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ABSTRACT
Active Magnetic Regenerator (AMR) refrigeration is an in-
novate technology, which can reduce energy consumption
and the depletion of the ozone layer. However, to develop a
commercially applicable design of the AMR model is still an
issue, because of the difficulty to find a configuration of the
AMR parameters, which are suitable for various applications
needs. In this work, we focus on the optimization method
for finding a common parameters of the AMR model in two
application modes: a magnetic refrigeration system and a
thermo-magnetic generator. This paper proposes a robust
optimisation tool, which ensures the scalability with respect
to the number of objectives and allows to easily set up differ-
ent optimisation experiments. A tool validation is presented.
It is expected that this tool can help to make a qualitative
jump in the development of AMR refrigeration.
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1 INTRODUCTION
Nowadays, the demand for cooling is increasing, due to
the climate change and universal problems. In this context,
for reducing the worldwide electricity consumption and di-
rect greenhouse gas emissions, Active Magnetic Regenerator
(AMR) refrigeration is a promising technology, which ap-
plies the phases of magnetization/demagnetization of solid
refrigerants - Magneto Caloric Materials (MCMs) [1].

Despite the promising researches, the AMR development
has two principle problems that prevent its commercial pro-
duction: (i) to simulate physical properties of different MCMs
in good qualitative agreement with the available experimental
data; (ii) to comprehensively tune many control and design
parameters of the AMR model, depending on their effect
on its performance. For overcoming these difficulties, related
researches apply optimization algorithms to the numerical
simulation models of MCMs [6] and AMR [4], [9]. The com-
mon challenge of the works aiming at optimizing the AMR
performance is to set up many optimization experiments,
where different number of objectives and decision variables
are required.

For improving optimization process of the AMR design,
we develop further the user-friendly tool presented in [6] and
integrate an “unified" algorithm in it. The term “unified"
is borrowed from [10] for describing the algorithms, which
ensure the scalability w.r.t. the number of objectives.We
scale the well-known many-objective Non-dominated Sorting
Genetic Algorithm III (NSGA-III) [3] down to solve single-
objective problems by the hybridization of the solutions of
NSGA-III with the solutions of Quantum Particle Swarm
Optimization (QPSO) algorithm [11], instead of modifying
the NSGA-III structure [10]. It allows NSGA-III to handle
very small population size in single-objective cases, which
is useful for optimizing time-consuming problems, like the
problems of the AMR design. To our best knowledge, this
work is the first attempt to apply hybridization to unified
optimization.

We contribute by making a step forward the further devel-
opment of AMR refrigeration for its commercial application
and a new insight about hybrid method, which is capable to
be employed for constituting scalable algorithms.

https://doi.org/10.1145/3520304.3529055
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2 MATERIALS AND METHODS
2.1 The Simulation Models
The AMR model, provided by Ubiblue Company, operates in
two application modes: the Magnetic Refrigeration System
(MRS) and the Thermo-Magnetic energy Generator (TMG).
In this case, the optimization problems of the AMR model are
formulated as the maximization of efficiency and/or power
density for the MRS and/or the TMG operating modes for
finding optimal control and design parameters of the AMR
model in both modes. From an optimization point of view,
the AMR model is considered as a continuous, black-box,
computationally intensive problem, where the numbers of
decision variables and objectives depend on current case
study.

Inside the AMR model, for reproducing physical prop-
erties of MCMs, we use a method based on the generalize
magnetic simulation model provided by the Crismat labora-
tory [6]. The optimization problems of reproducing physical
properties of MCMs are formulated as the minimization of
one/several differences between simulated and reference phys-
ical properties of MCMs for finding optimal parameters of
the magnetic simulation model. From an optimization point
of view, these problems can be considered as continuous,
computationally intensive, separable or partially separable
optimization problems, which can have from one to three
objectives.

2.2 Hybrid Unified Optimization Algorithm
Aiming at ensuring the scalability w.r.t. the number of ob-
jectives for time-consuming problems, we develop further the
idea of unified algorithm [10], by using a hybridization method
for scaling down a many-objective algorithm NSGA-III [3]
to single-objective optimization. The hybridization is used
to overcome difficulties of NSGA-III to solve single-objective
problems, which are explained by too small recommended
population size of NSGA-III for single objective optimization
and an absence of selection pressure [10].

The structure of the proposed algorithm, called QIU-NSA,
consists of three main modules: NSGA-III, the modified
QPSO and the fusion module (see Figure 1). At generation
C = 0, the algorithm starts in the fusion module with the
definition of the following parameters: (i) the dimension of
search space (3); (ii) the dimension of objective space (<); (iii)
the vectors of boundaries (lb, ub) for each decision variable;
(iv) the threshold of diversity (2;8<8C ) and (v) the total number
of generations ()<0G ). The diversity coefficient (238E) is set to
0. The termination criterion is defined as the total number of
generations. In the fusion module, the initial population PC=0

are created randomly according to the defined boundaries
(lb, ub) and evaluated. Then, the following steps are iterated
until the termination criterion is satisfied:

(1) Make Child Population: The parent population PC is
sent to NSGA-III and QPSO modules in order to pro-
duce the new child populations. Each module, NSGA-
III and QPSO, creates new set of solutions QC+1

#(��−� � �

and QC+1
&%($

according its original rules and returns
them into the fusion module.

(2) Uniform-based Random Selection: In the fusion mod-
ule, the populations QC+1

#(��−� � � and QC+1
&%($

are used to
select 4 solutions to the next population QC+1 by the
following rule:
if uniformly distributed random number U(0, 1) >

0.5, the solution of QC+1
&%($

is accepted, otherwise -
QC+1
#(��−� � � .

(3) Evaluation of QC+1: The obtained population QC+1 is
evaluated and is sent back with their evaluated values
to the QPSO and NSGA-III modules.

(4) Selection to the Next Generation: The solutions for
the next parent population PC+1 are selected according
to the procedure of NSGA-III. QPSO updates the local
and global best solutions, according to [11].
At the end of the generation C , the QPSO module
returns current global solution gC+1 and the NSGA-III
module returns the new parent population PC+1 to the
fusion module.

Figure 1: Simplified scheme of the unified algorithm.

To summarise, the hybrid method allows to scale NSGA-III
down to solve single-objective problems without any modifi-
cations in the NSGA-III structure, which excludes a risk to
loss its effectiveness on multi-/many-objective problems.

2.3 Optimization Software Tool
In order to simplify a code-coupling process between each
research problem and the proposed unified algorithm, we
extend the optimization tool presented in [6], based on the
open-source EASEA (EAsy Specification of Evolutionary Al-
gorithms) platform, by implementing QIU-NSA as a template
of the EASEA platform. The EASEA provides a compiler
for automatically merging a problem description file ∗.4I
(the users’ guide is provided in the online documentation1),
which specifies a scientific research task, with an optimization
algorithm template into a CPU parallel C++ code [2].
1http://easea.unistra.fr

http://easea.unistra.fr
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Figure 2: The ECDF summarized by separable and multi-
modal functions on 640-dimensional search space

3 EXPERIMENTS AND RESULTS
3.1 Validation of the Hybrid Unified Algorithm
In order to confirm an ability of QIU-NSA to solve single-
objective problems, we benchmark QIU-NSA on the Black-
Box Optimization Benchmarking (BBOB) single-objective
large-scale test suite [5] provided by the COmparing Continu-
ous Optimizers (COCO) platform2. The reported results are
based on 15 independent run of 15 instances of each function.
Taking into account that the AMR design problems can be
large scale, we compare the performance of QIU-NSA on
640-dimensional search space with the reference results of
separable CMA-ES (sepSMA) [8] and Limited Memory CMA-
ES (LMCMA-ES) [7] provided by COCO platform. Looking
at Figure 2, we observe that QIU-NSA demonstrates the
best performance on the separable and multi-modal problems
with adequate global structure. It solves 100% of separable
functions with the highest accuracy (see Figure 2 (a)) that
confirms its applicability for separable problems of magnetic
model of MCMs. We can conclude that QIU-NSA efficiently
scales NSGA-III down on the objective space and shows a
good scalability w.r.t. the dimensions of the search space.

3.2 Reproducing Physical Properties of MCMs
The objective of this experiment is to validate an efficiency
of QIU-NSA to find a set of the parameters of the magnetic
model, which corresponds to the physical properties of the
given MCM - !0�4�>(8 (!0�4(8 (�)).

3.2.1 Input Parameters and the objective function. The input pa-
rameters and their boundary values are presented in Table 1.
More details about the method for studying physical proper-
ties of MCMs can be found in [6].

Table 1: Input parameters and their boundary values for
!0�4�>(8 alloy

Parameter �5 84;3  *1 *2 �� �C4<?

Value 0.1 - 2.5 0.1 - 2.5 0.1 - 2.5 = *1 - 0.0-2.5

2https://github.com/numbbo/coco

The objective function is defined as follows:

� = �2>>; + �F0A< (1)

�2>>; =| (Δ)2E2>>;' (�0) − Δ)2E2>>; (�0)) | +
| (Δ)2E2>>;' (�1) − Δ)2E2>>; (�1)) |

(2)

�F0A< =| (Δ)2EF0A<' (�0) − Δ)2EF0A<
(�0)) | +

| (Δ)2EF0A<' (�1) − Δ)2EF0A<
(�1)) |

(3)

where Δ)2E2>>; (�0), Δ)2EF0A<
(�0), Δ)2E2>>; (�1) and Δ)2EF0A<

(�1)
is the the temperature interval width of heat capacity curve
peak under different magnetic fields upon cooling and warm-
ing process.

3.2.2 Experimental Result. The values of the parameters ob-
tained by the optimization for !0�4�>(8 are as follows: �5 84;3

= 1 [T],  = 0.80, *1= 0.85, �C4<?=1.00. In Figure 3 we re-
port the temperature dependence of magnetic entropy change
(Δ( ), which is calculated by using the Maxwells equation
from the simulated (theoretical) data with obtained parame-
ters and from the measured data of Crismat. The agreement
between the theoretical and measured data is excellent: the
Mean Absolute Percentage Error (MAPE) of Δ( is 0.1%.

Figure 3: !0�4�>(8:The simulated and experimental temper-
ature dependence of magnetic entropy change.

3.3 Optimization of the AMR Design
We apply the proposed tool for developing an innovative
architecture of the AMR, which will be efficient for the Mag-
netic Refrigeration System (MRS) and the Thermo-Magnetic
energy Generator (TMG) modes.

3.3.1 Input Parameters. For this experiment, the most impor-
tant input parameters of the AMR model, which have an
impact in the both modes are selected and presented in Ta-
ble 2 with their boundaries. 'E>; and 5 are internal operating
conditions that can control the thermodynamic cycles of the
AMR, where ! are the design parameters.

3.3.2 Experimental Result. Figure 4 depicts the Pareto front of
non-dominated solutions, showing in highlighted color values
the MRS and TMG operating modes respectively. The Pareto
front clearly reveals the conflict between the power densities
and efficiency in both modes.

https://github.com/numbbo/coco
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Table 2: The design and control parameters of the dual-mode
operating AMR model

Parameter Boundaries Unit Description

! 1-30 [cm] AMR length along the
direction of fluid motion

'E>; 0.05-1.5 [-] Ratio of coolant volume
transferred at each half
AMR cycle on fluid volume

5 0.1-10 [Hz] AMR operating frequency

Figure 4: Obtained Pareto Fronts

Figure 5: The distribution of Pareto optimal points solutions

A parametric study is conducted to investigate the effects
of the variable parameters on the cycle performance through
the power density and the efficiency. To make it clear, Figure 5
reports the distribution of Pareto-optimal solutions.

From Figure 5 a) it is seen that the maximum value of the
energy efficiency of TMG is 0.56 [−], which is obtained for
! = 17.4 [2<], whereas the value of 'E>; = 0.15 [−] and 5 = 0.69
[�I] is small. One can notice that the TMG efficiency range
is quite small 0.39 − 0.56[−]. It can be explained by the fact
that the pressure drop is directly proportional to ! and thus,
a larger value of pressure drop greater penalizes the energy
efficiency in the TMG mode. Figure 5 b) shows that the
maximum value of the recoverable mechanical power density
of the TMG is 0.37 [, /2<3] , achieved with 5 = 1.45 [�I],
'E>; = 0.15 [−], and ! = 17.2 [2<]. Thus, an increase of 5
leads to increase the mechanical power density and decrease
the efficiency. The maximum value of the energy efficiency of
the MRS is 0.56 [−] obtained with ! = 13.6 [2<], 'E>; = 0.11
[−] and 5 = 1.18 [�I] (see Figure 5 c)). Figure 5 d) shows
that the maximum value of the thermal power density of the
MRS is 2, 05 [−], which is achieved with the larger value of
! = 17.8 [2<] and almost the same values of 5 = 1.17 [�I] and
'E>; = 0.11 [−] as for the the energy efficiency of the MRS.

We can conclude that for all criteria, 'E>; has less impact
than the others. According to Figure 4, there are several solu-
tions, which ensure the balance between efficiency and power
density for the both modes. The Pareto fronts has slightly
discontinuous shape that be explained by a large number
of the rejected solutions, because of their nonexistence in
the both modes simultaneously. Thus, an evaluation of the
energy conversion system is required by reconsidering some
default parameters of the AMR model, e.g., the fluid channel
thickness, which was set to optimally match a refrigeration
system in this study.

4 CONCLUSION
Optimization of the Active Magnetic Regenerator (AMR) de-
sign and reproducing physical properties of Magneto Caloric
Materials (MCMs) are the major challenges for the magnetic
cooling industry. The proposed tool, thanks to the hybrid
method and the EASEA platform, is a robust user-friendly
instrument, which allows to easily and efficiently set up dif-
ferent experiments. The functionality of this tool is universal
and can be easily adapted to different simulated models.
It is validated that thanks to the proposed tool, it is now
possible to accelerate the elaboration of a commercially avail-
able device, which will correspond to modern ecological and
energy-saving requirements.
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