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Introduction

Writing multi-threaded programs is notoriously difficult, as concurrency related bugs are hard to find and reproduce. This difficulty is increased if we consider that several software systems consist of different components that react to the environment and use resources like CPU or memory according to a real time need. For instance, in systems that control automobiles we can have a component in charge of the music sub-system and another component in charge of the braking sub-system. Obviously, the braking sub-system should have a higher priority access to the resources needed, since a delay in the action of the brakes can cost lives.

The programming model used in the vast majority of these software systems, used from automobiles to spacecrafts, defines a set of threads that perform computation monitoring or respond to events. Each thread is typically assigned a priority and are scheduled by a priority round-robin preemptive scheduler: if a thread with a higher static priority becomes ready to run, the currently running thread will be preempted and returned to the wait list for its priority level. The round-robin scheduling policy allows each thread to run only for a fixed amount of time before it must yield its processing slot to another thread of the same priority. The use of threads with different priorities and other synchronization primitives, like locks, can easily lead to a large number of undesirable behaviors. Consider for example the control flow graph of Figure 1. It consists of three threads: a main thread M starting at control location m 0 that creates two threads A and B. The thread A takes and releases (uses) a lock l inside a loop, and the thread B loops while holding the lock l (between b 1 and b 2 ). Suppose that A and B should act like daemon threads, continuously running in the background reacting to events. This means that the LTL formula G F a 1 ∧ G F b 1 , saying that a 1 is executed frequently often and b 1 is executed frequently often, should be valid for all executions.

But this is not the case in the program of Figure 1: once thread B starts executing its loop and holding lock l, thread A is going to starve since it cannot take the lock until it is released. A similar problem occurs if threads A and B have different priority of execution, the thread with lower priority will starve. The program of Figure 1 shows that there is a real need for formal methods to find automatic verification techniques for checking liveness properties in multi-threaded programs with locks and priorities. Indeed, starvation or absence of livelocks are among the most crucial properties that need to be checked for multi-threaded programs.

Dynamic pushdown networks (DPNs) [START_REF] Bouajjani | Regular symbolic analysis of dynamic networks of pushdown systems[END_REF] are a natural model for multithreaded programs with (possibly recursive) procedure calls and thread creation. A DPN consists of a finite set of pushdown systems (PDSs), each of them models a sequential program that can dynamically create new instances of PDSs. The model-checking problems of DPNs against Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and reachability properties are well studied in the literature [START_REF] Song | Model checking dynamic pushdown networks[END_REF][START_REF] Wenner | Weighted dynamic pushdown networks[END_REF][START_REF] Lammich | Precise fixpoint-based analysis of programs with thread creation and procedures[END_REF][START_REF] Martin Gawlitza | Join-lock-sensitive forward reachability analysis for concurrent programs with dynamic process creation[END_REF][START_REF] Lugiez | Forward analysis of dynamic network of pushdown systems is easier without order[END_REF][START_REF] Bouajjani | Regular symbolic analysis of dynamic networks of pushdown systems[END_REF].

However, DPNs cannot model communication between processes. Previous works [START_REF] Lammich | Contextual locking for dynamic pushdown networks[END_REF][START_REF] Lammich | Predecessor sets of dynamic pushdown networks with tree-regular constraints[END_REF][START_REF] Diaz | Reachability Analysis of Dynamic Pushdown Networks with Priorities[END_REF][START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF] extended DPNs with locks and priorities (called PL-DPN), where PDSs can communicate using locks and priorities. This allows to model multithreaded programs where threads communicate via locks and where each thread can have a different priority. Indeed, locks and priorities are frequently used in multithreaded programs as synchronisation primitives. However, only reachability properties are studied for PL-DPNs [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF] with some restricted lock and priority usages.

In general, the model checking problem of DPNs against unrestricted LTL or CTL formulas (where atomic propositions can be interpreted over the control states of two or more threads) is undecidable. In [START_REF] Song | Model checking dynamic pushdown networks[END_REF] it is shown that this problem becomes decidable if we consider single-indexed LTL/CTL properties (formulas of the form f i s.t. f i is a LTL/CTL formula interpreted over the PDS i). On the other hand, pairwise reachability of PL-DPNs without thread creation is undecidable in the general case [START_REF] Kahlon | An automata-theoretic approach for model checking threads for LTL properties[END_REF][START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF]. It becomes decidable if locks are accessed in a well-nested style [START_REF] Kahlon | An automata-theoretic approach for model checking threads for LTL properties[END_REF], where each thread can only releases the latest acquired lock, and a thread does not change its priority while holding a lock [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF].

In this work, we combine these ideas and show that model-checking single indexed LTL/CTL properties is decidable for PL-DPNs under these restrictions. It is non-trivial to do LTL/CTL model checking for PL-DPNs, since the number of instances of PDSs can be unbounded. Checking independently whether all the different PDSs satisfy the corresponding subformula f i is not correct. Indeed, we do not need to check whether an instance of a PDS j satisfies f j if this instance is not created during a run. The approach of [START_REF] Song | Model checking dynamic pushdown networks[END_REF] cannot be directly applied to perform single-indexed LTL/CTL model-checking for PL-DPNs due to locks and priorities. Indeed, we have to consider communication between each instance of PDSs running in parallel in the network. To overcome this problem, we will reduce single-indexed LTL/CTL model-checking for PL-DPNs to the membership problem of PL-DPNs with Büchi acceptance condition (PL-BDPNs). This latter problem is reduced to the membership problem of DPNs with Büchi acceptance condition (BDPNs).

In [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF] we presented an approach for checking pairwise reachability of PL-DPNs using priority-lock structures, an extension of acquisition structures introduced in [START_REF] Lammich | Predecessor sets of dynamic pushdown networks with tree-regular constraints[END_REF]. This structure is used to get rid of locks and priorities in PL-DPNs such that pairwise reachability of PL-DPNs can be reduced to constrained pairwise reachability on DPNs. It works by keeping track of the locks and priorities used in a run. For pairwise reachability, we only need to consider finite runs, as a configuration of a PL-DPN reaches another configuration only using finite steps. However, we have to consider infinite runs of PL-DPNs when we study LTL/CTL model checking.

In this work, we adapted the priority-lock structures to keep track also of the infinitely used locks and priorities. Indeed, we need to assure that a finally acquired lock cannot be infinitely used and that an infinitely used priority does not block other threads. Also, in the case of CTL model checking, we modified the priority-lock structure to keep track of the locks and priorities of differents branched runs.

After getting rid of locks and priorities using the modified priority-lock structure, we construct Büchi dynamic PDSs (resp. alternating Büchi dynamic PDSs) which are a synchronization of a PDS i and the LTL (resp. CTL) formula f i . The language accepted by a Büchi dynamic PDS corresponds to the configurations that satisfy the formula f i . This language is computed by the automata-based approach for standard LTL/CTL model checking for PDSs [START_REF] Song | Model checking dynamic pushdown networks[END_REF].

Thus, the contributions of this paper are:

-An algorithm for single-indexed LTL Model Checking for PL-DPNs, developed in section 4. -An algorithm for single-indexed CTL Model Checking for PL-DPNs, developed in section 5.

For lack of space proofs can be found in the extended version of this paper at [1].

Model Definition

Let L be the set of all locks and I be the set of all priorities. A PL-DPN can be seen as a collection of threads running in parallel, each of them having a set of acquired locks and a priority. They are able to:

1. Perform pushdown operations. This can be used to model calls and returns from (possible recursive) functions. 2. Change its priority if its set of acquired locks is empty. Removing this constraint leads to undecidability [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF]. 3. Acquire a lock that does not belong to any set of acquired locks (of the running threads). 4. Release a lock belonging to its set of acquired locks. 5. Create a new thread with any (initial) priority and an empty set of acquired locks.

Definition 1. Dynamic Pushdown System with Locks and Priorities (PL-DPDS) is a tuple P = (P, Γ, δ, η p , η l ), where P is a finite set of control states, Γ is a finite stack alphabet, η p is a function from control states to priorities from I, η l is a function from control states to set of locks from L, δ is a finite set of transition rules of the following forms:

1. pγ τ - → qw, with η p (q) = η p (p) and η l (q) = η l (p); 2. pγ ch(x) ---→ qw, with η p (q) = x and η l (q) = η l (p) = ∅; 3. pγ acq l ---→ qw, with η p (q) = η p (p), η l (q) = η l (p) ∪ {l} and l ∈ η l (p); 4. pγ rel l --→ qw, with η p (q) = η p (p), η l (q) = η l (p) \ {l} and l ∈ η l (p); 5. pγ τ - → q 1 w 1 q 2 w 2 , with η p (q 1 ) = η p (p), η l (q 1 ) = η l (p) and η l (q 2 ) = ∅.
where p, q 1 , q 2 ∈ P, γ ∈ Γ , w, w 1 , w 2 ∈ Γ * , l ∈ L, x ∈ I.

A local configuration pω ∈ P Γ * of a PL-DPDS P = (P, Γ, δ, η p , η l ), represents the state of a thread. The state of a thread consists of a priority, a set of acquired locks and a stack. The priority of a thread and the set of acquired locks are represented by its control state p and can be retrieved from it by using the functions η p and η l , respectively. The stack of a thread is represented by the sequence of stack letters ω ∈ Γ * .

The function η p assigns a priority to each control state. Intuitively, this means that a thread can be in configurations with different priorities. The function η l assigns a set of locks to each control state. This set of locks represents the locks held (acquired but not yet released) by the thread at such configuration. Definition 2. A Dynamic Pushdown Network with Priorities and Locks (PL-DPN) is a tuple (Act, L, I, P 1 , . . . , P n ) such that L is a set of locks, I is set of priorities (natural numbers), Act is a finite set of actions {acq(l), rel(l)|l ∈ L} ∪ {ch(x)|x ∈ I} ∪ {τ }, where the action acq(l) (resp. rel(l)) for every l ∈ L denotes the acquisition (resp. release) of the lock l, the action ch(x) denotes the change to priority x and the action τ denotes a pushdown action. For every i ∈ {1, . . . , n}, P i is a PL-DPDS.

A global configuration of a PL-DPN M is a sequence of local configurations, each of them corresponding to the configuration of one of the threads running in parallel on the system. Let Conf M be the set of all global configurations of a PL-DPN M .

Following previous works we assume that locks are used in a well-nested fashion, i.e. a process has to release locks in the opposite order of acquisition, an assumption that is often satisfied in practice. Note that for non-well-nested locks even simple reachability problems are undecidable [START_REF] Kahlon | Reasoning about threads communicating via locks[END_REF].

Example

The PL-DPN modeling the program of Figure 1 is defined as follows M = ({acq l, rel l, ch l, τ }, {l}, {1}, P 1 , P 2 , P 3 ) where:

-P 1 = ({p 1 }, {m 0 , m 1 , m f }, {p 1 m 0 τ - → p 1 m 1 p 1 a 0 , p 1 m 1 τ - → p 1 m f p 1 b 0 }, η p , η l ) such that η p (p 1 ) = 1 and η l (p 1 ) = ∅. -P 2 = ({p 1 , p 1,l }, {a 0 , a 1 , a 2 , a f }, {p 1 a 0 acq l ---→ p 1,l a 1 , p 1,l a 1 τ - → p 1,l a 2 , p 1,l a 2 τ - → p 1 a f , p 1 a f τ - → p 1 a 0 }, η p , η l ) such that η p (p 1 ) = η p (p 1,l ) = 1 and η l (p 1 ) = ∅, η l (p 1,l ) = {l}. -P 3 = ({p 1 , p 1,l }, {b 0 , b 1 , b 2 , b f }, {p 1 b 0 acq l ---→ p 1,l b 1 , p 1,l b 1 τ - → p 1,l b 2 , p 1,l b 2 rel l --→ p 1 b f , p 1,l b 2 τ - → p 1,l b 1 }, η p , η l ) such that η p (p 1 ) = η p (p 1,l ) = 1 and η l (p 1 ) = ∅, η l (p 1,l ) = {l}.
The initial configuration of this PL-DPN M is p 1 m 0 .

The semantics of PL-DPNs is defined such that:

-Transitions of threads with highest priority should be executed first.

-Transitions that manipulate locks should follow the locking rules:

• A transition attempting to acquire a lock can only be executed if the lock is free, i.e. does not belong to any set of acquired locks. • A transition attempting to release a lock can only be executed if the lock is in possession of the corresponding thread, i.e. in its set of acquired locks.

We overload the functions η p and η l to global configurations as follows: for all

c = p 1 ω 1 . . . p n ω n ∈ Conf M , η p (p 1 ω 1 . . . p n ω n ) := max(η p (p 1 ), . . . , η p (p n )) and η l (p 1 ω 1 . . . p n ω n ) := η l (p 1 ) ∪ • • • ∪ η l (p n ). Definition 3. The transition relation -→ M is defined as the smallest relation in Conf M × Conf M such that ∀c 1 , c 2 ∈ Conf M : 1. c 1 pγr c 2 -→ M c 1 qωr c 2 , if η p (p) = η p (c 1 pγr c 2 ) and pγ act --→ qω ∈ ∆, s.t. act ∈ {τ, rel l} ∪ {ch(x) | x ∈ I}; 2. c 1 pγr c 2 -→ M c 1 qωr c 2 , if η p (p) = η p (c 1 pγr c 2 ), l ∈ η l (c 1 pγr c 2 ) and pγ acq l ---→ qω ∈ ∆; 3. c 1 pγr c 2 -→ M c 1 q 2 ω 2 q 1 ω 1 r c 2 , if η p (p) = η p (c 1 pγr c 2 ) and pγ τ - → q 1 ω 1 q 2 ω 2 ∈ ∆;
where p, q, q 1 , q 2 ∈ P, γ ∈ Γ, ω, ω 1 , ω 2 , r ∈ Γ * , l ∈ L.

The semantics above says that:

1. A thread in a local configuration with control state p and top of stack γ can move to a local configuration with control state q, replacing the top of its stack γ by w, if there is a τ , ch(x) or release rule pγ lab --→ qw ∈ ∆ and its priority (η p (p)) is equal to the highest priority among all the threads (η p (c 1 pγr c 2 )); 2. A thread in a local configuration with control state p and top of stack γ can move to a local configuration with control state q, replacing the top of its stack γ by w, if there is an acquire rule pγ acq l ---→ qw ∈ ∆, the lock that the rule attempts to take is free (l ∈ η l (c 1 pγr c 2 )), and its priority (η p (p)) is equal to the highest priority among all the threads (η p (c 1 pγr c 2 )); 3. A thread in a local configuration with control state p and top of stack γ can move to a local configuration with control state q 1 , replacing the top of its stack γ by w 1 and create another thread in control state q 2 with stack w 2 , if there is a rule pγ τ -→ q 1 w 1 q 2 w 2 ∈ ∆ and its priority (η p (p)) is equal to the highest priority among all the threads (η p (c 1 pγr c 2 )).

Note that the semantics of locks corresponds to the one of spin-locks, found in most of the libraries for threads (like Pthreads). Spin-locks are similar to mutexes, but they might have lower overhead for very short-term blocking. When the calling thread requests a spin-lock that is already held by another thread, the calling thread spins in a loop to test if the lock has become available. This means that if a thread with lower priority, holding a lock l, is interrupted by a thread with higher priority, attempting to acquire the same lock, then the program becomes blocked (assuming there is only one CPU). In this paper we assume that programs are free of deadlocks since they can be detected using the technique of our previous work [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF].

Given a configuration c, the set of immediate predecessors of c in a PL-DPN M is defined as pre M (c) = {c ∈ Conf M : c -→ M c}. This notation can be generalized straightforwardly to sets of configurations. Let pre * M denote the reflexive-transitive closure of pre M . For the rest of this paper, we assume that we have fixed a PL-DPN M = (Act, L, I, P 1 , . . . , P n ).

4 Single-Indexed LTL Model Checking for PL-DPNs

Linear Temporal Logic (LTL) and Büchi Automata

From now on, we fix a finite set of atomic propositions AP . Definition 4. The set of LTL formulas is given by (where q ∈ AP ):

ϕ ::= q | ϕ 1 ∧ ϕ 2 | ¬ϕ | Xϕ | F ϕ | G ϕ | ϕ 1 U ϕ 2
Given an ω-word α = α 0 α 1 . . . over 2 AP , let α k denote the suffix of α starting from α k . The notation α |= ϕ indicates that α satisfies ϕ, where |= is inductively defined as follows:

α |= q if q ∈ α 0 ; α |= ¬ϕ if α¬ |= ϕ; α |= ϕ 1 ∧ ϕ 2 if α |= ϕ 1 and α |= ϕ 2 ; α |= Xϕ if α 1 |= ϕ; α |= ϕ 1 U ϕ 2 if
there exists k ≥ 0 such that α k |= ϕ 2 and for every j : 1 ≤ j < k, α j |= ϕ 1 . The temporal operators F and G can be defined using the following equivalences: F ϕ ≡ true U ϕ, G ϕ ≡ ¬F ¬ϕ. Definition 5. A Büchi automaton (BA) B is a tuple (G, Σ, θ, g 0 , F ), where G is a finite set of states, Σ is the input alphabet, θ ⊆ G × Σ × G is a finite set of transitions, g 0 ∈ G is the initial state and F ⊆ G is a finite set of accepting states.

A run of B over an ω-word α 0 α 1 . . . is a sequence of states q 0 q 1 . . . s.t. q 0 = g 0 and (q i , α i , q i+1 ) ∈ θ for every i ≥ 0. A run is accepting iff it infinitely often visits some states in F .

Theorem 1. (From [START_REF] Vardi | Automata-theoretic techniques for modal logics of programs[END_REF]) Given a LTL formula f we can construct a BA B f (s.t. Σ = 2 AP ) recognizing all the ω-words that satisfy f .

The Model Checking Problem

The model checking problem of PL-DPNs against doble-indexed LTL formulas where the validity of atomic propositions depends on two or more PL-DPNs is undecidable [START_REF] Kahlon | An automata-theoretic approach for model checking threads for LTL properties[END_REF].

In this work, in order to obtain decidability results, we consider the modelchecking problem of PL-DPNs against single-indexed LTL properties of the form f = n i=1 f i , where f i is interpreted over the PL-DPDS P i . Let λ be a labeling function λ : i P i → 2 AP , that assigns to each control location of the PL-DPN M a set of atomic propositions. Definition 6. Given a labeling function λ, a local run r = p 0 w 0 p 1 w 1 . . . of the PL-DPDS P i satisfies f i , denoted by r |= f i , iff the ω-word λ(p 0 )λ(p 1 ) . . . satisfies f i . Definition 7. A global run R satisfies f = i f i , denoted by R |= f , iff all local runs of each instance of P i running in parallel in R satisfy f i . Definition 8. A PL-DPN M , with initial configuration p 0 γ 0 , satisfies f = i f i , denoted by M |= f , iff all global runs starting with p 0 γ 0 satisfy f . From now on, we fix a single-indexed LTL formula f = n i=1 f i .

Priority-Lock Structures

Definition 9. (From [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF]) A priority-lock structure of a global run R of a PL-DPN under DPN semantics, is defined as either a tuple x, y, g r , g a , la or the symbol ⊥.

In [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF] is given an algorithm to compute a priority-lock structure from a global run R such that we get ⊥ if the run is not a valid under PL-DPN semantics, or we get the tuple x, y, g r , g a , la if the run is valid under PL-DPN semantics, where:

x is the lowest transition priority, from the control states visited during the run, y is the highest final priority, from the control states of the final configuration, g r is a set of dependencies between lock usages (acquire and release of a lock) and final releases of a lock (release without acquisition), g a is a set of dependencies between lock usages and initial acquisitions of a lock (acquisition of a lock without the corresponding release), la set of lock actions and their corresponding priorities.

In this work we just need to know that given a PL-DPN M and a regular set of configurations S, we can construct a DPN M , with priority-lock structures embedded in the control states, such that the predecessor configurations of S over M are the predecessor configurations of S over M with a priority-lock structure not equal to ⊥. Formally, from [START_REF] Diaz | Dealing with Priorities and Locks for Concurrent Programs[END_REF]:

Theorem 2. pre * M (S) = {pω | (p, s)ω ∈ pre * M (S × ∞, 0, ∅, ∅, ∅ ) ∧ s = ⊥}.
Using the previous theorem we can reduce LTL/CTL model checking on the PL-DPN M to a series of pre * queries over the DPN M . In order to keep the queries consistent with each other, taking in account the priorities and locks, we will need to inspect the priority-lock structure stored in the configurations. For that, given a control state p in the DPN M , let X(p), U (p), R(p) and A(p) be the lowest transition priority, set of lock usages, set of initial releases and set of final acquisitions, respectively, embedded in the control state p.

Example The PL-DPN M of Example 2.1 can be reduced to the DPN M = ({τ }, P 1 , P 2 , P 3 ) where:

-P 1 = ({p 0 = (p 1 , 1, 1, ∅, ∅, ∅ ), p 1 = (p 1 , 1, 1, ∅, ∅, {(l, usg, 1, 1)} ), p 2 = (p 1 , 1, 1, ∅, ∅, {(l, acq, 1, 1)} ), p 3 = (p 1 , 1, 1, ∅, ∅, {(l, acq, 1, 1), (l, usg, 1, 1)} ), p 4 = (p 1 , ⊥), }, {m 0 , m 1 , m f }, {p 1 m 0 τ - → p 1 m 1 p 1 a 0 , p 3 m 0 τ - → p 1 m 1 p 2 a 0 , p 3 m 0 τ - → p 2 m 1 p 1 a 0 , p 4 m 0 τ - → p 2 m 1 p 2 a 0 , p 2 m 0 τ - → p 0 m f p 2 b 0 , p 1 m 0 τ - → p 0 m f p 1 b 0 , })
-P 2 and P 3 are defined similar. In particular, they have the same set of control states.

The Model-Checking Approach

The next step is to define a DPN with Büchi acceptance condition.

Definition 10. A Büchi DPDS (BDPDS) is a tuple BP = (P, Γ, ∆, F ), where (P, Γ, ∆) is a DPDS and F ⊆ P is a finite set of accepting control locations.

For i ∈ {1, . . . , n} , let B i = (G i , Σ i , θ i , g 0 i , F i ) be the Büchi automaton recognizing the ω-words that satisfy the LTL formula f i . Definition 11. We define BDPDSs BP i = ((

P i × G i ) × (2 L × I), Γ i , ∆ i , F i ) where F i = {((p, g), (A(p), X(p))) | (p, g) ∈ P i × F i )}. ∆ i is computed such that for every (g 1 , λ(p), g 2 ) ∈ θ i , a ∈ Act, x, x 1 , x 2 ∈ I, u, u 1 , u 2 ∈ 2 L and (p 2 , s 2 )ω 2 ∈ P j × Γ * j we have: 1. ((p, g 1 ), (u, x))γ a - → ((p 1 , g 2 ), (u, x))ω 1 ∈ ∆ i , if pγ a - → p 1 ω 1 ∈ ∆ i , 2. If pγ a - → p 1 ω 1 p 2 ω 2 ∈ ∆ i , 2.1. ((p, g 1 ), (u 1 ∪u 2 , x))γ a - → ((p 1 , g 2 ), (u 1 , x 1 ))ω 1 ((p 2 , g 0 j ), (u 2 , x 2 ))ω 2 ∈ ∆ i , if A(p 1 ) ∩ u 1 = A(p 2 ) ∩ u 2 = ∅ and x 1 = x 2 , 2.2. ((p, g 1 ), ⊥)γ a - → ((p 1 , g 2 ), (u 1 , x 1 ))ω 1 ((p 2 , g 0 j ), (u 2 , x 2 ))ω 2 ∈ ∆ i , other- wise.
Sometimes we write a configuration ((p , g), (u, x)) of a BP i as (p, s), where p = (p , g) is called control state and s = (u, x) is called "priority-lock structure".

Let L(BP i ) be the set of all the tuples ((p, g 0 i ), (u, x))γ, D) such that BP i has an accepting run starting from the configuration ((p, g 0 i ), (u, x))γ, using infinitely the lowest priority x, the set of locks u and spawning the set of configurations D. We can compute the language of BP i using the algorithm from [START_REF] Song | Model checking dynamic pushdown networks[END_REF]: Theorem 3. (From [START_REF] Song | Model checking dynamic pushdown networks[END_REF]) For every BDPDS BP i = (P i , Γ i , ∆ i , F i ) we can construct a finite automaton A i such that L(A i ) = L(BP i ).

Main Algorithm

Given a PL-DPN M = (Act, P 1 , . . . , P n ) and a single-indexed LTL formula f = i f i , in order to check if M |= f , we proceed as follows:

1. Create the DPN M = (P 1 , . . . , P n ), as in Section 5.1.

Create Buchi automatons B ¬

i satisfying the formulas ¬f i .

Construct BDPDSs B ¬

i P i from the DPN M and the Buchi automatons B ¬ of (2), as in Definition 11. 4. If an initial configuration ((p 0 , g 0 ), (u, x))γ 0 is in X, the set of configurations that satisfy the formula ¬f , with some set of locks u and priority x then M |= f . Otherwise we continue to the next step, to be sure there are no livelocks. 5. Create Buchi automatons B i satisfying the formulas f i . 6. Construct BDPDSs B i P i from them the DPN M and the Buchi automatons B i of ( 5), as in Definition 11. 7. If an initial configuration ((p 0 , g 0 ), ⊥)γ 0 is in Y , the set of of configurations that satisfy the formula f , then there is a livelock and M |= f , otherwise M |= f . We can construct the set X in the following iterative way:

1. X = i L(B ¬ i P i ). 2. X = {pγ | (pγ, D) ∈ Z ∧ D ∩ X = ∅}. 3. If X = X , set X = X and go to 2. Otherwise return X.
where Z is the language of initial configurations of all infinite paths in each DPDS P i . We can construct the set Y in the following iterative way:

1. Y = i L(B i P i ). 2. Y = {(pγ, D) ∈ Y | ∀p γ ∈ D ∃D ⊆ Conf M s.t. (p γ , D ) ∈ Y }. 3. If Y = Y , set Y = Y
and go to 2. Otherwise return Y . Theorem 4. A PL-DPN M satisfies a single-indexed LTL formula f (M |= f ) iff there is not initial configuration in X with non-bottom priority-lock structure and there is not initial configuration in Y with bottom priority-lock structure.

Example

We want to check if the single-indexed LTL formula f = f 1 ∧ f 2 ∧ f 3 , where f 1 = true, f 2 = GF a 1 and f 3 = GF b 1 , is satisfied by the PL-DPN M = (Act, P 1 , P 2 , P 2 ) of Example 2.1.

The first step was to create the DPN M = (P 1 , P 2 , P 3 ) as in Example 4.3. The second step is to create Buchi automatons B ¬ 1 , B ¬ 2 and B ¬ 3 recognizing the ω-words that satisfy the formulas ¬f 1 = false, ¬f 2 = F G ¬a 1 and ¬f 3 = F G ¬b 1 , respectively. Then we create the BDPDSs B ¬ 1 P 1 , B ¬ 2 P 2 and B ¬ 2 P 3 using Definition 11. The next step is to construct the set of configurations X, we get:

1. X = L(B ¬ P 1 ) ∪ L(B ¬ P 2 ) ∪ L(B ¬ P 3 ) = ∅ ∪ ∅ ∪ ∅ = ∅. 2. X = {pγ | (pγ, D) ∈ Z) ∧ D ∩ ∅ = ∅} = ∅.
We have that X = ∅, this means that the negation of f is not satisfied, but still can be the case that we have some livelock. Thus we continue calculating Y . The algorithm proceeds as follows:

1. L(BP 1 ) = {(((p 3 , g 0 ), ⊥)m 0 , {((p 1 , g 0 ), ({l}, 1))a 0 , ((p 2 , g 0 ), (∅, 1))b 0 }), . . . }.

L(BP

2 ) = {((p 1 , g 0 ), ({l}, 1))a 0 , ∅)} with A(p 1 ) = ∅. 3. L(BP 3 ) = {((p 2 , g 0 ), (∅, 1))b 0 , ∅)} with A(p 2 ) = {l}. 4. Y = L(BP 1 ) ∪ L(BP 2 ) ∪ L(BP 3 ). 5. Y = {(((p 3 , g 0 ), ⊥)m 0 , {((p 1 , g 0 ), ({l}, 1))a 0 , ((p 2 , g 0 ), (∅, 1))b 0 })}.
We can observe that Y has the initial configuration ((p 3 , g 0 ), ⊥)m 0 . This configuration has a ⊥ priority-lock structure, since the child corresponding to thread A infinitely uses lock l and the child corresponding to thread B acquire lock l without releasing it (see the rules of Definition 11). This means that there is a livelock and then the formula f is not always satisfied int the PL-DPN M .

Single-Indexed CTL model checking of PL-DPNs

In this section we consider single-indexed CTL model checking for PL-DPNs. For technical reasons we suppose that CTL formulas are given in positive normal form, i.e. only atomic propositions are negated. Definition 12. The set of CTL formulas is given by (where a ∈ AP ):

ϕ ::= q | ¬q | ϕ∧ϕ | ϕ∨ϕ | AXϕ | EXϕ | A(ϕU ϕ) | E(ϕU ϕ) | A(ϕRϕ) | E(ϕRϕ)
The other standard CTL operators can be expressed by the above operators. For instance EF ϕ = E(true U ϕ), AF ϕ = A(true U ϕ), EGϕ = E(false Rϕ) and AGϕ = A(false Rϕ). The closure cl(ϕ) is the set of all the sub-formulas of ϕ

(including ϕ). Let At(ϕ) = {a ∈ AP | a ∈ cl(ϕ)} and cl R (ϕ) = {θ ∈ cl(ϕ) | θ = E(ϕ 1 Rϕ 2 ) ∨ θ = A(ϕ 1 Rϕ 2 )}.
Let λ : AP → 2 Pi×Γ * i a valuation assigning to each atomic proposition a finite set of local configurations. A local configuration c satisfies a CTL formula f i (denoted by c |= f i ) iff there exists D ⊆ D i such that c |= D f i holds, where |= D is inductively defined as follows: Intuitively, c |= D f i means that c satisfies f i and the executions that made c satisfy f i spawn the configurations in D, i.e. when a transition rule qγ → p 1 w 1 p 2 w 2 is used to make f i satisfied, p 2 w 2 is in D.

-c |= ∅ a if c ∈ λ(a). -c |= ∅ ¬a if c ∈ λ(a). -c |= D ϕ 1 ∧ ϕ 2 if ∃D 1 , D 2 ⊆ D i such that D = D 1 ∪ D 2 , c |= D1 ϕ 1 and c |= D2 ϕ 2 ; -c |= D ϕ 1 ∨ ϕ 2 if c |= D ϕ 1 or c |= D ϕ 2 ; -c |= D AXϕ if for every c 1 , . . . , c m ∈ Conf M such that c ⇒ c j D j , c j |= Dj ϕ and D = j D j ; -c |= D EXϕ if there exist c ∈ Conf M such that c ⇒ i c D , c |= D ϕ and D = D ∪ D ; -c |= D A(ϕ 1 U ϕ 2 ) if for every path c 0 c 1 . . . with c 0 = c for every m ≥ 1, ∃D m ⊆ D, such that c m-1 ⇒ c m D m , and ∃k such that c k |= D k ϕ 2 , ∀j < k c j |= Dj ϕ 1 . -c |= D E(ϕ 1 U ϕ 2 ) if exists a path c 0 c 1 . . . with c 0 = c, for every m ≥ 1, ∃D m such that c m-1 ⇒ c m D m and ∃k such that c k |= D k ϕ 2 , ∀k, j < k c j |= Dj ϕ 1 . -c |= D A(ϕ 1 Rϕ 2 ) if

Priority-Lock Alternating BDPDSs

Definition 13. A priority-lock alternating BDPDS (PL-ABDPDS) is a tuple

BP i = (P i , Γ i , ∆ i , F i )
, where P i is a finite set of control locations, Γ i is the stack alphabet, F i ⊆ P i is a set of accepting control locations, ∆ i is a finite set of transition rules in the form of pγ → {p 1 ω 1 , . . . , p h ω h } {q 1 u 1 , . . . , q k u k }.

An PL-ABDPDS BP induces a relation → defined as follows: for every ω ∈ Γ * if pγ → {p 1 ω 1 , . . . , p h ω h } {q 1 u 1 , . . . , q k u k } ∈ ∆ , then pγω → {p 1 ω 1 ω, . . . , p h ω h ω} {q 1 u 1 , . . . , q k u k }. Intuitively, if BP is at the configuration pγω, it can fork into h copies in the configurations p 1 ω 1 ω, . . . , p h ω h ω and creates k new instances. We write pγ → {p 1 ω 1 , . . . , p h ω h } if pγ → {p 1 ω 1 , . . . , p h ω h } ∅.

A run is accepting if each branch of this run infinitely often visits some control locations in F . Let L(BP) be the set of all the pairs (c, D) such that BP has an accepting run from c and that creates the set of configurations D.

Computing an Alternating BDPDS

To perform single-indexed CTL model checking for PL-DPNs we follow the approach for LTL model checking, but in this case we need alternating BDPDSs, since CTL formulas can be translated to alternating Büchi automata.

On [START_REF] Song | Model checking dynamic pushdown networks[END_REF] it is shown how to model check DPNs against CTL formulas using alternating BDPDS. Here we reduce CTL model checking in a PL-DPN to CTL model checking in a DPN by using priority-lock structures and applying the result of [START_REF] Song | Model checking dynamic pushdown networks[END_REF].

Let BP i = (P i , Γ i , ∆ i , F i ) be the PL-ABDPDS such that P i = P i × cl(f i ), F i = {(p, a) | a ∈ cl(f i ) ∩ AP, p ∈ f (a)} ∪ {(p, ¬a) | ¬a ∈ cl(f i ), a ∈ AP, p ∈ f (a)} ∪ P i × cl R (f i ), where cl R (f i ) is the set of formulas of cl(f i ) of the form E(ϕ 1 Rϕ 2 ) or A(ϕ 1 Rϕ 2 ); and ∆ i is the smallest set of transitions rules such that for every control location p ∈ P i , every subformula ϕ ∈ cl(f i ) and every γ ∈ Γ i we have: 
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 1 Fig. 1. Control-flow graph of a main thread starting at m0 that creates two child threads starting at a0 and b0. The child threads execute a loop and use a lock l.

  for every path c 0 c 1 . . . with c 0 = c, for every m ≥ 1 ∃D m such that c m-1 ⇒ c m D m and either for all j, c j |= Dj ϕ 2 or ∃k such that c k |= D k ϕ 1 and ∀j ≤ k, c j |= Dj ϕ 2 . c |= D E(ϕ 1 Rϕ 2 ) if exists a path c 0 c 1 . . . with c 0 = c, for every m ≥ 1 ∃D m such that c m-1 ⇒ c m D m and either for all j, c j |= Dj ϕ 2 or ∃k such that c k |= D k ϕ 1 and ∀j ≤ k, c j |= Dj ϕ 2 .
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  If ϕ = a, a ∈ AP and p ∈ f (a) then (p, ϕ)γ → (p, ϕ)γ ∈ ∆ ; 2. If ϕ = ¬a, a ∈ AP and p ∈ f (a) then (p, ϕ)γ →(p, ϕ)γ ∈ ∆ ; 3. If ϕ = ϕ 1 ∧ ϕ 2 then (p, ϕ)γ → {(p, ϕ 1 )γ, (p, ϕ 2 )γ} ∈ ∆ i ; 4. If ϕ = ϕ 1 ∨ ϕ 2 then (p, ϕ)γ → {(p, ϕ 1 )γ} ∈ ∆ i and (p, ϕ 2 )γ → {(p, ϕ 2 )γ} ∈ ∆ i ; 5. If ϕ = EF ϕ 1 then: if pγ → p ω p ω ∈ ∆ i then (p, ϕ)γ → {(p , ϕ 1 )ω} {p ω } ∈ ∆ i , similar for non-spawning rules; 6. If ϕ = AXϕ 1 then (p, ϕ)γ → {(p , ϕ 1 )ω | pγ → p ω p ω ∈ ∆ i } {p ω | pγ → p ω p ω ∈ ∆ i }; 7. If ϕ = E(ϕ 1 U ϕ 2 ) then: (p, ϕ)γ → {(p, ϕ 1 )γ, (p, ϕ 2 )γ} ∈ ∆ i , and if pγ → p ω p ω ∈ ∆ i then (p, ϕ)γ → {(p, ϕ 1 )γ, (p , ϕ)ω} {p ω } ∈ ∆ i , similar for non-spawning rules; 8. If ϕ = A(ϕ 1 U ϕ 2 ) then: (p, ϕ)γ → {(p, ϕ 2 )γ} ∈ ∆ i , if pγ → p ω p ω ∈ ∆ i then (p, ϕ)γ → {(p, ϕ 1 )γ, (p , ϕ)ω | pγ → p ω p ω ∈ ∆ i } {p ω } ∈ ∆ i , similar for non-spawning rules; 9. If ϕ = E(ϕ 1 Rϕ 2 ) then: if pγ → p ω p ω ∈ ∆ i then (p, ϕ)γ → {(p, ϕ 2 )γ, (p, ϕ 1 )γ} ∈ ∆ i and (p, ϕ)γ → {(p, ϕ 2 )γ, (p , ϕ)ω} {p ω } ∈ ∆ i ; 10. If ϕ = A(ϕ 1 Rϕ 2 ) then (p, ϕ)γ → {(p,ϕ 2 )γ, (p, ϕ 1 )γ} ∈ ∆ i and (p, ϕ)γ → {(p, ϕ 2 )γ, (p , ϕ)ω | pγ → p ω p ω ∈ ∆ i } {p ω | pγ → p ω p ω ∈ ∆ i } ∈ ∆ i .