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INTRODUCTION

Nowadays, the demand for cooling is increasing, due to the climate change and universal problems. In this context, for reducing the worldwide electricity consumption and direct greenhouse gas emissions, Active Magnetic Regenerator (AMR) refrigeration is a promising technology, which applies the phases of magnetization/demagnetization of solid refrigerants -Magneto Caloric Materials (MCMs) [START_REF] Balli | Engineering Of The Magnetic Cooling Systems: A Promising Research Axis For Environment And Energy Saving[END_REF].

Despite the promising researches, the AMR development has two principle problems that prevent its commercial production: (i) to simulate physical properties of different MCMs in good qualitative agreement with the available experimental data; (ii) to comprehensively tune many control and design parameters of the AMR model, depending on their effect on its performance. For overcoming these difficulties, related researches apply optimization algorithms to the numerical simulation models of MCMs [START_REF] Ouskova Leonteva | New Evolutionary Method for Studying Physical Properties of Magneto Caloric Materials[END_REF] and AMR [START_REF] Ganjehsarabi | Analysis and optimisation of a cascade active magnetic regenerative refrigeration system[END_REF], [START_REF] Roy | Sensitivity analysis and multiobjective optimization of a parallel-plate active magnetic regenerator using a genetic algorithm[END_REF]. The common challenge of the works aiming at optimizing the AMR performance is to set up many optimization experiments, where different number of objectives and decision variables are required.

For improving optimization process of the AMR design, we develop further the user-friendly tool presented in [START_REF] Ouskova Leonteva | New Evolutionary Method for Studying Physical Properties of Magneto Caloric Materials[END_REF] and integrate an "unified" algorithm in it. The term "unified" is borrowed from [START_REF] Seada | U-NSGA-III: A unified evolutionary algorithm for single, multiple, and many-objective optimization[END_REF] for describing the algorithms, which ensure the scalability w.r.t. the number of objectives.We scale the well-known many-objective Non-dominated Sorting Genetic Algorithm III (NSGA-III) [START_REF] Deb | An evolutionary manyobjective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[END_REF] down to solve singleobjective problems by the hybridization of the solutions of NSGA-III with the solutions of Quantum Particle Swarm Optimization (QPSO) algorithm [START_REF] Sun | Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems[END_REF], instead of modifying the NSGA-III structure [START_REF] Seada | U-NSGA-III: A unified evolutionary algorithm for single, multiple, and many-objective optimization[END_REF]. It allows NSGA-III to handle very small population size in single-objective cases, which is useful for optimizing time-consuming problems, like the problems of the AMR design. To our best knowledge, this work is the first attempt to apply hybridization to unified optimization.

We contribute by making a step forward the further development of AMR refrigeration for its commercial application and a new insight about hybrid method, which is capable to be employed for constituting scalable algorithms.

MATERIALS AND METHODS 2.1 The Simulation Models

The AMR model, provided by Ubiblue Company, operates in two application modes: the Magnetic Refrigeration System (MRS) and the Thermo-Magnetic energy Generator (TMG). In this case, the optimization problems of the AMR model are formulated as the maximization of efficiency and/or power density for the MRS and/or the TMG operating modes for finding optimal control and design parameters of the AMR model in both modes. From an optimization point of view, the AMR model is considered as a continuous, black-box, computationally intensive problem, where the numbers of decision variables and objectives depend on current case study.

Inside the AMR model, for reproducing physical properties of MCMs, we use a method based on the generalize magnetic simulation model provided by the Crismat laboratory [START_REF] Ouskova Leonteva | New Evolutionary Method for Studying Physical Properties of Magneto Caloric Materials[END_REF]. The optimization problems of reproducing physical properties of MCMs are formulated as the minimization of one/several differences between simulated and reference physical properties of MCMs for finding optimal parameters of the magnetic simulation model. From an optimization point of view, these problems can be considered as continuous, computationally intensive, separable or partially separable optimization problems, which can have from one to three objectives.

Hybrid Unified Optimization Algorithm

Aiming at ensuring the scalability w.r.t. the number of objectives for time-consuming problems, we develop further the idea of unified algorithm [START_REF] Seada | U-NSGA-III: A unified evolutionary algorithm for single, multiple, and many-objective optimization[END_REF], by using a hybridization method for scaling down a many-objective algorithm NSGA-III [START_REF] Deb | An evolutionary manyobjective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[END_REF] to single-objective optimization. The hybridization is used to overcome difficulties of NSGA-III to solve single-objective problems, which are explained by too small recommended population size of NSGA-III for single objective optimization and an absence of selection pressure [START_REF] Seada | U-NSGA-III: A unified evolutionary algorithm for single, multiple, and many-objective optimization[END_REF].

The structure of the proposed algorithm, called QIU-NSA, consists of three main modules: NSGA-III, the modified QPSO and the fusion module (see Figure 1). At generation = 0, the algorithm starts in the fusion module with the definition of the following parameters: (i) the dimension of search space ( ); (ii) the dimension of objective space ( ); (iii) the vectors of boundaries (lb, ub) for each decision variable; (iv) the threshold of diversity (

) and (v) the total number of generations (

). The diversity coefficient ( ) is set to 0. The termination criterion is defined as the total number of generations. In the fusion module, the initial population P =0 are created randomly according to the defined boundaries (lb, ub) and evaluated. Then, the following steps are iterated until the termination criterion is satisfied:

(1) Make Child Population: The parent population P is sent to NSGA-III and QPSO modules in order to produce the new child populations. Each module, NSGA-III and QPSO, creates new set of solutions Q +1 -and Q +1 according its original rules and returns them into the fusion module. To summarise, the hybrid method allows to scale NSGA-III down to solve single-objective problems without any modifications in the NSGA-III structure, which excludes a risk to loss its effectiveness on multi-/many-objective problems.

Optimization Software Tool

In order to simplify a code-coupling process between each research problem and the proposed unified algorithm, we extend the optimization tool presented in [START_REF] Ouskova Leonteva | New Evolutionary Method for Studying Physical Properties of Magneto Caloric Materials[END_REF], based on the open-source EASEA (EAsy Specification of Evolutionary Algorithms) platform, by implementing QIU-NSA as a template of the EASEA platform. The EASEA provides a compiler for automatically merging a problem description file * . (the users' guide is provided in the online documentation1 ), which specifies a scientific research task, with an optimization algorithm template into a CPU parallel C++ code [START_REF] Collet | Take it EASEA[END_REF]. 3 EXPERIMENTS AND RESULTS

Validation of the Hybrid Unified Algorithm

In order to confirm an ability of QIU-NSA to solve singleobjective problems, we benchmark QIU-NSA on the Black-Box Optimization Benchmarking (BBOB) single-objective large-scale test suite [START_REF] Hansen | Real-parameter black-box optimization benchmarking: Experimental setup[END_REF] provided by the COmparing Continuous Optimizers (COCO) platform 2 . The reported results are based on 15 independent run of 15 instances of each function.

Taking into account that the AMR design problems can be large scale, we compare the performance of QIU-NSA on 640-dimensional search space with the reference results of separable CMA-ES (sepSMA) [START_REF] Ros | A simple modification in CMA-ES achieving linear time and space complexity[END_REF] and Limited Memory CMA-ES (LMCMA-ES) [START_REF] Loshchilov | A computationally efficient limited memory CMA-ES for large scale optimization[END_REF] provided by COCO platform. Looking at Figure 2, we observe that QIU-NSA demonstrates the best performance on the separable and multi-modal problems with adequate global structure. It solves 100% of separable functions with the highest accuracy (see Figure 2 (a)) that confirms its applicability for separable problems of magnetic model of MCMs. We can conclude that QIU-NSA efficiently scales NSGA-III down on the objective space and shows a good scalability w.r.t. the dimensions of the search space.

Reproducing Physical Properties of MCMs

The objective of this experiment is to validate an efficiency of QIU-NSA to find a set of the parameters of the magnetic model, which corresponds to the physical properties of the given MCM -( ( )).

Input Parameters and the objective function.

The input parameters and their boundary values are presented in Table 1.

More details about the method for studying physical properties of MCMs can be found in [START_REF] Ouskova Leonteva | New Evolutionary Method for Studying Physical Properties of Magneto Caloric Materials[END_REF]. Value 0.1 -2.5 0.1 -2.5 0.1 -2.5 = 1 -0.0-2.5

2 https://github.com/numbbo/coco

The objective function is defined as follows:

= + (1) =| (Δ ( 0 ) -Δ ( 0 )) | + | (Δ ( 1 ) -Δ ( 1 )) | (2) =| (Δ ( 0 ) -Δ ( 0 )) | + | (Δ ( 1 ) -Δ ( 1 )) | (3) 
where

Δ ( 0 ), Δ ( 0 ), Δ ( 1 ) 
and Δ ( 1 ) is the the temperature interval width of heat capacity curve peak under different magnetic fields upon cooling and warming process.

Experimental

Result. The values of the parameters obtained by the optimization for are as follows: = 1 [T], = 0.80, 1 = 0.85, =1.00. In Figure 3 we report the temperature dependence of magnetic entropy change (Δ ), which is calculated by using the Maxwells equation from the simulated (theoretical) data with obtained parameters and from the measured data of Crismat. The agreement between the theoretical and measured data is excellent: the Mean Absolute Percentage Error (MAPE) of Δ is 0.1%. Figure 3: :The simulated and experimental temperature dependence of magnetic entropy change.

Optimization of the AMR Design

We apply the proposed tool for developing an innovative architecture of the AMR, which will be efficient for the Magnetic Refrigeration System (MRS) and the Thermo-Magnetic energy Generator (TMG) modes.

Input Parameters.

For this experiment, the most important input parameters of the AMR model, which have an impact in the both modes are selected and presented in Table 2 with their boundaries. and are internal operating conditions that can control the thermodynamic cycles of the AMR, where are the design parameters. as for the the energy efficiency of the MRS. We can conclude that for all criteria, has less impact than the others. According to Figure 4, there are several solutions, which ensure the balance between efficiency and power density for the both modes. The Pareto fronts has slightly discontinuous shape that be explained by a large number of the rejected solutions, because of their nonexistence in the both modes simultaneously. Thus, an evaluation of the energy conversion system is required by reconsidering some default parameters of the AMR model, e.g., the fluid channel thickness, which was set to optimally match a refrigeration system in this study.

CONCLUSION

Optimization of the Active Magnetic Regenerator (AMR) design and reproducing physical properties of Magneto Caloric Materials (MCMs) are the major challenges for the magnetic cooling industry. The proposed tool, thanks to the hybrid method and the EASEA platform, is a robust user-friendly instrument, which allows to easily and efficiently set up different experiments. The functionality of this tool is universal and can be easily adapted to different simulated models. It is validated that thanks to the proposed tool, it is now possible to accelerate the elaboration of a commercially available device, which will correspond to modern ecological and energy-saving requirements.
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 2 Uniform-based Random Selection: In the fusion module, the populations Q +1 -and Q +1 are used to select 4 solutions to the next population Q +1 by the following rule: if uniformly distributed random number U (0, 1) > 0.5, the solution of Q +1 is accepted, otherwise -Q +1 -. (3) Evaluation of Q +1 : The obtained population Q +1 is evaluated and is sent back with their evaluated values to the QPSO and NSGA-III modules. (4) Selection to the Next Generation: The solutions for the next parent population P +1 are selected according to the procedure of NSGA-III. QPSO updates the local and global best solutions, according to [11]. At the end of the generation , the QPSO module returns current global solution g +1 and the NSGA-III module returns the new parent population P +1 to the fusion module.
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 1 Figure 1: Simplified scheme of the unified algorithm.
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 2 Figure 2: The ECDF summarized by separable and multimodal functions on 640-dimensional search space
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 4 depicts the Pareto front of non-dominated solutions, showing in highlighted color values the MRS and TMG operating modes respectively. The Pareto front clearly reveals the conflict between the power densities and efficiency in both modes.

Table 2 :Figure 4 :

 24 Figure 4: Obtained Pareto Fronts

Figure 5 :

 5 Figure 5: The distribution of Pareto optimal points solutions

Figure 5 b

 5 ) shows that the maximum value of the recoverable mechanical power density of the TMG is 0.37 [ / 3 ] , achieved with = 1.45 [ ], = 0.15 [-], and = 17.2 [ ]. Thus, an increase of leads to increase the mechanical power density and decrease the efficiency. The maximum value of the energy efficiency of the MRS is 0.56 [-] obtained with = 13.6 [ ], = 0.11 [-] and = 1.18 [ ] (see Figure 5 c)).

  Figure 5 d) shows that the maximum value of the thermal power density of the MRS is 2, 05 [-], which is achieved with the larger value of = 17.8 [ ] and almost the same values of = 1.17 [ ] and = 0.11 [-]
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