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Expression-preserving face frontalization improves visually
assisted speech processing

Zhiqi Kang · Mostafa Sadeghi · Radu Horaud · Xavier Alameda-Pineda

Abstract Face frontalization consists of synthesizing

a frontal view from a profile one. This paper proposes

a frontalization method that preserves non-rigid facial

deformations, i.e. facial expressions. It is shown that

expression-preserving frontalization boosts the perfor-

mance of visually assisted speech processing. The method

alternates between the estimation of (i) the rigid trans-

formation (scale, rotation, and translation) and (ii) the

non-rigid deformation between an arbitrarily-viewed face

and a face model. The method has two important mer-

its: it can deal with non-Gaussian errors in the data and

it incorporates a dynamical face deformation model.

For that purpose, we use the Student’s t-distribution in

combination with a Bayesian filter in order to account

for both rigid head motions and time-varying facial

deformations, e.g. caused by speech production. The

zero-mean normalized cross-correlation (ZNCC) score

is used to evaluate the ability of the method to preserve

facial expressions. The method is thoroughly evaluated

and compared with several state of the art methods, ei-

ther based on traditional geometric models or on deep

learning. Moreover, we show that the method, when in-

corporated into speech processing pipelines, improves

word recognition rates and speech intelligibility scores

by a considerable margin.1
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1 Introduction

Face frontalization is the problem of synthesizing a fron-

tal view of a face from an arbitrarily viewed one. Recent

research has shown that face frontalization consistently

boosts the performance of face recognition, e.g. Yim

et al (2015); Zhu et al (2015); Banerjee et al (2018);

Zhao et al (2018); Zhou et al (2018, 2020). It is worth

noticing that face recognition requires expression-free

face frontalization (which is also referred to as face nor-

malization). In contrast, other applications, such as fa-

cial expression recognition, e.g. Pei et al (2020) and

visual speech processing, e.g. Fernandez-Lopez and Su-

kno (2018); Adeel et al (2019); Martinez et al (2020);

Cheng et al (2020), require expression-preserving face

frontalization. In this paper we present a novel face

frontalization methodology that combines robust sta-

tistical inference with a dynamic model. We show that

the proposed algorithms improve the performance of

visual speech by a considerable margin.

It has long been established that visual perception

plays a primordial role in speech communication. In

particular, vision provides an alternative representation

of some of the information that is present in the audio,

with the advantage that it is affected neither by acoustic

noise nor by competing audio sources. The most promi-

nent visual features used in human-to-human, human-

to-computer and human-to-robot interactions are fa-

cial movements. Facial movements are a combination

https://team.inria.fr/robotlearn/research/facefrontalization
https://team.inria.fr/robotlearn/research/facefrontalization
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of rigid head movements and non-rigid facial deforma-

tions. On one side, head movements play linguistic func-

tions as they mark the structure of the ongoing dis-

course and are used to regulate interaction McClave

(2000). On the other side, lip and jaw movements are

generated by facial muscles which, in turn, are con-

trolled by speech production – they are correlated with

phonemes and with word pronunciation Schultz et al

(2017). Hence visual information plays a fundamental

function both in speech recognition and in speech intel-

ligibility.

In particular, automatic speech recognition (ASR)

and speech enhancement (SE) play crucial yet com-

plimentary roles in speech communication systems. SE

aims to improve the quality of noisy speech signals to be

used by ASR. It is well established that audio speech en-

hancement (ASE) is severely limited in adverse acoustic

situations, e.g. background noise. Multimodal speech

enhancement, and in particular audio-visual speech en-

hancement (AVSE) aims at incorporating the compli-

mentary information available with visual information.

Lip reading plays a similar role in ASR.

AVSE has received a lot of attention in the recent

past, mainly because of the advent of deep neural net-

works (DNNs) which have considerably boosted their

performance Michelsanti et al (2021). Nevertheless, the

vast majority of existing methods assume clean visual

information – they take as input lip regions that are

cropped from frontal and steady face images, Hou et al

(2018); Sadeghi et al (2020); Adeel et al (2021). Cur-

rently there are no DNN architectures able to mitigate

the effect of rigid head motions that are inherently

present in speech communication. Moreover, the vast

majority of existing datasets for training and testing

AVSE are recorded in constrained conditions – the par-

ticipants were instructed to avoid head movements and

to face the camera Abdelaziz (2017); Anina et al (2015).

As for lip reading Fernandez-Lopez and Sukno (2018),

although there were some attempts to deal with in the

wild datasets, the current state of the art is limited to

the task of isolated word recognition (IWR) Chung and

Zisserman (2016); Ma et al (2021a). Not surprisingly,

the performance of existing methods rapidly degrades

in the presence of noisy visual information. Therefore,

although these methods have profited from state of the

art deep-learning models, they are ineffective in realistic

conversational scenarios.

In this paper we are interested in investigating vision-

assisted speech processing methods that are robust with

respect to noisy lip movements caused by head motions,

e.g. Figure 1 and Figure 2. We propose to incorporate

face frontalization (FF) into visual and audio-visual

Fig. 1: An example of applying expression-preserving

face frontalization to a person that utters speech. Top:

input images; Middle: lip regions before removing head

movements; Bottom: lip regions after removing head

movements.

(a) Vertical lip motion (b) Horizontal lip motion

Fig. 2: Lip motion without frontalization (blue), with

robust frontalization (orange) Kang et al (2021), and

with robust-dynamic frontalization (green), proposed

in this paper. The curves correspond to the example

of Figure 1. The curves correspond to image-plane dis-

placements in pixels as a function of the frame number

and they show the motion of the landmark located at

the center of the upper lip, for the example shown on

Figure 1.

speech processing DNN pipelines. Visual speech pro-

cessing necessitates a FF method that guarantees that

non-rigid facial deformations are preserved. Moreover

and unlike FF for face recognition from a single image,

FF for visual speech analysis must incorporate a dy-

namic model in order to capture the temporal nature

of lip movements. We address these challenging prob-

lems on the following grounds: (i) the image warping

needed by FF should be guided by a rigid transforma-

tion, (ii) the estimation of this transformation should

be robust with respect to non-rigid deformations, and

(iii) a dynamic face deformation model is needed in or-

der to characterize the temporal behaviour of lip and

jaw movements associated with speech.
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The rationale of the proposed method is to decou-

ple rigid head pose from non-rigid facial deformations.

These two pieces of information are encoded in the ob-

served 3D landmarks while they are affected by two

types of errors: small detection errors that are indistin-

guishable from non-rigid deformations, and large local-

ization errors that might strongly biais the results. For

these reasons, the estimation problem at hand is cast

into the problem of robust statistical inference. Head

pose and non-rigid deformation are coupled with the

generalized Student’s t-distribution Forbes and Wraith

(2014) – a heavy tailed probability distribution func-

tion (pdf) that is able to deal both with Gaussian in-

liers and with non-Gaussian outliers. The associated ex-

pectation conditional maximization (ECM) procedure

alternates between (i) the evaluation of the posterior

distributions of weights associated with observed fa-

cial landmarks, (ii) the estimation of the rigid head-

pose parameters (scale, rotation and translation) and

(iii) the estimation of the parameters of a deformable

face model, e.g. Blanz and Vetter (1999), i.e. Figure 3-

(a). The landmark weights just mentioned have a pon-

derable role: the higher is the weight, the more reliable

is the landmark.

In the past the Student’s t-mixture model (TMM)

Peel and McLachlan (2000) was used for the task of ro-

bust non-rigid registration of multiple point sets Zhou

et al (2014); Ravikumar et al (2018). These methods

jointly register the points and estimate the rigid trans-

formations that allow to optimally align the sets, on

the premise that a majority of points in the sets are in

rigid correspondence. In the case of landmark-based FF

both rigid and non-rigid alignment are needed while it

is not necessary to perform registration, hence a single

pdf, and not a mixture, is sufficient.

We also propose a dynamical extension. The frontal-

ized landmarks are treated as observations of a linear

dynamical system (LDS). Unlike a standard LDS, the

proposed one is equipped with two sequences of la-

tent variables governed by two interconnected linear-

Gaussian dynamical regimes, i.e. Figure 3-(b). The two

latent variables correspond to the 3D vertex coordinates

and to the low-dimensional face embedding of a 3D

morphable model (3DMM), respectively. The 3D ver-

tices at the current frame are stochastically generated

from the 3D vertices at the previous frame. Similarly,

the current shape embedding is stochastically gener-

ated from the previous embedding. At each frame, the

vertices are reconstructed from the shape embedding.

In turn, the vertices stochastically generate the frontal-

ized landmarks. We provide a formal derivation of the

proposed doubly latent LDS and we show that it can

be reformulated as a standard Kalman filter, with its

associated recursive solver.

We empirically evaluate the performance of FF us-

ing the zero-mean normalized cross correlation (ZNCC)

score, Sun (2002), between a frontalized face and its

ground-truth frontal counterpart. We embed FF into

a state of the art deep lip reading model Ma et al

(2021a). We also use FF in combination with a re-

cently proposed deep AVSE model Sadeghi et al (2020);

Sadeghi and Alameda-Pineda (2021). We use three dif-

ferent datasets associated with these three sets of ex-

periments and we compare our method with two tra-

ditional frontalization methods Hassner et al (2015),

Banerjee et al (2018), and with two methods based

on generative adversarial networks (GANs), Zhou et al

(2020), Yin et al (2020). We show that the proposed

expression-preserving face frontalization method out-

performs all the other methods – either based on tra-

ditional computer vision or based on DNNs – by a

considerable margin. A prominent result is that ro-

bust estimation of the rigid transformation underlying

FF outperforms GAN-based frontalization. Indeed, the

latter estimates millions of parameters of a non-linear

image-to-image mapping, which cannot guarantee that

the non-rigid facial deformations, e.g. expressions and

lip movements, are preserved.

The remainder of this article is organized as fol-

lows. Section 2 summarizes the related work. Section 3

describes in detail the proposed expression-preserving

frontalization framework. Section 4 provides algorithm

implementation details. Section 5 describes a bench-

mark based on the ZNCC score. Section 6 describes

experiments with a lip-reading dataset. Section 7 com-

bines face frontalization with audio-visual speech en-

hancement. Finally Section 8 draws some conclusions.

2 Related Work

As already mentioned, face frontalization consists of

synthesizing a frontally-viewed face from an arbitrarily-

viewed face. Recently, a successful approach has been

to train DNNs in order to learn a non-linear 2D-to-2D

mapping between an arbitrary view and a frontal view.

Some of the best performing DNN-based frontalization

methods use CNN-GAN architectures, e.g. Yin et al

(2017); Huang et al (2017); Tran et al (2017); Zhao

et al (2018); Zhang et al (2019); Rong et al (2020);

Zhang et al (2021); Yin et al (2020), which outperform

CNN-only models, e.g. Yim et al (2015). These meth-

ods necessitate large collections of input/output pairs

of face images. For that purpose Zhang et al (2019);
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Yin et al (2020); Zhang et al (2021) use two datasets

that contain multiple-camera recordings in a controlled

setup, i.e. Gao et al (2007); Gross et al (2010). Zhang

et al (2019) proposed to learn dense pixel-to-pixel cor-

respondences between the input-output faces. Subse-

quently, Zhang et al (2021) proposed a semi-supervised

GAN-based method that augments the paired face im-

ages of Gross et al (2010) with unpaired in-the-wild

faces with large variations in identity, e.g. Huang et al

(2008); their adversarial and identity-preserving losses

enhance face recognition performance. Yin et al (2020)

proposed a dual-attention GAN architecture that cap-

tures long-term dependencies in image space, thus pro-

viding a mean to preserve identity. These DNN-based

methods are designed to predict as-neutral-as-possible

frontal faces, i.e. expression-free faces, in order to im-

prove the performance of face recognition. On the one

side, the profile/frontal pairs of Gao et al (2007); Gross

et al (2010) are collected in controlled settings in terms

of illumination and expression. On the other side, the

non-frontal images from in the wild datasets do not

have their frontal counterparts to allow frontalization

training.

Another way to estimate the non-linear 2D-to-2D

mapping between a profile image and a canonical im-

age of a face is to use a rectification network that learns

local homographies between a deformed grid, that cor-

responds to a profile view, and a regular grid, that sup-

posedly corresponds to a frontal view Zhou et al (2018).

While this method is well suited for improving the per-

formance of face recognition, it is unable to take into

consideration off-the-image-plane rotations, to guaran-

tee a frontal image and to separate rigid head pose from
non-rigid facial deformations.

Other methods estimate the pose of an input face

with respect to a frontal 3D face model, then use the

pose parameters to warp the facial pixels from the input

image onto a frontal one. These methods capitalize on

pose estimation from 2D-to-3D point correspondences,

e.g. Zhu et al (2015); Hassner et al (2015); Ferrari et al

(2016); Banerjee et al (2018). In Hassner et al (2015)

it was proposed to use a 3D generic model of a face

from which a frontal face is generated: 48 facial land-

marks (2D) are extracted from the input face and from

the neutral and frontal face model (3D), thus providing

2D-to-3D correspondences between the input face and

the generic 3D model. This amounts to estimate the

intrinsic camera parameters as well as the rigid pose.

Similar methods were proposed by Zhu et al (2015),

Ferrari et al (2016) and Banerjee et al (2018). Note

that with this setup there is an inherent large discrep-

ancy between the expressive input face and the neutral

model face. Hence, these methods lack a built-in robust

statistical model that enables accurate inference in the

presence of large errors in landmark localization and

of non-rigid facial deformations. To mitigate this issue,

Hassner et al (2015) manually removes jaw landmarks

and Zhu et al (2015) purposely removes expressions in

order to favour identity features.

Recently, Zhou et al (2020) proposed to synthesize

profile views from a collection of frontal views in order

to create input/target pairs for the purpose of training

image-to-image translation GANs. Their method starts

by fitting a 3D face model to a frontal view, using the

2D-to-3D alignment technique of Zhu et al (2019), fol-

lowed by rotating and rendering the fitted 3D model to

obtain a profile view, and finally rotating and render-

ing it back to reconstruct a frontal view. To summarize,

Zhou et al (2020) uses Zhu et al (2019) to estimate the

rigid pose and the face deformation parameters in or-

der to frontalize the face, and Zhu et al (2017) to fill in

the occluded regions caused by frontalization. Although

this method yields state-of-the-art results for the task of

face recognition, there is no guarantee that non-rigid fa-

cial deformations are preserved by the profile-to-frontal

mapping process.

Interestingly, there has only been a handful of at-

tempts to combine dynamic models with facial shape

deformation. Baumberg (1998); Lee et al (2007) use

a Kalman filter to track a face in an image sequence

and to initialize the parameters of a deformable shape

model. In Prabhu et al (2010) a Kalman filter is used to

predict the location of individual landmarks, from the

previous frame to the current frame, and to use these

predictions to initialize the parameters of a deformable

shape model. The dynamical model that we propose

in this paper is totally different because it dynamically

updates a deformable model with two interconnected

latent variables – this dynamic face-deformation model

is inferred in alternance with landmark frontalization.

The proposed method requires 3D facial landmarks.

Recently there has been a flourishing literature on this

topic, yielding several DNN 3D face alignment (3DFA)

models and associated software packages, e.g. Bulat

and Tzimiropoulos (2016); Zhu et al (2016); Feng et al

(2018); Deng et al (2018); Zhu et al (2019); Jiang et al

(2019); Tu et al (2020); Ning et al (2020). We thor-

oughly analysed and benchmarked four publicly avail-

able 3DFA software packages. The results reported in

this paper were obtained with the method of Bulat

and Tzimiropoulos (2016). The latter is trained using

a very large dataset Bulat and Tzimiropoulos (2017)

and it assumes a weak-perspective camera model. Re-

cently, it has been shown that the perspective camera
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model is better suited for guaranteeing the separation of

rigid and non-rigid facial deformations Sariyanidi et al

(2020). We propose an alternative rigid/non-rigid sep-

aration formulation based on robust statistics.

This article is an extended version of Kang et al

(2021) and it contains two extensions: a dynamic face-

deformation model and its inference based on linear dy-

namical systems, Section 3.3, and an in depth investi-

gation of the effect of face frontalization on the perfor-

mance of audio-visual speech enhancement, Section 7.

3 Expression-preserving face frontalization

In this section we describe in detail the static and dy-

namic models that reside at the core of the proposed

expression-preserving FF framework. These models are

graphically represented in Figure 3. After briefly pre-

senting the face deformation model, we describe in de-

tail the estimation of the head-pose and face-deformation

parameters, followed by a description of the dynami-

cal formulation and the associated statistical inference.

The final stage consist of warping the input face onto

a frontal view in such a way that facial deformations

remain invariant.

3.1 Face deformation model

In order to model non-rigid facial deformations, we con-

sider a 3D deformable shape model Blanz and Vetter

(1999). Such a model is learnt from a training set of
3D faces, or meshes, M = {Mm}Mm=1. Each face m in

the training set is described by N 3D vertices, namely

Mm = (Mm1, . . . ,Mmn, . . . ,MmN )> ∈ R3N ; more-

over, the faces are registered: their vertices are in one-

to-one correspondence. Let C = 1/M
∑M
m=1(Mm −

M)(Mm −M)> be the covariance matrix associated

with this training set, where the mean shape is de-

fined by M = 1/M
∑M
m=1Mm, and let (Λ,U) be the

K principal eigenvalue-eigenvector pairs of C, where

Λ = Diag
(
λ1, . . . , λK

)
, with λ1 ≥ . . . ≥ λK ≥ 0 and

U =
(
U1 . . . UK

)
∈ R3N×K is a column-orthogonal

matrix, i.e. U>U = IK , with K � 3N .

The vertices of a face V = (V 1, . . . ,V n, . . . ,V N )> ∈
R3N can be projected onto the low-dimensional space

spanned by the principal eigenvectors, namely

s = U>(V −M), (1)

where s ∈ RK is the face embedding (or encoding).

Conversely, it is possible to reconstruct (or decode) the

face V from its embedding s, and this up to a decoding

error F :

V = Us+M + F , s.t. s>Λ−1s ≤ 1. (2)

The above inequality constrains the reconstructed mesh

to correspond to an embedding s that lies inside an

ellipsoid with half axes equal to
√
λk. This guaran-

tees with 99% confidence that V belongs to the space

spanned by the training set. Therefore, each vertex V n

of V can be reconstructed from s with

V n = Uns+Mn + F n = WnS + F n, (3)

where Un ∈ R3×K is such that U = (U1 . . .Un . . .UN ),

S = [s; 1] ∈ RK+1 (vertical concatenation) and Wn =

(Un Mn) ∈ R3×(K+1).

3.2 Head-pose and face-deformation estimation

We now consider an image of a face with an unknown

pose. Let X = (X1, . . . ,Xj , . . . ,XJ)> ∈ R3J be a

vector of J 3D landmarks extracted from this face. The

pose is parameterized by a rigid transformation, namely

scale ρ ∈ R+, rotation R ∈ SO(3), and translation

T ∈ R3, between the observed landmarks X and the

frontalized landmarks Y ∈ R3J :

Y j = ρRXj + T , ∀j ∈ {1 . . . J}. (4)

These landmarks correspond to J vertices, annotated

such that there is a one-to-one correspondence between

{V j}Jj=1 and {Y j}Jj=1 up to an error Dj . We have:

Y j = V j +Dj = WjS +Ej , (5)

where Ej = Dj + F j is the total error. By combining

the above equations, we obtain:

Ej = ρRXj + T − (Ujs+M j), (6)

Assuming that these error vectors are random variables

drawn from a probability distribution function (pdf) we

can write a maximum likelihood estimator (MLE), or

equivalently, the minimization of the following negative

log-likelihood function:

L(θ|X) = −
J∑
j=1

log p(Ej ;θ), (7)

where θ is the vector of model parameters, i.e. the rigid

parameters, the shape parameters and the pdf param-

eters. From (6) one may see that it is possible to alter-

nate between the estimation of the shape parameters s

and the rigid (frontalization) parameters ρ, R, and T .
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(a) Head-pose and face-deformation estimation (b) Dynamic face-deformation inference

Fig. 3: Both models alternate between the estimation of the rigid head-pose parameters and the estimation of

the face-deformation parameters. The arrows illustrate stochastic generative models. In both cases, the frontalized

landmarks Y are generated from the observed landmarks X. The static model (a) uses the Student’s t-distribution

to estimate the rigid (head pose) and non rigid (face deformation) parameters. In addition, the temporal model

(b) makes use of two stochastic dynamical regimes, one that governs the evolution of the shape embedding s

and a second one that governs the evolution of the shape vertices V . Note that these two latent variables are

interconnected and that the frontalized landmarks are used as observations by the proposed doubly-latent LDS.

Because the 3D landmarks are affected by noise and by

non-rigid facial deformation, we opt for a robust pdf,

namely the generalized Student’s t-distribution:

p(Ej ;θ) =

∫ ∞
0

N (Ej ; 0, ω−1
j σ)G(ωj ;µ, 1)dωj , (8)

where N (E; 0, ω−1σ) denotes a zero-centered normal

distribution, ω ∈ R+ is a precision and σ ∈ R3×3 is a

covariance matrix. The precision ω is treated as a latent

variable drawn from the Gamma distribution and it

can be interpreted as an observation weight. Therefore

the variables ω1:J characterize the landmarks X1:J : the

higher the better. Unfortunately, direct minimization of

(6) using (8) is intractable. Therefore one has to adopt a

ECM formalism: the negative log-likelihood is replaced

with the expected complete-data negative log-likelihood

conditioned by the observed data, Eω[− logP (ω1:J ,X|X].

ECM alternates between an E-step and an several con-

ditional M-steps, i.e. Algorithm 1.

The E-step computes the parameters of the weights’

posterior distributions G(ωj ; a, bj), namely

a = µ+
3

2
, bj = 1 +

‖Ej‖2σ
2

, (9)

Algorithm 1: Robust face frontalization

(RFF).

Data: 3D landmark coordinates X1:J , 3D shape
reconstruction matrix U and mean shape M .

Initialization: s = 0, σ = I, ω1:J = 11:J and µ = 1;
Compute X′1:J and V ′1:J with (18), (19);
Compute ρ with (13);
Use σ = I in (14) to estimate R in closed form;
Compute T , σ and s with (15), (16), (17);
This yields θ = (ρ,R,T , s,σ).
while ‖θ − θ?‖> ε do

E-step: Evaluate a, b1:J and ω1:J with (9), (10);

Update X′1:J and V ′1:J , X̃, Ṽ with (18), (19). ;
M-rigid-step: Evaluate the new rigid parameters
and covariance ρ?,R?,T ?,σ? with (12)-(16);

M-non-rigid-step: Evaluate the new non-rigid
parameters s? with (17);
θ ← θ?;

end

Result:

Optimal model parameters θ? = (ρ?,R?,T ?, s?,σ?)
Frontalized landmarks Y 1:J = ρ?R?X1:J + T ?.

from which the posterior means are evaluated:

ωj = E[ωj |Ej ] =
a

bj
. (10)
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The M-step consists of the estimation of the model pa-

rameters, namely θ = (ρ,R,T ,σ, s), via the minimiza-

tion of:

Q(ρ,R,T , s,σ) =

J∑
j=1

ωj‖ρRXj + T −WjS‖2σ

+ log|σ|+κs>Λ−1s, (11)

and the computation of the parameter µ of the Gamma

distribution, where Ψ(a) ≈ log a−1/2a is the digamma

function:

µ = Ψ−1

Ψ(a)− 1

n

J∑
j=1

log bj

 . (12)

The last term of (11) is a regularizer that forces s to

correspond to a valid shape, i.e, the constraint of (2).

The minimization of (11) with respect to the parame-

ters yields the following conditional expressions:

ρ? =

( ∑J
j=1 ωjV

′>
j σ

−1V ′j∑J
j=1 ωj(RX

′
j)
>σ−1(RX ′j)

) 1
2

, (13)

R? = argmin
R

J∑
j=1

(ωj‖V ′j − ρ?RX ′j‖2σ), (14)

T ? =Ṽ − ρ?R?X̃, (15)

σ? =
1

J

J∑
j=1

ωj(V
′
j − ρ?R?X ′j)(V

′
j − ρ?R?X ′j)

>, (16)

s? =

 J∑
j=1

ωjU
>
j σ

?−1U + κΛ−1

−1

 J∑
j=1

ωjU
>
j σ

?−1(ρ?R?Xj + T ? −M j)

 , (17)

where X ′j ,V
′
j , X̃, Ṽ are computed with:

X ′j = Xj − X̃, X̃ =

∑J
j=1 ωjXj∑N
j=1 ωj

, (18)

V ′j = V j − Ṽ , Ṽ =

∑J
j=1 ωjV j∑N
j=1 ωj

(19)

V j = Ujs
? +M j . (20)

The ECM procedure is summarized in Algorithm 1.

3.3 Dynamic face deformation inference

We now describe a dynamic model for estimating a

time-varying deformable face. Let Y 1:t (1 : t is a short-

hand for 1, 2, . . . , t) be the sequence of frontalized land-

marks obtained with Algorithm 1, where Y t ∈ R3J is

the vector of frontalized landmarks at t. For the sake of

clarity, we regroup (3), (4) and (5):

V t = WSt + F t, (21)

Y t = V t +Dt, (22)

Y tj = ρtRtXtj + T t, j ∈ {1 . . . J}, (23)

We assume that the sequences S1:t and V 1:t are

Markovian stochastic processes, each one with its own

dynamic regime and interconnected via (21). Moreover,

V 1:t and Y 1:t are interconnected via (22). The graph-

ical model shown on Figure 3 describes the proposed

doubly-latent LDS (DL-LDS). Probabilistically, this sys-

tem can be described with the following conditional dis-

tributions:

p(St|St−1) = N (St;St−1,ΓS), (24)

p(V t|V t−1,St) = N (V t;αV t−1 + (1− α)WSt,ΓV ),

(25)

p(Y t|V t) = N (Y t;V t,Σt), (26)

where ΓS ∈ R(K+1)×(K+1), ΓV ∈ R3J×3J , Σt ∈ R3J×3J

are covariance matrices, and where Σt = IJ×J ⊗ σt
is obtained from (16) (⊗ denotes the Kronecker prod-

uct). The main difference between standard LDSs and

the proposed DL-LDS resides in the fact that there are

two interconnected latent variables, having their own

dynamical regimes. Consequently, the transition prob-

ability of V t, (25) is conditioned both by V t−1 and by

St. The scalar α ∈ [0, 1] weights the relative importance

of the vertex dynamics and of the vertex reconstruction

from the current shape embedding.

We now show that the above DL-LDS can be cast

into a standard LDS, i.e. the Kalman filter. Let the

latent variable Z = [S;V ] ∈ RK+1+3J be the concate-

nation of the two latent variables. In the particular case

of our graphical model, we have:

p(Zt|Zt−1) = p(St,V t|St−1,V t−1)

= p(V t|St,V t−1) p(St|St−1), (27)

where the pdfs on the second row are given by (24) and

(25). Let p(Zt|Zt−1) = N (Zt;µt,Γ). By taking the

logarithm of both sides of (27) and by identifying the
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quadratic and linear terms, we obtain:

µt = ΓAZt−1 (28)

Γ−1 =

(
Γ−1
S + (1− α)2W>Γ−1

V W −(1− α)W>Γ−1
V

−(1− α)Γ−1
V W Γ−1

V

)
(29)

A =

(
Γ−1
S −α(1− α)W>Γ−1

V

0 αΓ−1
V

)
(30)

To summarize, (24), (25) and (26) can be rewritten as:

p(Zt|Zt−1) = N (Zt; ΓAZt−1,Γ) (31)

p(Y t|Zt) = N (Y t; CZt,Σt), (32)

where matrix C ∈ R3J×(K+1+3J) projects the concate-

nated latent-variable space onto the space of observed

variables. Similarly, matrix C ∈ RK×(K+1+3J) projects

the concatenated latent-variable space onto the space

of the shape embedding. These two matrices write:

C =
(
03J×(K+1) I3J×3J

)
(33)

C =
(
IK×K 0(3J+1)×K

)
(34)

We now follow the standard Bayesian derivation of the

Kalman filter. For this purpose, we need to evaluate the

following posterior and prior distributions:

p(Zt|Y 1:t) = N (Zt;νt,Ψt), (35)

p(Z1) = N (Z1;ν1,Ψ1), (36)

where νt ∈ RK+1+3N and Ψt ∈ R(K+1+3N)×(K+1+3N)

are the mean and covariance, respectively. Applying the

standard derivation of an LDS we have:

p(Zt|Y 1:t) p(Y t|Y 1:t−1) = p(Y t|CZt) p(Zt|Y 1:t−1),

(37)

as well as the marginalization:

p(Zt|Y 1:t−1) =

∫
p(Zt|Zt−1)p(Zt−1|Y 1:t−1)dZt−1.

(38)

The integral can then be evaluated making use of the

results of Bishop (2006):∫
N (Zt;ΓAZt−1,Γ)N (Zt−1;νt−1,Ψt−1)dZt−1

= N (Zt; ΓAνt−1,Pt−1) (39)

with : Pt−1 = ΓAΨt−1A
>Γ> + Γ (40)

We can now write (37) as:

N (Zt;νt,Ψt) p(Y t|Y 1:t−1) (41)

= N (Y t; CZt,Σt) N (Zt; ΓAνt−1,Pt−1),

from which we obtain the following recursive formulas:

νt = ΓAνt−1 + Kt(Y t −CΓAνt−1) (42)

Ψt = (I−KtC)Pt−1 (43)

Kt = Pt−1C
>(CPt−1C

> + Σt)
−1 (44)

p(Y t|Y 1:t−1) = N (Y t; CΓAνt−1,CPt−1C
> + Σt)

(45)

In order to initialize the above recursion, one needs

to provide the mean and covariance of the prior distri-

bution, ν1 and Ψ1, as well as the covariances ΓS and

ΓV associated with the dynamics of S and of V , respec-

tively, i.e. (24) and (25). Let S1 be the shape embedding

at t = 1, which is provided by Algorithm 1. The face

vector of vertex coordinates is therefore estimated with

V 1 = WS1. We have:

ν1 =

(
S1

V 1

)
, Ψ1 = I, P1 = I. (46)

Algorithm 2 describes an implementation of the pro-

posed doubly-latent LDS combined with the robust es-

timation of the rigid transformation required by face

frontalization. The output of Algorithm 2 is a temporal

sequence of estimated embedding and vertices:

ŝt = Cνt t ∈ {1 . . . T}, (47)

V̂ t = Cνt t ∈ {1 . . . T}. (48)

Algorithm 2: Dynamic face frontalization

(DFF).

Data: Temporal sequence of input landmark
coordinates X1:T = (X1 . . .XT ), with
Xt = (Xt1 . . .XtJ ), 3D shape reconstruction
matrix U and mean shape M , covariance
matrices ΓS , ΓV and scalar α.

Initialization: Use Algorithm 1 to Initialize the
DL-LDS parameters ν1 and Ψ1 with (46);

while t = 2 . . . T do

Rigid-pose: Use Algorithm 1 to compute Y t;
Evaluate Σt = IJ×J ⊗ σ?

t ;
DL-LDS-recursion: Apply the recursive
formulas (40), (42), (43) and (44) to compute
parameters νt,Ψt and the gain matrix Kt;

Evaluate st, V t with (47), (48);

end
Result: Temporal sequence of shape embedding ŝ1:T ,

shape vertices V̂ 1:T , and covariances Ψ1:T .
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3.4 Face warping

A frontal view of the face is computed in the following

way. For convenience, the temporal index t is dropped.

A frontal 3D shape is first computed with (3). The

points V 1:N are the vertices of a 3D triangulated mesh

and therefore the projection of this mesh onto the frontal

image If form a 2D triangulated mesh; assuming ortho-

graphic projection, the image coordinates of a vertex

V n are (Vn1, Vn2). Let k1, k2 and k3 be the vertex in-

dexes of a mesh triangle. We now compute the barycen-

tric coordinates, (β1, β2, β3) ∈ R3 of a pixel (a1, a2) ∈
N2 that lies inside that triangle, i.e. 0 ≤ β1, β2, β3 ≤ 1.

These barycentric coordinates correspond to the solu-

tion of the following set of linear equations:(
a1

a2

)
= β1

(
Vk11

Vk12

)
+ β2

(
Vk21

Vk22

)
+ β3

(
Vk31

Vk32

)
(49)

1 = β1 + β2 + β3 (50)

Once the barycentric coordinates are computed, the

depth A3 ∈ R associated with pixel (a1 a2)> is com-

puted by linear interpolation, namely:

A3 = β1Vk13 + β2Vk23 + β3Vk33 (51)

The above procedure is repeated for all the triangles

and for all the points inside each triangle, thus obtain-

ing a frontal dense depth map for each face pixel. Let

A = (a1 a2 A3)> be the current point of the frontal

dense depth map thus obtained.

The final face frontalization step consists of warp-

ing the face’s pixel colors from the input-image Ip onto

a synthesized frontal image If . The rigid transforma-

tion that maps the 3D face, from a frontal centered

coordinate frame back onto the input view, is the in-

verse of the pose, namely ρ′ = ρ−1, R′ = R>, and

T ′ = −ρ−1R>T . The dense depth map of the face can

therefore be mapped back withB1

B2

B3

 = ρ′R′

a1

a2

A3

+ T ′ (52)

Assuming scaled orthographic projection, the 2D

pixel location (b1, b2) ∈ Ip is computed from the real-

valued coordinates (b1, b2) = ([B1], [B2]), where [·] is

the round operator. Because of self occlusions and of

quantization, (52) maps several points, A1:Q, at the

same pixel location, but with different depth values

(b1, b2, B
1:Q
3 ). Notice that only the depth-map point

with the smallest depth value should visible in the in-

put image. Consequently, vertices that are not visible

Fig. 4: When an object is rotated to appear frontal,

some of its vertices have no associated photometric

information in the synthesized frontal image, because

they are not visible in the input image. In this exam-

ple, vertices 1 and 2 are both visible in the frontalized

image, but only 1 is visible in the input image. Because

of quantization noise, the one-ring neighbors of 1, 1a

and 1b, lie on the same line of sight as 1. We disregard

this quantization effect and mark 1 as visible.

in the input image don’t have any photometric infor-

mation associated with them and hence, they give rise

to blank areas in the frontalized image. The final face

frontalization step consists of synthesizing a frontal im-

age:

If (a1, a2) =

{
Ip(b1, b2) if B3 = minq{Bq3}Qq=1

∅ otherwise,
(53)

where ∅means that there is no photometric information

available with that pixel. This is illustrated on Figure 4.

4 Implementation details

All the computations inside Algorithm 1 are in closed-

form, with the notable exception of the estimation of

the rotation matrix. The latter is parameterized with

a unit quaternion Horn (1987), which allows one to re-

duce the number of rotation parameters, from nine to

four, and to express the orthogonality constraints inside

the rotation matrix in a much simpler way. The min-

imization (14) is carried out using a sequential least

squares programming (SLSQP) solver2 in combination

with a root-finding software package Kraft (1988). The

SLSQP minimizer found at the previous EM iteration

is used to initialize the current EM iteration. At the

start of EM, the closed-form method of Horn (1987) is

used to initialize the rotation.

2 https://docs.scipy.org/doc/scipy/reference/optimize.

html

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
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Rotation Scale Translation

Fig. 5: The root mean-square error as a function of the percentage of outliers (i.e. landmark localization errors)

averaged over 500 trials.

Algorithm 2 uses Algorithm 1 for intialization at

t = 1. Then, at the following time steps, Algorithm 1 is

used to compute the frontalized landmarks, which are

then used to recursively estimate the parameters of the

posterior (35) and the Kalman gain matrix (44). Note

however, that the M-non-rigid-step of Algorithm 1 is

not necessary because the shape embedding s is treated

as a Gaussian variable. Instead, the rigid-pose step of

Algorithm 2 uses the shape parameters evaluated at

the previous time step. The value of α was empirically

estimated and set to 0.06 in all the experiments. The co-

variance matrices ΓS and ΓV were experimentally eval-

uated from the results obtained with Algorithm 1 on a

large dataset of faces.

In all the experiments we used the 3DFA method

of Bulat and Tzimiropoulos (2016), as already men-

tioned in Section 2. 3DFA predicts J = 68 landmarks

that may be prone to localization errors, i.e. outliers, in
particular for non-frontal faces. We conducted a simu-

lated experiment to show the effectiveness of the Stu-

dent’s t-distribution in the presence of outliers caused

by 3DFA. For this purpose we considered a set of pre-

dicted 3D landmarks and we randomly simulated 500

rigid transformations. We added different noise types to

the landmarks, as follows. For each trial we randomly

split the landmarks into an inlier set and an outlier

set. The inliers are corrupted by noise drawn from an

anisotropic Gaussian distribution with a total variance

λ = 0.0025 (the landmark coordinates are normalized

to lie in the interval [0, 1]). The outlier noise is drawn

from a uniform distribution whose volume is 1.53. We

tested the following distributions: an isotropic Gaussian

distribution (Horn), a full-covariance Gaussian distri-

bution (Gen-Horn), a mixture distribution with a Gaus-

sian component and a uniform component (GUM-EM),

and the generalized Student’s t-distribution used in the

paper (GStudent-EM). Horn is named after the author

of the well-known closed-form solution for estimating

scale, rotation and translation between two 3D point

sets Horn (1987). The plots of Figure 5 display the root

mean-square error (RMSE) over 500 trials and for an

increasing percentage of outliers (from 0% to 60%).

The proposed method also requires the parameters

of an already trained deformable shape model, namely

U,M in (2). For this purpose we combined two pub-

licly available face models, Basel Shape Model (BSM)

Paysan et al (2009) and Facewarehouse Cao et al (2014).

BFM Paysan et al (2009) consists of a training set

MI = {M I
m}m=MI

m=1 of M I = 200 face scans of different

identities. Each face in the dataset is frontally viewed

and with a neutral expression. Each scan consists of

a triangulated mesh composed of N = 53490 vertices.

Both the vertices and the edges of the meshes are reg-

istered. Facewarehouse Cao et al (2014) consists of a

training set ME = {ME
m}m=ME

m=1 of ME = 7050 face

scans that correspond to 150 identities and 47 expres-
sions, with the same number of vertices N as BFM. The

subjects were instructed to look frontally to the camera

and to mimic 19 facial expressions as well as a neutral

expression, from which 47 expressions were computed

by linear blending. It should be noted that the 19 ex-

pressions correspond to emotions, e.g., mouth stretch,

smile, anger, sadness, etc.

The identity and expression embeddings, sI and sE ,

are of dimension KI = 199 and KE = 29, respectively.

Therefore, a face mesh V is reconstructed from a linear

combination of identity and expression:

V = UIsI +M
I

+ UEsE +M
E

(54)

The above formula can be plugged into (11) whose min-

imization over sI and sE allows one to estimate the

identity and expression embeddings of V .

In this paper we are interested in processing a face

sequence. Since the identity remains unchanged during
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a sequence, the deformable face model just described

is particularly interesting. Indeed, the identity embed-

ding is estimating only once, at t = 1, which yields the

following formulas to be used for the subsequent faces,

i.e. for t = 2 . . . T :

U = UE (55)

M = UIsI1 +M
I

+M
E

(56)

The processing time for a 256× 256 face image is of

1.11 seconds on an Intel(R), Xeon(R) W-2145, 3.70GHz

CPU equipped with a Quadro RTX 4000 GPU. This

time decomposes as follows: 3D landmark extraction

(0.48 s), pose estimation (0.02 s), model fitting (0.23 s),

depth map interpolation and face warping (0.38 s).

5 Face frontalization benchmark

We now evaluate and benchmark the proposed face

frontalization formulation based on a score that mea-

sures the correlation between a frontalized face and a

ground-truth frontal image of the same face. For this

purpose we use a dataset that contains pairs of frontal

and profile videos of speaking participants for a large

number of subjects. The evaluation consists of comput-

ing a metric between an image obtained by face frontal-

ization of a profile view of a speaker, with an image

containing a frontally-viewed face of the same speaker.

It is important that the profile and frontal images are

recorded with synchronized cameras in order to capture

the same facial expression. Consequently, the proposed

evaluation is based on image-to-image comparison. Sev-

eral metrics were developed in the past for comparing

two images, e.g. feature-based and pixel-based metrics.

In this work we use the ZNCC score between two image

regions, a measure that has successfully been used for

stereo matching, e.g. Sun (2002). ZNCC is invariant to

differences in brightness and contrast between the two

images, due to the normalization with respect to mean

and standard deviation.

Let Rf (h, v) ⊂ If be a region of size H × V whose

center coincides with pixel location (h, v) of a frontal-

ized image If . Similarly, let Rt(h, v) ⊂ It be a region

of the same size and whose center coincides with pixel

location (h, v) of a ground-truth image It. The ZNCC

score between these two regions writes:

ZNCC(h, v, δh′, δv′) = (57)

max
δh,δv

{
Cov [Rf (h, v), Rt(h+ δh, v + δv)]

Var [Rf (h, v)]1/2Var [Rt(h+ δh, v + δv)]1/2

}
,

where Cov [·, ·] is the centered covariance between the

two regions, Var [·] is the centered variance of a region,

δh and δv are horizontal and vertical shifts, and δh′ and

δv′ are the horizontal and vertical shifts that maximize

the ZNCC score. ZNCC lies in the interval [0, 1].

In order to evaluate the performance of the proposed

frontalization method and to compare it with state-of-

the-art methods, we used a publicly available dataset,

namely the OuluVS2 dataset Anina et al (2015). This

dataset targets the understanding of speech perception,

more precisely, the analysis of non-rigid lip motions that

are associated with speech production. The dataset was

recorded in an office with ordinary (artificial and nat-

ural) lighting conditions. The recording setup consists

of five synchronized cameras (2 MP, 30 FPS) placed at

different points of view and with different orientations:

0◦, 30◦, 45◦, 60◦, 90◦.

The dataset contains 5 × 106 videos recorded with

53 participants. Each participant was instructed to read

loudly several text sequences displayed on a computer

monitor placed slightly to the left and behind the 0◦

(frontal) camera. The displayed text consists of digit

sequences, e.g. “one, seven, three, zero, two, nine”, of

phrases, e.g. “thank you”, “have a good time”, and “you

are welcome”, as well as of sequences from the TIMIT

dataset, e.g. “agricultural products are unevenly dis-

tributed”. While participants were asked to keep their

heads still, natural uncontrolled head movements and

body position changes were inevitable. As a consequence

the actual head pose varies from one participant to an-

other and there is no exact match between the head

and camera orientations.

In practice, we evaluated the performance of the

proposed method and we compared it with four state-

of-the-art methods for which the code is publicly avail-

able, Hassner et al (2015); Banerjee et al (2018); Zhou

et al (2020); Yin et al (2020). We applied the frontaliza-

tion to images extracted from the videos recorded with

the 30◦ camera (Ip) and compared the results with the

“ground-truth”, namely the corresponding images ex-

Method Principle ZNCC
Hassner et al 2D-to-3D fitting + symmetry 0.771
Banerjee et al 2D-to-3D fitting + symmetry 0.749
Zhou et al 2D-to-3D fitting + GAN 0.793
Yin et al 2D-to-2D mapping using GAN 0.769
Ma et al 2D-to-2D affine fitting 0.760
Kang et al 3D-to-3D robust fitting 0.831
Proposed 3D-to-3D robust/dynamic inference 0.839

Table 1: Mean ZNCC scores for all 53 participants of

the OuluVS2 dataset. ZNCC lies in the interval [0, 1].
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(a) Faces recorded with the 30◦ camera

(b) Faces recorded with the 0◦ camera

(c) Proposed (self-occluded regions are displayed in white)

(d) Hassner et al (2015)

(e) Banerjee et al (2018)

(f) Yin et al (2020)

(g) Zhou et al (2020)

Fig. 6: Frontalization examples for participants #02 (left) and #21 (right) from the OuluVS2 dataset. The ZNCC

scores correspond to the mouth bounding boxes shown in red. The estimated horizontal head orientation (yaw

angle) is 24.9◦ and 40.6◦ for participant #2 and #21, respectively.

tracted from the videos recorded with the 0◦ camera

(It). Notice that videos recorded with higher viewing

angles, i.e. 45◦, 60◦ and 90◦, can be hardly exploited

by a frontalization algorithm because half of the face

is occluded. For each frontalized image If we extract

the mouth region Rf and we search in the associated

ground-truth image It for the best-matching region Rt.

This provides a ZNCC score (57) for each query image

Ip. Notice that (57) only cares about the horizontal

and vertical shifts in the image plane and assumes that

the frontalized face and the corresponding ground-truth

frontal face share the same scale. In practice, differ-

ent frontalization algorithms output faces at different

scales. For this reason and for the sake of fairness, prior

to applying (57), we extract facial landmarks from both

the frontalized and ground-truth faces and we use a sub-
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Part. Yaw Hassner et al Banerjee et al Zhou et al Yin et al Kang et al Proposed
#31 19.1 0.905 0.856 0.822 0.875 0.927 0.925
#01 23.5 0.915 0.893 0.884 0.921 0.909 0.918
#02 24.9 0.888 0.878 0.929 0.881 0.956 0.952
#10 29.0 0.805 0.812 0.873 0.792 0.812 0.829
#23 30.0 0.810 0.857 0.819 0.817 0.847 0.843
#27 32.9 0.685 0.852 0.824 0.772 0.787 0.805
#19 37.8 0.752 0.650 0.662 0.677 0.755 0.755

#12 38.5 0.731 0.713 0.755 0.683 0.770 0.766
#21 40.6 0.632 0.743 0.653 0.673 0.766 0.751

Mean 0.791 0.801 0.802 0.787 0.836 0.838

Table 2: ZNCC scores for nine participants as a function of estimated yaw angle (in degrees) that corresponds

to the horizontal head orientation computed with the proposed 3D head-pose estimator. For each participant, the

best scores are in bold and the second best are in slanted bold.

set of this set of landmarks to estimate the scale factor

between the two faces. We do this for all the frontaliza-

tion methods used in the comparison.

We used the 106 video pairs recorded with the 30◦

and 0◦ cameras, respectively, associated with the 53

participants of the OuluVS2 dataset. Each video con-

tains 160 images, hence there are 106 × 160 = 16, 900

image pairs in our benchmark. The mean ZNCC scores

obtained with four methods, with Kang et al (2021),

and with the proposed extension are shown in Table 1.

We noticed that there were important discrepancies in

method performance across participants. In order to

better understand this phenomenon, we computed the

mean ZNCC scores for nine participants and displayed

these means as a function of the yaw angle, i.e. hor-

izontal head orientation estimated with the proposed

method, Table 2. One may notice that there is a wide

range of yaw angles, from 19◦ to 40◦, and that the
performance gracefully decreases as the yaw angle in-

creases. The proposed method yields results that are

more consistent than the other methods, as the yaw

angle increases.

The best performing methods are Kang et al (2021)

and its dynamic extension. One remarks that the im-

provement of the dynamic model over Kang et al (2021)

is minor, and this for the following reason. The dynamic

FF uses 68 observed landmarks in order to update the

deformable model. However the latter is composed of

thousands of vertices: consequently, the vast majority

of these vertices are not observed. This means that the

innovation term in (42) affects a handful of the shape’s

vertices.

Examples of face frontalization obtained with our

method and with four other methods, Hassner et al

(2015); Banerjee et al (2018); Zhou et al (2020); Yin

et al (2020), are shown on Figure 6: (a) input mages

recorded with the 30◦ camera, (b) ground-truth images

recorded with the 0◦ camera, (c)-(g) frontalization re-

sults. The ZNCC correlation scores correspond to the

mouth region, shown in red. As already mentioned,

both Hassner et al (2015) and Banerjee et al (2018)

enforce facial symmetry as a post-processing frontal-

ization step to compensate for the gaps caused by self

occlusions. It is interesting to note that the more re-

cent GAN-based methods, Zhou et al (2020); Yin et al

(2020), yield results comparable with the traditional

computer vision methods.

6 Lip reading benchmark

We also evaluated the ability of our method to improve

the performance of lip reading and we compared it with

other methods. For this purpose, we considered an iso-

lated word recognition (IWR) task. The LRW (lip read-

ing in the wild) dataset Chung and Zisserman (2016)

consists of 500, 000 videos of 500 English words ut-

tered by 1, 000 different speakers. Each video contains

29 frames and each target word is surrounded by con-

text words. There are large inter-speaker variations in

terms of head motions. To date, the best performing

method for this 500-IWR task is based on the temporal

convolutional network (TCN) model of Martinez et al

(2020); Ma et al (2021a,b) which achieves a word clas-

sification score (WCS) of 87%. This lip-reading model

and its variants use their own FF method which esti-

mates a 3D affine mapping between the input face and

a generic face model, Martinez et al (2020). Their FF

is used as a preprocessing stage for training, validation

and test. The authors don’t provide a detailed descrip-

tion of the frontalization method that they use.

We performed the following 500-IWR experiments.

In the first experiment we used the lip-reading model

provided by the publicly available software packages
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Training
Testing

Hassner et al Zhou et al Yin et al Ma et al Proposed

Training with Ma et al (2021a) 60 59 20 87 82
Fine tuning with Zhou et al (2020) 60 72 20 84 80
Fine tuning with proposed 64 66 24 88 85

Table 3: Word classification scores (WCSs) in %. First row: The lip-reading model is trained with the built-in FF

of Ma et al (2021a); Second row: the lip-reading model is fine tuned with the FF of Zhou et al (2020); Third row:

The lip-reading model is fine tuned with the proposed FF method. For testing, we preprocessed the test images

with the FF methods included in the comparison.

of Ma et al (2021a). This model is trained with their

FF. In the second experiment we preprocessed a subset

of the training dataset with the proposed dynamic FF

method and we fine tuned the lip-reading model of Ma

et al (2021a) on the 500-IWR task. For the purpose of

fine tuning, for each one of the 500 words, we used 200

videos for training and 20 videos for validation, hence

100,000 training videos and 10,000 validation videos.

Finally, we repeated the second experiment using Zhou

et al (2020) for FF. In order to test these three models,

we used the entire test dataset of LRW, namely 20 test

videos for each one of the 500 words. The test videos

were then preprocessed with each one of the FF models

included in the benchmark: Table 3 shows the results

obtained with 3×5 configurations corresponding to dif-

ferent train/test combinations. The proposed/Ma et al

combination yields the best results: for this train/test

combination, the WCS score is slightly increased, from

87 to 88, while the Zhou et al/Ma et al combination

decreases the WCS score from 87 to 84.

The proposed frontalization model preserves facial

expressions, hence the statistical properties of the train-

ing dataset are preserved. On the contrary, the GAN-

based method of Zhou et al (2020) doesn’t enjoy this

Euclidean invariance. Consequently, the statistical dis-

tribution of the data used for fine tuning is modified.

The model tends to overfit to the new distribution thus

leading to a performance drop, as if the finely tuned

model forgets what it was learned before. This phe-

nomenon is referred to as catastrophic learning Mc-

Closkey and Cohen (1989), and is extensively investi-

gated in continual learning.

7 Audio-visual speech enhancement

In this section we report experiments with using the

proposed method in conjunction with AVSE. We start

by summarizing the AVSE method based on a condi-

tional variational auto-encoder (VAE) model Sadeghi

et al (2020), which we denote AV-CVAE. The whole

framework consists of two steps: training and testing

(inference). At training, a prior distribution of clean

speech is learned from the concatenation of a clean

audio signal with an embedding of the associated lip

images. At inference, clean speech is extracted from a

noisy-speech signal and from a sequence of lip images:

the learned prior distribution is combined with a noise

model, whose parameters together with the parameters

of the clean speech that were previously learned, are

estimated following a variational expectation-maximi-

zation (VEM) procedure.

Given a dataset of complex-valued short-time Fourier

transform (STFT) frames of a clean-speech signal, de-

noted st ∈ CF , and the corresponding lip embedding

obtained from a lip bounding-box cropped from the

image of a speaker face, denoted vt ∈ RM , a latent-

variable generative model is trained using the VAE frame-

work. This involves defining a parametric distribution

for the likelihood pΘ(st|zt,vt), and a parametric prior

distribution for the latent code zt ∈ RL, L � F ,

pΓ(zt|vt). These distributions are implemented by some

deep neural network architectures, whose parameters,

{Θ,Γ}, are learned following an amortized variational

inference Kingma and Welling (2014), where an encoder

network is introduced to approximate the intractable

posterior distribution of the latent codes. Fig. 7 illus-

trates the AV-CVAE architecture. The main difference

between this architecture and the one proposed in Sadeghi

et al (2020); Sadeghi and Alameda-Pineda (2021) is the

presence of a ResNet backbone from a pretrained model

specialized for lip reading Martinez et al (2020).

With the parametric prior distribution for clean speech

being learned, we consider an observation model as ot =

st +bt, in which ot ∈ CF and bt ∈ CF denote observed

speech and noise, respectively. Considering an NMF-

based model for noise, and combining it with the speech

model, the set of NMF parameters are then learned

by a variational inference procedure. Once learned, the

clean speech estimate ŝt is obtained via a probabilistic

Wiener filtering. More details can be found in Sadeghi

et al (2020).
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performance by using a more powerful feature extractor.

The rest of the paper is organized as follows. Section 2
introduces VAE architecture for SE experiments. In sec-
tion 3 the state-of-the-art face frontalization method for AV-
processing is presented. Section 4 presents the protocol for
our experiments and discusses the results.

2. AUDIO-VISUAL VARIATIONAL AUTOENCODER

In this section, we briefly review the principles of VAE-
based AVSE. As discussed in the previous section, the whole
framework consists of two main steps: training and testing
(inference). In the first step, a prior distribution for clean
speech is learned from clean audiovisual data. Then, in
the second step, the learned prior distribution is combined
with a parametric model for noise, whose parameters as well
as the clean speech are estimated following a variational
expectation-maximization method.

Learning speech prior distribution Given a collection of
(clean) complex-valued speech short-time Fourier transform
(STFT) time frames, denoted st 2 CF , and the correspond-
ing embedding for the (clean and frontal) image of the speaker
lips at frame t, denoted vt 2 RM , a latent variable gener-
ative model is trained using the VAE framework. This in-
volves defining a parametric distribution for the likelihood
p⇥(st|zt, vt), and a parametric prior distribution for the la-
tent code zt 2 RL, L ⌧ F , i.e., p�(zt|vt). These distribu-
tions are implemented by some deep neural network architec-
tures, whose parameters, i.e., {⇥,�}, are trained following an
amortized variational inference [11].

Speech enhancement With the parametric prior distribu-
tion for clean speech being learned, one considers an observa-
tion model as xt = st + bt, in which bt 2 CF and xt 2 CF

denote, respectively observed speech and noise. Consider-
ing an NMF-based model for noise, and combining with the
speech model, the set of NMF parameters are then learned
by some variational inference procedure. Once learned, the
clean speech estimate is obtained via a probabilistic Wiener
filtering. More details can be found in [8].

3. ROBUST FACE FRONTALIZATION

The core idea of the robust face frontalization (RFF) method
that we recently proposed, [27], is to estimate the 3D pose
(scale s, rotation R and translation t) and the 3D shape of
an input face viewed from an arbitrary angle, and to warp it
onto a frontal view. The main feature of this method is to
perform pose and shape estimation sequentially rather than

simultaneously. The pose is estimated by rigidly aligning a
set of observed 3D facial landmarks extracted from the input,
X1:J = {Xj}J

j=1 ⇢ R3, with a set of model 3D landmarks
associated with a neutral and frontal view of a mean face,
Z1:J = {Zj}J

j=1 ⇢ R3. The shape is estimated by fitting
a 3D morphable model (3DMM) to the frontalized 3D land-
marks {Y j}J

j=1, with Y j = sRXj + t.

Because the landmark locations are inherently affected
by detection errors as well as by non-rigid facial deforma-
tions, it is suitable to use a robust rigid-parameter estimation
technique. For this purpose, we assume that the errors be-
tween the model and frontalized landmarks are samples of a
random variable drawn from a robust probability distribution
function (pdf), namely the Student-t distribution – a heavy
tailed distribution that is able to deal with both Gaussian (in-
liers) and non-Gaussian (outliers) noise in the data, by assign-
ing a weight to each observed landmark. The corresponding
expectation-maximization (EM) algorithm alternates between
the estimation of (i) the weight posteriors, (ii) the pdf param-
eters and (iii) the rigid parameters. At convergence, EM as-
signs high posterior probabilities to observed-to-model land-
mark pairs that are linked by a rigid transformation and low
probabilities to landmark pairs that are affected by detection
errors or by non-rigid facial deformations.

The next step consists of fitting a deformable 3D shape
model to the frontalized landmarks. We use a linear deforma-
tion model which consists of a 3D mesh whose vertices are
parameterized by a low-dimensional embedding. Once these
parameters are estimated, a frontal dense depth map of the
face is built, such that the texture associated with the input
face can be warped onto the frontalized one.

To be done: Briefly describe here the implementation
details, 3D landmakrs, 3D rotation, Basel model, etc.

4. EXPERIMENTS

Dataset For training the VAE-based models, we opt for the
MEAD [28] which contains large-scale emotional talking-
face videos. For all 46 publicly available participants, there
are recordings of 8 different emotions at 3 different intensity
levels and 7 camera angles. Many participants have natural
head motions, making the frontalization necessary to get a
clean visual data. Among all videos, we select the videos of
all emotion categories taken at the frontal view and at the level
3 (the highest) of emotion intensity. We believe that the high-
est emotion intensity can trigger a clearer head movement
and more exaggerated lip motions, allowing the difference
between frontalization methods to be more distinguishable.

Frontalization methods We prepared the visual data by
different frontalization methods to compare the effect of re-
moving the head movements. We consider in total 4 different

performance by using a more powerful feature extractor.

The rest of the paper is organized as follows. Section 2
introduces VAE architecture for SE experiments. In sec-
tion 3 the state-of-the-art face frontalization method for AV-
processing is presented. Section 4 presents the protocol for
our experiments and discusses the results.
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Fig. 7: AV-CVAE and ResNet-AV-CVAE architectures used in our speech enhancement experiments.

Measure STOI [0, 1] ↑ PESQ [−0.5, 4.5] ↑ SI-SDR (dB) ↑
SNR (dB) -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Noisy audio input 0.40 0.53 0.66 0.78 0.86 0.90 1.24 1.67 2.05 2.42 -15.92 -10.62 -5.44 -0.40 4.60
A-VAE Leglaive et al 0.41 0.56 0.70 0.79 0.85 0.93 1.51 2.02 2.43 2.73 -7.01 -0.29 5.08 9.41 12.74
AV-CVAE Sadeghi et al 0.42 0.57 0.69 0.79 0.84 1.02 1.56 2.06 2.42 2.73 -6.96 -0.04 5.01 9.06 12.25
Res-AV-CVAE-W/O-FF 0.41 0.55 0.67 0.77 0.83 1.02 1.53 1.99 2.35 2.70 -7.84 -0.60 4.68 8.81 12.30
Res-AV-CVAE-DA-ST-GAN Zhou et al 0.40 0.55 0.68 0.78 0.84 1.01 1.54 2.01 2.39 2.72 -7.92 -1.14 4.13 9.27 11.77
Res-AV-CVAE-DA-GAN Yin et al 0.39 0.55 0.66 0.68 0.72 0.76 1.42 1.87 1.66 1.96 -9.08 -0.45 3.88 4.55 5.23
Res-AV-CVAE-RFF Kang et al 0.43 0.58 0.71 0.79 0.85 1.12 1.69 2.13 2.48 2.77 -6.30 0.10 5.24 9.30 12.60
Res-AV-CVAE-DFF 0.43 0.60 0.73 0.79 0.85 1.13 1.71 2.20 2.48 2.77 -6.35 0.28 5.87 9.42 12.77

Table 4: Average STOI, PESQ, SI-SDR values.

All the experiments reported below use the MEAD

dataset Wang et al (2020) which contains short videos

of talking faces with large-scale facial expressions. For

all 46 publicly available participants, there are record-

ings of eight different emotions at three different in-

tensity levels and seven camera viewpoints. Many par-

ticipants have natural head motions, which challenges
state-of-the-art AVSE. Among all videos, we select the

videos of all emotion categories taken at the frontal view

and at the level 3 (the highest) of emotion intensity.

These high-intensity emotions are associated with large

head movements and exaggerated lip motions, thus al-

lowing to assess the effect of head movements on the

performance of speech enhancement. In total, there are

around 5 hours of videos for training, 0.7 hours for val-

idation and 0.7 hours for testing.

We process the input videos with four different FF

methods in order to compare their effectiveness of re-

moving head movements and hence of improving the

quality of the speech output: the GAN based methods

Zhou et al (2020) and Yin et al (2020), denoted ST-

GAN and DA-GAN, respectively, the method of Kang

et al (2021) that corresponds to Algorithm 1, denoted

RFF, and the dynamic method that corresponds to Al-

gorithm 2, denoted DFF. Additionally, we consider the

case of directly using the raw input without any form

of face frontalization, denoted W/O-FF. For all these

cases we crop the lip region, yielding 67×67 images,

which are then converted to gray scale and normalized

to facilitate the downstream processing.

We consider three speech enhancement pipelines,

all based on VAEs. The Audio-only VAE (A-VAE),

Leglaive et al (2018) has an encoder and a decoder

composed of fully-connected layers. The extracted au-

dio feature vector is of size F = 513 whereas the latent

space is of size L = 32. The AV-CVAE model Sadeghi

et al (2020) shares a similar encoder-decoder architec-

ture as A-VAE, with the additional fully-connected lay-

ers to encode the visual information. Furthermore, we

propose to use a ResNet backbone specially trained for

lip reading Martinez et al (2020) (shown in a dashed

box in Figure 7) for visual feature extraction. The back-

bone follows the standard design of ResNet-18 He et al

(2016) except for the first convolutional layer, which

is replaced by a 3D convolutional layer to incorporate

temporal information from neighbouring frames. This

variant is denoted as Res-AV-CVAE. In practice, the

dimension of the visual embedding is M = 128.

All the VAEs are trained in an end-to-end manner.

A-VAE is trained on audio data. AV-CVAE Sadeghi

et al (2020) is fine-tuned with the MEAD dataset, whereas

Res-AV-CVAE is trained from scratch using MEAD.
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Fig. 8: Performance comparison of A-VAE, AV-CVAE

and Res-AV-CVAE based on STOI (left) and PESQ

(right).

Note that the ResNet backbone is frozen without re-

quiring the gradients. Hence, it is a static feature ex-

tractor. We set 5e−5 as the learning rate for the fine-

tuning model and 1e−4 for the training from scratch.

The Adam optimizer was used with a batch size of 128.

We also applied early stopping with a patience of 10

epochs. Note that we trained and tested one model

with one specific lip preprocessing method at a time.

At test time, noise from the DEMAND dataset Thie-

mann et al (2013) is combined with the clean speech

to construct the audio input. There are five noise lev-

els for each type of noise, namely −10 dB, −5 dB,

0 dB, 5 dB and 10 dB. Three standard speech en-

hancement metrics are used for quantitative evalua-

tion: the scale-invariant signal-to-distortion ratio (SI-

SDR) Le Roux et al (2019), the short-time objective in-

telligibility (STOI) Taal et al (2011) and the perceptual

evaluation of speech quality (PESQ) Rix et al (2001).

SI-SDR is measured in decibels (dB), while STOI and

PESQ values are in the range [0, 1] and [−0.5, 4.5], re-

spectively (the higher the better).

We start with evaluating the impact of different

frontalization methods on AVSE performance, i.e. Ta-

ble 4, where the average scores for different levels of

noise (SNR) are presented. Selecting RFF and DFF –

the best-performing methods – as examples, we remark

that the difference between with and without frontal-

ization is significant. This confirms that the head mo-

tions interfere the processing of visual speech patterns.

In other words, separating the rigid head movements

from the non-rigid lip deformations allows the model

to learn a better clean speech model. Moreover, the

comparison between A-VAE and Res-AV-CVAE with

RFF/DFF further validates the contribution of the vi-

sual modality. In addition, DFF demonstrates a bet-

ter performance than RFF, especially in terms of the

speech intelligibility score STOI at high noise levels.

However, one should note that the VAE models used

in this paper do not incorporate the temporal dynam-

ics of the audio and visual data, and rather process

the data time frames independently. Using a dynamical

VAE model would lead to even higher performance gain

in DFF compared to RFF.

The choice of the face frontalization method is im-

portant. While RFF/DFF offers significant improve-

ments, ST-GAN yields a minor difference compared to

the case with head movements. Indeed, GAN-based im-

age generation models have no theoretical guarantee

for preserving the lip shape – they add some form of

visual noise, which neutralizes the gain of frontaliza-

tion. This explanation is also supported by the results

of DA-GAN: its performance is falling far behind the

other methods. As the results of ST-GAN are condi-

tioned on the transformation-based process, the model

possesses a prior knowledge about the frontalized face.

Moreover, the direct mapping from an arbitrary view-

point to a frontal view of DA-GAN introduces even

more dramatic modifications in the lip shape. Thus, the

model has more difficulties to learn the correct speech

patterns from lip movements.

We then compare the performance of different VAE

architectures in Figure 8, where the improvement of

scores are shown as a function of different levels of noise

(SNR). More precisely, the improvement refers to the

difference between the score obtained by using the raw

noisy speech and those obtained by using the enhanced

speech. First, it is remarkable to see that Res-AV-CVAE

significantly outperforms AV-CVAE, showing the gain

of using a more powerful feature extractor. Second, we

observe that with a noise level in the range [−5, 0] dB,

the Res-AV-CVAE model reaches an optimal stage (a

peak in the curve) for fusing the audio-visual data. That

is, with the noise level going higher (smaller SNR), the

audio would be too corrupted to be enhanced and the

visual contribution is significant. In contrast, with the

noise level going lower (higher SNR), the importance

of the visual data is decreasing and the already clean

speech becomes harder to be enhanced. While the supe-

rior performance of the Res-AV-CVAE models is more

significant at high noise levels, it is quite remarkable

to observe that Res-AV-CVAE-RFF performs almost

equally well as A-VAE for low noise levels. These exper-

iments confirm the complementary roles of the visual

and audio modalities for the task of speech enhance-

ment.

To give an insight on the impact of removing head

movements, Figure 2 shows the horizontal and vertical

displacements of a landmark located on the upper lip.

Both the vertical and horizontal trajectories of this lip

landmark are strongly affected by head motions. In the

light of this experiment, one may interpret the process

of separating rigid head movements and non-rigid lip
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movements, as a way of extracting clean visual-speech

information from the raw videos.

8 Conclusions

Shape as defined by Kendall (1989), is the geometric in-

formation that remains once an object has been normal-

ized with respect to rotation, scaling and translation.

The proposed face frontalization methodology follows

this definition and hence it guarantees that face geo-

metric information, i.e. non-rigid facial deformations, is

preserved. This stays in contrast with state-of-the-art

DNN-based frontalization methods that learn millions

of parameters without the theoretical guarantee that

they faithfully preserve facial deformations.

We conducted several experiments in order to ana-

lyze the effect of frontalization onto visual speech pro-

cessing, whose success critically relies on the analysis

of non-rigid mouth motions, e.g. lip reading. For this

purpose, we used three datasets, OuluVS2, LRW, and

MEAD.

We proposed an evaluation pipeline that consists of

measuring the ZNCC score between a frontalized face

and a frontal view of the same face. We compared our

method with four state-of-the-art methods that use var-

ious geometric and DNN models. This benchmark re-

veals that the proposed method performs better than

the other methods in preserving the shape of the mouth.

The LRW and MEAD datasets contain videos of

persons uttering speech. Unlike the OuluVS2 partic-

ipants, who keep their heads in a fixed position and

orientation, the LRW and MEAD participants perform

head motions – a natural human behavior. We com-

bined our frontalization method with two speech pro-

cessing tasks, lip reading and speech enhancement, and

we thoroughly analyzed its effect onto two scores: word

classification and speech intelligibility. These experi-

ments reveal that these scores are improved significantly

with respect with both classical geometric models and

GAN models.

It is interesting to remark that the proposed formu-

lation may well be viewed as a method for separating

rigid head motions from non-rigid facial expressions.

This is useful, not only for improving the performance

of visual speech, but for a number of other tasks that

involve the analysis of facial expressions in realistic sce-

narios.
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