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Abstract

We consider the joint SPX-VIX calibration within a general class of Gaussian polynomial
volatility models in which the volatility of the SPX is assumed to be a polynomial function
of a Gaussian Volterra process defined as a stochastic convolution between a kernel and a
Brownian motion. By performing joint calibration to daily SPX-VIX implied volatility surface
data between 2012 and 2022, we compare the empirical performance of different kernels and
their associated Markovian and non-Markovian models, such as rough and non-rough path-
dependent volatility models. In order to ensure an efficient calibration and a fair comparison
between the models, we develop a generic unified method in our class of models for fast and
accurate pricing of SPX and VIX derivatives based on functional quantization and Neural
Networks. For the first time, we identify a conventional one-factor Markovian continuous
stochastic volatility model that is able to achieve remarkable fits of the implied volatility
surfaces of the SPX and VIX together with the term structure of VIX futures. What is
even more remarkable is that our conventional one-factor Markovian continuous stochastic
volatility model outperforms, in all market conditions, its rough and non-rough path-dependent
counterparts with the same number of parameters.
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1 Introduction

Launched in 1993 by the CBOE, the VIX has become one of the most widely followed volatility
index. It represents an estimation of the S&P 500 index (SPX) expected volatility over a one-
month period. More precisely, the VIX is calculated by aggregating weighted prices of SPX puts
and calls over a wide range of strikes and maturities [20]. By construction, the VIX expresses an
interpolation between several points of the SPX implied volatility term structure. Thus, the task
of modeling and pricing VIX options for a given maturity T naturally requires some consistency
with SPX options maturing up to one month ahead of T . Furthermore, computing the implied
volatility of VIX options using Black’s formula requires VIX futures that also need to be priced
consistently.

By joint SPX–VIX calibration problem, we mean the calibration of a model across several matu-
rities to European call and put options on SPX and VIX together with VIX futures. Such joint
calibration turns out to be quite challenging for several reasons: multitude of instruments to be
calibrated (SPX and VIX call/put options, VIX futures) across several maturities (to stay consis-
tent with the construction of the VIX), characterized by low levels of implied volatilities of the
VIX with an upward slope, in contrast with the important at-the-money (ATM) SPX skew that
becomes more pronounced for smaller maturities.

In recent years, substantial progress has been made in developing relatively sophisticated stochastic
models that achieve decent joint fits by exploiting a wide variety of mathematical tools such as
jump processes [8, 21, 43, 46, 52], rough volatility [16, 30, 56], path-dependent volatility [36] and
multiple-factors [26, 32, 36, 55].1 However, examples of illustrated fits of these models are usually
partial: in some cases VIX futures are not calibrated; in other cases VIX derivatives are calibrated
up to maturity slice T , while the SPX derivatives for maturity slices T +∆ for ∆ ∈ (0, 1 month)
are missing. Although different in their mathematical nature, these models share in common the
fact that they allow for 1) large price movements of the SPX on very short time scales with some
forms of spikes in the ‘instantaneous’ volatility process due to a large ‘vol-of-vol’, and 2) fast mean
reversions towards relatively low volatility regimes. We believe these are the two crucial ingredients
for the joint calibration problem.

The aforementioned literature generally agrees that conventional one-factor continuous Markovian
stochastic volatility models are not able to achieve a decent joint calibration. Our main motivations
can be stated as follows:

Can joint calibration be achieved without appealing to multiple-factors, jumps, roughness or
path-dependency?

Is joint calibration possible with conventional one-factor continuous Markovian models?

In a nutshell, we show in this paper that the answer to both questions is a resounding: Yes. By
performing joint calibration on daily SPX-VIX implied volatility surface data between 2012 and
2022 using a large class of models, we identify for the first time a conventional one-factor Markovian
continuous stochastic volatility model that is able to achieve remarkable fits for a wide range of
maturity slices [Ts, Te] for VIX implied volatility surface and of maturity slices [Ts, Te + 1 month]
for SPX implied volatility surface, together with the term structure of VIX futures as shown on
Figure 1. What is even more remarkable is that our conventional one-factor Markovian continuous
stochastic volatility model outperforms its rough and non-rough path-dependent counterparts with
the same number of parameters: 6 effective parameters that govern the dynamics of the model in
addition to the usual input curve that allows to match certain term structures.

1We mention also techniques involving optimal transport [35] and randomization of the parameters [34].
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Figure 1: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines) jointly
calibrated with our conventional continuous stochastic volatility model (full green lines) produced
by the exponential kernel Kexp, 23 October 2017.

More precisely, our methodology and contributions are summarized as follows:

Gaussian polynomial volatility models. First, we introduce in Section 2 a general class of
Gaussian polynomial volatility models in which the SPX spot price takes the form

dSt

St
= σt

(
ρdWt +

√
1− ρ2dW⊥

t

)
,

where (W,W⊥) is two-dimensional Brownian motion. The SPX spot price S is correlated with the
volatility process σ which is, up to a normalizing constant, defined as a polynomial function p(X)
of a Gaussian Volterra process X in the form

Xt =

∫ t

0

K(t− s)dWs,

for a locally square-integrable kernelK. The choice of the kernel introduces a good deal of flexibility
in the modeling of the volatility process, such as rough volatility [2, 4, 5, 10, 13, 24, 29, 30] for
singular fractional kernels of the form K(t) ∼ tH−1/2 with 0 < H≤1/2, or the log-modulated
kernel that extends the fractional kernel for the case H = 0, see [12]; path-dependent models
with non-singular kernel such as the shifted fractional kernel K(t) ∼ (t + ε)H−1/2; exponential
kernels K(t) ∼ e−λt for which X is a (Markovian) Ornstein-Uhlenbeck process or weighted sums
of exponentials [1, 3, 22, 39], refer to Table 1 below. We will compare the performance of these
different kernels on the joint calibration problem. Although it is difficult to decouple the impact of
the different input parameters of the model, it turns out, that the choice of K has a major impact
on the ATM-skew of the implied volatility of the SPX and the level of the implied volatility of the
VIX. While the choice of the polynomial function p has a prominent impact on the shape of the
VIX smile. Taking p a polynomial of order 5 (and higher) allows us to reproduce the upward slope
of the VIX smile.

Generic, fast and accurate pricing via quantization and Neural Networks. Second, in
order to to ensure a fair comparison between the calibrated models with different kernels across
10 years of daily joint implied volatility surfaces, we develop a generic unified method that applies
to any Gaussian polynomial volatility model for pricing SPX and VIX derivatives in an efficient
and accurate fashion. The method is based on functional quantization and Neural Networks. The
tractability of the quantization approach highly relies on the Gaussian nature of X combined with
the polynomial form of the volatility process σ. More precisely:
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� Fast pricing of VIX derivatives via Quantization: we develop in Section 4 a functional
quantization approach for computing VIX derivatives in our class of Gaussian polynomial
volatility models.

When computing expectations in the form of E[F (Y )] where no closed form solution is avail-
able, a fast alternative to Monte Carlo is quantization. The idea is to approximate the
random variable Y with a discrete random variable Ŷ to compute efficiently the (condi-
tional) expectations of suitable functionals of Y . Quantization was first developed in the
1950’s for signal processing [31, 33] and more recently has been studied for applications in
numerical probability [48] and mathematical finance [49, 53]. We will exploit the Gaussian
nature of the process X to develop a functional quantization approach.

A first attempt to use functional quantization for VIX futures in the context of the rough
Bergomi model appears in [17]. Unfortunately, the method is not precise enough in practice,
especially for the fractional kernel with small values of H even with a lot of quantization
trajectories, see [17, Figure 3] where the number of quantized points were pushed as far as
N = 1, 000, 000 but the approximated values for VIX futures are still well-off the correct
values, see also Figure 6 below. It is well known that the convergence of the quantization for
fractional processes is very slow of order 1/(logN)H , see [23].

Using a crucial moment-matching trick, see (4.9), we are able to make functional quantization
usable in practice by achieving very accurate results for both VIX future prices and VIX
option smile with only a couple of hundreds quantization points, even for fractional processes
with very low values of H.

� Fast pricing of SPX options via Neural Networks with Quantization hints:

In a first step in Section 5.1, we extend the previous quantization ideas to quantize SPX.
However, the quantization is more delicate whenever ρ ̸= 0 since it involves the quantization
of the stochastic Itô integral

∫ t

0
σsdWs. It is well-known since the work of Wong and Zakai [57]

that the approximation
∫ t

0
σsdŴs, where Ŵ is some smooth approximation of the Brownian

motion, will converge towards the Stratonovich stochastic integral defined by∫ t

0

σs ◦ dWs :=

∫ t

0

σsdWs +
1

2
⟨σ,W ⟩t.

This an issue whenever the process σ is not a semimartingale and has infinite quadratic
variation, which is the case for the fractional kernel with H < 1/2: the quadratic covariation
⟨σ,W ⟩ explodes.
To solve this issue, we subtract a diverging term, see (5.4), in order to recover convergence,
in the spirit of renormalization theory [37] and the approach in [11, Theorem 1.3], combined
with another moment-matching trick. Once again the moment-matching trick is used to
improve the accuracy.

Unfortunately, quantization results for SPX degrade (at a slower rate) as H goes to zero for
the SPX derivatives. We therefore develop an approach in Section 5.2 with Neural Networks
acting as a corrector to the quantization points for the SPX. The Neural Networks approach
in our paper has a low input dimension (strikes and the input curve are not part of the Neural
Networks’ input) and preserves the interpretability by directly modelling the joint density of
log(S) and σ. It also improves the SPX derivative pricing to a similar amplitude to that of
Monte Carlo simulation, while being extremely fast.

Extensive empirical study. Our final contribution is an extensive empirical joint calibration
study detailed in Section 3. A total of 1,422 days of SPX and VIX joint implied volatility surfaces
between August 2011 to September 2022 were calibrated. Interestingly, the conventional one-factor
Markovian continuous stochastic volatility model outperforms, in all market conditions, its rough
and non-rough path-dependent counterparts, with the same number of calibrated parameters. A
possible explanation for this performance lies in the unconstrained values of H that can be pushed
below zero once calibrated, something not possible for the rough fractional kernels.
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Outline of the paper. To ease the reading, and to satisfy not-so-patient readers who are (more)
interested in our main findings regarding the empirical joint calibration, we chose to present our
empirical performance comparison between different models for the joint calibration problem in
Section 3, right after the introduction of our class of Gaussian polynomial volatility models in
Section 2. Our generic fast pricing methods are postponed to later sections: Section 4 develops
a generic, fast and accurate pricing method for VIX derivatives in our class of models based on
functional quantization, and Section 5 extends the previous quantization approach and combines
it with Neural Networks to obtain a generic, fast and accurate pricing method for SPX derivatives.
Finally, Appendix A collects some integral formulae and Appendix B contains additional calibration
graphs.

2 Gaussian polynomial volatility models

We define the class of Gaussian polynomial volatility models under a risk-neutral measure as
follows. We fix a filtered probability space (Ω,F , (Ft)t≥0,Q) satisfying the usual conditions and
supporting a two-dimensional Brownian motion (W,W⊥). For ρ ∈ [−1, 1], we set

B = ρW +
√
1− ρ2W⊥,

which is again a Brownian motion.

The model. The dynamics of the stock price S are assumed to follow a stochastic volatility
model such that the volatility process σ is given by a polynomial (possibly of infinite degree) of a
Gaussian Volterra process X defined by the relations:

dSt

St
= σtdBt, S0 > 0,

σt =
√
ξ0(t)

p(Xt)√
E [p(Xt)2]

, p(x) =

M∑
k=0

αkx
k,

Xt =

∫ t

0

K(t− s)dWs,

(2.1)

for some M ∈ N possibly infinite, real coefficients (αk)k=0,...,M , a non-negative square-integrable
kernel K ∈ L2([0, T ],R+) and input curve ξ0 ∈ L2([0, T ],R+) for any T > 0, with the convention

that 0/0 = 1. In particular, X is a Gaussian process such that E
[
X2

t

]
=
∫ t

0
K(s)2ds < ∞, for all

t ≥ 0. But X is not necessarily Markovian or a semi-martingale. We will be chiefly interested in
the performance of our class of model for the joint SPX-VIX calibration problem for four kernels
summarized in Table 1.

Kernel K(t) Domain of H Semi-martingale Markovian

Fractional Kfrac tH−1/2 (0, 1/2] ✗ ✗

Log-modulated Klog tH−1/2(θ log(1/t) ∨ 1)−β [0, 1/2] ✗ ✗

Shifted fractional Kshift (t+ ε)H−1/2 (−∞, 1/2] ✓ ✗

Exponential Kexp εH−1/2e−(1/2−H)ε−1t (−∞, 1/2] ✓ ✓

Table 1: The different kernels K considered in this paper and the properties of their corresponding
process Xt =

∫ t

0
K(t− s)dWs; ε > 0, θ > 0 and β > 1.

The curve ξ0 allows to match certain term-structures observed on the market. For instance, the
normalization

√
E [p(Xt)2] allows ξ0 to match the market forward variance curve since

E
[∫ t

0

σ2
sds

]
=

∫ t

0

ξ0(s)ds, t ≥ 0. (2.2)
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This family of models captures several well-known models already existing in the literature, such
as a particular instance of the Volterra Stein-Stein model of [2] for M = 1, α0 = 0 and α1 =
1; and the Volterra Bergomi model of [10] in the case M = ∞ and ak = 1

2kk!
, k ≥ 0 so that

σ2
t =

√
ξ0(t) exp(Xt − 1

2E[X
2
t ]). Except for the Volterra Stein-Stein class of models where Fourier

inversion techniques can be applied thanks to an explicit expression of the characteristic function,
as shown in [2], pricing is usually slow in these models and only done using Monte-Carlo simulation.
We will develop in Sections 4 and 5 a generic, efficient and accurate method for our class of Gaussian
polynomial volatility models exploiting the Gaussian nature of the driving process X combined
with the polynomial form of the volatility process σ.

The forward variance process. The forward variance process ξt(u) := E
[
σ2
u | Ft

]
can be

computed explicitly for the Gaussian polynomial volatility model. First, we fix t ≤ u and rewrite
X as

Xu =

∫ t

0

K(u− s)dWs︸ ︷︷ ︸
Zu

t

+

∫ u

t

K(u− s)dWs︸ ︷︷ ︸
Gu

t

,

then, setting
g(u) = E[p(Xu)

2],

we have that

ξt(u) = E
[
σ2
u | Ft

]
=

ξ0(u)

g(u)
E

( M∑
k=0

αkX
k
u

)2 ∣∣∣ Ft

 =
ξ0(u)

g(u)
E

[
2M∑
k=0

(α ∗ α)kXk
u

∣∣∣ Ft

]
,

where (α ∗ α)k =
∑k

j=0 αjαk−j is the discrete convolution. Using the Binomial expansion, we can
further develop the expression for ξt(u) in terms of Zu and Gu to get

ξt(u) =
ξ0(u)

g(u)

2M∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)
(Zu

t )
k−iE

[
(Gu

t )
i
]
, (2.3)

where we used the fact that Zu
t is Ft-measurable and that Gu

t is independent of Ft, with k! /((k−
i)! i! ) the binomial coefficient. Furthermore, Gu

t is a Gaussian random variable with mean 0 and

variance
∫ u−t

0
K(s)2ds, the moments E

[
(Gu

t )
i
]
can be computed explicitly:

E
[
(Gu

t )
i
]
=

0 if i is odd(∫ u−t

0
K2(s)ds

) i
2

(i− 1)! ! if i is even
(2.4)

with i! ! the double factorial.

We now explicit the dynamics of (ξt(u))t∈[0,u]. By construction for fixed u, the process (Zu
t )t∈[0,u]

is a martingale with dynamics

dZu
t = K(u− t)dWt.

Similarly, ξ·(u) is a martingale on [0, u], so that its part in dt is zero. An application of Itô’s
formula leads to the following dynamics for the process ξ·(u)

dξt(u) =
ξ0(u)

g(u)
K(u− t)

2M∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)
(k − i)(Zu

t )
k−i−1E

[
(Gu

t )
i
]
dWt. (2.5)

An explicit expression for the VIX. One major advantage of our class of Gaussian polynomial
volatility models is an explicit expression of the VIX. In continuous time, the VIX can be expressed
as:

VIX2
T = − 2

∆
E [log(ST+∆/ST ) | FT ]× 1002,
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with ∆ = 30 days. Combining the above expression with (2.1) and (2.3), we have an explicit
expression of the VIX in the Gaussian polynomial volatility model:

VIX2
T =

1002

∆
E

[∫ T+∆

T

σ2
udu

∣∣∣ FT

]
=

1002

∆

∫ T+∆

T

ξT (u)du

=
1002

∆

2M∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
i
]
(Zu

T )
k−idu (2.6)

with

Zu
T =

∫ T

0

K(u− s)dWs, Gu
T =

∫ T+∆

T

K(u− s)dWs, T ≤ u. (2.7)

Recall that the moments E[(Gu
T )

i] are given explicitly by (2.4).

The SPX ATM-Skew and the restriction of the coefficients (αk)k≥0. Even if there is no
theoretical restriction on the domain of {αk}k≤M , it would still be desirable for the SPX at-the-
money (ATM) skew to be controlled by the sign of ρ, as in all other usual stochastic volatility
models. Using the Guyon-Bergomi expansion of implied volatility in terms of small volatility of
volatility [15] at first order, the SPX ATM skew ST is defined by the quantity

ST =
∂σ̂spx (k, T )

∂k
|k=0, k = log(K/S0),

where σ̂spx (k, T ) is the implied volatility of SPX. ST has the sign of the integrated spot-variance
covariance function CXξ given by

CXξ :=

∫ T

0

∫ T

t

E
[
d⟨logS, ξ·(u)⟩t

dt

]
dudt

= ρ

∫ T

0

∫ T

t

ξ0(u)

g(u)

√
ξ0(t)

g(t)
K(u− t)

2M∑
k=0

k∑
i=0

M∑
j=0

(α ∗ α)kαj

(
k

i

)
E
[
(Gu

t )
i
]
E
[
Xj

t (Z
u
t )

k−i−1
]
dudt

where the second equality follows from (2.5).

The expression of CXξ for the Gaussian polynomial volatility model thus requires the computation
of E [Xp

t (Z
u
t )

q], which can be computed via Isserlis’ Theorem [41].

Theorem 2.1 (Isserlis’ Theorem). If (U1, . . . , Un) is a zero-mean multivariate normal random
vector, then

E [U1U2 · · ·Un] =
∑
p∈P 2

n

∏
{i,j}∈p

E [UiUj ] ,

where the sum is over all the pairings of {1, . . . , n}, i.e. all distinct ways of partitioning {1, . . . , n}
into pairs {i, j}, and the product is over the pairs contained in p. (When n is odd, there does not
exist any pairing of {1, . . . , n} so that E [U1U2 · · ·Un] = 0.)

Thus the computation of E [Xp
t (Z

u
t )

q] essentially comes down to computing the following quantities:

E [XtXt] =

∫ t

0

K(s)2ds,

E [Zu
t Z

u
t ] =

∫ u

u−t

K(s)2ds,

E [XtZ
u
t ] =

∫ t

0

K(t− s)K(u− s)ds.
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Note that all the quantities above are non-negative, so that E [Xp
t (Z

u
t )

q] is non-negative. Therefore
a sufficient (and simple) condition for the sign of the ATM skew to be the same as ρ is by setting
αk ≥ 0, for all k ≤ M .

3 Joint SPX–VIX calibration: the empirical study

We carried out joint calibration on SPX and VIX implied volatilities, together with VIX futures
using all four kernels in Table 1 for every 2nd day between August 2011 to September 2022. That
is a total of 1,422 days of SPX and VIX joint implied volatility surfaces. The VIX is calibrated up
to maturity T = 2 months, and the SPX is calibrated up to maturity T +∆, i.e. 3 months. Market
data was purchased from the CBOE website https://datashop.cboe.com/.

The objective of joint calibration is to minimize the error between SPX-VIX implied volatility,
together with the VIX futures prices outputted from the model and those observed on the market.
This amount to solving the following optimisation problem involving sum of root mean squared
error (RMSE):

min
Θ

{
c1

√∑
i,j

(
σ̂Θ
spx(Ti,Kj)− σ̂mkt

spx (Ti,Kj)
)2

+ c2

√∑
i,j

(
σ̂Θ
vix(Ti,Kj)− σ̂mkt

vix (Ti,Kj)
)2

+ c3

√∑
i

(
FΘ
vix(Ti)− Fmkt

vix (Ti)
)2}

.

(3.1)

Here, σ̂mkt
spx (Ti,Kj), σ̂

mkt
vix (Ti,Kj) represent market SPX-VIX implied volatility with maturity Ti

and strike Kj . F
mkt
vix (Ti) is the market VIX futures price maturing at Ti. σ̂

Θ
spx(Ti,Kj), σ̂

Θ
vix(Ti,Kj)

and FΘ
vix(Ti) represent the same instruments, but coming from the Gaussian polynomial volatility

model with parameters denoted collectively as Θ and will be detailed in (3.2) below. The coefficients
c1, c2 and c3 are some positive numbers used to assign different weights to the errors in SPX-VIX
implied volatility and VIX futures price. We chose c1 = 1, c2 = 0.1, c3 = 0.5 for all four kernels.
Of course, these weights can be chosen differently, e.g. based on liquidity and maturity etc.

We recall that the implied volatility of a call option is calculated by inverting the Black and Scholes
formula, that is, for a given call price C0(K,T ) with strike K and maturity T , we find the unique
σK,T such that

C0(K,T ) = FT
0 N (d1)−KN (d2)

with

d1 =
log
(
FT
0 /K

)
+ 1

2σ
2
K,TT

σK,T

√
T

, d2 = d1 − σK,T

√
T ,

where N (x) =
∫ x

−∞ e−z2/2dz/
√
2π is the cumulative density function of the standard Gaussian

distribution and FT
0 denotes the futures price of the index: FT

0 = E [ST ] = S0 for the SPX in our
setting (2.1) and FT

0 = E [VIXT ] for the VIX.

To speed up the joint calibration, we applied functional quantization for fast pricing of VIX deriva-
tives, detailed in Section 4, and functional quantization with Neural Networks for fast pricing of
SPX derivatives, detailed in Section 5. The optimisation problem in (3.1) is solved using the SciPy
optimization library in Python.
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3.1 Choice of the polynomial function p

We first comment on the choice of the polynomial function p in (2.1). Based on our numerical
experiments, we will take p a polynomial of order 5 (i.e. M = 5 in (2.1)) in the following form

p(x) = α0 + α1x+ α3x
3 + α5x

5, x ∈ R,

with α0, α1, α3, α5 ≥ 0. The high degree allows us to reproduce the upward slope of the VIX smile.
Setting α2 = α4 = 0 allows us to reduce the number of parameters to calibrate.

3.2 Choice of parameters

We now comment on the choice of parameters of the four kernels of Table 1 used for joint calibration.
First, we fix ε = 1/52 for the shifted fractional kernelKshift and exponential kernelKexp. Next, we
also set θ = 0.1 for the log-modulated kernel Klog as suggested by [12] to further reduce dimension
of parameters space. Thus, there are only 6 calibratable parameters plus the input curve ξ0(·) for
the kernels Kfrac,Kshift,Kexp, namely:

Θ := {α0, α1, α3, α5, ρ,H} (3.2)

and an extra parameter β for kernel Klog. Numerical experiments show no significant adverse
impact on the joint calibration quality by narrowing the choice of parameters as we suggested.

For the treatment of the input curve ξ0(·), we first strip the forward variance curve of the market
using the celebrated formula by Carr and Madan [19] and then pass a cubic spline through the
square root of the forward variance curves to enforce positivity across time, recall (2.2). During
calibration, the spline nodes of the input curve are adjusted as necessary to fit the level of implied
volatilities for SPX and VIX, as is usually done in forward variance type of models, see [10].

3.3 Impact of kernel K on joint calibration: an empirical comparison

The choice of kernels plays a crucial role in the model’s capability of jointly fitting the SPX and
VIX smiles. We will consider successively the four kernels of Table 1.

The fractional kernel Kfrac(t) = tH−1/2, with H ∈ (0, 1/2], taken as starting point, is exten-
sively used in recent literature on rough volatility [2, 10, 24]. Separate calibration of SPX/VIX
appears to be satisfactory, however there are inconsistencies in the value of H between the two
indices. In order to produce the steep VIX ATM skew and lower level of VIX implied volatility, the
calibrated H is very close to zero (similar to that of quadratic rough Heston model in [56] where
H = 0.01). This is problematic for the SPX due to the ‘vanishing skew’ phenomena as H → 0,
observed in [25] that also plagues models such as the rough Bergomi model.

Despite pushing ρ to the boundary value −1 in most days (which should increase the SPX ATM
skew in stochastic volatility models) as shown in Figure 21 of Appendix B.3, the joint calibrated
SPX ATM skew is too flat compared to the market data. The VIX implied volatility produced by
the model is generally too high and does not have enough ATM skew, see Figure 18 of Appendix
B.2. One can try improving the VIX fit by pushing H closer to zero, but this will further flatten
the SPX ATM skew.

The log-modulated kernel Klog(t) = max(θ log(1/t), 1)−β , H ∈ [0, 1/2], θ > 0, β > 1 is pro-
posed by [12], where X is well-defined even when H = 0. In [12, Figure 1.1], it is shown that this
kernel is capable of resisting the SPX ATM skew flattening suffered by the fractional kernel Kfrac.
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The calibrated H appears to be just about zero during normal market conditions with a slightly
less saturated ρ, see Figure 22 of Appendix B.3. The joint fit seems to be slightly better than that
of the fractional kernel Kfrac , see Figure 19 of Appendix B.2.

However, the joint calibration results are still not satisfactory. It seems H needs to go even further
below zero (something impossible for the log modulated kernel Klog and the fractional kernel
Kfrac) to produce the steep VIX ATM skew along with lower level of VIX implied volatility. This
motivates the use of the following shifted fractional kernel Kshift.

The shifted fractional kernel Kshift(t) = (t + ε)H−1/2, for some ε > 0, is now well-defined
and locally square-integrable for any H ∈ (−∞, 1/2]. The kernel is even smooth enough to make X
a semi-martingale but not Markovian, see Proposition 5.2 below. The empirical joint calibration
results are considerably better compared to the fractional kernel Kfrac and the log-modulated
kernel Klog, see Figure 20 of Appendix B.2. The history of calibrated H spends most of its time
below zero (except for a brief moment during 2020 Covid pandemic), with ρ no longer saturated
and averaging around -0.7, see Figure 23 of Appendix B.3. One issue with this kernel is that X is
not Markovian and is path dependent.

The exponential kernel Kexp. The choice of the exponential kernel, along with its particular
parametrization is motivated as a proxy of the shifted fractional kernel that would yield Markovian
dynamics for X. To see this, we recall the following representation of the fractional kernel as a
Laplace transform:

tH−1/2 = cH

∫
R+

e−xtx−H−1/2dx,

with cH = 1/Γ(1/2 − H) and Γ(z) :=
∫
R+

xz−1e−xdx the Gamma function for z > 0. We note

that such representation as a Laplace transform has been used in the literature to disentangle
the (infinite-dimensional) Markovian structure of fractional processes [3, 6, 18, 22, 39] and develop
efficient numerical Markovian approximations [1, 7, 9, 38, 58]. For fixed ε > 0, the shifted fractional
kernel then reads

(t+ ε)H−1/2 =

∫
R+

e−xtµH,ε(dx)with µH,ε(dx) := cHe−xεx−H−1/2dx.

Now we choose cH,ϵ and γH,ε such that the measure νH,ε(dx) = cH,εδγH,ε
(dx) satisfies

νH,ε(R+) = µH,ε(R+) and

∫
R+

xνH,ε(dx) =

∫
R+

xµH,ε(dx),

with δ the dirac measure. This yields that

cH,ε = εH−1/2 and γH,ε = (1/2−H)ε−1

leading to the following exponential kernel

Kexp(t) :=

∫
R+

e−xtνH,ε(dx) = εH−1/2e−(1/2−H)ε−1t.

For small values of ε and H, this parametrisation gives a (Markovian) Ornstein-Uhlenbeck process
X in (2.1) with a fast mean reversion of order (1/2−H)ε−1 and a large vol-of-vol of order εH−1/2

with the following dynamics

dXt = −(1/2−H)ε−1Xtdt+ εH−1/2dWt.

It is interesting to note that special cases of such parametrizations of conventional stochastic
volatility models have already appeared in the literature but for a fixed value of H: for H = 0 one
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recovers the fast regimes extensively studied by Fouque et al. [28], see also [27, Section 3.6]; setting
H = −1/2 yields the parametrization studied by Mechkov [45] and establishes the link with jump
models.

Based on empirical results, the exponential kernel Kexp produces the best joint fit compared to the
other kernels while being the simplest (semi-martingale and Markovian). For SPX maturities up to
3 months and VIX maturities up to 2 months, the exponential kernel Kexp can achieve remarkable
fits, as shown in Figure 1 of implied volatility surfaces dated 23 October 2017, with calibrated
parameters ρ = −0.6997, H = −0.06939, (α0, α1, α3, α5) = (0.82695, 0.84388, 0.55012, 0.03271).

The historical time series of joint calibration rooted mean square error (RMSE) in Figure 2 and
the distribution of the RMSE in Figure 17 of Appendix B.1 show that the exponential kernel Kexp

outperforms other kernels for all market conditions for both SPX and VIX fit.

Figure 2: RMSE across different kernels: the exponential kernel Kexp outperforms other kernels
in all market conditions.

The evolution of jointly calibrated parameters H and ρ also appear to be stable over time in the
case of the exponential kernel as shown in Figure 3. This further validates the robustness of the
exponential kernel Kexp to jointly fit SPX and VIX implied volatilities. Notice that H and ρ also
appear to be negatively correlated to one another. We observe that ρ is far from being saturated
to −1 and H is on average very small and dip below zero from time to time. The parameters ρ
and H for the shifted fractional kernel Kshift display a similar trend, see Figure 23 of Appendix
B.3.
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Figure 3: Evolution of the calibrated parameters ρ and H under the exponential kernel Kexp, the
blue line is the actual value of the calibrated parameters in time, the orange line is the 30-day
moving average.

For graphs on the joint calibration results by quantiles for the exponential kernel Kexp, the reader
can refer to the Appendix B.4.

4 Fast pricing of VIX derivatives via Quantization

4.1 L2-quantization of Gaussian random variables

The idea of quantization is to approximate an R-valued random variable Y with a discrete random
variable Ŷ in the computation of E[F (Y )] for some function F . Quantization provides a faster
alternative to Monte Carlo when no closed form expression of the expectation is available. We will
concentrate on the case where Y is Gaussian.

Formally, fix N ∈ N, for a given set of N -points Γ given by

Γ = {y1, . . . , yN} ⊂ R,

we consider the Borel partition C = {C1, . . . , CN} of R induced by Γ using the nearest neighbour-
hood projection:

Ci =
[
yi− 1

2
, yi+ 1

2

[
, yi± 1

2
:=

yi + yi±1

2
, y0 = −∞, yN+1 = ∞, i ∈ {1, . . . , N}.

The N -quantizer Ŷ Γ is defined by

Ŷ Γ(ω) =

N∑
i=1

yi1Ci
(Y (ω))

with the associated probability vector p = {p1, . . . , pN} such that:

pi = Q(Ŷ Γ = yi) = Q(Y ∈ Ci) =

∫ y
i+1

2

y
i− 1

2

dQY = N (yi+ 1
2
)−N (yi− 1

2
), i ∈ {1, . . . , N}, (4.1)

with N (x) =
∫ x

−∞ e−z2/2dz/
√
2π the cumulative density function of the standard Gaussian distri-

bution. In particular, one can look for the L2-optimal N -quantizer Ŷ Γ∗ with Γ∗ given by

Γ∗ = argmin
Γ

E
[(

Y − Ŷ Γ
)2]

.
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For standard Gaussian random variable Y , the existence and uniqueness of the L2-optimal N -
quantizers have been established in [47], along with a large family of distributions. The L2-
optimal N -quantizer is usually computed numerically, using either a zero search (Newton-Raphson
gradient descent) or a fixed point procedure [42, 48]. Optimal quantizers for N up to 5999 have
been computed offline in [50] and are available online at http://www.quantize.maths-fi.com/
in the format of pairs of (yi, pi).

From now on, we use Ŷ to denote the L2-optimal N -quantizer Ŷ Γ∗ to ease notations. It is now
natural to consider the following approximations:

E[F (Y )] ≈ E[F (Ŷ )] =

N∑
i=1

F (yi)pi.

Such ideas can be extended to approximate the Brownian motion W and the VIX in (2.6). This
is the object of the next subsections.

4.2 L2-product functional quantization of Brownian motion

Let us now consider the Brownian motion (Wt)0≤t≤T defined under Section 2. The idea of product
functional quantization is to reduce the infinite dimension of the path space of W into finite N
number of paths. To do this , we start with the celebrated Karhunen–Loève decomposition of the
Brownian motion W in the form of

Wt =

∞∑
k=1

√
λkek(t)Yk, 0 ≤ t ≤ T, (4.2)

with (Yk)k≥1 i.i.d.standard Gaussian and

ek(t) :=

√
2

T
sin

(
π(k − 1/2)

t

T

)
, λk :=

(
T

π(k − 1/2)

)2

, k ≥ 1.

More precisely, (ek, λk) are the kth pair of eigenfunctions in L2([0, T ]) and positive eigenvalues
associated with the covariance kernel CW (t, s) = s ∧ t:∫ T

0

CW (t, s)ek(s)ds = λkek(t), k ≥ 1, 0 ≤ t ≤ T .

We note that (λk)k≥1 are decreasing and go to zero as k goes to infinity.

Using (4.2), the product quantization is achieved by 1) truncating the infinite sum to a finite level
m and 2) quantizing the i.i.d standard Gaussian Yk. For a given N ∈ N, the product quantizer of
the Brownian motion W is defined as follows:

Ŵ
(N,m)
t =

m∑
k=1

√
λkek(t)Ŷ

(Nk)
k , (4.3)

where for each k ∈ {1, . . . ,m}, Ŷ (Nk)
k is the L2-optimal Nk-quantizer of the standard Gaussian

Yk given in Section 4.1 with Nk number of quantized points yk = {yk1 , . . . , ykNk
}. The product

quantizer Ŵ (N,m) has (at most) N trajectories, i.e. N1 ×N2 × . . .×Nm ≤ N . More precisely, for

a specific ω ∈ Ω, the trajectory of Ŵ
(N,m)
t is defined as:

Ŵ
(N,m)
t (ω) =

m∑
k=1

√
λkek(t)

∑
i∈

∏m
j=1{1,2,...,Nj}

ykik1{(Y1(ω),...,Ym(ω))∈Ci}, (4.4)
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where ik ∈ {1, 2, . . . , Nk} denotes the k-th element of the tuple i = (i1, . . . , im) ∈
∏m

j=1{1, 2, . . . , Nj},
with Ci the partition of Rm defined by

Ci =

m∏
l=1

[
ylil− 1

2
, ylil+ 1

2

[
, ylil± 1

2
:=

ylil + ylil±1

2
, yl0 = −∞, ylNl+1 = ∞.

In other words, Ci is a Cartesian grid formed by m number of optimal L2-quantized standard

Gaussians. Using the independence of the family (Ŷ
(Nk)
k )k=1,...,m, the probability associated with

each trajectory wi of Ŵ
(N,m)
t , defined as wi =

∑m
k=1

√
λkek(t)y

k
ik
, is straightforward and given by

pi := Q
(
Ŵ (N,m) = wi

)
= Q

(
Ŷ

(Nk)
k = ykik , k ∈ {1, . . . ,m}

)
=

m∏
k=1

Q
(
Ŷ

(Nk)
k = ykik

)
,

where we recall that the quantities Q(Ŷ
(Nk)
k = yik) appearing on the right hand side are explicitly

given by (4.1).

By fixing the number of trajectories N and using the L2-optimal Nk-quantizer Y
(Nk)
k , the optimal

L2-product quantizer on the space Ω × [0, T ] essentially comes down to the trade-off between
the choice of m and the sequence (Nk)k≤m subject to

∏m
k=1 Nk ≤ N by solving the following

optimisation problem

min
(Nk)k≤m,m≥1∏m

k=1 Nk≤N

E

[∫ T

0

(
Ws − Ŵ (N,m)

s

)2
ds

]
,

with

E

[∫ T

0

(
Ws − Ŵ (N,m)

s

)2
ds

]
=

m∑
k=1

λkE
[(

Yk − Ŷ
(Nk)
k

)2]
+

∞∑
k=m+1

λk, (4.5)

using the orthonormality of the eigenfunction ek and independence of Yk. Thus, the minimization
of the of the error function (4.5) is a balancing act between the L2-projection error of individual
i.i.d. random variables Yk (intra-class error) and the error of truncation of the KL decomposition
(inter-class error). It can be proved, see [47, Theorem 5], that a solution to (4.5) always exists

and is unique. The quantizer Ŵ (N,m)∗ with {(Nk)
∗
k≤m∗ ,m∗} that solves (4.5) is called the L2

(rate) optimal product quantizer. To alleviate notations in the sequel, we will 1) use Ŵ to denote
the L2-optimal product quantizer of W , and 2) identify the tuple i with a corresponding index

i ∈ {1, . . . , N}, so when we mention the i-th trajectory of Ŵ , we are referring to the trajectory i
generated by the tuple yi = (y1i1 , . . . , y

m
im
, ), so that

wi := wi =

m∑
k=1

√
λkek(t)y

k
ik
, N1 ×N2 × . . .×Nm ≤ N.

In practice, the optimal decomposition sequence N1, . . . , Nm are solved numerically using blind
optimisation, which consists of computing (4.5) for every possible decomposition N1 ×N2 × . . .×
Nm ≤ N , see [49]. For standard Brownian motions, the optimal decomposition sequence for a
wide range of values of N is available online at http://www.quantize.maths-fi.com/. We plot

an L2-optimal product quantizer Ŵ in Figure 4 for an illustration.
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Figure 4: L2-optimal product quantizer Ŵ of the Brownian Motion, N = N1 ×N2 = 10× 2 = 20,
T = 1.

4.3 VIX derivative pricing via quantization

We recall the explicit expression for the VIX in (2.6) involving the process Zu
T in (2.7).

4.3.1 Non-Markovian case

Quantization of Zu
T . Fix T > 0, as done in [17, Section 4], we will use the optimal product

quantization Ŵ in (4.3) to build a functional quantizer ẐT of the process (Zu
T )u∈[T,T+∆] in (2.7)

as

Ẑu
T =

∫ T

0

K(u− s)dŴs =

∫ T

0

K(u− s)
˙̂
W sds

=

m∑
k=1

√
λkŶ

Nk

k

∫ T

0

K(u− s)ėk(s)ds, u ∈ [T, T +∆], (4.6)

where ḟ denotes the derivative of the function t 7→ f(t).

The quantization of ZT thus requires the computation of the integrals
(∫ T

0
K(u− s)ėk(s)ds

)
u≥T

which can be approximated numerically for general kernels. For the fractional kernel Kfrac and
shifted fractional kernel Kshift, recall Table 1, these quantities can be computed explicitly as
specified in Appendix A.1. For the log-modulated kernel Klog, we were unable to derive a closed

form solution and resorted to using numerical integration techniques to compute
∫ T

0
K(u−s)ėk(s)ds

directly (e.g. Gaussian quadrature, which seems to work well in practice).

The quantization of ZT is then straightforward. For a tuple j ∈
∏m

i=1{1, 2, . . . , Ni}, we define

(zuj )u∈[T,T+∆] as the jth trajectory of (Ẑu
T )u∈[T,T+∆], formed through (4.6) in the sense(

Ŷ
(Nk)
k = ykj

k
, k ∈ {1, . . . ,m}, N1 ×N2 × . . .×Nm ≤ N

)
where ykj

k
is the same as those defined in (4.4), with the associated probability given by

pj = Q
(
Ẑu
T = zuj , T ≤ u ≤ T +∆

)
=

m∏
k=1

Q
(
Ŷ

(Nk)
k = ykj

k

)
by virtue of the independence of (Ŷ

(Nk)
k )k=1,...,m, where we recall that the quantities appearing on

the right hand side are explicitly given by (4.1).
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Likewise to the quantized Brownian motion, we ease notations by identifying the tuple j with
a corresponding index j ∈ {1, . . . , N}, so that (zuj )u∈[T,T+∆] denotes the j-th trajectory of the

quantizer (Ẑu
T )u∈[T,T+∆] with its associated discrete probability pj := pj .

Quantization of VIXT . Once the quantizer ẐT is computed, we can plug it in the expression

for the VIX in (2.6) to obtain the quantized version V̂IX
2

T :

V̂IX
2

T =
1002

∆

2M∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
i
]
(Ẑu

T )
k−idu.

For j = 1, . . . , N , the j-th quantized point vj for the VIX2
T is explicitly given by

vj :=
1002

∆

2M∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
i
]
(zuj )

k−idu. (4.7)

Recall that the moments E[(Gu
T )

i] are explicitly given by (2.4), so that the integral in (4.7)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
i
]
(zuj )

k−i(u)du

can be approximated efficiently (our numerical implementation shows that 50 points between T
and T +∆ are largely sufficient using Gaussian quadrature).

With the quantized V̂IX
2

T , we can now price quickly a variety of VIX derivatives with payoff
function Φ by:

E[Φ(VIXT )] ≈ E[Φ(V̂IXT )] =

N∑
j=1

Φ(
√
vj)pj . (4.8)

In particular, we can price VIX futures and VIX call options as follows:

FVIXT
0 = E[VIXT ] ≈

N∑
j=1

√
vjpj , CVIXT

0 = E
[
(VIXT −K)

+
]
≈

N∑
j=1

(
√
vj −K)+pj .

The moment-matching trick. To further improve the accuracy of the VIX pricing via quan-
tization, we propose a moment-matching trick, that is:

z̃uj := zuj

(
E[(Zu

T )
q]∑N

i=1(z
u
i )

qpi

) 1
q

, 1 ≤ j ≤ N, (4.9)

for some even integer q (since ZT has zero odd moments) and for each time step u ∈ [T, T +∆]

and then substitute z̃uj into (4.7). This way, we can match the q-th moment of the quantizer Ẑu
T

with that of Zu
T . We suggest using q = 4 based on numerical experiments. Note that

E [(Zu
T )

q] =

(∫ u

u−T

K2(s)ds

) q
2

(q − 1)! !

can be computed explicitly for all non-Markovian kernels in this paper for even integer q. Figure 5
shows the moment-matching trick results in quantized trajectories being more spread out, and this
turns out to speed up convergence in VIX derivative pricing as we will see later.
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Figure 5: Comparison of quantizer Ẑu
T using the Volterra fractional kernel Kfrac: LHS is without

moment matching, RHS is with moment matching; T = 0.5, H = 0.05, N = N1 × N2 × N3 =
10× 3× 2 = 60.

We stress that such moment matching-trick improves the quality of the quantization considerably,
both in terms of VIX future prices and VIX implied volatility smile. Indeed, as shown on Figure 6,
quantization without the moment-matching trick is unusable in practice for the fractional kernel
with small values of H even with a lot of quantization trajectories N = 100, 000. See also [17,
Figure 3], where the number of quantized points were pushed as far as N = 1, 000, 000 but the
approximation is still well-off the correct values due to the extremely slow convergence rate of the
quantization of fractional process in the order of 1/(logN)H , see [23]. After moment-matching, we
achieve very accurate results with way less quantization points and faster convergence: Figure 7
shows the convergence of VIX pricing using quantization, where N = 200 seems largely sufficient
for pricing and calibrating VIX derivatives! (The Monte Carlo benchmark results are obtained
using 6 million simulations with antithetic variables, with total time steps of 50 between T and
T +∆.)
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Figure 6: VIX futures term structure and VIX call options implied volatility with N = 100, 000
quantized trajectories of ẐT with moment matching (in blue), without moment matching (orange)
versus Monte-Carlo prices (dashed green) with 6 million trajectories and 50 time steps, for the
fractional kernel Kfrac with Hurst index H = 0.05 and parameters ξ0(t) = 0.005e−8t + 0.04(1 −
e−8t), (α0, α1, α3, α5) = (0.01, 1, 0.214, 0.227).
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Figure 7: Convergence of the implied volatility of VIX call options using quantization with varying
N number of trajectories of ẐT under the fractional kernel Kfrac after moment matching. The
Monte-Carlo prices (dashed green) are estimated with 6 million trajectories and 50 time steps.
H = 0.05, ξ0(t) = 0.03, (α0, α1, α3, α5) = (0.01, 1, 0.214, 0.227).

4.3.2 Markovian case

In the case of the exponential kernel Kexp(t) = εH−1/2e−(1/2−H)ε−1t, the expression of Zu
T in (2.7)

can be simplified to Zu
T = XT e

−(1/2−H)ε−1(u−T ) with XT ∼ N
(
0, ε2H−1 1−e−(1−2H)ε−1T

(1−2H)ε−1

)
. So that

VIXT is just a function of εH−1/2
√

1−e−(1−2H)ε−1T

(1−2H)ε−1 Y with Y a standard Gaussian:

VIX2
T =

1002

∆

2M∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)(
εH−1/2

√
1− e−(1−2H)ε−1T

(1− 2H)ε−1
Y

)k−i

×
∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
i
]
(e−(1/2−H)ε−1(u−T )(k−i))du. (4.10)

Applying the L2-optimal quantizer on Y as in Section 4.1, for j = 1, . . . , N , the j-th quantized
point vj for the V̂IXT is explicitly given by

vj =
1002

∆

2M∑
k=0

k∑
i=0

yk−i
j (α ∗ α)k

(
k

i

)
ε(H−1/2)(k−i)

(
1− e−(1−2H)ε−1T

(1− 2H)ε−1

) k−i
2

×
∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
i
]
e−(1/2−H)ε−1(u−T )(k−i)du,

where {y1, · · · , yN} are the quantized points of Ŷ with corresponding probabilities pj = Q(Ŷ = yj).
The VIX derivatives can then be computed by plugging (vj , pj)j=1,...,N in the formula (4.8). For
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the exponential kernel, the convergence is a lot faster after applying a similar moment-matching
trick directly on the quantized points of Ŷ , with q an even integer:

ỹj := yj

(
E[Y q]∑N

i=1(yi)
qpi

) 1
q

, 1 ≤ j ≤ N.

Th convergence of VIX pricing using quantization in the Markovian case is shown in Figure 8.

Figure 8: Convergence of the implied volatility of VIX call options using quantization with varying
N number of trajectories of ẐT under the exponential kernel Kexp after moment matching. The
dotted green line represents VIX implied volatility calculated by integrating the payoff function
of expression (4.10) directly against the Gaussian density. H = −0.2, ε = 1/52, ξ0(·) = 0.03,
(α0, α1, α3, α5) = (0.01, 1, 0.214, 0.227).

5 Fast pricing of SPX options via Neural Networks with
Quantization hints

5.1 Quantization techniques to SPX derivatives

We now explain how to extend the quantization ideas to approximate derivative prices P0 on S of
the form

P0 : = E [F (log(ST ))] ,

for some payoff function F . The process log(S) in (2.1) reads

log(ST ) = log(S0)−
1

2
UT + ρVT +

√
1− ρ2V ⊥

T ,
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with

UT =

∫ T

0

σ2
sds, VT =

∫ T

0

σsdWs, V ⊥
T =

∫ T

0

σsdW
⊥
s .

We denote by (FW
t )t≥0, the natural filtration generated by the Brownian motion W .

Using the celebrated conditioning argument on FW
T in stochastic volatility models of [54] combined

with the fact that E
[
V ⊥
T | FW

T

]
is Gaussian with conditional mean zero and conditional variance

UT , we get
P0 = E[F (log(ST ))]

= E
[
E
[
F

(
log(S0)−

1

2
UT + ρVT +

√
1− ρ2 V ⊥

T

) ∣∣∣ FW
T

]]
= E

[
F̃ (UT , VT )

]
after applying properties of conditional expectations with the deterministic function F̃ :

F̃ (u, v) =

∫
R
F

(
log(S0)−

1

2
u+ ρv +

√
(1− ρ2)uz

)
e−z2/2dz/

√
2π.

With the help of quantization, we then approximate P0 by

P0 ≈
N∑
j=1

pjF̃ (uj , vj)

with (uj , vj , pj)1≤j≤N the tuple of quantized points of UT , VT and their associated discrete prob-
ability pj to be defined in the coming sections.

Example 5.1. For instance, for the case of a European Call option, with payoff F (x) = (ex−K)+,
we have

F̃ (UT , VT ) = BScall

(
S0 exp

(
−1

2
ρ2UT + ρVT

)
,

√
(1− ρ2)UT

T
, T,K

)
with

BScall(x, σ, T,K) = xN (d1)−KN (d2),

d1 =
log
(

x
K

)
+ 1

2σ
2T

σ
√
T

, d2 = d1 − σ
√
T ,

with N (x) =
∫ x

−∞ e−z2/2dz/
√
2π the cumulative density function of standard Gaussian.

With the help of quantization, we price the call by

C0 ≈
N∑
j=1

pjBScall

(
S0 exp

(
−1

2
ρ2uj + ρvj

)
,

√
(1− ρ2)uj

T
, T,K

)
.

The task now is to quantize the two random variables (UT , VT ).

5.1.1 Quantization of UT

Since the path of U is determined by the volatility process σ, which is itself determined by the
path of X, the first task is to quantize X. Let’s define the quantizer X̂ as:

X̂t =

∫ t

0

K(t− s)dŴs =

∫ t

0

K(t− s)
˙̂

Wsds =

m∑
k=1

√
λkŶ

Nk

k

∫ t

0

K(t− s)ėk(s)ds. (5.1)
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For general kernel K, the integral
∫ t

0
K(t− s)ėk(s)ds can be computed numerically (e.g. Gaussian

quadrature). For the cases of fractional kernel Kfrac, shifted fractional Kshift and exponential
kernel Kexp this integral can be computed explicitly in Appendix A.2.

Figures 9 and 10 show the quantized trajectories of X̂ under the fractional kernel and exponential
kernel for different values of H. Recall that the exponential kernel Kexp is well-defined for negative
values of H. Compared to the trajectories of ẐT in Figure 5, the trajectories of X̂ seem more
“noisy” and tend to cross each other more often.

Figure 9: Quantizer X̂t using the fractional kernel Kfrac, LHS is H = 1/2, RHS is H = 0.05;
T = 2, N = N1 ×N2 ×N3 = 10× 3× 2 = 60.

Figure 10: Quantizer X̂t using the exponential kernel Kexp, LHS is H = 0.5, RHS is H = −0.1;
ε = 1/52, T = 0.5, N = N1 ×N2 ×N3 = 10× 3× 2 = 60.

We now define (x
j

t )t≥0 as the j-th trajectory at time t of the quantizer (X̂t)t≥0 in (5.1) with
associated probability pj as

pj = Q
(
X̂t = x

j

t , 0 ≤ t ≤ T
)
=

m∏
k=1

Q
(
Ŷ

(Nk)
k = ykj

k

)
.

Again, to ease notations we identify the tuple j with a corresponding index j ∈ {1, . . . , N}, so
that (xj

t )t∈[0,T ] denotes the j-th trajectory of the quantizer (X̂t)t∈[0,T ] with its associated discrete
probability pj := pj .

Define the quantizer σ̂ in (2.1) as:

σ̂t =
√
ξ0(t)

p(X̂t)√
E [p(Xt)2]

, t ≥ 0.

We are now ready to define the quantizer Û as:

ÛT =

∫ T

0

σ̂2
sds.
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This is a Riemann integral, which can be easily computed trajectory by trajectory using numerical
integration in the form of: ∫ T

0

σ̂2
sds ≈

nT∑
p=1

σ̂2
tpwp,

for some numerical quadrature methods with weights w. For our numerical experiments we used
Gaussian quadrature with nT = 50, but other quadratures are possible. We denote uj

T as the j-th

quantized point of ÛT , with the associated trajectory probability pj carried over directly from the

quantizer X̂.

5.1.2 Quantization of VT

The quantization of VT is more intricate. In order to understand the intricacy, let us first look at
the case where σ is a semi-martingale.

Semi-martingale case. This is the case for smooth enough kernels as shown in the following
proposition.

Proposition 5.2. Assume that K is absolutely continuous on [0, T ] with a locally square-integrable
derivative K ′. Then, the process

Xt =

∫ t

0

K(t− s)dWs

is a semi-martingale with dynamics:

dXt = K(0)dWt +

(∫ t

0

K ′(t− s)dWs

)
dt.

Proof. Using that K = K(0) +
∫ ·
0
K ′(s)ds, we obtain

Xt = K(0)Wt +

∫ t

0

∫ t−s

0

K ′(t− s− r)drdWs = K(0)Wt +

∫ t

0

∫ r

0

K ′(r − s)dWsdr,

where the second equality follows from the stochastic Fubini theorem which applies since K ′ is
square-integrable. This ends the proof.

Example 5.3. The shifted fractional kernel Kshift and the exponential kernel Kexp satisfy clearly
the assumptions of Proposition 5.2.

Based on the works of Wong and Zakai [57] and Pagès and Sellami [51], we have the convergence

of the approximation
∫ T

0
σ̂sdŴs towards the Stratonovich integral

∫ T

0
σs ◦ dWs:∫ T

0

σ̂sdŴs −−−−→
N−→∞

∫ T

0

σs ◦ dWs =

∫ T

0

σsdWs +
1

2
⟨σ,W ⟩T , (5.2)

where ⟨σ,W ⟩ is the quadratic covariation between the two semimartingales σ and W given by

⟨σ,W ⟩T = K(0)

∫ T

0

√
ξ0(s)

p′(Xs)√
E [p(Xs)2]

ds, p′(x) =

M∑
k=0

kαkx
k−1.

We therefore construct ⟨̂σ,W ⟩T as the quantized version of the quadratic covariation as follows:

⟨̂σ,W ⟩T = K(0)

∫ T

0

√
ξ0(s)

p′(X̂s)√
E [p(Xs)2]

ds. (5.3)
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Using the identity (5.2), we define the V̂T the quantizer of VT as

V̂T =

∫ T

0

σ̂sdŴs −
1

2
⟨̂σ,W ⟩T .

In practice, the quantizer V̂T is also computed numerically trajectory by trajectory. Likewise, we
denote vjT as the j-th trajectory of V̂ at time T , with the associated trajectory probability pj
carried over directly from quantizer X̂.

Non semi-martingale case. If the process (σt)t≥0 is not a semimartingale and has infinite
quadratic variation, which is the case for the fractional Kfrac and the log-modulated kernels Klog

with H < 1/2: the quadratic covariation ⟨σ,W ⟩ explodes. This can be seen informally on (5.3)
since the kernels are singular at 0, i.e. Kfrac(0) = Klog(0) = +∞. We suggest the following
workaround.

To avoid the explosion in (5.3), we replace K(0) with a positive constant C so that

⟨̂σ,W ⟩
C

T = C

∫ T

0

√
ξ0(s)

p′(X̂s)√
E [p(Xs)2]

ds

and thus define the quantizer V̂T in the non semi-martingale setting as:

V̂T =

∫ T

0

σ̂sdŴs −
1

2
⟨̂σ,W ⟩

C

T .

A natural choice of C is a value which enforces the centered martingale property of V̂T , i.e. E
[
V̂T

]
=

0. That is, we set

C = 2
E
[∫ T

0
σ̂sdŴs

]
∫ T

0

√
ξ0(s)

E[p′(X̂s)]√
E[p(Xs)2]

ds
(5.4)

which can be computed numerically.

It is worth highlighting that C diverges at the limit but acts as renormalization constant. This
bears resemblance to the renormalization theory [37] and the approach in [11, Theorem 1.3].

5.1.3 Numerical illustration

For the numerical implementation, we propose two moment-matching tricks to improve conver-
gence2. First, we consider the following modified quantizer of Ŵ :

˜̂
W t =

m∑
k=1

√
λk + ελek(t)Ŷ

(Nk)
k , (5.5)

where ελ is set to match the trace of the covariance kernel of X, that is

E

[∫ T

0

X̂2
sds

]
= E

[∫ T

0

X2
sds

]
=

∫ T

0

∫ s

0

K(u)2duds,

with
˜̂
W t now entering into the definition of the quantizer X̂ in (5.1). The RHS of the integral

above can be computed for all kernels in this paper.

2These moment matching tricks are different from the one proposed for VIX quantization, recall (4.9), and seem
to be more suited for pricing SPX derivatives numerically.
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The second moment matching trick is to introduce a constant b in front of V̂T such that

E
[
bV̂ 2

T

]
= E

[∫ T

0

σ2
sds =

]
=

∫ T

0

ξ0(s)ds,

so that the new object bV̂T now matches both the first and second moments of VT .

Figure 11 shows that moment matching improves the quantization results. For H = 1/2, the
moment matching technique produces similar accuracy to that of Romberg interpolation proposed
by [47]. However for H < 1/2, the moment matching tricks outperform Romberg interpolation.

Figure 11: SPX implied volatility smile under the fractional kernel, ρ = −0.8, α = [0, 1, 0, 0, 0, 0],
ξ0(t) = 0.02. The dotted green line ares are Monte Carlo; the blue line is quantisation with
Romberg interpolation between N = 1, 000 and N = 10, 000 as per [47]; the red line is quantisation
with 10,000 points applying moment matching; the orange line is quantisation with 10,000 points
without moment matching.

Unfortunately, quantization approximation degrade as H goes to zero, as show in Figure 12. In the
next section, we will discuss how to use Neural Networks to further improve quantization estimates,
especially for lower H.

Figure 12: SPX smile under the fractional kernel Kfrac with different values of H, ρ = −0.8,
α = [0, 1, 0, 0, 0, 0], ξ0(t) = 0.02. Green dotted line is Monte Carlo; blue line is quantisation with
10,000 points after moment matching.

5.2 Quantization Neural Network

As we see in Figure 12, the results obtained through quantization degrade as H gets closer to zero
for the singular kernels Kfrac and Klog. This is also true to some degree for the non-singular
kernels Kshift and Kexp for lower values of H. To further improve the estimates on SPX options,
we will use Neural Networks.
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First, define nΘ the dimension of the input of the Neural Networks, with Θ referring to the
parameters of the Gaussian polynomial volatility model defined in (3.2) (including the extra pa-
rameter β for the log-modulated kernel Klog) together with the maturity parameter T , so that
nΘ = dim(Θ) + 1. Recall that we fixed ε = 1/52 (1 week) for the exponential kernel Kexp and
time shifted fractional kernel Kshift, and θ = 0.1 for the log-modulated fractional kernel Klog.

Next, we use Neural Networks (or 3 Neural Networks NN 1,NN 2,NN 3) to modify existing quan-

tized trajectories of X̂ in (5.1) and d
˜̂
W the derivative of

˜̂
W in (5.5), as well as to tweak the

probability vector p = (p1, · · · , pN ) by:

XNN = X̂ +NN 1,

dWNN = d
˜̂
W +NN 2,

pNN = softmax(p+NN 3),

(5.6)

with the function softmax : RN → (0, 1)N , softmax(r)i = eri∑N
j=1 erj

for r = (r1, . . . , rN ) ∈ RN ,

ensuring the output probabilities are positive and sum to 1. Here, X̂ and d
˜̂
W are matrices of

dimension N × nT representing the N -quantizer with discrete number of time steps nT . NN are
Neural Networks such that:

NN 1,NN 2 : RnΘ → RN×nT

NN 3 : RnΘ → RN .

At this point, we highlight that the forward variance curves (ξ0(t))t≤T is not part of the input

parameters of the Neural Networks, since we want to tweak the trajectories of X̂, d
˜̂
W and the tra-

jectory probabilities so that they remain independent of the shape of (ξ0(t))t≤T . The treatment
of forward variance curves has always been challenging in deep pricing, for example in [40, 55],
where a large number of input parameters for the Neural Networks were required to incorporate
piece-wise constant forward variance curves. However, our Neural Networks approach solves this
problem by 1) using lower input dimension, and 2) generalizing over a larger variety of forward
variance curves (e.g. not only piece-wise constant) during training.

5.2.1 Neural Network setup

The input parameters (3.2) (and an extra parameter β for the log-modulated kernel Klog) together
with the maturity parameter T are first normalised into the interval [−1, 1]nΘ before feeding into
the Neural Networks NN . In terms of Neural Networks’ architecture, we chose 3 hidden layers

of 30 neurons each, connected using tanh(x) = ex−e−x

ex+e−x activation function, except for the output
layer where identity function is used. The Neural Networks are built using the Tensorflow package
in Python.

We then recompute ÛT , V̂T using XNN and dWNN . With new quantized points and probabilities
(uNN

j , vNN
j , pNN

j )j≤N , we compute the call option price:

C(Θ, T,K)NN ≈
N∑
j=1

pNN
j BScall

S0 exp(−
1

2
ρ2uNN

j + ρvNN
j ),

√
(1− ρ2)uNN

j

T
, T,K

 . (5.7)

Introducing the following root mean square error:

RMSE1 =

√√√√ 1

Nd ×Mk

Nd∑
i=1

Mk∑
j=1

(C(Θi, Ti,Kj)NN − C(Θi, Ti,Kj)MC)
2
,
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where C(Θi, Ti,Kj)
NN is the call option priced using (XNN , dWNN , pNN ) and C(Θi, Ti,Kj)

MC

is the call option priced through Monte Carlo. Nd is the number of different Θ in the training
dataset and Mk is the number of strikes.

It is known that implied volatilities for SPX options are more sensitive to option prices movements
for deep out of the money/in the money strikes at shorter maturities. In response, we propose a
second loss function which penalises more the regions far away from near the money at shorter
maturities:

RMSE2 =

√√√√ 1

Nd ×Mk

Nd∑
i=1

Mk∑
j=1

(
1

Ti
log

(
C(Θi, Ti,Kj)NN − lbcall(Kj)

C(Θi, Ti,Kj)MC − lbcall(Kj)

))2

,

where lbcall(K) := (S0 −K)+ is the theoretical lower bound of a call option in our setting (2.1).

We set the loss function for training the Neural Networks as:

L = RMSE1 +
1

2
RMSE2.

Despite the extra computation steps involved between the output of the Neural Networks in (5.6)
and the call option price in (5.7), we can capture these computations inside Tensorflow’s compu-
tational graph to perform backward propagation to update Neural Networks’ weights. We train
the Neural Networks by splitting generated data 85/15 between training and validation set. For
each epoch, the training data is divided into mini batches of 200 samples. During the training,
Adam Optimiser is used with a learning rate of 0.001 for the first 1,000 epochs, and then a learning
rate of 0.0001 for the next 1,000 epochs. More training epochs with smaller learning rates do not
improve the results notably, and there appears to be no over fitting by checking the validation error
vs.training error, as seen for instance in the case of the exponential kernel Kexp in Figure 13 and 14.
The distribution of relative errors from the validation dataset seems to be similar to that from train-
ing dataset. The relative error is calculated as |C(Θ, T,K)NN−C(Θ, T,K)MC |/(C(Θ, T,K)MC+ϵ)
with ϵ = 0.1 to ensure that the errors does not blow up for very small prices in the out of the
money region.

Figure 13: Heatmap of relative errors between estimated prices by Neural Networks vs. Monte
Carlo from the validation dataset in the case of exponential kernel Kexp.

Figure 14: Heatmap of relative errors between estimated prices by Neural Networks vs. Monte
Carlo from the training dataset in the case of exponential kernel Kexp.
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Figure 15 shows the improvement of option price estimation via Neural Networks, compared to
that of quantization only.

Figure 15: SPX implied volatility smile comparison between Monte Carlo (dotted green lines),
quantization only (in blue) and with Neural Networks (in red) with the exponential kernel
Kexp for different values of ρ; H = −0.1, (α0, α1, α3, α5) = (0.001, 1, 0.1, 0.01), T = 6 months,
ξ0(t) = 0.005e−8t + 0.04(1− e−8t). The quantization estimate (in blue) is computed using 10, 000
quantization points, where the quantization + Neural Networks (in red) is based on only 60 quan-
tization points.

5.2.2 A closed form density function for log(S)

Our approach emits a closed form density function of log(ST /S0), allowing us to price any deriva-
tives depending on the final payoff of spot S. To see this, recall that

log(ST ) = log(S0)−
1

2
UT + ρVT +

√
1− ρ2V ⊥

T .

By modelling UT and VT using quantization, the law of log(ST /S0) is a Gaussian mixture with
density function f(x):

f(x) =

N∑
j=1

pNN
j fj(x),

where

fj(x) =
1√

2π(1− ρ2)uNN
j

exp

(
−(x+ 1

2u
NN
j − ρvNN

j )2

2(1− ρ2)uNN
j

)
.

Figure 16 is an example of density of log(ST /S0) produced by Neural Networks vs. Monte Carlo:
the two are very close to each other:

Figure 16: log(ST /S0) density comparison between Monte Carlo (dotted green lines) and Neu-
ral Networks (in red) with the exponential kernel Kexp; H = −0.1, ρ = −0.8, (α0, α1, α3, α5) =
(0.001, 1, 0.1, 0.01), T = 6 months, ξ0(t) = 0.005e−8t + 0.04(1− e−8t).
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5.2.3 Data Generation

First, we sample 100,000 different combinations of input parameters for each kernel in this paper
as per the following:

ρ ∼ U [−1,−0.2] , (α0, α1, α3, α5) ∼ U [0, 1]
4
, T ∼ U [0.01, 0.5] ;β ∼ U [1, 4] ,

with U the uniform distribution. For the parameter H, we sampled H ∼ U [−1, 0.5] for the
exponential kernel Kexp and the shifted fractional kernel Kshift. For the fractional kernel Kfrac

and the log modulated kernel Klog, we sampled H ∼ U [0.005, 0.5]

To sample realistic forward variance curves (ξ0(t))t≤T , we extracted the forward variance curves of
SPX between 2017 and 2021 using the celebrated formula by Carr & Madan [19]. To help general-
izing the Neural Network to different (ξ0(t))t≤T , we added some noise to the extracted (ξ0(t))t≤T

at each discretised time step (tp)1≤p≤nT
by multiplying e0.2Yp with (Yp)1≤p≤nT

i.i.d. standard
Gaussian. This idea is similar to that of [55].

After randomly pairing up the sampled parameters with sampled the forward variance curves, we
compute the option call price via Monte Carlo simulations. The process X is simulated exactly
using Cholesky decomposition for all kernels. Apart from the covariance matrix of X under the
log modulated kernel Klog which is computed numerically, all covariance matrices are computed
explicitly.

To further reduce MC variance, We make use of antithetic variable for X and the control variable
proposed by [14, 44]. The MC prices are computed on a fixed vector of strikes K := (K1, . . . ,KMk

)
ranging between 60% and 120% of spot price S0 = 100. The number of time steps nT is set to 800
between 0 and T for each simulation, with number of simulations set to 80, 000 including antithetic
variables.

5.2.4 Critiques of Neural Networks

Compared to the works of [40, 55, 56], our Neural Networks:

1. learn the joint probability distribution of (U, V, log(S)) instead of learning the map between
model parameters Θ and its implied volatility;

2. do not require a fixed mesh of strikes and maturities and interpolation between various
strikes/maturities during joint calibration.

Our approach thus brings several benefits, for instance:

1. Greater flexibility: since the output is a joint density, we can price vanilla options for any
strikes and maturities; pricing of other types of derivatives based on the stock price is also
possible (transfer learning if needed);

2. Butterfly arbitrage-free: positive density integrating to 1 for log(S);

3. Improved interpretability: Neural Networks are used as a corrector of a first proxy coming
from quantization;

4. Smaller input dimension: the forward variance curve and strikes are not part of the input
parameters.

Of course, the price to pay for having a more flexible Neural Networks model is the large number
of Neural Networks’ weights involved and longer training time. Recall the output of NN 1 and
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NN 2 have dimension of N × nT . As we have set N = 60 and nT = 50, the number of weights
connecting the last hidden layer and the output layer alone is (30 + 1) × (60 × 50) = 93, 000 for
NN 1 and NN 2. Larger N and nT could further improve option prices estimated through Neural
Networks, but this will also take longer time to train.

A Formulae

A.1 A formula for
∫ T

0
(u− s)H−1/2ėk(s)ds

Fractional kernel Kfrac: Thanks to [17], there is a semi-closed form solution for the integral
involving the fractional kernel Kfrac:∫ T

0

(u− s)H−1/2ėk(s)ds =

{
cos

((
k − 1

2

)
T +∆

uπ

)(
ζ 1

2

((
k − 1

2

)
T +∆

u, h1

)
− ζ 1

2

((
k − 1

2

)
T +∆

(u− T ), h1

))

+ π sin

((
k − 1

2

)
T +∆

uπ

)(
ζ 3

2

((
k − 1

2

)
T +∆

u, h2

)
− ζ 3

2

((
k − 1

2

)
T +∆

(u− T ), h2

))} √
2(T +∆)H(

k − 1
2

)H+ 1
2
√
λk

with h1 = 1
2 (H + 1

2 ), h2 = h1 +
1
2 and

ζq(z, h) =
z2h

2h
1F2(h; q, 1 + h; -

1

4
π2z2)

where 1F2 is the hypergeometric function.

Shifted fractional kernel Kshift: The formula is similar to the one above for the fractional
kernel Kfrac by simply replacing u by u+ ε.

A.2 A formula for
∫ t

0
(t− s)H−1/2ėk(s)ds

Fractional kernel Kfrac: Thanks to [17], there is a semi-closed form solution for the integral
involving the fractional kernel Kfrac:∫ t

0

(t− s)H−1/2ėk(s)ds =
2

1 + 2H

√
2

Tλk
tH+1/2

2F1(1;
3

4
+

H

2
,
5

4
+

H

4
;− t2

4λk
).

Shifted fractional kernel Kshift:∫ t

0

(t+ ε− s)H−1/2ėk(s)ds =

{
cos

((
k − 1

2

)
T

(t+ ε)π

)(
ζ 1

2

((
k − 1

2

)
T

(t+ ε), h1

)
− ζ 1

2

((
k − 1

2

)
T

ε, h1

))

+ π sin

((
k − 1

2

)
T

(t+ ε)π

)(
ζ 3

2

((
k − 1

2

)
T

(t+ ε), h2

)
− ζ 3

2

((
k − 1

2

)
T

ε, h2

))} √
2tH(

k − 1
2

)H+ 1
2
√
λk

with h1 = 1
2 (H + 1

2 ), h2 = h1 +
1
2 and

ζq(z, h) =
z2h

2h
1F2(h; q, 1 + h; -

1

4
π2z2)

where 1F2 is the hypergeometric function.
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Exponential kernel Kexp: the form solution for the integral involving the exponential kernel:∫ t

0

K(t− s)ėk(s) =

∫ t

0

εH−1/2e−(1/2−H)ε−1(t−s)ėk(s)ds

= εH−1/2

√
2

T

−(1/2−H)ε−1e−(1/2−H)ε−1t + (1/2−H)ε−1 cos( t√
λk

) + 1√
λk

sin t
λk

((1/2−H)2ε−2 + 1
λk

)
√
λk

.

B More joint calibration results

B.1 RMSE across different kernels after calibration

Figure 17: RMSE across different kernels (more details on this).
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B.2 Joint calibration among other kernels for the date 23 October 2017

Figure 18: Fractional kernel Kfrac: Joint calibration of SPX implied volatility, VIX implied
volatility and VIX futures on 23 October, 2017 using the fractional kernel Kfrac. The blue and
red dots are bid/ask implied volatilities, with the green lines are model fit. The vertical bars
represents VIX futures price. Calibrated parameters are: ρ = −1, H = 0.09698, (α0, α1, α3, α5) =
(0.61799, 0.90211, 1, 0.0097).

Figure 19: Log modulated kernel Klog: Joint calibration of SPX implied volatility, VIX implied
volatility and VIX futures on 23 October, 2017 using the log modulated kernel Klog. The blue
and red dots are bid/ask implied volatilities, with the green lines are model fit. The vertical
bars represents VIX futures price. Calibrated parameters are: ρ = −0.993822, H = 0.01608, β =
4, (α0, α1, α3, α5) = (0.32486, 0.0, 0.49826, 0.017482).
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Figure 20: Shifted fractional kernel Kshift: Joint calibration of SPX implied volatility, VIX im-
plied volatility and VIX futures on 23 October, 2017 using the shifted fractional kernel Kshift.
The blue and red dots are bid/ask implied volatilities, with the green lines are model fit. The
vertical bars represents VIX futures price. Calibrated parameters are: ρ = −0.6891, H =
−0.845297, (α0, α1, α3, α5) = (0.1035051, 0.163729, 0.0001054, 5.1882e− 8).

B.3 Evolution of calibrated parameters under different kernels

Figure 21: Fractional kernel Kfrac: Evolution of the calibrated parameters ρ and H under the
fractional kernel Kfrac, the blue line is the actual value of the calibrated parameters in time, the
orange line is the 30-day moving average. Note how ρ is saturated at -1 in most days, but still not
enough to capture the SPX ATM skew. H is unable to descent to near zero due to the “vanishing”
skew phenomena.
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Figure 22: Log modulated kernel Klog: Evolution of the calibrated parameters ρ and H under the
log modulated kernel Klog, the blue line is the actual value of the calibrated parameters in time,
the orange line is the 30-day moving average. Note how ρ is still very close to -1 in most days,
while H is much closer to zero than that of fractional kernel Kfrac. In any case, the log modulated
kernel Klog still struggles to jointly calibrate SPX and VIX.

Figure 23: Shifted fractional kernel Kshift: Evolution of the calibrated parameters ρ and H under
the shifted fractional kernel Kshift, the blue line is the actual value of the calibrated parameters in
time, the orange line is the 30-day moving average. Note how ρ is not saturated, similar to that of
exponential kernel Kexp, with H basically staying below zero the entire time series (except during
2020 Covid pandemic).
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B.4 Exponential kernel Kexp fit quality quantiles

0.3 Quantile:

Figure 24: Exponential kernel Kexp: Joint calibration of SPX implied volatility, VIX implied
volatility and VIX futures on 03 April, 2019. The blue and red dots are bid/ask implied volatilities,
the green lines are model fit. The vertical bars represents VIX futures price. Calibrated parameters
are: ρ = −0.69148, H = 0.04743, (α0, α1, α3, α5) = (1, 0.1, 0.30223, 0.04788).

0.6 Quantile:

Figure 25: Exponential kernel Kexp: Joint calibration of SPX implied volatility, VIX implied
volatility and VIX futures on 21 July, 2016. The blue and red dots are bid/ask implied volatilities,
the green lines are model fit. The vertical bars represents VIX futures price. Calibrated parameters
are: ρ = −0.72793, H = 0.1373, (α0, α1, α3, α5) = (0.81221, 0.73015, 0.94968, 0.02753).

0.99 Quantile:
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Figure 26: Exponential kernel Kexp: Joint calibration of SPX implied volatility, VIX implied
volatility and VIX futures on 01 September, 2015. The blue and red dots are bid/ask implied
volatilities, the green lines are model fit. The vertical bars represents VIX futures price. Calibrated
parameters are: ρ = −0.8171, H = 0.35267, (α0, α1, α3, α5) = (0.3021, 0.8658, 0.8522, 0.0574).
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