disadvantage of the collinear formulation described
by eqs 44 and 45 is that it leads to a total energy formula which
is not rotationally invariant if a SOC operator is included in the
Hamiltonian. That is to say, in a collinear calculation with
SOC, the energy of an open-shell system will depend on its
orientation in space.

2.6.2. Noncollinear Approach. To solve the rotational
invariance problem, it is necessary to adopt a noncollinear
formulation of V̂ that includes functional derivatives not only
with respect to mz, but also mx and my. Both the canonical
noncollinear formulation of Kübler et al.83 as well as the
noncollinear formulation of Scalmani and Frisch (SF)84 have
been implemented in CRYSTAL23. These two formulations

coincide in the LDA, but differ in the GGA. The canonical
formulation has the advantage of being conceptually simpler,
while the SF formulation is slightly more numerically stable.

In the noncollinear formulations, V̂ is no longer block
diagonal in spin space. In the LDA, the xc potential operator
reads32

= = +
=

V V
ma x y z a

a
ncol LDA

0
, ,

LDA

(47)

while in the GGA, it is again convenient to work with matrix
elements of V̂, which may be expressed as follows in terms of
quantities defined in eq 42 and the matrix-element notation
first introduced in eq 25. For the functional derivative with
respect to ρ,32
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(48a)

and for the functional derivative with respect to magnetization
components,32
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(48b)

where we have introduced the following quantities proper to
the canonical noncollinear formulation:

= ±± m
1
2

( )can
(49a)

and

= [ ± ]· [ ± ]±± m m
1
4

can

(49b)

in which = + +m m m mx y z
2 2 2 is the modulus of the

magnetization vector m. In eq 48b, an approximated equal
sign has been used, because contributions originating from the
gradient of ma/m have been dropped, which corresponds to
assuming that the gradient of the magnetization locally follows
the direction of the magnetization itself. In the end, the
canonical noncollinear formulation of LDA and GGA func-
tionals, described by eqs 47−49b, is similar to the collinear
formulation of eqs 43−46, with the key difference being that
mz has been replaced in the energy functional by the vector
modulus of the magnetization m,

[ ] [ ]E m E m, ,zDFA
can noncollinear

DFA (50)

This means that, while in the collinear approach the spin-
quantization axis is everywhere fixed along z, in the canonical
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noncollinear formulation the spin-quantization axis at point r is
locally defined along the direction of m(r) . This allows one to
ensure rotational invariance of the total energy with a SOC
operator in the Hamiltonian.
Referance 32 quantified the restoration of rotational

invariance of the total energy as provided by the noncollinear
GGA formulation. The results are summarized in Figure 4,
which shows color maps of the magnetization distribution for
an I2+ molecule, as the molecular axis is rotated from the x
direction to the z direction. In the top panels (referring to
collinear GGA calculations), the missing dependence of the xc
functional on mx and my results in magnetization distributions
being rotated away from the molecular axis for those
orientations not coinciding with the z Cartesian direction.
This results in significant energy differences on the order of 1
× 10−3 Eh for different orientations of the molecule. In the
present noncollinear GGA implementation (bottom panels),
such energy differences are reduced down to an order of 1 ×
10−10 Eh, thus confirming a nearly perfect rotational invariance
of the total energy.
The canonical noncollinear formulation has been criticized

for use with functionals beyond the LDA.84 Indeed, special
care must be taken for implementation of the canonical
formulation, because of the presence of delicate ma/m terms
that appear in eq 48b, as well as 49b, is associated with a
calculation of ∇m. An alternative noncollinear formulation was
proposed by SF and employs a different definition of the
density gradient variables in eq 49b, which allows one to
mitigate some of these difficulties for GGA functionals, leading
to a slightly more stable numerical implementation.84 Both
noncollinear formulations coincide in the LDA, but differ in
the GGA. The SF formulation has also been implemented in
CRYSTAL23 for GGA functionals. Details on the implementa-
tion are available in ref 32.

2.6.3. Technical Aspects of the Noncollinear Implemen-
tation. Some technical points to remember for noncollinear

DFT calculations with the present implementation are the
following:

1. In the current implementation, calculations with the
canonical or SF noncollinear formulations are only
possible using unpruned (i.e., uniform) integration grids.
The default grid for noncollinear DFT calculations
makes use of Gauss-Legendre radial and Lebedev
angular point distributions and contains 75 radial points,
as well as 974 angular points (i.e., an angular accuracy
level of 16).85−87

2. A screening algorithm has been developed for dealing
with those terms in eq 48b, as well as the analogous
expression proper to the SF formulation, that contain
ma/m, which is undefined at those points on the
integration grid where the magnetization is vanishing.
This procedure, described in ref 32, has been
documented to provide rotational invariance of the
total energy down to 1 × 10−9 Eh for both the canonical
and SF noncollinear formulations, employing GGA
functionals, with SOC. Briefly, the screening procedure
evaluates ma/m explicitly only if at least two Cartesian
components of m exceed (in absolute value) a preset
tolerance TOLM (the default value being 1 × 10−27 a.u.).
If instead only one Cartesian component exceeds TOLM
in absolute value, then the procedure reduces to the
collinear problem along the corresponding component.
Finally, if none of the Cartesian components of m
exceeds TOLM, then terms proportional to the magnet-
ization itself are set to zero in eq 48b (or its analogue in
the SF formulation), whereas terms proportional to the
gradient of the magnetization are calculated using a
value ma/m→⟨ma/m⟩ which is averaged over the atomic
basin in which the relevant point in the DFT grid is
situated.32

3. The previously cited figure of 1 × 10−9 Eh for rotational
invariance of the total energy with noncollinear GGA

Figure 4. GGA (top panels) collinear and (bottom panels) noncollinear magnetization densities of the I2+ molecule, as it is rotated from the x axis
to the z axis. Energy differences ΔE (in Hartree) with respect to the z-oriented molecule are also provided. The color intensity represents the
magnitude = + +m m m mx y z

2 2 2 , while the arrow length and direction represent the in-plane components mx and mz.
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functionals was only obtainable using a dense integration
grid containing 500 radial points and an angular
accuracy level of 29. With the default integration grid,
on the other hand (containing only 75 radial points and
an angular accuracy level of 16), rotational invariance on
the total energy was achieved only to around 1 × 10−7
Eh, with slightly more accurate results using the SF
formulation. Thus, generally very dense uniform grids
are required for highly accurate noncollinear GGA
calculations. It can be expected that much denser grids
with respect to those typically used in collinear or
closed-shell calculations are necessary for accurate
noncollinear results on open-shell systems in a 2c-SCF
with GGA functionals.

4. Finally, we note that the present implementation, based
on a single-determinant KS wave function, is insufficient
for many open-shell systems. Indeed, the present KS-
DFT treatment is inappropriate for those so-called
“strongly-correlated” open-shell systems, whose elec-
tronic densities are not pure-state N-representable, and
would thus require an ensemble DFT treatment, which
is still under development.88−94 If 2c-SCF calculations
with SOC on such strongly correlated systems were
performed, difficulties in converging the self-consistent
procedure are expected (see ref 31 for examples of such
difficulties, in which thousands of 2c-SCF cycles are
required for convergence). In such difficult cases, a
second-variational treatment (rather than self-consis-
tent) of SOC is recommended, in which only one 2c-
SCF cycle is performed, starting from a SR wave
function, as a starting guess (keyword 2NDVARIAT).

2.6.4. Starting Guess for the 2c-SCF Procedure. The
following options are available as a starting guess for the 2c-
SCF calculation:

1. GUESSPAT: Guess from a superposition of scalar-
relativistic atomic densities (default)

2. GUESSPATNC: Guess from a superposition of scalar-
relativistic atomic densities with noncollinear magnet-
ization

3. GUESSPNOSO: Guess from a previous 1c-SCF
calculation

4. GUESSPSO: Guess from a previous 2c-SCF calculation
5. GUESSROTM: Rotate the magnetization in the starting

guess from a previous 1c-SCF or 2c-SCF
6. GCOREROT: Core Hamiltonian guess with infinitesimal

magnetization along a selected direction
As in the SR program, the default starting guess for the

density matrix for a 2c-SCF calculation is obtained from a
superposition of nonrelativistic or scalar-relativistic multi-
configurational HF atomic densities, using an approach very
similar to the one described in ref 95.
If the guess is used for a noncollinear DFT calculation, then

it may be desirable to set a guess for the magnetization on each
atomic center with an arbitrary orientation (not just along the
z axis, as in a 1c-SCF calculation). For this purpose a keyword
GUESSPATNC allows one to rotate the guess magnetization
on each atomic center from the z axis to an arbitrary
orientation. This approach, described in ref 31, allows one to
define an atom-specific local orientation for the guess
magnetization mguess(k) by a rotation of the collinear mz(k)
using polar θk and azimuthal ϕk angles at atom k,
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(51)

Example applications of eq 51 to explore the rugged energy
landscape in noncollinear DFT calculations are presented in ref
31.

The keywords GUESSPNOSO (GUESSPSO) allow one to
use a density matrix from a previous 1c-SCF (2c-SCF)
calculation as a starting guess for the 2c-SCF procedure. If the
guess density matrix originates from a 1c-SCF, the parent
calculation must however be unrestricted (through a use of the
keywords UHF or SPIN) and have been performed without
exploitation of space-group symmetry (for instance, using the
keyword SYMMREMO).

Combination of the keyword GUESSROTM with any of the
previously mentioned ones allows one to globally rotate the
guess magnetization along a specified direction. This option
can be used to estimate, for instance, the magnetic anisotropy
energy (MAE).

Finally, the keyword GCOREROT permits one to use the
core Hamiltonian as a starting guess (guess density matrix P =
0), with an infinitesimal magnetization along a selected
direction.
2.7. Cost of Relativistic vs Scalar-Relativistic Calcu-

lations. For the purposes of comparing the computational
costs of 1c-SCF vs 2c-SCF calculations, a SR approach worth
mentioning is the unrestricted Kohn−Sham (UKS) procedure,
in which spin is imparted onto the Schrödinger wave function
in an ad hoc way and is ubiquitous for a treatment of open-shell
systems. The UKS procedure has been implemented in
CRYSTAL since around 199296−100 and allows for a treatment
of spin in an SR context, by a solution of the two uncoupled
equations,

=F C S C Ek k k k k (52a)

=F C S C Ek k k k k (52b)

A comparison of the UKS and 2c-SCF procedures shows the
apparent difference that eq 7 involves diagonalization of one
large Fock matrix, while eq 52 requires diagonalizing two
matrices of half the size. An estimate of the comparative costs
of the calculations is expedient.

In the following analysis, we assume that diagonalization
scales to the third power of matrix size and that the calculation
is performed with N Bloch functions for every point k in the
first Brillouin zone (FBZ). The key points in comparing costs
of the calculation are the following:
• One solution of eq 7 scales as (2N)3 = 8 N3, whereas the

cost of diagonalizing the UKS Fock matrices of eq 52 is
only 2 N3. This yields a factor of 4, if the cost of the
calculation is dominated by diagonalization.

• Exploitation of time-reversal symmetry in the solution of
eq 52 halves the number of k points at which
diagonalization must be performed, but not for eq 7.
This further doubles the relative cost of diagonalization,
bringing the factor to 8.

• In systems with nontrivial space-group symmetry, the
cost of diagonalization of eq 52 is greatly reduced by
limiting the number of k points to the irreducible wedge
of the FBZ (IBZ) and by further factoring the Fock
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matrix at a point k in the IBZ into subblocks
corresponding to irreducible representations of the
group.101−103 In the 2c-SCF procedure of eq 7, on the
other hand, presence of a SOC operator in the
Hamiltonian means that the electronic wave function
is imparted with double-group symmetry, rather than
simple-group symmetry, which reduces the number of
symmetry operators. Exploitation of such double-group
symmetry is not implemented in the present version of
the code, which can greatly increase the relative costs of
calculations.

• In CRYSTAL, the Bloch function Fock matrices are
obtained by inverse Fourier transform of direct-space
matrices Fg

σσ′, with elements Fμν
σσ′(g), calculated in an AO

basis,

= ·eF Fk
g

k g
g

(53)

In the UKS procedure, Fg
σσ is pure real, but in the 2c-

SCF procedure Fg
σσ′ is complex, leading to further

additional costs, principally related to contraction of
bielectronic integrals with a larger set of blocks of the
density matrix in eqs 31 and 32.

In summary, for a calculation with no symmetry, it is
expected that the new 2c-SCF procedure is roughly 1 order of
magnitude more costly than a UKS CRYSTAL calculation.
However, for calculations exploiting symmetry in the solution
of the UKS problem, the additional costs of performing the
analogous 2c-SCF can largely exceed 1 order of magnitude.

3. HYBRID DENSITY FUNCTIONAL APPROXIMATIONS
AND COMPOSITE METHODS FOR SOLIDS

The CRYSTAL program has played a pioneering role in the field
of hybrid DFT/HF approaches for extended systems,14 with
some of the milestones being as follows: (i) The first
implementation of the Fock exchange lattice series back in
1983,104 which then led to the first implementation of a
periodic HF code (CRYSTAL88), (ii) a first mixed DFT/HF
approach for solids implemented back in 1987105 with an a
posteriori correction to the HF total energy through the use of
the Colle−Salvetti density functional (self-interaction cor-
rected) for the correlation energy,106 (iii) in 1996, shortly after
1993 Becke’s original proposal,107 the implementation of
global hybrid density functional approximations (DFAs) for
solids,108 made available from the CRYSTAL98 version, (iv) the
implementation of a variety of screened-exchange DFAs
(including the popular HSE06) distributed from the
CRYSTAL14 version,109 and (v) self-consistent hybrid DFAs,
with the fraction of Fock exchange iteratively optimized
through inverse proportionality to the dielectric tensor of the
material, as originally formulated in 2014,18 implemented and
made available in 2017.19

The combination of DFT and HF is also crucial in the
formulation of Grimme’s hybrid DFT/HF composite meth-
ods.110−112 These methods were devised to enable affordable
calculations and predict reliable geometries and energetics.
The trade-off between accuracy and cost has been made
possible by the well-balanced mixing of an adjusted double-ζ
quality basis set and semiclassical corrections to cope with
dispersion energy and to correct for the basis set superposition
error (BSSE), thus providing results as accurate as more costly
triple-ζ quality calculations.113 Since CRYSTAL17, such

composite methods were extended to periodic systems,114

but their applicability was limited to molecular crystals.
In this section, we present recent developments on hybrid

DFAs and composite methods.
3.1. Implementation and Validation of Global Hybrid

mGGA Functionals. A bunch of new mGGA functionals and
related hybrid DFAs have been made available in the present
release of the code. In detail, they include the following:

(i) DFAs derived from the B95115 mGGA correlation
functional, namely, the B1B95115 method, which
combines the B88 exchange functional and the B95
one as originally proposed by Becke, and the variants
proposed by Truhlar and co-workers and others that use,
instead, the mPW91116 exchange functional (i.e.,
MPW1B95,117 MPWB1K,117 PWB6K,118 and
PW6B95118). All methods are hybridized with different
amounts of Fock exchange ranging from 28% to 46%.

(ii) The highly parametrized semiempirical DFAs that
belong to the well-known Minnesota family of func-
tionals. The MN15119 hybrid functional and the related
MN15L120 pure mGGA functional have been imple-
mented along with the revised versions of the M06 and
M06L ones (namely, rev-M06121 and rev-M06L122).

iii) The nonempirical, physically motivated, exchange-
correlation functionals from Perdew and co-workers: in
particular, the SCAN123 functional and its recently
revised version r2-SCAN.124 Here, the r2-SCAN func-
tional is considered in the global hybridized version with
25% of exact exchange.125

Before discussing the validation of the presently imple-
mented mGGA functionals, we tested some of them to check
their numerical accuracy and determine an integration grid that
can be safely adopted for calculations with mGGA methods.
The grid sensitivity of mGGA functionals is now well
established, in particular, for molecular calculations.126−130

This originates from the form of the exchange-correlation
functional and leads to numerical instabilities that can
significantly affect the quality of the electronic total energy
and in turn the potential energy surface.128 For most of the
mGGA approximated methods, standard grids adopted for
routine calculations are thus not suitable.127

In CRYSTAL, the numerical integration of the xc energy is
based on an atomic partition scheme originally proposed by
Becke131 for molecules and then extended to periodic
systems.132 The atomic integration grids are comprised of a
radial and an angular grid. The grid points are generated
through a Gauss−Legendre radial quadrature and the Lebedev
angular quadrature. In the trade-off between accuracy and cost,
usually, a pruning scheme is employed to reduce the grid
size.133 The integration grids can then be represented by two
numbers (n,m) with n denoting the number of radial points
and m the maximum number of angular points in the pruning
scheme. The standard grid in the code is a (75,974) pruned
grid (i.e., XLGRID). This grid size is accurate enough for SCF
iterations and nuclear gradients of LDA and GGA functionals,
but not for mGGA ones. Even the (99,1454) grid (i.e.,
XXLGRID) is not enough as can be seen from Figure 5.
Indeed, Figure 5 shows the convergence of the electronic total
energy (top) and the norm of the forces (bottom) for α-quartz
as computed with a different number of radial points at fixed
angular grid (1454) and pruning scheme. The plotted error is
referred to energy and gradient norm computed with a
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(250,1454) grid. If one considers as threshold errors 10−5
Hartree and 10−4 Hartree/Bohr for energy and the gradient
norm, respectively, it can be clearly seen that the default
number of radial points (i.e., 75) gives the required accuracy
for the PBE functional used as a benchmark for GGA
functionals. Errors decrease by an order of magnitude for 99
radial points (XXLGRID), thus showing its numerical stability.
In contrast, mGGA functionals suffer from a slower
convergence as is particularly evident for the gradient norm.
It is worthy to note that the SCAN and M06 functionals are
clearly numerically unstable, while their revised and regularized
versions show a more reliable behavior. Numerical stability
tests on molecules (e.g., H2O, FeCp2) and other solids (e.g.,
MgO, Si, NiO) give similar results. Overall, for the tested
mGGA functionals, at least 150 radial points are required to
reach the given thresholds. Both energy- and gradient-related
properties appear to be less influenced by the size of the
numerical integration grid. For instance, with the r2-SCAN
functional and the selected radial grid, the variations with
respect to the reference grid for the optimized lattice
parameters, vibrational frequencies, bulk modulus and elastic
constants, and piezoelectric coefficients of α-quartz are on
absolute average less than 0.001 Å, 0.3 cm−1, 0.1 GPa, and 0.01
pC/N, respectively. Accordingly, a new default grid of

(150,1454) size has been set for calculations with mGGA
functionals.

To validate the newly implemented DFAs, we analyze the
lattice constant, bulk modulus, and band gap for a set of 28
crystals with cubic symmetry (semiconductors and insulators)
and include 22 semiconductors, namely, C, Si, Ge, SiC, BN,
BP, BAs, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs,
InSb, ZnS-zb, ZnSe, ZnTe, CdTe, and MgS; four alkali halides
LiF, LiCl, NaF, and NaCl; and two oxides MgO(B1) and
SrTiO3(E21). Results are compared with a reference data set
as collected in ref 134 for which low-temperature data, if
available, and, when possible, the zero-point anharmonic
expansion correction were included for a more consistent
comparison. All DFAs were augmented with Grimme’s
D3(BJ)135,136 dispersion correction with the Becke−Johnson
damping function or the Chai−Head-Gordon zero-damping
function, i.e., D3(0),136 except for the revised M06 and M06L
functionals. See ref 134 for further computational details (e.g.,
basis sets) and references to experimental works. Figures 6, 7,

and 8 show graphically the comparison between computed and
experimental reference data, while Table 1 reports the mean
absolute error (MAE) for the newly available mGGA methods
for the predicted properties.

Reassuringly, from the validation point of view, results are in
good agreement with the ones obtained for other functionals
belonging to the fourth rung of Jacob’s ladder.134,137 Even
though we are not interested in assessing the performance of
the selected mGGA DFAs, Table 1 offers some useful insight
on the behavior of the xc functionals as applied to solids. It is
worthy to note that so far none of them have been tested in
solid state calculations because of the well-known difficulty of
using hybrid functionals in plane-wave codes, whereas they can
be easily run with CRYSTAL. From Table 1, it can be clearly seen
that hybridization definitely improves the results, although
pure mGGA functionals still give a good performance as for
revM06L. Not unexpectedly, decreasing the amount of exact

Figure 5. Error on the calculation of the electronic total energy (top)
and the gradient norm (bottom) for α-quartz obtained by using
different radial grid sizes at a fixed angular grid as evaluated for both
GGA and mGGA functionals.

Figure 6. Comparison between computed and experimental lattice
parameters for the 28 cubic crystals as per the newly implemented
mGGA DFAs.
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exchange below 30% leads to better band gap predictions. In
particular, PW6B95-D3 shows remarkably good results and
confirms its accuracy not only for molecules138−140 but also for
solids. The recently proposed r2-SCAN functional as combined
with 25% of Fock exchange provides good results, but probably
band gaps can be further improved by slightly reducing the
amount of exact exchange while keeping its overall accuracy for
the other properties. Notably, although some of the newly
available mGGA functionals have been devised for molecular
calculations, they appear to be also suitable for solid state

calculations (in particular, the hybrid ones), thus showing a
broader range of applicability.
3.2. Extension of CPHF/KS Scheme to HJS Exchange

Hole Model. In the present version of the CRYSTAL code, the
Coupled-Perturbed-Hartree−Fock/Kohn−Sham (CPHF/KS)
scheme to evaluate the response to external electric
fields141−143 has been extended to range-separated hybrid
(RSH) functionals based on the Henderson−Janesko−Scuseria
(HJS) exchange hole.144 The xcfun library145 of xc
functionals used by the CPHF/KS scheme to compute second-
and high-order derivatives of the functional has been modified
accordingly. CPHF/KS calculations are available for long-
range-corrected (LC-RSH), middle-range-corrected (MC-
RSH), and short-range-corrected (SC-RSH) hybrid functionals
of the general form

= + +

+
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In particular, the current extension applies to some well-known
RSH functionals, such as the HSE06 and HSEsol SC-RSHs,
the HISS MC-RSH, and the LC-ωPBE and LC-ωPBEsol LC-
RSHs. As an example, Table 2 reports the results of the
calculation of the linear electric susceptibilities of the
molecular crystal of m-nitroaniline (mNA) with the HSE06,
HISS, and LC-ωPBE functionals, as compared to the B3LYP
results and experimental data at different wavelengths.146

The three RSH functionals contain more or less the same
amount of Fock exchange but at different ranges. Interestingly,
a clear trend is observed in the transition from short to long
range with the values of χ(1) decreasing systematically when
passing from HSE06 to HISS and LC-ωPBE. Instead, the
global hybrid B3LYP gives results similar to the HSE06 ones.
B3LYP and HSE06 computed data are in better agreement
with experiment than HISS and LC-ωPBE, in particular, at the
static limit (i.e., λ = ∞) with an average deviation of less than
2%. At lower wavelengths, the agreement worsens with all
functionals giving underestimated χ(1) values. Overall, present
results show that the extension of the HJS-based RSH methods
to the CPHF/KS module offers a useful tool to understand the
role of exact exchange in hybrid DFT/HF functionals, and in
perspective, it would pave the path to develop optimally tuned
RSH functionals for solids.

Figure 7. Comparison between computed and experimental bulk
moduli for the 28 cubic crystals as per the newly implemented mGGA
DFAs.

Figure 8. Comparison between computed and experimental band
gaps for the 28 cubic crystals as per the newly implemented mGGA
DFAs.

Table 1. Summary of results for mean absolute error (MAE)
and standard deviation (in parentheses) of basic properties
of 28 cubic crystals as computed with mGGA methodsa

Method % LC (Å) BM (GPa) BG (eV)

PWB6K-D3 46 0.045 (0.023) 14.4 (11.8) 1.6 (0.4)
MPWB1K-D3 44 0.094 (0.037) 18.8 (11.9) 1.5 (0.4)
MN15-D3 44 0.041 (0.035) 6.7 (5.8) 0.9 (0.4)
revM06 40.41 0.027 (0.024) 6.9 (6.4) 1.1 (0.4)
MPW1B95-D3 31 0.064 (0.024) 12.7 (8.3) 0.7 (0.3)
B1B95-D3 28 0.112 (0.042) 16.5 (8.6) 0.6 (0.4)
PW6B95-D3 28 0.033 (0.023) 8.7 (6.9) 0.5 (0.3)
r2-SCAN0-D3 25 0.021 (0.013) 9.6 (7.1) 0.7 (0.2)
MN15L-D3(0) 0 0.067 (0.044) 6.5 (6.2) 0.9 (0.8)
revM06L 0 0.042 (0.044) 6.6 (5.5) 0.6 (0.5)
aThe reported quantities include LC (lattice constant), BM (bulk
modulus), and BG (band gap). For hybrid functionals, the percentage
of Fock exchange (%) is also reported.
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3.3. Revised Composite Methods for Solid State
Calculations. In CRYSTAL23, the composite methods originally
proposed by Grimme (namely, HF-3c, PBEh-3c, and HSE-3c)
have been revised with the goal of extending their applicability
to inorganic solids, layered systems, and metal−organic
materials. They share the same expression for the total energy
provided by the original composite methods,

= + + +E E c E E Etot
sol c

xc
DFA

SR disp
D

BSSE
gCP SRB3 3

(54)

that includes the semiclassical corrections exploited by the “3c”
methods: the D3 dispersion correction, the geometrical
Counter-Poise147,148 (gCP) correction for the basis set
superposition error (BSSE) and incompleteness, and the
short-range correction (SRB) for covalent bond lengths.
The main guidelines adopted for the revision strategy can be

summarized as follows:
(i) use of exchange-correlation functionals developed for

solids (i.e., PBEsol and HSEsol)
(ii) reduction of the amount of Fock exchange in DFT

hybrid methods for a better description of electronic
properties (e.g., 20%−25%)

(iii) application of a simple recipe to make molecular basis
sets originally adopted by Grimme and co-workers
suitable for inorganic solids. Indeed, the original
composite methods make use of a minimal
(MINIX110) and double-ζ quality (def2-mSVP111,112)
atomic basis sets for HF and hybrid DFT methods,
respectively, that are mostly unmodified molecular basis
sets thus being not fully suitable for solid state
calculations

In particular, the latter represents the most crucial modification
to extend the applicability of the revised composite methods to
a wider range of solid state systems. In detail, the recipe
adopted is based on (i) an upshift of the exponents of the
outermost Gaussian basis functions to a value equal or slightly
greater than 0.1 Bohr−2 that has been considered as a lower
bound limit to avoid numerical instability and (ii) scaling of

the exponent of the previous Gaussian basis function by
keeping the original exponent ratio.

As an example, a graphical representation of the revision
applied to the original def2-mSVP basis set for the d orbital
exponents of the fourth-row elements of the periodic table is
given in Figure 9. Basis set exponents have been revised from

He to Xe for both def2-mSVP and MINIX basis sets. For the
latter, the same procedure has been adopted, but from H to Ar
the Guassian functions have been decontracted before applying
the scaling. Further details on the revision of the basis sets can
be found in the Supporting Information of ref 149. The revised
methods have been tagged with a label “sol” (as for “solids”) to
distinguish them from the original ones whose application was
limited to molecules and molecular crystals. Accordingly, the
resulting methods have been denoted as HFsol-3c, PBEsol0-3c,
and HSEsol-3c. Figure 10 is a graphical representation of the
main differences between the original 3c composite methods
and the present sol-3c revised ones.

To show the wider applicability of the revised sol-3c
composite methods, they have been benchmarked against the
standard molecular adducts S66x8150 data set, the X23151,152

set of molecular crystals, and the SS20 set of solids (i.e., a
subset of the 28 solids discussed above). Results are
summarized in Table 3 in which the original 3c composite
methods are also included for comparison. Of course, the latter
cannot be applied to the SS20 set of solids for which the
comparison has been extended to the parent methods without
correction potentials. In ref 149, further tests have been
reported for other inorganic systems, layered materials, and
different properties. Overall, the revised sol-3c composite
methods give comparably good or even better performance
than 3c composite methods and uncorrected parent methods
thus showing that they are well suited for a broad range of
applications from molecules to solids. The wider applicability
of sol-3c hybrid DFT/HF composite methods has been also
demonstrated in the modeling of metal−organic frameworks
(MOF).153 MOFs can represent a challenge in many respects
because of their chemical versatility, modular nature, unit cell
size, and complexity of the framework. The structural,

Table 2. Comparison between Experimental and Predicted
First-Order Electric Susceptibility of mNA Molecular
Crystal as Computed at Different Wavelengths of Electric
Field (in nm), with Different Variants of Range Separated
Hybrid Functionals Based on HJS x-Holea

Functional (λ) χaa(1) χbb(1) χcc(1)

B3LYP (1064) 1.853 1.750 1.573
B3LYP (1319) 1.832 1.730 1.554
B3LYP (∞) 1.794 1.698 1.522
HSE06 (1064) 1.845 1.746 1.569
HSE06 (1319) 1.824 1.727 1.549
HSE06 (∞) 1.787 1.695 1.518
HISS (1064) 1.757 1.686 1.496
HISS (1319) 1.739 1.670 1.481
HISS (∞) 1.709 1.642 1.454
LC-ωPBE (1064) 1.633 1.637 1.377
LC-ωPBE (1319) 1.621 1.624 1.367
LC-ωPBE (∞) 1.600 1.602 1.351
Exp. (1064) 1.957 1.833 1.664
Exp. (1319) 1.929 1.809 1.637
Exp. (∞) 1.810 1.665 1.469

aBasis set: 6-311G(2df,2pd//6-311G(d,p).

Figure 9. Example of revision of the def2-mSVP basis set: d exponents
for the elements of the fourth row before (gray and blue lines) and
after (yellow and orange lines) the basis set revision. d1 is the
exponent in the inner Gaussian function, while d2 is the one of the
outermost one.
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vibrational, electronic, and adsorption properties were
computed for some of the most common MOFs with excellent
results. Furthermore, the PBEsol0-3c hybrid composite
method has been successfully applied to corroborate
experimental findings on the encapsulation of molecules in
MOFs and zeolitic−imidazolate frameworks (ZIFs) for drug
delivery (i.e., 5-fluorouracil)154 and for solid state lighting (i.e.,
fluorescein),155 respectively, and to elucidate the mechanical
properties of defective ZIF-8.156 Finally, it is worth noting that
in the trade-off between accuracy and cost, sol-3c hybrid DFT/
HF composite methods have been demonstrated to be cost
effective for calculations on physical systems with thousands of
atoms on computational resources with a relatively small
number of cores at a moderate cost in terms of CPU time and
memory.157 Indeed, a striking agreement between experimen-
tal and computed structures (ΔV < 1%) has been reported for
giant MOFs as MIL-100 and MIL-101 with about 2800 and
3600 atoms in the unit cell, respectively.153 The availability of
the sol-3c composite methods in the CRYSTAL code from the
HFsol-3c to the hybrid DFT/HF ones thus allows one to
tackle very large systems, providing cost-effective yet accurate
results.

4. IMPROVEMENTS TO SAUNDERS ALGORITHM FOR
CALCULATION OF INTEGRALS
4.1. Extension of LCAO Approach to g-type Atomic

Orbitals. In initial distributions of CRYSTAL, integrals were only
programmed up to l = 2 d-type Gaussians. The l = 3 f-type
functions were made available for total-energy and gradient
calculations around 2003, with CRYSTAL03.158 Now in

CRYSTAL23, all calculations (total energy, gradients, vibrational
frequencies, response properties, etc.) have been extended to l
= 4 g-type functions.159

In extending CRYSTAL to g-type functions, most of the work
is related to evaluating new integrals (and their derivatives)
according to the scheme of Saunders.33 It was mentionned
through eq 10 that Bloch functions in CRYSTAL are expressed as
an inverse Fourier transform of AOs χμ. More specifically, χμ
are written as a linear combination of RSSH-GTFs Gl n

m
,

l ,

= d Gr g a r g a( ) ( ; )
j

j l n
m

j,
l

(55)

where djλ and αjλ are fixed coefficients and exponents of the
shell λ, and l, ml, n are the usual azimuthal, magnetic, and
principal quantum numbers. Each primitive RSSH-GTF Gl n

m
,

l is
defined, in turn, as a product of an RSSH Xl n

m
,

l with a GTF,

=G N N N X er r( ; ) ( ) ( )l n
m

j l j l
m

l n
m r

, ,
l l l j

2

(56)

where Nλ, Nl(αjλ), and Nl
ml are shell and ml-(in)dependent

primitive normalization factors, whose exact expressions are
provided in ref 159. In eq 56, an RSSH Xl n

m
,

l is a homogeneous
Cartesian polynomial that reads

=
+ + = +

X D t u v r r rr( ) ( , , )l n
m

t u v

t u v l n

l
m

x
t

y
u

z
v

,
, ,

( 2 )
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(57)

in which the sum runs over all triplets of integers t, u, v that
satisfy the equality t + u + v = l+2n. Dl

ml are coefficients which

Figure 10. Comparison between the original 3c composite methods (a) and the revised sol-3c ones (b).

Table 3. Statistical Analysis of Results for Three Benchmark Sets (Namely, S66x8, X23, and SS20) as Obtained for Original 3c
and Revised sol-3c Composite Methods and for Parent Methods without Correction Potentialsa

Data set Prop. HFa HF-3c HFsol-3c PBEsol0b PBEh-3c PBEsol0-3c HSEsolb HSE-3c HSEsol-3c

S66x8 Dist. MARE (%) − 0.50 0.39 − 1.50 0.51 − 1.50 0.49
BE MAE (kcal/mol) − 0.43 0.71 − 0.50 0.64 − 0.50 0.66

X23 Vol. MARE (%) − 6.46 2.31 − 3.60 3.18 − 2.90 2.84
CE MAE(kcal/mol) − 2.06 3.03 − 1.30 1.53 − 1.30 1.50

SS20 LP MAE (Å) 0.07 − 0.07 0.03 − 0.03 0.03 − 0.03
BG MAE (eV) 6.75 − 6.95 0.78 − 0.92 0.67 − 0.77
BM MAE (GPa) 22.05 − 26.70 9.34 − 7.93 8.96 − 7.63

aMean absolute errors (MAE) and mean absolute relative errors (MARE) are reported for different quantities: Dist. (intermolecular equilibrium
distance), BE (binding energy), Vol. (equilibrium volume), CE (cohesive energy), LP (lattice parameter), BG (band gap) and BM (bulk modulus).
bUsed in the same basis set expansion as in the corresponding “sol-3c” methods, but without correction potentials.
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can be tabulated from recurrence relations for Xl n
m
,

l as explained
in ref 160.
For what follows, it is useful to introduce the unnormalized

RSSH-GTF R,

= | |R n l m X er a r a( , , , , ) ( )l l n
m r a
,

l
2

(58)

In CRYSTAL, only R(α,r,0,l,ml) (with n = 0) are used as basis
functions. But R(α,r,n,l,ml) (with n > 0) are used in the
calculation of kinetic energy integrals (and their deriva-
tives).33,161,162 At variance with most other quantum chemistry
programs, in CRYSTAL, integrals are directly evaluated in the
RSSH-GTF basis (not the Cartesian GTF basis), using a
scheme originally described by Saunders in ref 33.
In the Saunders scheme, a pair product of RSSH-GTFs is

expanded into so-called Hermite GTFs Λ,
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The expansion of a pair product of RSSH-GTFs into Hermite
GTFs is achieved through coefficients E,

= [ ]
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where γ = α + β, and p is the centroid of the RSSH-GTF pair p
= (αa + βb)/γ. The expansion coefficients E are zero for t < 0,
u < 0, and v < 0, and in eq 60, the sum runs over all triplets that
satisfy t + u + v ≤ 2n + 2n′ + l + l′.
The coefficients E are calculated using recurrence relations

that may be derived from the corresponding recurrences for
spherical harmonics and Hermite polynomials.33,159 However,
in CRYSTAL, these recurrence relations are not programmed
themselves. Instead, the symbolic expressions for the E
coefficients are tabulated up to a given value of l (up to l =
3 f-type functions from CRYSTAL03−CRYSTAL17 and now l = 4
g-type functions in CRYSTAL23). Such an explicit tabulation is
crucial from the point of view of computational efficiency, as is
discussed in ref 159. New l = 4 g-type function routines were
generated by tabulating the relevant E coefficients using
computer algebra system (CAS) for symbolic computation
available in MATLAB, along with automated generation of
FORTRAN77 routines. In passing, we note that a similar strategy
(using instead the MAPLE CAS) had been used by Saunders
and colleagues in their 1997 work for extending the evaluation
of the Boys function derivatives to higher quantum
numbers.163

The tabulation of explicit symbolic expressions for the E
coefficients (and Ga

x, Ga
y, Ga

z coefficients, see Section 4.2),
rather than a direct use of recurrence relations, results in highly
efficient routines, as is briefly discussed below. It allows, on the
one hand, to exploit the sparsity of the coefficients (i.e.,
circumvent superfluous calculations of zeros) and, on the other
hand, avoids the evaluation of a very large number of logical
statements which would otherwise be required in the direct
application of recurrence relations.159

The relative efficiency of the new g-type function routines
for the E coefficients of eq 60 required for total energy
calculations is documented in Figure 11. The subroutine that
calculates the tabulated values of the E coefficients was called

one million times for increasing values of l and l′. The

logarithm of wall clock times is plotted as a function of (l + 1)

× (l′ + 1). The blue shapes correspond to the oldest routines

for s-s, s-p, s-d, p-s, ..., d-d coefficients, which are calculated

through highly optimized routines. The green triangles are for

the f-s, f-p, ..., f-f coefficient routines introduced in CRYSTAL03.

This green series follows a linear trend that lies above the blue

trend, because the corresponding f orbital routines were

generated from a slightly less efficient strategy. Indeed, these f

orbital routines, written around 2003, do not make a direct use

of the scheme proposed by eq 60 and are instead based on an

expansion of Cartesian GTFs into Hermite GTFs, followed by

a subsequent transformation to the RSSH-GTF basis, which

explains their relative inefficiency.
The red dots in Figure 11 represent the new routines that

were generated by the symbolic computation in MATLAB for g

orbitals, based on eq 60. These new routines plot in between

the blue and green linear trends, indicating comparable

efficiency to the previously existing routines for s to f orbitals.
Once the coefficients of eqs 60 and 63 are obtained from the

tabulated symbolic expression, then the task of calculating

integrals is straightforward. As an example, consider the

overlap integral, using eq 60,33

Figure 11. Computational efficiency of the different sets of routines
for calculating the E RSSH-GTF pair coefficients of eq 60 for the total
energy. The blue shapes represent timings for the oldest series of
routines for calculating s-s, s-p, s-d, p-s, ..., d-d coefficients. The green
triangles are for the f-s, f-p, ..., f-f coefficient routines introduced in
CRYSTAL03. The red dots are for the new g-s, g-p, ..., g-g coefficient
routines of CRYSTAL23.
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where we have used the following relation which may be
derived from the orthogonality of Hermite polynomials (see
also p. 161 of ref 164) followed by integration of an s-type
Gaussian function in three dimensions,

=
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Other integrals can be obtained similarly.33,70

4.2. Accelerated Calculation of Derivatives of
Integrals for the Analytical Gradient. For calculating
analytical gradients of the total energy, derivatives of the
integrals with respect to nuclear displacements ax, ay, or az, are
required. These are calculated through coefficients Ga

x, Ga
y,

Ga
z, in a similar way to the E coefficients of eq 60. That is, the

derivative of a pair product of RSSH-GTF with respect to a
displacement (ax, for instance) is expanded in Hermite GTFs
through coefficients Ga

x,

= [ ]
a
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in which the sum over triplets t, u, v runs over all values that
satisfy t + u + v ≤ 2n + 2n′+ l + l′+1. Similar coefficients are
also calculated for displacements of other Cartesian compo-
nents with coefficients Ga

y and Ga
z. As for the E coeffcients, the

Ga
x, Ga

y ,and Ga
z coefficients are determined by increasing

quantum numbers using recurrence relations. New formulas
are only needed for increasing quantum numbers on the center
for which the derivative is taken (i.e., center a in the case of the
Ga

x, Ga
y, and Ga

z coefficients). The recurrence relations for a
calculation of Ga

x were provided in ref 161, while those for Ga
y

and Ga
z are provided in ref 159. Quantum numbers are

increased on center a using eqs 33−36 of ref 161 for Ga
x and

eqs 17−24 of ref 159 for Ga
y and Ga

z.
In CRYSTAL derivatives are always evaluated with respect to

center a. Those with respect to center b in eq 63 can be
obtained following eqs 37−42 of ref 161,
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In the same way as for the E coefficients, the computer algebra
system for symbolic computation available in MATLAB was used
to calculate and generate explicit FORTRAN77 routines for the
Ga

x, Ga
y, and Ga

z coefficients (general up to l = 4 g-type
functions). In the case of the gradient Ga

x, Ga
y, and Ga

z
coefficients, not only did the new routines permit an extension

of analytical gradient calculations to g-type functions, but also
they were found to be faster than the previously existing ones
for s- to d-type functions. The computational savings afforded
by the new routines for Ga

x, Ga
y, and Ga

z coefficients is
documented in Figure 12, which provides speedups of the new

vs old routines for s- to d-type functions. The speedups are
asymmetric (e.g., factor of 3.66 for d-p vs 6.15 for p-d) because
of the derivative in eq 63, which is only taken on the left
Gaussian function. In the best cases (p-d and sp-d), the
relevant Ga

x, Ga
y, and Ga

z coefficients are calculated over six
times faster in CRYSTAL23, compared to previous releases of the
code. The overall savings this provides on the whole
calculation will be documented in subsequent publications.

5. TOPOLOGICAL ANALYSIS OF ELECTRON DENSITY
AND ITS LAPLACIAN FOR LANTHANIDES AND
ACTINIDES

Chemical bonding of f electrons is a complex and fascinating
phenomenon, yet to be fully rationalized, with both
fundamental and technological implications. Strong relativistic
effects, strong electron correlation, and weak crystal fields
contribute to the identification of a broad active valence
manifold constituted by the 5f, 6p, 6d, and 7s orbital shells in
actinide complexes, whose degrees of participation in the
formation of chemical bonds varies as a function of several
factors and along the actinide series.165−168 In particular, the 5f
electrons are known to participate in bonding from thorium up
to plutonium and then to abruptly become less involved from
americium on.169,170 An intriguing, much investigated, but still
elusive, aspect of actinide chemistry is the occurrence and
degree of covalency of 5f electrons in the chemical
bonding.165,171−173 A variety of techniques can be used to
characterize chemical bonding in lanthanide and actinide
compounds, both experimentally and theoretically.174−176

A general, formally rigorous, technique that allows for a
consistent and quantitative description of multiple aspects of
chemical bonding is represented by the quantum theory of
atoms in molecules and crystals (QTAIMAC), where the

Figure 12. Speedups for calculating s-s, s-p,···, p-s, p-p,···, d-d RSSH-
GTF pair Ga

x, Ga
y, and Ga

z coefficients with the new routines in
CRYSTAL23 vs the previously existing routines.
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description of chemical bonding is based on a topological
analysis of the electron density ρ(r) of eq 35a.177,178 The
bonding features are analyzed by identifying critical points r =
rCP of the density, which are defined as those points where the
gradient of the density is vanishing ∇ρ(r)|r=rdCP

= 0. Critical
points may also be classified according to the eigenvalues of
the Hessian matrix of ρ(r) evaluated at r = rCP. Thus,
information on chemical bonding in the system requires first
and second derivatives of ρ with respect to the electron
coordinate r. Further information on charge concentration in
the system may be obtained through a topological analysis of
the Laplacian of the electron density (i.e., the trace of the
Hessian matrix), which then requires third and fourth
derivatives of ρ(r) with respect to r.179

The topological analysis of the electron density ρ(r) and of
its Laplacian ∇2ρ(r) was implemented in the TOPOND

program178,180,181 that was merged into CRYSTAL14 and
parallelized.182 In CRYSTAL23, the strategy for evaluating ρ(r)
and its first to fourth derivatives has been extended to f- and g-
type orbitals (previously being usable only for s-, p-, and d-type
orbitals). This opens the possibility for a topological analysis of
the electron density of lanthanide and actinide containing
systems, with f electrons in the valence.183,184

The previous strategy (general to s-, p-, and d-type RSSH-
GTFs) was based on an expansion of the AO overlap
distribution in eq 35a into Hermite GTFs, using eqs 55, 56,
58, and 60. This resulted in an highly efficient algorithm,

which, however, may not be easily generalized to higher
quantum numbers. A new algorithm has therefore been
devised (general to s-, p-, d-, f-, and g-type orbitals) by a
direct evaluation of the AO overlap distribution (and its first to
fourth derivatives) in the RSSH-GTF basis.183,184 This new
algorithm, being less efficient than the previous one based on
an expansion in Hermite GTFs, is only activated upon runtime
if f- and g-type orbitals are used in the basis set for a particular
calculation.
5.1. Example Applications. We have applied the new

extension to f electrons of the TOPOND module to the study of
some uranium compounds: the tetraphenyl phosphate uranium
hexafluoride crystal, [PPh4

+][UF6
−]; the cesium uranyl

chloride crystal, Cs2UO2Cl4; and the UCl4 crystal. Graphical
representations of their atomic structures are reported in
Figure 13.

Crystals of [PPh4
+][UF6

−] belong to the tetragonal I4 space
group. The UF6 molecular fragments in the crystal are
distorted with four equatorial fluorine atoms, Fe, and two
slightly more elongated apical fluorine atoms, Fa. Thanks to an
improved protocol in data collection and reduction, Pinkerton
and co-workers were recently able to experimentally
reconstruct the charge density of the [PPh4

+][UF6
−] crystal

and to perform a QTAIMAC analysis.185 We have performed a
thorough analysis of its chemical bonding features and
compared to the experiments, that we have presented
elsewhere.183 Here, in Figure 13D, we present a comparison

Figure 13. Atomic structure of (A) the tetraphenyl phosphate uranium hexafluoride crystal, [PPh4
+][UF6

−]; (B) the cesium uranyl chloride crystal,
Cs2UO2Cl4; and (C) the UCl4 crystal. (D) Spatial distribution of the VSCC critical points of the Laplacian of the density ∇2ρ(r) around the U
atom of the [PPh4

+][UF6
−] crystal in the calculations (left) and in the experiments (right). A zoomed-in view in the vicinity of the U atom is also

shown. (E) Deformation density, Δρ(r), contour maps of the cesium uranyl chloride crystal around the U atom in two different planes: (left)
through the O−U−O axis and the b crystal lattice vector and (right) the equatorial plane of the four Cl atoms. Contour values are ±0.05, 0.15,
0.25, 0.4, 0.7, 1.0, 1.5, 2.0 e/Å−3. Red and blue lines correspond to positive and negative values, respectively. (F) Distribution of L(r) around the U
atom in a 3D representation where isosurfaces of ±0.4 e/Bohr5 are shown (yellow for positive, blue for negative) for the frozen molecular fragment
UCl4 (left) and for the periodic UCl4 crystal (right). (G) Deformation density, Δρ(r), contour maps of the frozen molecule (left) and of the crystal
(right) on a plane passing through two U−Clfnn and two U−Clsnn. Bond critical points are marked by small black circles. The atomic structure of
the crystal in the selected plane is superimposed in the right panel to help the interpretation of the plots.
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of calculated and experimental valence shell charge concen-
trations (VSCCs) as they are particularly relevant to the
rationalization of chemical bonding. VSCCs are defined as
critical points of the Laplacian of type (3,+3) . A total of 14
VSCCs were experimentally reported around the U atom: (i)
eight critical points arranged at the vertices of a cube with the
edges slightly tilted off the U−F axes (red spheres in the
figure), (ii) four critical points forming a square in the
equatorial plane, with vertices slightly tilted off the bisector of
the Fe−Û−Fe angle (yellow spheres in the figure), and (iii) two
critical points along the U−Fa axes (yellow spheres in the
figure). Experimentally, all 14 VSCCs are at a distance of about
0.38 Å from U. Present calculations are able to confirm the
whole set of 14 critical points found in the experiments. The
predicted radial distance of the (3,+3) critical points of the
Laplacian is of 0.30 Å and coincides with the minimum of the
VSCC of the principal quantum number 6. Furthermore,
according to present calculations, the 14 critical points can be
grouped into two independent sets with slightly different
properties: eight critical points arranged at the vertices of a
cube (red spheres in the figure) and six critical points arranged
at the vertices of an octahedron (yellow spheres in the figure).
The only difference with respect to the experiment consists in
the red cube and yellow octahedron not to be tilted off the U−
F bonds, which, however, seems consistent with the symmetry
of the system. The spatial distribution of the two sets of
VSCCs around the U atom can be rationalized in terms of the
hybridization of the valence atomic orbitals. It has recently
been shown that a sp3d2 hybridization leads to a octahedral 6-
fold coordination and a sp3d3f hybridization leads to a cubic 8-
fold coordination.186

Cesium uranyl chloride, Cs2UO2Cl4, crystallizes in a
monoclinic lattice with space group C2/m. Each U atom
forms two symmetry-equivalent bonds with O atoms (bond
length of 1.776 Å in the experimental geometry) as well as four
symmetry-equivalent bonds with Cl equatorial ligands (bond
length of 2.670 Å). Each Cs atom is connected with eight Cl
atoms (four symmetry-independent pairs with bond lengths in
the range 3.502−3.624 Å) and one O atom (bond length of
3.259 Å). For a better comparison with the experimental
electron density,187,188 we have performed our quantum-
mechanical simulations on the experimental geometry. We
have reported our results in ref 184. We present deformation
density (DD) maps in Figure 13E. Deformation density
(relative to a neutral atomic reference) and Δρ(r), contour
maps of the cesium uranyl chloride crystal around the U atom
are shown in two different planes: (left) through the O−U−O
axis and the b crystal lattice vector and (right) the equatorial
plane of the four Cl atoms. The left panel shows the nearly
axial symmetry of the U−O interaction. In particular, the DD
of present quantum-mechanical calculations corrobo-
rates167,176,189 the previously suggested “triple bond” nature
of the U−O interaction with a sp hybridization of the oxygen
and the formation of a σ bond along the U−O axis and,
supposedly, two π bonds with a maximum of charge
deformation at about 0.71 Å off the axis. We have observed
large differences between the experimental and computed DD
in the equatorial plane of the four Cl atoms. In particular, the
expected nearly 4-fold symmetry of this plane seems to be lost
in the experimental DD, while it is still largely there in the
computed DD of the right panel. The large departure from the
expected symmetry was acknowledged in ref 188 and
tentatively attributed to the different crystal environment at

the second and third nearest neighbor level. While present
calculations do show some asymmetry in the equatorial plane,
they predict it to be very subtle while preserving the overall
symmetric distribution of the density around the U atom in
this plane. However, both theory and experiments describe a
charge depletion close to U and a charge accumulation close to
Cl along the U−Cl bonds, indicative of a higher ionic character
of this interaction relative to the U−O one.

The UCl4 crystal belongs to the tetragonal I41/amd space
group. All calculations on the periodic structure of the UCl4
crystal have been performed on the experimental geometry.
Each U atom in the crystal is linked to four first nearest
neighbors, Clfnn, at 2.64 Å and to 4 s nearest neighbors, Clsnn at
2.88 Å. We present deformation density (DD) maps in Figure
13 G) on a plane passing through two U−Clfnn and two U−
Clsnn bonds in the crystal. Deformation densities (relative to a
neutral atomic reference) are reported both for the isolated
frozen molecule (left) and for the crystal (right). Isovalues of
the contours are given in the figures. The DD of the frozen
molecular fragment clearly shows the charge accumulation
around the Cl atoms (particularly so along the direction of the
bond with the U atom and toward it) and charge depletion
around the U atom. Small charge depletion areas are visible
beyond the two Cl atoms. Interestingly, while overall the U
atom is characterized by a charge depletion basin all around it,
a 4-fold charge accumulation pattern is visible in the vicinity of
the U atom in those directions of space away from the bonds
and somehow between ligands (not just the two Clfnn lying on
the plane of the figure but also the other two above and below
the plane). When passing from the left panel to the right one
(i.e., passing from the frozen molecular fragment to the actual
periodic crystal), the DD changes significantly, thus clearly
showing how crystal field effects are extremely relevant to the
characterization of chemical bonding in this system. In the
crystal, each Cl atom is now involved in two bonds with U
atoms, and thus, its charge distribution is affected by the
formation of a further bond. Perhaps the most interesting
feature of the DD of the crystal relative to that of the frozen
molecule is the redistribution of the electron density around
the U atom. The 4-fold pattern of charge accumulation visible
in the DD of the molecule is significantly reduced, while a large
2-fold buildup of electron density is observed along a direction
that bisect both the Clfnn−Û−Clfnn and the Clsnn−Û−Clsnn
angles. These effects are also visible by analyzing the deviation
from the spherical distribution of the Laplacian L(r) in the
vicinity of U. Figure 13F shows 3D isosurfaces of L(r), with
isovalues of ±0.4 e/Bohr5 (yellow for positive, blue for
negative) for two structures: the frozen molecular fragment
(left) and the actual periodic crystal (right).

6. BASIS SETS
In this section, we discuss recent developments related to the
use and optimization of basis sets of atom-centered atomic
orbitals for condensed matter simulations. In CRYSTAL23, the
LCAO approach has been extended to the use of g-type basis
functions (previously limited to up to f-type basis func-
tions).159 Some algorithms that were limited to work with
angular functions only up to d-type (such as the evaluation of
the electron density, its derivatives and its topological analysis)
have now been extended to f- and g-type functions.183,184

6.1. New Consistent Basis Sets for Solids. 6.1.1. POB
Sets. Bredow and co-workers have been optimizing consistent
local basis sets for solids since 2013, which initially led to the
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very popular (certainly among CRYSTAL users) pob-DZVP and
pob-TZVP sets.190 Here, we briefly review the developments
made in this respect since the release of CRYSTAL17 and now
available in CRYSTAL23.
It was observed that the original pob basis sets suffer from

the basis set superposition error (BSSE). In order to reduce
this effect, the basis optimization process has been upgraded by
taking into account the counterpoise energy of hydride dimers
as an additional parameter. Based on the experience with the
original pob-TZVP basis set, other optimization parameters
were also modified, such as the threshold for the smallest value
of orbital exponents, to achieve higher accuracy and better
overall performance. This scheme has led to revised consistent
all-electron basis sets for elements in the range H−Br: pob-
DZVP-rev2 and pob-TZVP-rev2.191 The overall performance,
portability, and SCF stability of the resulting rev2 basis sets are
significantly improved compared to the original pob basis sets.
The pob-TZVP-rev2 basis sets have been further extended to
elements of the sixth period in the range Cs−Po, which are
based on the fully relativistic effective core potentials (ECPs)
of the Stuttgart/Cologne group and on the def2-TZVP valence
basis of the Ahlrichs group (see ref 192 and references
therein). Finally, the same strategy has been applied to
optimize consistent pob-TZVP-rev2 basis sets for the elements
of the fifth period as well, in the range Rb−I.193
Figure 14 shows for what elements of the periodic table such

rev2 basis sets have been optimized. Both pob-DZVP-rev2 and
pob-TZVP-rev2 basis sets have been coded into internal
libraries of CRYSTAL23 and thus can be activated just by use of
the corresponding keywords POB-DZVP-REV2 and POB-
TZVP-REV2.

6.1.2. ERD Sets for Lanthanides and Actinides. The key
role of 4f electrons of lanthanides and 5f electrons of actinides
on the electronic and magnetic properties of their complexes
and compounds calls for the development of basis sets where
these are left out of the ECPs. A consistent series of basis sets
with the 4f or 5f orbitals in the valence, to go with small-core
ECPs, has been devised and optimized for the whole

lanthanide series and for the actinide series up to Es,
specifically for solid state applications.159,194

The adopted procedure is briefly sketched here. The format
of the optimized basis sets is ECP28MWB-(11s11p7d8f 2g)/
[4s4p2d3f 2g], where scalar relativistic effects are treated with
the Wood−Boring Hamiltonian,195,196 and the valence part is
described by four sp shells, two d shells, three f shells, and two
g shells. The process starts by optimizing the coefficients and
exponents for s, p, d, and f shells for the isolated atom. In
particular, the f shells are optimized with a partial occupation
corresponding to the 3+ cation. The most diffuse exponent of
the sp, d, and f shells is then reoptimized in the X2O3
sesquioxide solid (with X being any lanthanide or actinide
element considered) and two g shells are added, which
represent the first polarization of the occupied f orbitals. Figure
14 shows for what lanthanides and actinides such basis sets
have been optimized.
6.2. Basis Set Internal Optimizer. We have implemented

a novel algorithm that allows for automatic basis set
optimization directly from within the code.197 Following the
proposal of VandeVondele and Hutter,198 the optimization
relies on the minimization of a suitable functional,

{ } = { } + { }d E d d( , ) ( , ) 0.001 ln ( , )tot (65)

where α and d are exponents and coefficients defining the basis
set, as in eq 55, and κ({α,d}) is the ratio between the largest
and the smallest eigenvalue of the overlap matrix at the center
of the Brillouin zone (Γ−point). Its purpose is to prevent the
onset of linear dependency within the basis set, which could
lead to numerical inaccuracies and, ultimately, to catastrophic
behavior.

The minimization is performed according to an algorithm
analogue to DIIS (direct inversion of the iterative sub-
space),199,200 which we called BDIIS (basis-set DIIS). At a
given iteration i in the optimization procedure, we define the
error vectors eiα and eid as the gradients in Ω with respect to
exponents and contraction coefficients to be evaluated
numerically,

Figure 14. Schematic representation of what new consistent local basis sets are available in CRYSTAL23 for what elements of the periodic table.
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= =e e
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i (66)

where Ωi is evaluated from eq 65 by using the current αi and di.
The DIIS error matrix elements ij are built from the scalar
products between the errors in iteration i and j,

=e e eij i
T

j (67)

By imposing the constraint ∑i = 1
n ci = 1, we can obtain at each

iterative step n the linear combination coefficients of the BDIIS
method by solving the linear equation system
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where λ is a Lagrange multiplier. Such coefficients are then
used to obtain the new estimate as a linear combination of the
trial vectors obtained in previous iterations
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For exponents, the numerical derivatives of eq 66 are evaluated
using a three-point formula and a displacement that is 1% of
the initial exponent value. A linear search is finally performed,
at each iteration, along the direction defined by the BDIIS
algorithm, so to search for the optimal step length.197

As an illustrative example, we report, in Table 4, a
comparison among the valence exponents of the original

def2-TZVP, the recent pob-rev2 basis set, and our TZVP basis
specifically optimized for diamond or graphene with the PBE
functional. For brevity, we refer to the latter two basis sets as
dcm[Cdiam]-TZVP and dcm[Cgraph]-TZVP, respectively. Core
orbitals were not optimized.

We observe how the optimized basis is different from the
molecular one, with an overall contraction of exponents. Then,
it can be seen how the different chemistries and atomic
densities affect the optimal basis set exponents. The outermost
p-type function is the most different in diamond and graphene.
The more diffuse p function is responsible for the failed
convergence when using the graphene dcm[Cgraph]-TZVP basis
set in diamond (bottom of Table 4). Also d- and f-type
functions have a somewhat different spread in the two systems,
reflecting the role of quadrupole and octupole interactions.

In the bottom of Table 4, we report the total energies
obtained at the DFT/PBE level: in addition to dcm-TZVP and
pob-TZVP bases, the dcm[Cdiam]-TZVP basis was also tested
in graphene and the dcm[Cgraph] -TZVP in diamond. We see
that the properly optimized basis sets gain a considerable
margin in absolute value with respect to the general-purpose
one. On the other hand, swapping the two dcm-TZVP bases
led to energies similar to that of pob-TZVP[G], but the more
diffuse dcm[Cgraph]-TZVP led to a failed SCF convergence.

Another example of a powerful application of the basis set
optimization method can be found in ref 202. In that work, we
show�in the case of bilayer graphene�how a quadruple-ζ
basis set can be obtained that matches in full detail the band
structure of a plane wave basis with a high cutoff. It is
remarkable how such accuracy in the bands can be obtained
only by minimizing the functional of eq 65.

As a general strategy, we suggest starting from a suitable
molecular basis set, contracting the most diffuse outer
exponent so as to let a basic SCF go through, and then letting
the optimizer work out the optimal value.
6.3. Perturbative Treatment of Diffuse Basis Func-

tions. We have developed a novel approach that allows
converging the SCF in a given basis set and evaluating
perturbatively a posteriori the effect of enlarging the basis
set,203,204 e.g., adding somewhat more diffuse functions that
would be troublesome. The idea of a dual basis set treatment
dates back to Wolinski and Pulay,205 mainly in connection with
the MP1 singles term that arises when adopting the approach
in the framework of Møeller−Plesset theory. Important work
in this direction was done by Martin Head-Gordon and co-
workers,206 with a different method, that allows only for energy
correction. Our treatment, conversely, allows also for wave
function and eigenvalues corrections.

Let us introduce a “small” basis (S) and a “large” basis (L),
assuming that S is a subset of L. We first solve the SCF in the S
basis SFk

SCk = SSk
SCk

SEk and then define the projector from
the S to the L basis for each k point as

=P S SLS L LS
k k k

1 (71)

Here, Sk
LS is the overlap matrix between the L and S basis

sets. Next, we separate the space spanned by the basis
functions L into two subspaces, one of which is spanned by the
S basis (∥) while the other (⊥) is orthogonal to it. For that
purpose, it is useful to define the matrix SLPk ≡ SSk

−1
SLSk and

then introduce the matrix =O P Pk k kLS SL which represents
the projection from the L space to the S space and back,
together with its complementary matrix =O 1L

k

= +

= +

† †

† †

D O D O O D O

D O D O O D O

k k k k k k k

k k k k k k k (72)

Table 4. Top: Uncontracted Gaussian Exponents for
Different Carbon TZVP Basis Sets.a Bottom: Total Energies
at the DFT/PBE Level for Diamond and Graphene as
Computed with Different Triple-ζ Basis Setsb

def2201 pob-rev2191 dcm[Cdiam] dcm[Cgraph]
197

s 0.5770 0.4941 2.7288 1.0961
0.2297 0.1644 0.7083 0.5911
0.0952 − 0.2754 0.2374

p 0.2889 0.5662 0.6187 0.3387
0.1006 0.1973 0.2713 0.1594

d 1.0970 0.5792 2.0114 1.2502
0.3180 − 0.6265 0.7194

f 0.7610 − 1.0624 0.7067

ETOTdiam −76.154752 −76.161457 −
ETOTgraph −76.158920 −76.158342 −76.169383

adcm[Cdiam]-TZVP and dcm[Cgraph]-TZVP refer to our basis set
optimized by BDIIS with the PBE functional in diamond and
graphene, respectively. bEnergies in Hartree.
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By separating the core and bielectronic parts of the Fock
matrix Fk = hk + Bk, we can now define the perturbation
operator Ωk

(1) and the first orders in the perturbation series for
Fk,

= + [ ]F h B Dk k k
(0) (0) (73)

= [ ] + + [ ] =F B D h B Dk k k k k
(1) (1) (0) (1) (74)

= [ ] + [ ]F B D B D2k k k
(2) (2) (1) (75)

We skip the quite lengthy derivations�to be found in the
reference papers�to only present here the perturbation energy
corrections,

= [ + ]E
N
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1 1
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where the proper occupied or virtual blocks of the involved
matrices have to be considered (see refs 203 and 204). First-
and third-order energies are null by construction. In eq 78, we
have introduced the Gk

(n) and Uk
(n) matrices. The former is

simply the Fock matrix of order n in the basis of unperturbed
crystalline orbitals: Gk

(n) = Ck
(0)†Fk

(n)Ck
(0). The matrix Uk

(n) yields
the perturbed coefficients: Ck

(n) = Ck
(0)Uk

(n). Once the Uk
(n)

matrices are available, the density and wave function of order n
can be simply evaluated.
In Table 5 and in Figure 15, we report some demonstrative

results for the NaCl bulk crystal, at the PBE level, using two

basis sets. The small basis set used is in both cases optimized
on the NaCl crystal with the BDIIS method above described,
obtaining the so-called dcm-SVP and dcm-TZVP basis sets.197

The large basis is obtained by adding to such basis d and f
diffuse polarization shells on the Cl atom (only d functions for
the smaller basis). From Table 5, we see that more than 80% of
the difference in energy between the two basis sets in the SVP
case is recovered at the second perturbative order and more
than 95% at the fourth order. For the TZVP case, the starting
difference is smaller, slightly more than half a kJ/mol. Our
perturbative approach recovers here 85% and 95% of that error
at the second and fourth order in energy, respectively, reducing
the absolute error to 0.02 kJ/mol.
As we have outlined above, our approach allows us to

correct not only the total energy but also the wave function

and the hence density. In Figure 15, we show how for the
TZVP basis the differences in the density are substantially
recovered at the first order in the wave function, while the
second order effect appears minor. We already had a chance to
point out how the latter contribution mostly affects the virtual
manifold.203

Table 5. Dual Basis Set Perturbative Approach Applied to
Solid NaCl and Different Basis Setsa

SVP basis TZVP basis

error (kJ/mol) % error error (kJ/mol) % error

ΔE(0) 65.9822 100.00 0.5149 100.00
ΔE(2) 12.0694 18.29 0.0749 14.54
ΔE(4) 3.1721 4.81 0.0253 4.92

aErrors in total energy (absolute and relative) for different
perturbation orders. Details in text.

Figure 15. Dual basis set perturbative approach, NaCl solid.
Difference charge density maps are shown in (a, b, c) for zeroth,
first, and second perturbative orders, respectively. The difference is
computed with respect to the charge density of the reference large
basis set. Details as in Table 5. Isoline spacing is set to 10 μBohr.
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7. ANHARMONICITY OF LATTICE VIBRATIONS
Atomic vibrations are at the core of a variety of properties of
finite molecular systems and extended solids. In particular,
thermal properties of materials (such as specific heat, entropy,
thermal expansion, thermoelasticity, lattice thermal conductiv-
ity, etc.) are connected to the lattice dynamics of the
system.207 Statistical thermodynamics provides the link
between the microscopic atomistic description of the nuclear
dynamics (i.e., the quantum-mechanical vibrational states) and
macroscopic thermal properties of matter.208 The energies of
vibrational states of molecules can be effectively probed with
vibrational spectroscopies such as infrared and Raman. The
same techniques are used to probe those lattice vibrations of
solids where atoms of different lattice cells move in phase with
each other (i.e., phonons at the Γ point of the Brillouin
zone).209 Inelastic neutron scattering can be used to probe also
out-of-phase vibrations (i.e., the so-called phonon disper-
sion).210

In the context of quantum-mechanical simulations of
materials, the standard way in which the lattice dynamics of
the system is described is by means of the harmonic
approximation (HA) of the Born−Oppenheimer potential
energy surface (PES).211 The HA assumes a quadratic form of
the Taylor’s expansion of the PES in terms of atomic
displacements from the equilibrium configuration and implies
a description of the lattice dynamics in terms of a set of
independent quantum harmonic oscillators. Despite its
simplicity, the HA has experienced great success in the
description of lattice vibrations of many classes of materi-
als,212−217 in particular, those without light elements (mainly
hydrogen)218,219 and without strongly anharmonic phonon
modes, such as ferroelectric ABO3 perovskites, for in-
stance.220−223

At the same time, the limitations of the HA are well known
and, in a solid state context, can be grouped into two classes:
(i) the constant-volume nature of all computed thermal
properties of materials and (ii) neglected high-order terms of
the PES, which result in the independence of phonon modes.
The first class of limitations is such that the HA is unable to
describe the thermal lattice expansion of the system, as well as
its thermoelasticity (i.e., thermal dependence of the mechanical
response). Furthermore, at the harmonic level, there is no
distinction between constant-volume and constant-pressure
thermodynamic functions. These limitations can be effectively
overcome by using the so-called quasi-harmonic approximation
(QHA), which requires the evaluation of harmonic phonon
frequencies as a function of lattice cell volume.224,225 The
CRYSTAL program (since CRYSTAL17) already has a fully
automated module for the calculation of quasi-harmonic
thermal properties of materials.226−237 The second type of
limitation is due to neglected higher-than-second order terms
in the expansion of the PES, so that the intrinsic anharmonicity
of the phonon modes as well as phonon−phonon couplings,
and their effects on vibrational states (such as Darling−
Dennison and Fermi resonances and phonon combination
bands), are in turn neglected, which results in the
approximated description of spectroscopic features and
thermodynamic properties.238,239 As a further consequence of
the lack of cubic terms of the PES within the HA, phonon
lifetimes τ would be infinite as well as the lattice thermal
conductivity of the material.

In CRYSTAL23, we now have implemented algorithms for the
evaluation of high-order terms of the PES240 and for the
vibrational self-consistent field (VSCF) and vibrational
configuration interaction (VCI) calculation of anharmonic
vibrational states.241

In the following, we will discuss some formal aspects of
vibrational states of molecules and solids, where, in the case of
solids, we restrict our attention to Γ-point vibration modes.
However, let us note that, by working in terms of a supercell of
the primitive one, vibration modes of solids proper of different
k-points can be folded back to the Γ-point. The starting point
of our anharmonic vibrational description is represented by the
harmonic approximation according to which the nuclear
dynamics of the system is described in terms of a set of M
independent quantum harmonic oscillators, whose correspond-
ing normal coordinates are Q1, Q2, ···, QM ≡Q.
7.1. High-Order Terms of PES. The numerical

description of high-order terms of the PES represents the
most delicate and computationally expensive step in the
anharmonic treatment of vibrational states of materials. In our
strategy, the PES is truncated to quartic order and contains
one-, two-, and three-mode interatomic force constants. Four
different numerical approaches have been implemented, all
based on a grid representation of the PES in the basis of the
normal coordinates, that require different ingredients (energy
and/or forces) to be evaluated at each point (i.e., nuclear
configuration) of the grid. Different algorithms have been
explored to compute the high-order energy derivatives: energy
fitting and finite differences. The numerical stabilities and
relative computational efficiencies of the various schemes have
been discussed in ref 240.

Within the Born−Oppenheimer approximation, vibrational
states are determined by solving the nuclear Schrödinger
equation, which, in terms of normal coordinates, reads

= EQ Q( ) ( )s s s (79)

where Ψs(Q) is the vibrational wave function of the sth
vibrational state and Es the corresponding energy. By setting
the rotational angular momentum to zero and by neglecting
rotational coupling effects, the Hamiltonian operator in eq 79
can be written as
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where V(Q) is the usual Born−Oppenheimer potential energy
surface (PES) in the basis of mass-weighted normal
coordinates. As discussed above, the description of the
potential term in the Hamiltonian is a computationally
challenging task. Here, we expand the PES in a Taylor’s series
centered at the equilibrium nuclear configuration as follows:
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where ωi is the harmonic frequency of the ith vibration normal
mode and where ηijk, ηijkl, and ηijklm are cubic, quartic, and fifth-
order force constants, respectively,
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The inclusion of anharmonic (i.e., higher than quadratic) terms
in the potential (eq 81) therefore implies the evaluation of
high-order energy derivatives with respect to atomic displace-
ments. These high-order energy derivatives are computed
numerically, which makes the description of the PES a
computationally demanding task. For this reason, it proves
crucial to devise (i) effective strategies to truncate the
expansion of the PES in eq 81 so as to include only those
terms contributing significantly to the description of the
vibrational states of the system and (ii) efficient algorithms for
the numerical evaluation of the high-order energy derivatives
in eqs 82−84.

7.1.1. Truncation of PES. We include only terms up to
fourth order in the PES (namely, we use a 4T representation of
the potential). Within a 4T representation, the PES can be
further truncated by considering only those force constants
involving a maximum of n distinct modes (namely, a nM
representation of the potential). By combining the two
truncation strategies introduced above, a 1M4T representation
of the PES would require the evaluation of these force
constants,

i M,iii iiii (85)

This representation of the PES neglects two-mode couplings
and almost always results in a wrong description of the
vibrational states. A popular representation of the potential is
the 2M4T one, which includes all two-mode coupling force
constants,
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i j M

,
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Analogously, the 3M4T representation of the PES includes the
following terms:
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Here, we work in terms of 2M4T and 3M4T representations of
the PES as given in eqs 86 and 87, respectively.

7.1.2. Numerical Evaluation of High-Order Force Con-
stants. We have developed and implemented four different
numerical approaches to compute those terms of the PES
required to get a 2M4T representation, which we are going to
discuss into detail below. Different approaches are charac-
terized by a different numerical stability, accuracy, and
computational cost. In order to get two-mode terms, for
each pair of modes (Qi,Qj), a grid of points is needed where
the energy (and forces, for some approaches) are computed.
The shape of this grid is illustrated in panels a−d) of Figure 16
for the four different schemes. The first two schemes only
require the evaluation of the energy at each displaced nuclear
configuration, while the last two combine information from the
energy and forces.

Figure 16. (a−d) 2D grid of points defining the nuclear configurations that need to be considered in the evaluation of the adiabatic PES in its
2M4T representation for the four different numerical schemes implemented. Different colors correspond to different quantities computed for each
nuclear configuration: only energy (green), energy and forces (blue), and energy, forces, and Hessian (red). (e) Simulated infrared spectrum of the
low-temperature Co Ad-layer on MgO (001) from quantum-mechanical calculations and graphical representation of the normal modes of vibration
associated with the three intense peaks (arrows of the same color correspond to in-phase atomic motions). Δν ̃ is the frequency shift with respect to
the CO stretching in gas phase. The bottom right inset shows experimental FTIR spectra of CO molecules adsorbed on (001) MgO surfaces,
recorded at 60 K, as a function of surface coverage (spectra are vertically offset for clarity) in the spectral region of the fundamental transition for
the in-phase stretching motion of all CO molecules (right panel) and of the corresponding first overtone (left panel). (f) Anharmonic coefficient χa
= 2ν0̃→1 − ν ̃0→2 (in cm−1) of the stretching mode of CO in gas phase and in the low-temperature ordered c(4 × 2) monolayer adsorbed on MgO
(001) surfaces. (g) VSCF two-quanta excited-state pair coupling space of ice XI. For each pair (Qi,Qj) of normal modes, Δωij

PD is reported, as
defined in eq 98.
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Formal details on the four schemes are given in ref 240. We
recommend using scheme c, as it offers an optimal balance
between cost and accuracy. Therefore, here we just discuss
scheme c.
By computing the analytical gradients at some configurations

(only those where atoms are displaced along one normal
coordinate at a time), an effective finite difference scheme has
been devised,242 which is called EGH from the different
ingredients it requires: energy, gradients, and Hessian. Figure
16c shows the points needed for each pair of modes (Qi,Qj),
where some nuclear configurations only require the energy to
be evaluated while others require energy and gradients. The
Hessian matrix is computed just at the equilibrium nuclear
configuration to get the harmonic normal modes and
frequencies. For each pair of modes, all the terms of the
2M4T representation of the PES in eq 86 can be obtained
from the following finite difference relations:
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where =s h/i i and =s h/j j are the adaptive steps
among the points of the grid along the Qi and Qj normal
coordinates (see ref 240 for more details on how the step h is
defined) and where Ea,b is the energy computed at a nuclear
configuration displaced by a si Qi + b sj Qj from the equilibrium
one. For those terms of the PES involving only one mode, a
more compact notation is used where Ea is the energy of a
nuclear configuration displaced by a si Qi from the equilibrium
one. Ga,b

i is the gradient with respect to Qi computed at a
nuclear configuration displaced by a si Qi + b sj Qj from the
equilibrium one (analogously, Ga,b

j is the gradient with respect
to Qj computed at the same nuclear configuration). For those
terms of the PES involving only one mode, a more compact
notation is used where Ga

i is the gradient with respect to Qi of
a nuclear configuration displaced by a si Qi from the
equilibrium one.
7.2. VSCF and VCI Approaches. Different approaches (of

increasing complexity and accuracy) can be used to solve eq 79
numerically. In particular, several methods have been
developed to progressively take into account the correlation
among vibration modes, through mode−mode couplings,
which are formally analogous to the hierarchy of wave
function-based methods in electronic structure theory.243,244

The vibrational analog of the Hartree−Fock (HF) method is
known as vibrational self-consistent field (VSCF) approach: a
mean-field scheme where each vibrational degree of freedom
interacts with an average potential over the other

modes.245−247 In analogy to the definition of dynamical
electron correlation, the vibrational correlation among modes
is defined as the difference between the exact vibrational states
and VSCF ones. In electronic structure theory, the HF solution
can be used as a starting point to improve the description of
the electronic wave function, passing from a single-determi-
nantal to a multideterminantal representation by using either
perturbative (MP2, MP4, etc.) or variational (CC, CI, etc.)
approaches. In the vibration theory, starting from the reference
VSCF state, the analog of the electronic Møller−Plesset
perturbation theory is known as vibrational perturbation
theory truncated at nth order (VPTn),248−250 the analog of
the coupled-cluster family of methods is the vibrational
coupled-cluster approach (VCC),251,252 and the analog of the
configuration-interaction methodology is the vibrational
configuration-interaction (VCI), where mode−mode couplings
are treated exactly (at least in the full-VCI limit).

In CRYSTAL23, we have implemented the VSCF and VCI
methods for both molecules and solids. In particular, to the
best of our knowledge, this is the first implementation of VCI
for periodic systems.

Vibrational modes are distinguishable so that the M-mode
wave function of a given vibrational configuration n does not
need to be antisymmetrized and can be written as a Hartree
product of one-mode functions (modals),240

··· =
=

Q Q Q QQ( , , , ) ( ) ( )M
i
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i
n

i
n n

1 2
1

i

(93)

where n = (n1, n2, ···, ni, ···, nM) is the vibrational configuration
vector of the quantum numbers of the M one-mode functions.
For each given vibrational configuration n, the VSCF method
consists in looking for the variationally best form of the
corresponding M one-mode functions. This is achieved by
requiring that the expectation value of the full Hamiltonian is
stationary,

= | | = +
=

E T V Q, where ( )
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i
n n n
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with Ti = −1/2 (∂2/∂ Qi
2) being the one-mode kinetic energy

operator.
In the VCI method, the wave function of each vibrational

state s is written as a linear combination of M-mode wave
functions of different vibrational configurations in the form of
Hartree products of modals as in eq 93,

=
=

AQ Q( ) ( )s
n

N

n s
n

1
,

conf

(95)

where the sum runs over Nconf configurations, each
characterized by a vibrational configuration vector n. The
selections of the Nconf configurations determine the truncation
of the VCI expansion. For each vibrational state s, the
corresponding VCI wave function and energy are obtained by
solving the corresponding Schrödinger equation = Es s s.
The VCI method can be expressed in matrix form as follows:
H A = A E, where A is the squared matrix containing,
columnwise, the coefficients An,s of the eigenvectors, E is the
diagonal matrix of the eigenvalues, and H is the VCI
Hamiltonian matrix (of size Nconf × Nconf), whose elements are

= | |Hm n
m n

, (96)
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The VCI method therefore reduces to the construction and
diagonalization of the VCI Hamiltonian matrix, from which all
vibrational states are simultaneously determined. VSCF
solutions can be used to express the modals in the VCI
method (according to the so-called VCI@VSCF approach).

7.2.1. Truncation of VCI Expansion. The VCI method relies
on the expansion of the wave function of each vibrational state
in terms of Nconf Hartree product functions describing different
vibrational configurations, as introduced in eq 95. The number
Nconf of functions used in the VCI expansion is of critical
importance with regard to both the accuracy and computa-
tional cost of the method. Indeed, the larger Nconf the better
the description of the vibrational state but also the larger the
size of the VCI Hamiltonian matrix in eq 96 to be
diagonalized. In particular, this latter aspect is the main
limiting factor to the application of standard VCI to the study
of those systems where more than just a few vibration modes
need to be coupled.
Therefore, it is crucial to devise effective schemes to reduce

as much as possible the configurational space used in the VCI
expansion. We have implemented two such schemes
introduced below. The following strategies can be used:

1. The first strategy for the truncation of the VCI
expansion consists in including only those vibrational
configurations where there are a maximum of Nquanta
excitation quanta involved. Formally, we can express this
strategy as follows to say that only those configurations
satisfying the next condition are included in the
expansion:

=
n N

i

M

i
1

quanta
(97)

2. A second strategy that we use to truncate the VCI
expansion consists in setting a maximum number of
modes Nmodes that can be simultaneously excited in a
given configuration. In other words, only those vibra-
tional configurations where there are a maximum of
Nmodes with ni ≠ 0 are used.

The effect of these two schemes on the truncation of the
VCI expansion is documented in ref 241. In regard to Nmodes,
let us note that, when working in terms of 2M4T or 3M4T
representations of the PES, the VCI description converges for
Nmodes = 3 and Nmodes = 4, respectively.
7.3. Example Applications. We review a couple of recent

applications of the methodologies discussed above.
7.3.1. Structure and Dynamics of CO Ad-Layers on MgO

Surfaces. The combination of quantum-mechanical simula-
tions and infrared (IR) absorption spectroscopy measurements
provides a clear picture for a long-standing puzzle in surface
science: the actual structure and vibrational dynamics of the
low-temperature-ordered CO monolayer adsorbed on (001)
MgO surfaces.253 The equilibrium structure of the commensu-
rate (4 × 2) adsorbed phase consists of three CO molecules
per primitive cell (surface coverage of 75%) located at two
inequivalent sites: one molecule sits upright on top of a Mg
site, while two molecules, tilted off the normal to the surface,
are symmetrically positioned relative to the upright one with
antiparallel projections on the surface. This configuration, long
believed to be incompatible with measured polarization
infrared spectra, is shown to reproduce all observed spectral
features, including a new, unexpected one: the vanishing

anharmonicity of CO in-phase stretching modes in the
monolayer.

Despite its seemingly simple nature, the physisorption of
CO molecules on the clean (001) MgO surface is a complex
process whose structural and dynamical features are still far
from being fully characterized, particularly so in the low-
temperature, high-coverage regime.254−266 We have inves-
tigated the structure of the low-temperature c(4 × 2) phase of
the CO monolayer on the (001) MgO surface by means of full
structural relaxations within quantum-mechanical calculations
based on the density functional theory and found the H0
configuration to be the most stable one. Based on configura-
tional considerations and on semiempirical potential calcu-
lations, the H0 structure has long been considered to be
incompatible with the observed IR fingerprint.267 By
comparison with previously and newly measured experimental
infrared spectra, we have shown instead that all measured
spectral features are reproduced by the H0 configuration.

Furthermore, from the newly recorded infrared spectra, an
unexpected spectral feature emerged: the infrared peak
corresponding to the first overtone of the in-phase stretching
of all CO molecules is recorded at a frequency that is exactly
twice as large as that of the corresponding fundamental
transition, thus indicating an apparent vanishing anharmonicity
in the vibrational potential of the adsorbed CO molecules in
the ordered monolayer. The application of the methodologies
described above for the calculation of anharmonic vibrational
states allowed us to show that the optimized H0 structural
model indeed exhibits this feature when anharmonicity
through mode−mode couplings is accounted for.

The computed infrared spectrum in the region of the CO
stretching modes is reported in Figure 16e as a function of the
frequency shift Δν̃ with respect to the computed harmonic
frequency of gas phase CO. The most intense peak
corresponds to the in-phase stretching of all CO molecules
in the monolayer. The bottom right inset of Figure 16e shows
the unexpected feature of the vibrational spectrum of CO
adsorbed on (001) MgO surfaces: the apparent vanishing
anharmonicity of the CO stretching vibration in the
monolayer. The figure covers the spectral region of the
fundamental transition for the in-phase stretching motion of all
CO molecules (right) and of the corresponding first overtone
(left). The overtone occurs at a frequency, ν0̃→2 = 4302 cm−1,
that is exactly twice as large as that of the fundamental
transition, ν̃0→1 = 2151 cm−1, thus yielding a null anharmonic
coefficient χa = 0, as would occur in a perfectly harmonic
potential. The CO molecule in the gas phase is instead known
to exhibit a significant degree of anharmonicity in its stretching
motion,268 the fundamental transition occurring at a frequency
ν̃0→1 = 2143 cm−1, and the corresponding first overtone at a
frequency ν ̃0→2 = 4259 cm−1. This corresponds to an
anharmonic coefficient χa = 2ν̃0→1 − ν̃0→2 of 26 cm−1.

Quantum-mechanical VCI calculations confirm this feature
and provide further insight on its origin. First, we studied the
anharmonicity of the stretching mode in the CO molecule in
the gas phase, which led to an anharmonic coefficient χa = 22
cm−1. We then considered the low-temperature ordered
monolayer of CO molecules adsorbed on MgO (001). When
the sole anharmonicity of the potential of the in-phase
stretching mode is considered, an anharmonic coefficient χa
= 10 cm−1 is obtained, which decreases to χa = 0.7 cm−1 when
phonon−phonon couplings are explicitly taken into account
among all of the six CO stretching modes of the c(4 × 2)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.2c00958
J. Chem. Theory Comput. 2023, 19, 6891−6932

6916

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00958?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ordered phase (three of which are infrared active). These
findings are summarized in Figure 16f. Therefore, the apparent
vanishing anharmonicity of the in-phase CO stretching
vibration in the c(4 × 2) phase is to be understood as a
global effect in the CO monolayer where lateral interactions
and couplings among collective vibrations play a key role.

7.3.2. Anharmonicity of O−H Stretching Vibrations in
Water Ice. The anharmonicity of O−H stretching vibrations of
water ice has been characterized by use of the new periodic
implementation of the VSCF and VCI methods.269 The low-
temperature, proton-ordered phase of water ice (namely, ice-
XI) has been investigated. The net effect of a coupled
anharmonic treatment of stretching modes is not just a rigid
blue-shift of the respective harmonic spectral frequencies but
rather a complex change of their relative spectral positions,
which cannot be captured by simple scaling strategies based on
harmonic calculations. The adopted techniques allow for a
hierarchical treatment of anharmonic terms of the nuclear
potential, which is key to an effective identification of leading
factors. It was shown that an anharmonic independent-mode
approximation only describing the “intrinsic anharmonicity” of
the O−H stretches is unable to capture the correct physics and
that couplings among O−H stretches must be described. By
coupling O−H stretches to all other possible modes of ice-XI
(THz collective vibrations, molecular librations, bendings),
specific types of motion which significantly affect O−H
stretching states were identified: in particular, molecular
librations were found to affect the stretching states more
than molecular bendings.
The first anharmonic treatment of O−H stretching

vibrations in ice-XI that was performed was a single-mode
one, where the intrinsic anharmonicity of each normal mode is
investigated by accounting for cubic and quartic single-mode
terms in the PES (i.e., terms ηiii and ηiiii in eq 81) and by
neglecting mode−mode couplings. In other words, normal
modes were still considered as independent but the non-
quadraticity of their 1D potential was accounted for. In this
limit, the VSCF and VCI methodologies formally coincide.
The intrinsic anharmonicity produces an increase of the
fundamental vibration frequency of all stretching modes but
the lowest frequency one (i.e., the symmetric in-phase
stretching on all four water molecules in the cell). While
such behavior may seem counterintuitive with respect to what
one is used to find in the description of the stretching mode of
biatomic molecules (where a simple Morse-like model would
predict a lowering of the frequency upon inclusion of high-
order terms of the PES), it is common in polyatomic molecules
such as water and even more so in molecular crystals. Indeed,
while in an isolated water molecule hydrogen atoms move
toward dissociation, in ice they move toward the next oxygen
atom in their stretching vibration mode.
The strength of the coupling between single pairs of modes

was then investigated. As many VSCF and VCI calculations as
there are pairs of vibration modes in ice XI, (Qi,Qj) with i,j =
1,···,M were run. Each calculation took into account the third-
and fourth-order coupling constants involving just the two
respective modes, as in eq 86. In order to quantify the effect of
the pair coupling on the vibrational states, a vibrational state
where both modes of the pair are simultaneously singly exited
(so-called “combination bands” in vibrational spectroscopies)
was analyzed. In other words, for each selected pair of modes,
the vibrational configuration n = (n1, n2, ···, nk, ···, nM) with nk
= δki + δkj, where δ is Kronecker’s delta function was

considered. From the VSCF approach, we get the energy En of
this state from eq 94 so that its transition frequency ωij

pair can
be obtained from ℏωij

pair = En − E0, where 0 is the fundamental
state. From the VCI approach, the vibrational state s′ with the
strongest n character, i.e., with the largest An,s coefficient in eq
95, was searched for. The corresponding transition frequency
could thus be obtained from ℏωij

pair = Es′ − E0.
In order to measure the effect of the anharmonic pair mode

coupling over an independent mode anharmonic treatment (as
in the intrinsic anharmonic description discussed before), the
transition frequency for this two-mode state ωij

pair was
compared with the sum of the singly excited transition
frequencies, ωi

ia and ωj
ia of the two individual modes treated at

the intrinsic anharmonic level. A percent difference (PD) was
calculated relative to the sum of the singly excited frequencies,

=
+

+
×

( )

( )
100ij

ij i j

i j
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pair ia ia

ia ia
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This quantifies the coupling between a given pair of modes. A
large Δωij means that the frequency of the doubly excited state
cannot be estimated just by summing the two frequencies of
the corresponding individual modes. Figure 16g provides a
graphical representation of the analysis outlined above. The
figure shows (in a color scale) the strength of the pair coupling
for each pair of normal modes in ice XI (Qi,Qj) as quantified by
eq 98 from the VSCF approach. If two modes do not strongly
couple, ΔωPD should be near zero, as this implies the doubly
excited state has the same (or nearly the same) energy as the
sum of each mode being singly excited independently from the
other. Conversely, when the two modes are strongly coupled,
there will be a large deviation between the doubly excited state
energy and the energies of the two singly excited modes.
Inspection of the figure allows some considerations: (i) Weak
couplings are observed between stretching and THz vibrations,
as well as between bendings and THz vibrations (both cases
involve mode types with very different energies). (ii)
Interestingly, weak couplings are observed among bending
modes (actually, this is the only diagonal block of the matrix
showing very small values). (iii) All other diagonal blocks of
the matrix show relatively large values, which implies a
relatively strong coupling among stretching modes, among
librational modes and also among THz modes). (iv) Among
the stretching diagonal block, mode 29 (i.e., the symmetric in-
phase stretching on all four water molecules) once again
behaves differently from other modes yielding negative Δωij
with all other stretching modes at variance with the positive
Δωij of all other stretching mode pairs. (v) Some off-diagonal
blocks also show large values, indicative of relatively strong
couplings between modes of different spectral subsets (this is
the case of the stretching-bending block and even more so of
the libration-stretching, libration-bending, and libration-THz,
which highlights the key role played by the librational motions
in the anharmonic behavior of ice, with librations able to
couple with all other vibrations).

The effect of mode−mode couplings among modes of
different spectral type on the computed anharmonic stretching
frequencies has also been investigated and discussed in ref 269.

8. MPI+OPENMP HYBRID PARALLELISM FOR DFT
ENERGY AND FORCES

Exploitation of parallelism is crucial for modern ab initio
electronic codes, and for many years CRYSTAL has been
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exemplary, as discussed in ref 270. The strategy adopted within
the SCF calculation is briefly outlined below and discussed into
detail elsewhere:270,271

• The strategy is purely based upon message passing
between processes.

• The elements of the Kohn−Sham matrix may all be
constructed independently, thus a task farming method-
ology is used. This results in excellent parallelism for
large systems, load balancing being the only obstacle to
perfect performance. The calculation of the forces is
performed similarly.

• For the diagonalization and related linear algebra,
CRYSTAL has two versions: PCRYSTAL and MPPCRYSTAL.
The former employs a replicated data strategy and can
only exploit parallelism over k points, while the latter
uses a distributed memory strategy and uses ScaLA-
PACK for the parallel linear algebra.272 In this section,
we focus solely on MPPCRYSTAL, although in fact many
of the improvements discussed also apply to PCRYSTAL.

This scheme works well and has been used to solve a
number of challenging problems.273−275 However, as discussed
in ref 270, it does have one major drawback: In the
construction of the Kohn−Sham matrix, a large number of
arrays associated with the screening of the integrals are
replicated, as are the real space representations of the Kohn−
Sham, overlap, and density matrices. Although these are all
stored in sparse format, and thus scale linearly with the size of
the system, for systems with a large number of basis functions
running on large numbers of processes, they can become the
most memory consuming objects. This is because on large
numbers of processes the O(N2) objects, namely, the
reciprocal space representation of the Kohn−Sham and
overlap matrices and the eigenvectors, have been “scaled
away” due to being distributed over the many cores, while each
process has a full copy of the replicated objects.
Reduction in memory use is becoming increasingly

important on modern high-performance computing (HPC)
clusters. While the compute power is increasing through
increasingly large numbers of cores (often in increasingly fat
nodes supported by increasingly powerful accelerators), the
amount of memory per core is decreasing.276 Thus, to access
the huge amount of compute power available on modern HPC
systems, memory management is of prime importance. After
all, if your calculation is inefficient, you just have to wait a bit
longer for the result, but if it uses too much memory you
cannot do the calculation at all.
As such, to address this problem, a second level of

parallelism has been added to the whole of the SCF and
forces code in CRYSTAL23 through use of threads implemented
via OpenMP. Thus, by instantiating the large replicated objects
once per process, they may be held in shared memory and
accessed by multiple threads, thus effectively lowering the
memory usage. For example, on a single node, use of four
processes and four threads instead of 16 processes will roughly
quarter the memory used by the replicated objects. This
methodology works well with the “fat” nodes now available;
while here we only examine the use of a very small number of
threads, in principle, many more could be used with a
consequent further lowering in memory.
A very brief description of the implementation of the two

main sections of the code are dealt with as follows:

• For building the Kohn−Sham matrix, a similar strategy
to before is followed; the elements are independent so
parallelism whether it be via threads or processes is
straightforward. However, it is worth noting that load
balancing between the threads within a process is trivial
to implement, and thus, some of the residual load
balancing issues are addressed;

• For the linear algebra, we assume that the libraries called
to perform it, such as ScaLAPACK, are already
multithreaded, as is the case nowadays.277,278

Figure 17 shows the memory usage per core for
MPPCRYSTAL for a large DFT test case, a 16 way supercell

(X16) of the mesoporous amorphous silica, MCM-41. We
have used smaller supercells of this example to examine the
performance and memory usage of MPPCRYSTAL in earlier
studies, and thus, it is well understood.270 The X16 supercell
contains 9264 atoms and uses 124,640 basis functions and the
PBE functional and a single k point. The calculations were run
on Archer2,279 a large modern cluster situated at the
Edinburgh Parallel Computing Centre (EPCC) and based
upon AMD processors with 2GByte per core and 128 cores per
node.280 The graph compares running on a given total number
of cores with differing numbers of threads. Thus, a run on 8192
cores with two threads consists of 4096 MPI processes, each
dual threaded.

It can be seen that at low core counts, less than roughly 2000
cores, the memory usage rapidly decreases with increasing
numbers of cores. This is the region where the large O(N2)
reciprocal space objects dominate. Distributed over 1024
processes, a single order 124,640 real matrix requires around
116 Mbytes, and as we require several of such sized objects for
the calculation, their contribution is easily visible on the scale
of the graph. However, by the time we reach 8192 processes,
the contribution due to the distributed objects is much smaller,
only 15 MBytes per matrix, and so they have all but
disappeared leaving only the replicated objects. Instead it can
be seen that the different numbers of threads asymptote to
different plateaus, with the four thread limit being roughly one-
quarter of that for one thread. This is exactly in line with the

Figure 17. Memory usage per core of MPPCRYSTAL for the MCM-41
X16 case as a function of the number cores and threads. All
calculations were run on the Archer2 supercomputer.
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argument above; the use of threads to share the replicated
objects among a small number of cores has made a dramatic
reduction in the memory usage.
It is also notable that we could not perform the single

threaded run on 1024 cores as there the memory requirements
were too great, while the use of two or four threads made such
a run possible. Thus, through this work, we can now perform
realistic calculations on systems with more than 100,000 basis
functions with as little as 0.25 GByte per core.
Figure 18 shows the performance for the same MCM-41

X16 test case. It can be seen that use of threads little impacts

this case and that the code is scaling well to 16,384 cores and
beyond. Thus, in parallel, CRYSTAL23 is capable of efficient
calculations on very large systems at high core counts using
minimal memory.

9. QUASI-HARMONIC THERMOELASTICITY
Thermoelasticity represents the dependence of elastic
mechanical properties of materials on temperature. In
particular, the thermoelastic response of crystalline materials
is described by the thermal dependence of all the isothermal or
adiabatic elastic constants defining the fourth-rank elastic
tensor, which provides the formal description of the
anisotropic mechanical properties of the material in the elastic
regime.281 An accurate description of thermoelasticity is
relevant to many areas of research including (i) geophysics,
where the elastic properties of minerals at temperatures of the
Earth’s mantle determine the velocity of propagation of seismic
waves,282−285 (ii) refractory materials, whose mechanical
stiffnesses must not be deteriorated at high temperature,286−289

(iii) pharmacology, where most potential drugs are synthesized
in the form of molecular crystals, whose mechanical stabilities
at room temperature are crucial for an effective tableting
process,290−295 and (iv) catalysis, where the mechanical
instabilities of porous frameworks pose serious limitations to
their effective use, as for metal−organic frameworks.296−299

The full thermoelastic characterization of a crystal requires
the determination of the fourth-rank thermoelastic tensor at
each desired temperature T, that is, the full set of isothermal
elastic constants (second free-energy density derivatives with
respect to pairs of strain types),
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where the superscript T is needed to distinguish isothermal
from adiabatic elastic constants, V(T) is the volume of the
equilibrium structure at temperature T, F is the Helmholtz free
energy, ηv is one of the six independent components of the
strain tensor η, and v, u = 1,···, 6 are Voigt indices.300 From
inspection of eq 99, it is clear that the quantum-mechanical
simulation of thermoelasticity requires the description of the
lattice dynamics of the system beyond the usual harmonic
approximation. This is because it involves the calculation of the

Figure 18. Performance of MPPCRYSTAL for the MCM-41 X16 case as
a function of the number cores and threads. All calculations were run
on the Archer2 supercomputer.

Figure 19. 3D plots of the spatial distribution of the Young modulus of (top) copper(II) acetylacetonate crystals and (bottom) rubrene crystals, as
a function of temperature. For copper(II) acetylacetonate, the value of the Young modulus along two specific directions, [101] and [101], is also
reported and compared to room temperature experiments. For rubrene, the 3D plot of the experimental Young modulus at room temperature is
reported for comparison. Data are in GPa.236,237
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free energy dependence on all lattice parameters to get (i) the
anisotropic thermal expansion and (ii) the free energy second-
derivatives with respect to strain.301−304 While the latter
requires rather expensive calculations, the former can be
evaluated at a reduced computational cost.
Different computational schemes can be used to compute

thermoelastic constants for different classes of materials.
However, they all rely on the description of thermal expansion,
which is conveniently computed via the so-called quasi-
harmonic approximation,224,305 already implemented in
CRYSTAL17 with a fully automated algorithm, which has been
optimized so as to allow for the determination of the thermal
expansion by computation of the harmonic phonons at just
four volumes.226−230

9.1. Quasi-Static Scheme for Weakly Bound (Metal−)-
Organic Crystals. The thermoelastic response in soft organic
or metal−organic materials (such as molecular crystals, organic
semiconductors, metal−organic frameworks, etc.) is dominated
by thermal expansion (positive or negative),231,232,234,309−313

so that, in most cases, the dependence of the free energy on the
lattice parameters, F(η; T), can be safely substituted by that of
the static energy, E(η; T0). Therefore, a simplified strategy can
be introduced (so-called quasi-static approach), where thermo-
elastic constants are obtained from236,237
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where T0 is the absolute zero. While eq 100 still relies on the
quasi-harmonic determination of V(T), now the second energy
derivatives with respect to strain are evaluated from the static
internal energy E and not from the free energy F, and this
remarkably simplifies the corresponding calculations. Indeed,
phonon frequencies need to be computed at different volumes
but not at different strained configurations. Furthermore, the
fully automated algorithm for the evaluation of the elastic
tensor, based on the static energy gradients, can still be
used.306−308

Let us discuss the application of this quasi-static scheme to
the thermoelastic response of two prototypical soft materials:
(i) the metal−organic copper(II) acetylacetonate crystal
(monoclinic lattice, space group P21/n): a system that has
recently attracted a lot of attention because of its unusual high
flexibility314 and its different structural mechanisms induced by
temperature and strain,315 and (ii) the rubrene organic
semiconductor (orthorhombic lattice, space group Cmca),
which has one of the highest carrier mobilities of known
crystals of this class of materials at room temperature. Figure
19 reports 3D plots of the computed spatial distribution of the
Young modulus of the two systems as a function of
temperature, compared to available experimental data at
room temperature (the whole 3D spatial distribution of the
Young modulus for rubrene and the directional Young
modulus along two crystallographic directions, [101] and
[101], for copper(II) acetylacetonate).236,237 In both cases, the
thermal evolution of the computed mechanical response is very
large when passing from static elastic values to room
temperature ones. The sole inclusion of zero-point energy
(ZPE) phonon corrections to the static picture is seen to
produce very significant changes to the overall elastic response.
Moreover, thermal effects do not just contribute to the
“isotropic shrinking” of the elastic response but also to the
change of its anisotropic distribution. In these cases, the quasi-

static approach allows one to compute the thermoelastic
response at room temperature at an affordable computational
cost and in both qualitative and quantitative agreement with
the experiment.
9.2. General Quasi-Harmonic Scheme for Strongly

Bound Inorganic Crystals. The evaluation of thermoelastic
constants through the more general eq 99 is a much more
demanding computational task than that described in Section
9.1 as it requires phonons to be computed at several space
group symmetry-breaking strained configurations. Further-
more, at variance with the static energy E, no analytical forces
with respect to strain are available for the free energy F, which
makes the evaluation of the second derivatives in eq 99 even
more demanding. However, the quasi-harmonic approximation
still provides a formal framework for such a task.316−319 We
have recently suggested and implemented a quasi-harmonic
scheme, where the evaluation of eq 99 is performed in two
steps:320 (i) the determination of the equilibrium structure of
the system at temperature T and (ii) the calculation of the
second free-energy derivatives with respect to strain. The
former step can be performed with the standard quasi-
harmonic approach already implemented in CRYSTAL17.226−230

The second derivatives of the Helmholtz free energy with
respect to strain cannot be computed analytically but rather
need to be evaluated numerically from the free energy of
strained lattice configurations. Thus, in general, the whole set
of thermoelastic constants cannot be computed by only
deforming the lattice according to the six independent strain
components ηv. More general strains can be required that are
expressed as combinations of the fundamental ones. Let us
introduce the following Voigt’s vector notation for the
independent strain components,

= = =(100000) (010000) (001000)
1 2 3

= = =(000100) (000010) (000001)
4 5 6

Any general strain η can thus be defined as a linear
combination of the fundamental strains above,

=
=

k
v

v v
1

6

(101)

where kv are the coefficients of the linear combination defining
the strain shape. The amplitude of the strain is identified by an
additional parameter δ. The following scheme can be adopted
to evaluate thermoelastic constants at a given temperature T,
where a strain shape η is selected and the lattice distorted
accordingly for different values of the strain amplitude δ. At
each strained configuration, the harmonic vibration frequencies
are computed in order to get the corresponding free energy:
F(δ; η,T). The free energy is thus a function of δ and
parametrically depends on the strain shape η and on the
temperature T. The free energy computed for different values
of δ can be fitted to a polynomial function and the
corresponding fitting parameters c0, c1, c2, ... determined,

= + + + + ···F T c c c c( ; , ) 0 1 2
2

3
3

(102)

The second free energy density derivative with respect to the
strain amplitude of the expression above, at the equilibrium
configuration at temperature T, is given by 2c2/V(T) and
corresponds to a linear combination of isothermal elastic
stiffness constants as follows:
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Depending on the symmetry of the system, in order to get the
full set of thermoelastic constants, several strain shapes have to
be applied, each providing a linear combination of thermo-
elastic constants. In the present implementation, the evaluation
of the derivatives in eq 103 with respect to the strain amplitude
δ is fully automated and requires a single run of the program
per each temperature T and per each strain shape η.
Let us sketch the algorithm that we have devised to compute

quasi-harmonic thermoelastic constants of materials. In
particular, we explicitly illustrate the sequence of calculations
that are required by stressing what steps can be performed
automatically in CRYSTAL23. The algorithm that we propose is
the following:320

1. A full structural relaxation of the system is performed
(both atomic positions and lattice parameters are
optimized). The static equilibrium structure, with
volume V0, is obtained.

2. A space group symmetry-preserving QHA calculation is
performed, which provides the thermal expansion of the
system. A fully automated algorithm is implemented
since CRYSTAL17 to perform this task,226−230 where
harmonic phonon frequencies are computed at four
different volumes.

3. A value of temperature T is selected. Starting from the
values of the lattice parameters at this temperature
obtained at the end of the previous step, a volume-
constrained, lattice symmetry-preserving structural relax-
ation is performed to get the equilibrium structure (also
in terms of atomic positions) at the desired temperature.

4. A given strain shape η is chosen, which will provide a
linear combination of elastic stiffness constants accord-
ing to eq 103.

5. The second free energy derivatives with respect to the
strain are computed. A fully automated algorithm has
been implemented in the CRYSTAL23 program for this

task. The starting point is represented by the optimized
structure obtained at the end of step 3 above (i.e., the
equilibrium structure at temperature T). The structure is
deformed, in terms of the strain shape η, into four
strained configurations (two with positive and two with
negative strain amplitude δ). At each strained config-
uration, atomic positions are relaxed and phonon
frequencies computed. The computed quasi-harmonic
free energy as a function of strain amplitude is fitted to a
second-order polynomial and the corresponding second-
derivative determined.

We have recently applied this quasi-harmonic algorithm to
the description of the thermoelastic response of forsterite, α-
Mg2SiO4: an end-member of the olivine solid solution series,
that is one of the most abundant silicates in the upper mantle
of the Earth.320 The single-crystal thermoelasticity of forsterite
was accurately determined experimentally at several temper-
atures from 300 to 1700 K321 so that this system represented
an ideal one to validate and discuss our methodology. Figure
20 reports selected adiabatic thermoelastic constants of
forsterite as a function of temperature as measured
experimentally (circles) and as computed with our quasi-
harmonic models (lines). Panels on the left and right of the
figure report simulated trends with the simplified quasi-static
approach of Section 9.1 and with the more explicit quasi-
harmonic one of Section 9.2, respectively. It is clearly seen that
the simplified quasi-static approach allows one to describe a
fraction of the thermal response of the system, while the more
explicit scheme provides trends that are very consistent with
those observed in the experiments, up to 1500 K in this case.

10. MULTIWALLED NANOTUBES
In 2010, Noel and co-workers implemented an original
algorithm for modeling single-walled nanotubes, which fully
exploits the helical symmetry in a periodic context.322 The
whole machinery is now extended to allow the simulation of
M-wall nanotubes (M ≥ 2) by wrapping any type of layered
material according to different chiralities. Again, the
exploitation of helical symmetry provides a double benefit:
(i) Multiwalled nanotubes can be designed by specifying just

Figure 20. Selected adiabatic thermoelastic constants of α-Mg2SiO4 forsterite as a function of temperature as measured experimentally (circles)321

and as computed with our quasi-harmonic models (lines). Panels on the left and right report simulated trends with the simplified quasi-static
approach of Section 9.1 and with the more explicit quasi-harmonic one of Section 9.2, respectively.
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few input parameters, and (ii) very large systems can be treated
with a significant saving of computational resources.323

Multiwalled nanotubes are cylindrical structures periodic
along a single direction, conventionally taken to be x,
consisting of concentric nanowalls of increasing diameter.
Each wall can be designed and therefore completely
characterized by only two integers, (n1, n2), which univocally
define the corresponding rolling vector, R,

= +n nR a a1 21 2 (104)

where a1 and a2 are the lattice parameters of the 2D slab unit
cell. |R| represents the circumference of the tube and is thus
related to the nanotube diameter D = |R|/π. The angle θ
between R and a1 is defined as the chiral angle,324
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According to their (n1, n2) indices, nanotubes fall into one of
the following three categories: armchair (n1, n1), zigzag (n1, 0),
or chiral (n1, n2 ≠n1) .325 Moreover, depending on R, two other
lattice vectors are uniquely defined: (i) the nanotube lattice
parameter L, chosen as the shortest vector perpendicular to R
and defining the periodicity along x: L = l1 a1 + l2 a2 (where l1
and l2 are integers) and (ii) the helical (i.e., roto-translational)
vector H = h1 a1 + h2 a2, which possesses a rotational
component along the circumference vector, R, and a
translational component along the lattice parameter, L, and
then determines the correspondence between a translation in
the 2D slab with a roto-translation on the curved surface.
The periodicity along the tube axis (i.e., the existence of the

longitudinal vector L) is not guaranteed for all possible 2D
(slab) lattices.322 Among the five 2D Bravais lattices, the
hexagonal and square ones are the only ones that can be
wrapped according to any chirality (n1, n2), whereas
rectangular and rhombohedral ones can only give rise to (n1,
n1) and (n1, 0) nanotubes, respectively. It is not possible to roll
up an oblique lattice to get a 1D periodic nanotube.
A multiwalled structure can thus be generated by wrapping

the 2D precursor in M tubes of gradually increasing diameter,
each designed according to the rules just outlined. Once
modeled, the nanomaterial can be studied by exploiting all the
features (geometry optimization and manipulation, addition of
defects, adsorption of molecules) and properties (electronic,
vibrational, mechanical, optical, etc.) available in the CRYSTAL

code.
For example, multiwalled stability can be analyzed in terms

of the formation energy per atom, Eform, defined as the energy
difference of the nanotube with respect to an optimized M-
layer 2D slab of the precursor material,

=E
E MW

n
E ML

n
( ) ( )

MW ML
form

(106)

where E(MW) and E(ML) are the energies of the optimized
M-wall nanotube and M-layer slab, respectively, and nx is the
number of atoms in the respective reference cell (with x = MW
orML). In Figure 21, Eform and the electronic band gap, Egap, of
a set of zigzag carbon multiwalled nanotubes are reported as a
function of the diameter and number of walls M. The interwall
distance is the same as the interlayer distance in graphite, this
being the reference system for M →∞. Therefore, both the
formation energy and the gap tend to zero as the number of
walls increases.

The electronic band gap of carbon nanotubes can be
engineered by doping with its isostructural boron nitride, BN,
analog to obtain stable ternary structures, (BN)1−xCx, with
specific electronic features. In Figure 22, the Seebeck
coefficient (S = ΔV/ΔT) and the power factor (PF = S2σ)
of single- and double-walled tubes are compared, calculated
using the semiclassical Boltzmann transport equation theory as
implemented in the CRYSTAL code.326 The C@(BN)1−xCx 2W
structure with a 20% of BN randomly distributed in the outer
wall shows a particularly good value of the power factor, and
both its Seebeck and PF increase as the temperatures rises up.
Theoretical modeling of carbon nanotubes with controlled
doping can lead to the synthesis of potentially interesting
materials for multiple applications, and this type of integrated
design and property analysis can be performed with CRYSTAL.

11. CONCLUSIVE REMARKS
The main developments made to the CRYSTAL program since
the previous major version (namely, CRYSTAL17) have been
illustrated. Formal aspects of the various methodologies have
been complemented with example applications to highlight
their functionalities and potentials in the context of computa-
tional solid state chemistry and physics. Many of the topics
covered in this review paper are still the objects of study and
will constitute further developments to the code. To name a
few: (i) a perturbative treatment of SOC (for energy, band
structure, and density matrix, and thus density variables) to
reduce the computational cost of the two-component self-
consistent treatment, both in terms of CPU time and memory,
(ii) generalization of the TOPOND module to SOC (i.e., a
topological analysis of the electron density as derived from a
two-component calculation), (iii) calculation of anharmonic

Figure 21. Formation energy, Eform, and band gap, Egap, of carbon
zigzag multiwalled nanotubes. From the single wall (11,0)
characterized by 44 atoms in the reference cell, 88 symmetry
operators, and D = 8.7 Å, to the M = 5 system, (11,0)@(20,0)
@(29,0)@(38,0)@(47,0) with 580 atoms, 376 symmetry operators,
and D = 37.1 Å.
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infrared and Raman intensities from VSCF and VCI wave
functions, point-symmetry exploitation in the numerical
evaluation of high-order terms of the PES, and implementation
of the VPT2 approach, (iv) extension of the OpenMP+MPI
hybrid parallel approach to the CPHF/KS for the response to
electric fields and of the massively parallel approach to the
PROPERTIES module of the program and to SOC calculations,
(v) implementation of a module for ab initio Born−
Oppenheimer molecular dynamics, (vi) extension of the
CPHF/KS approach to the treatment of magnetic fields, and
(vii) implementation of optimally tuned range separated
hybrid DFAs for solids and of Grimme’s D4 correction
scheme for dispersive interactions.

■ APPENDIX A: COMPUTATIONAL DETAILS OF THE
2C-SCF CALCULATIONS

Calculations on W-dichalcogenide monolayers were performed
with the STUTSC potential (for W) and the STUTLC
potentials (for Se and Te). For W, the valence basis set was of
the form (6s6p4d2f)/[5s3p4d2f ], being modified starting from
the ecp-60-dhf-SVP set available from the TURBOMOLE

package.327 For Se and Te, valence basis sets of the form
(5s5p2d)/[3s3p2d] were modified from the ones originally
presented in ref 36. The full input decks are available in
CRYSTAL format in the Supporting Information.82 Reciprocal
space was sampled in a 24 × 24 Monkhorst−Pack net, with
Fermi smearing of 0.001 Eh. A tolerance of 10−8 Eh on the total
energy was used as a convergence criterion for the SCF
procedure. The five TOLINTEG parameters that control
truncation of the Coulomb and exact-exchange infinite series
were set to 8 8 8 8 30. The exchange-correlation functional and
potential (in their collinear spin-DFT formulation) were
sampled on a direct-space pruned grid over the unit-cell
volume with Lebedev angular and Gauss-Legendre radial
quadratures, employing 99 radial and 1454 angular points
(keyword XXLGRID). The geometries of the layers were
initially obtained by cleaving three-atom thick slabs along the
(001) surface of the bulk P63/mmc crystal structures.

328 Then,

both the atomic fractional coordinates and lattice parameters
of the layers were fully optimized with analytical gradients of
the total energy for systems periodic in two dimensions, and a
quasi-Newton scheme, using, respectively, the PBE and PBE0
functionals at the scalar-relativistic 1c-SCF level.329−332 Finally,
single-point 2c-SCF calculations, including SOC, were
performed on the previously optimized scalar-relativistic
geometries.

■ APPENDIX B: SPIN AND SPIN-CURRENT
DENSITIES IN TERMS OF THE DENSITY MATRIX

Returning to eq 35a, the corresponding expressions for the
spin density (or magnetization) and spin-current densities are
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which shows that each of the eight density variables of SCDFT
is associated with a distinct spin-block of the complex 2c-SCF
direct-space density matrix.

Figure 22. Transport properties of C@(BN)xC1−x zigzag double-walled nanotubes with different percentages and patterns of doping compared
with the corresponding single-walled materials, (BN)xC1−x. Seebeck coefficient (left) and power factor (right). In the two insets: the dependency
on temperature of S (left) and PF (right) in the range of chemical potentials corresponding to experimentally measured carrier densities.
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