
HAL Id: hal-03902458
https://hal.science/hal-03902458

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Checking HyperLTL for Pushdown Systems
Adrien Pommelet, Tayssir Touili

To cite this version:
Adrien Pommelet, Tayssir Touili. Model-Checking HyperLTL for Pushdown Systems. Model Checking
Software - 25th International Symposium SPIN 2018, Jun 2018, Malaga, Spain. �10.1007/978-3-319-
94111-0_8�. �hal-03902458�

https://hal.science/hal-03902458
https://hal.archives-ouvertes.fr

Model-Checking HyperLTL for Pushdown
Systems

Adrien Pommellet1 and Tayssir Touili2

1 LIPN and Université Paris-Diderot, France
2 LIPN, CNRS, and Université Paris 13, France

Abstract. Temporal logics such as LTL are often used to express safety
or correctness properties of programs. However, they cannot model com-
plex formulas known as hyperproperties introducing relations between
different execution paths of a same system. In order to do so, the logic
HyperLTL adds existential and universal quantifications of path variables
to LTL. The model-checking problem, that is, determining if a given
representation of a program verifies a HyperLTL property, has been
shown to be decidable for finite state systems. In this paper, we prove
that this result does not hold for Pushdown Systems nor for the sub-
class of Visibly Pushdown Systems. We therefore introduce an algorithm
that over-approximates the model-checking problem with an automata-
theoretic approach. We also detail an under-approximation method based
on a phase-bounded analysis of Multi-Stack Pushdown Systems. We then
show how these approximations can be used to check security policies.

1 Introduction

The analysis of execution traces of programs can be used to prove correctness
properties often expressed with the unifying framework of the linear temporal
logic LTL. However, a LTL formula only quantifies a single execution trace of a
system; LTL can’t express properties on multiple, simultaneous executions of a
program.

These properties on sets of execution traces are known as hyperproperties.
Many safety and security policies can be expressed as hyperproperties; this is in
particular true of information-flow analysis. As an example, the non-interference
policy states that if two computations share the same public inputs, they should
have identical public outputs as well, even if their private inputs differ. This
property implies a relation between computations that can’t be expressed as a
simple LTL formula.

HyperLTL is an extension of LTL introduced by Clarkson et al. in [5] that
allows the universal and existential quantifications of multiple path variables
that range over traces of a system in order to define hyperproperties. As an
example, the formula ∀π1,∀π2, (aπ1

∧ aπ2
)⇒ X ((bπ1

∧ bπ2
) ∨ (cπ1

∧ cπ2
)) means

that, given two path variables π1 and π2 in the set Tracesω(S) of infinite traces
of a system S, if π1 and π2 verify the same atomic property a at a given step,
then they should both verify either b or c at the next step.

Clarkson et al. have shown that the model-checking problem S |= ψ of
HyperLTL, that is, knowing if the set of traces of a system S verifies the
HyperLTL formula ψ, can be solved when S is a finite state transition system (i.e.
equivalent to a finite state automaton). However, simple transition models cannot
accurately model programs with infinite recursion and procedure calls. Pushdown
Systems (PDSs) that can simulate the call stack of a program are commonly
used instead. The call stack stores information about the active procedures of a
program such as return addresses, passed parameters and local variables.

Unfortunately, we show in this paper that the model-checking problem of
HyperLTL for PDSs is undecidable: the set of traces of a PDS is a context-free
language, and deciding whether the intersection of two context-free languages
is empty or not remains an undecidable problem that can be reduced to the
model-checking problem by using a HyperLTL formula that synchronizes traces.

On the other hand, determining the emptiness of the intersection of two visibly
context-free languages is decidable. This class of languages is generated by Visibly
Pushdown Automata (VPDA), an input-driven subclass of pushdown automata
(PDA) first introduced by Alur et al. in [1]: at each step of a computation, the
next stack operation will be determined by the input letter in Σ read, depending
on a partition of the input alphabet. We study the model-checking problem
of HyperLTL for Visibly Pushdown Systems (VPDSs), and prove that it is
also undecidable, as it happens to be a reduction of the emptiness problem for
Two-Stack Visibly Pushdown Automata (2-VPDA), which has been shown to be
undecidable by Carotenuto et al. in [4].

To overcome these undecidability issues, since the emptiness of the intersection
of a context-free langage with regular sets is decidable, one idea is to consider
the case where only one path variable of the formula ranges over the set of traces
Tracesω(P) of a PDS or VPDS P , while the other variables range over a regular
abstraction α(Tracesω(P)). Using an automata-theoretic approach, this idea
allows us to over-approximate the model-checking problem of HyperLTL formulas
that only use universal quantifiers ∀ with the exception of at most one path
variable: if the HyperLTL formula holds for the over-approximation, it holds for
the actual system as well.

On the other hand, under-approximations can be used to discover errors in
programs: if a HyperLTL formula does not hold for an under-approximation of the
model-checking problem, it does not hold for the actual system as well. We show
that the model-checking problem for PDSs of HyperLTL formulas that only use
universal quantifiers ∀ can be under-approximated by relying on a bounded-phase
model-checking of a LTL formula for a Multi-Stack Pushdown System (MPDS),
where a phase is a part of a run during which there is at most one stack that is
popped from, as defined by Torre et al. in [13].

Related work. Clarkson and Schneider introduced hyperproperties in [6] to
formalize security properties, using second-order logic. Unfortunately, this logic
isn’t verifiable in the general case.

However, fragments of it can be verified: in [5], Clarkson et al. formalized
the temporal logics HyperLTL and HyperCTL*, extending the widespread and

flexible framework of linear time and branching time logics to hyperproperties.
The model-checking problem of these logics for finite state systems has been shown
to be decidable by a reduction to the satisfiability problem for the quantified
propositional temporal logic QPTL defined in [12].

Proper model-checking algorithms were then introduced by Finkbeiner et
al. in [8]. These algorithms follow the automata-theoretic framework defined by
Vardi et al. in [14], and can be used to verify security policies in circuits. However,
while circuits can be modelled as finite state systems, actual programs can feature
recursive procedure calls and infinite recursion. Hence, a more expressive model
such as PDSs is needed.

In [3,7], the forward and backward reachability sets of PDSs have been shown
to be regular and effectively computable. As a consequence, the model-checking
problem of LTL for PDSs is decidable; an answer can be effectively computed
using an automata-theoretic approach. We try to extend this result to HyperLTL.

Multi-Stack Pushdown Systems (MPDSs) are unfortunately Turing powerful.
Following the work of Qadeer et al. in [10], La Torre et al. introduced in [13]
MPDSs with bounded phases : a run is split into a finite number of phases during
which there is at most one stack that is popped from. Anil Seth later proved
in [11] that the backward reachability set of a multi-stack pushdown system with
bounded phases is regular; this result can then be used to solve the model-checking
problem of LTL for MPDSs with bounded phases. We rely on a phase-bounded
analysis of a MPDS to under-approximate an answer to the model-checking
problem of HyperLTL for PDSs.

Paper outline. In Section 2 of this paper, we provide background on Pushdown
Systems (PDSs) and Visibly Pushdown Systems (VPDSs). We define in Section
3 the hyper linear time logic HyperLTL, and prove that its model-checking
problem for PDSs and VPDSs is undecidable. Then, in Section 4, we solve the
model-checking problem of HyperLTL on constrained sets of traces then find
an over-approximation of the model-checking problem for PDSs. In Section 5,
we use Multi-Stack Pushdown Systems (MPDSs) and bounded phase analysis to
under-approximate the model-checking problem. Finally, in section 6, we apply
the logic HyperLTL to express security properties. Due to a lack of space, detailed
proofs of some theorems can be found in the appendix.

2 Pushdown Systems

2.1 The Model

Pushdown systems are a natural model for sequential programs with recursive
procedure calls [7].

Definition 1 (Pushdown System). A Pushdown System (PDS) is a tuple
P = (P,Σ, Γ,∆, c0) where P is a finite set of control states, Σ a finite input
alphabet, Γ a finite stack alphabet, ∆ ⊆ P × Γ × Σ × P × Γ ∗ a finite set of
transition rules, and c0 ∈ P × Γ ∗ an initial configuration.

If d = (p, γ, a, p′, w) ∈ ∆, we write d = (p, γ)
a−→ (p′, w). We call a the label of

Σ. We can assume without loss of generality that ∆ ⊆ P × Γ × Σ × P × Γ≤2
and that c0 is of the form 〈p0,⊥〉, where ⊥ ∈ Γ is a special bottom stack symbol
shared by every PDS on the stack alphabet Γ and p0 ∈ P . A configuration of P
is a pair 〈p, w〉 where p ∈ P is a control state and w ∈ Γ ∗ a stack content.

For each a ∈ Σ, we define a transition relation
a−→P on configurations as

follows: if (p, γ)
a−→ (p′, w) ∈ ∆, for each w′ ∈ Γ ∗, 〈p, γw′〉 a−→P 〈p′, ww′〉. We

then consider the immediate successor relation →P= ∪
a∈Σ

a−→P . We may omit the

variable P when only a single PDS is being considered.
A run r is a sequence of configurations r = (ci)i≥0 such that ∀i ≥ 0, ci

ai−→P
ci+1, c0 being the initial configuration of P. The word (ai)i≥0 is then said to be
the trace of r. Traces and runs may be finite or infinite. Let Tracesω(P) (resp.
Traces(P)) be the set of all infinite (resp. finite) traces of P.

A Büchi Pushdown Automaton (BPDA) is a pair BP = (P, F), where P =
(P,Σ, Γ,∆, c0) is a PDS and F ⊆ P a set of final states. An infinite run r = (ci)i≥0
of BP and its matching trace (ai)i≥0 are said to be accepting if there exists at
least one infinitely often occurring state f in r such that f ∈ F . The language
Lω(BP) accepted by BP is the set of all accepting traces of BP, and is said to
be ω context-free.

2.2 Visibly Pushdown Systems

We consider a particular subclass of PDSs introduced by Alur et al. in [1]. Let
〈Σc, Σr, Σl〉 be a partition of the input alphabet, where Σc, Σr, and Σl stand
respectively for the call, return, and local alphabets.

Definition 2 (Visibly Pushdown System). A Visibly Pushdown System
(VPDS) over a partition 〈Σc, Σr, Σl〉 of Σ is a PDS P = (P,Σ, Γ,∆, c0) verifying
the following properties:

– if (p, γ1)
a−→ (p′, γ2) ∈ ∆, then a ∈ Σl, γ1 = γ2, and ∀γ ∈ Γ , (p, γ)

a−→
(p′, γ) ∈ ∆;

– if (p, γ)
a−→ (p′, ε) ∈ ∆, then a ∈ Σr;

– if (p, γ1)
a−→ (p′, γ2γ1) ∈ ∆, then a ∈ Σc, and ∀γ ∈ Γ , (p, γ)

a−→ (p′, γ2γ) ∈ ∆;

VPDSs are an input driven subclass of PDSs: at each step of a computation,
the next stack operation will be determined by the input letter in Σ read,
depending on which subset of the partition 〈Σc, Σr, Σl〉 the aforementioned letter
belongs to.

Visibly Pushdown Automata accept the class of visibly pushdown languages.
If a BPDA BP is visibly pushdown according to a partition of Σ, we say it’s a
Büchi Visibly Pushdown Automata (BVPDA). The class of languages accepted
by BVPDA is called ω visibly pushdown languages.

Unlike context-free languages, the emptiness of the intersection of visibly
pushdown languages is a decidable problem and the complement of a visibly
pushdown language is a visibly pushdown language that can be computed. The
same properties also hold for ω visibly pushdown languages.

3 HyperLTL

3.1 The Logic

Let AP be a finite set of atomic propositions used to express facts about a
program; a path is an infinite word in (2AP)ω = T . Let V be a finite set of
path variables. The HyperLTL logic relates multiple paths by introducing path
quantifiers.

Definition 3 (Syntax of HyperLTL). Unquantified HyperLTL formulas are
defined according to the following syntax equation:

ϕ ::= ⊥ | (a, π) ∈ AP × V | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | X ϕ |
ϕ U ϕ | G ϕ | F ϕ

From then on, we write aπ = (a, π). HyperLTL formulas are defined according to
the following syntax equation:

ψ ::= ∃π, ϕ | ∀π, ϕ | ϕ

where π ∈ V is a path variable.

The existential ∃ and universal quantifiers ∀ are used to define path variables,
to which atomic propositions in AP are bound. A HyperLTL formula is said
to be closed if there is no free variable: each path variable is bound by a path
quantifier once.

As an example, the closed formula ∀π1,∃π2, ϕ means that for all paths π1,
there exists a path π2 such that the formula ϕ holds for π1 and π2. Simple LTL
formulas can be considered as a subclass of closed HyperLTL formulas of the
form ∀π, ϕ with a single path variable.

Let Π : V → T be a path assignment function of V that matches to each path
variable π a path Π(π) ∈ T . If Π(π) = (tj)j≥0, for all i ≥ 0, we define the i-th
value of the path Π(π)[i] = ti and a suffix assignment function Π[i,∞] such that
Π[i,∞](π) = (tj)j≥i.

We first define the semantics of this logic for path assignment functions.

Definition 4 (Semantics of unquantified HyperLTL formulas). Let ϕ be
an unquantified HyperLTL formula. We define by induction on ϕ the following
semantics on path assignment functions:

Π |= aπ ⇔ a ∈ Π(π)[0]

Π |= ¬ϕ⇔ Π 6|= ¬ϕ
Π |= ϕ1 ∨ ϕ2 ⇔ (Π |= ϕ1) ∨ (Π |= ϕ2)

Π |= ϕ1 ∧ ϕ2 ⇔ (Π |= ϕ1) ∧ (Π |= ϕ2)

Π |= X ϕ⇔ Π[1,∞] |= ϕ

Π |= ϕ U ψ ⇔ ∃j ≥ 0, Π[j,∞] |= ψ and ∀i ∈ {0, . . . , j − 1} , Π[i,∞] |= ϕ

Π |= G ϕ⇔ ∀i ≥ 0, Π, i |= ϕ

Π |= F ϕ⇔ ∃i ≥ 0, Π, i |= ϕ

Π |= ϕ if ϕ holds for a given assignment of path variables defined according
to Π.

Let T : V → 2T be a set assignment function of V that matches to each path
variable π ∈ V a set of paths T (π) ⊆ T . We can now define the semantics of
closed HyperLTL formulas for set assignment functions.

Definition 5 (Semantics of closed HyperLTL formulas). We consider a
closed HyperLTL formula ψ = χ0π0, . . . , χnπn, ϕ, where each χi ∈ {∀,∃} is an
universal or existential quantifier, and ϕ an unquantified HyperLTL formula using
trace variables π0, . . . , πn.

For a given set assignment function T , we write that T |= ψ if for χ0t0 ∈
T (π0), . . ., χntn ∈ T (πn), we have Π |= ϕ, where Π is the path assignment
function such that ∀i ∈ {0, . . . , n}, Π(πi) = ti.

As an example, if ψ = ∀π1,∃π2, ϕ is a closed HyperLTL formula and T is a
set assignment function of V, then T |= ψ if ∀t1 ∈ T (π1), ∃t2 ∈ T (π2) such that
Π |= ϕ, where Π(π1) = t2 and Π(π2) = t2. Intuitively, T |= ψ if, assuming path
variables belong to path sets defined according to T , the closed formula ψ holds.
From then on, we assume that every HyperLTL formula considered in this paper
is closed.

3.2 HyperLTL and PDSs

Let P be a PDS on the input alphabet Σ = 2AP and ψ a closed HyperLTL
formula. We write that P |= ψ if and only if T |= ψ where the set assignment
function T is such that ∀π ∈ V , T (π) = Tracesω(P). Determining whether P |= ψ
for a given PDS P and a given HyperLTL formula ψ is called the model-checking
problem of HyperLTL on PDSs. The following theorem holds :

Theorem 1. The model-checking problem of HyperLTL for PDSs is undecidable.

We can prove this result by reducing the emptiness of the intersection of two
context-free languages, a well-known undecidable problem, to the model-checking
problem. Our intuition is to consider two context-free languages L1 and L2 on
the alphabet Σ. As HyperLTL formulas apply to infinite words, we define two
BPDA BP1 and BP2 that accept L1f

ω and L2f
ω respectively, where f /∈ Σ is a

special ending symbol. We then define a PDS P that can simulate either BP1 or
BP2.

We now introduce the formula ψ = ∃π1,∃π2, ϕstart ∧ ϕsync ∧ ϕend: ϕstart
expresses that trace variables π1 and π2 represent runs of BP1 and BP2 respec-
tively, ϕsync means that the two traces are equal from their second letter onwards,
and ϕend implies that the two traces are accepting. Hence, if P |= ψ, then BP1

and BP2 share a common accepting run, and L1 ∩ L2 6= ∅.
On the other hand, if L1 ∩ L2 6= ∅, there is an accepting trace π common to

BP1 and BP2 and we can define two traces π1 and π2 of P such that the formula
ϕstart ∧ ϕsync ∧ ϕend holds. Since the emptiness problem is undecidable, so must
be the model-checking problem.

The full proof is given in the appendix. As a consequence of Theorem 1,
determining whether T |= ψ for a generic set assignment function T and a given
HyperLTL formula ψ is an undecidable problem.

3.3 HyperLTL and VPDSs

Since the emptiness of the intersection of visibly pushdown languages is decidable,
the previous proof does not apply to VPDSs and one might wonder if the
model-checking problem of HyperLTL for this particular subclass is decidable.
Unfortunately, we can show that this is not the case:

Theorem 2. The model-checking problem of HyperLTL for VPDSs is undecid-
able.

In order to prove this theorem, we will rely on a class of two-stack automata
called 2-Visibly Pushdown Automata (2-VPDA) introduced in [4]. In a 2-VPDA,
each stack is input driven, but follows its own partition of Σ. The same input
letter may result in different pushdown rules being applied to the first and second
stack: as an example, a transition can push a word on the first stack and pop
the top letter of the second stack, depending on which partition is used by each
stack. Moreover, in a manner similar to VPDA, transitions of 2-VPDA do not
depend on the top stack symbols unless they pop them.

It has been shown in [4] that the emptiness problem is undecidable for 2-
VPDA. Our intuition is therefore to prove Theorem 2 by reducing the emptiness
problem for 2-VPDA to the model-checking problem of HyperLTL for VPDSs.
To do so, for a given 2-VPDA D, we define a VPDS P and a HyperLTL formula
ψ on two trace variables such that P |= ψ if and only if D has an accepting run.
P is such that it can simulate either stack of the 2-VPDA. However, both

stacks must be synchronized in order to properly represent the whole automaton:
the content of one stack can lead to a control state switch that may enable a
transition modifying the other stack. The HyperLTL formula ψ determines which
trace variable is related to which stack, synchronizes two runs of P in such a
manner that they can be used to define an execution path of D, and ensure that
this path is an accepting one. The full proof can be found in the appendix.

4 Model-checking HyperLTL with Constraints

Theorem 1 proves that the model-checking problem of HyperLTL for PDSs is
undecidable. Intuitively, this issue stems from the undecidability of the intersection
of context-free languages. However, since the emptiness problem of the intersection
of a context-free language with regular sets is decidable, one can think of a way
to abstract the set of runs of a PDS for some - but not all - path variables of a
HyperLTL formula as a mean of regaining decidability.

As shown in [2,9], runs of a PDS can be over-approximated in a regular fashion.
Hence, for a given PDS P , if we consider a regular abstraction of the set of runs

α(Tracesω(P)), we can change the set assignment function for a path variable π
in such a manner that T (π) = α(Tracesω(P)) instead of T (π) = Tracesω(P).

For a set assignment function T on a set of path variables V and a variable
π ∈ V , we say that π is context-free w.r.t. to T if T (π) = Tracesω(P) for a PDS
P. We define regular and visibly pushdown variables in a similar manner.

Let ψ = χ0π0, . . . , χnπn, ϕ be a closed HyperLTL formula on the alphabet AP
with n+ 1 trace variables π0, . . . , πn, where χ0 . . . , χn ∈ {∀,∃}. In this section,
we will present a procedure to determine whether T |= ψ in two cases.

1. If the variable π0 is context-free w.r.t. T , and all the other variables are
regular, then we can determine whether T |= ψ or not. We can then apply this
technique in order to over-approximate the model-checking problem if T (π0) =
Tracesω(P), T (πj) = α(Tracesω(P)) for j = 1 . . . n, and χ1, . . . , χn = ∀.
The last n variables can only be universally quantified.

T |= ψ then implies that P |= ψ: indeed, the universal quantifiers on the path
variables that range over the abstracted traces are such that, if the formula
ϕ holds for every run in the over-approximation, then it also holds for every
run in the actual set of traces. This is an over-approximation of the actual
model-checking problem.

2. If there exists a variable πi such that πi is visibly context-free w.r.t. T , and
all the other variables are regular, then we can determine whether T |= ψ or
not. A single path variable at most can be visibly context-free (not necessarily
π0, though), and all the others must be regular. We can then apply this
technique in order to over-approximate the model-checking problem if P is a
VPDS, T (πi) = Tracesω(P), T (πj) = α(Tracesω(P)) and χj = ∀ for j 6= i.
Each path variable with the exception of the visibly context-free one must
be universally quantified.

Because of the universal quantifiers on the regular path variables, T |= ψ
implies again that P |= ψ. This is another over-approximation of the model-
checking problem.

Moreover, these over-approximations are accurate for at least one variable in
the trace variable set, as the original, ω context-free (or ω visibly pushdown) set
of runs is assigned to this variable instead of an ω regular over-approximation.

4.1 With One Context-Free Variable and n Regular Variables

Let P be a PDS such that T (π0) = Tracesω(P), and K1, . . . ,Kn, finite state
transition systems (i.e. finite automata without final states) such that for i =
1, . . . , n, T (πi) = Tracesω(Ki).

Theorem 3. If π0 is context-free w.r.t. T and the other variables are regular,
we can decide whether T |= χ0π0, . . . , χnπn, ϕ or not.

To do so, we use the following well-known result:

Lemma 1. Let ϕ be an LTL formula. There exists a Büchi automaton Bϕ on
the alphabet 2AP such that L(Bϕ) = {w ∈ (2AP)

ω | w |= ϕ}. We say that Bϕ
accepts ϕ.

An unquantified HyperLTL formula with m trace variables π1, . . . , πm can
be considered as a LTL formula on the alphabet (2AP)m: given a word w on
(2AP)m and a ∈ AP , we say that w |= aπi if a ∈ wi(0), where wi is the i-th
component of w. We then apply Lemma 1 and introduce a Büchi automaton Bϕ
on the alphabet (2AP)n+1 accepting ϕ. We denote Σ = 2AP .

We then compute inductively a sequence of Büchi automata Bn+1, . . . ,B1
such that:

– Bn+1 is equal to the Büchi automaton Bϕ on the alphabet Σn+1 ;
– if the quantifier χi is equal to ∃ and Bi+1 = (Q,Σi+1, δ, q0, F) is a Büchi

automaton on the alphabetΣi+1, letKi = (S,Σ, δ′, s0) be the finite state tran-
sition system generating T (πi); we now define the Büchi automaton Bi = (Q×
S,Σi, ρ, (q0, s0), F×S) where the set ρ of transitions is such that if q

(a0,...,ai)−−−−−−→
q′ ∈ δ and s

ai−→ s′ ∈ δ′, then (q, s)
(a0,...,ai−1)−−−−−−−−→ (q′, s′) ∈ ρ. Intuitively, the

Büchi automaton Bi represents the formula ∃πi, χi+1πi+1, . . . , χnπn, ϕ; its
input alphabet Σi depends on the number of variables that are not quantified
yet;

– if the quantifier χi is equal to ∀, we consider instead the complement B′i+1 of
Bi+1 and compute its product with Ki in a similar manner to the previous
construction; Bi is then equal to the complement of this product; intuitively,
∀π, ψ = ¬(∃π,¬ψ).

Having computed B1 = (Q,Σ, δ, q0, F), let P = (P,Σ, Γ,∆, 〈p0,⊥〉) be the
PDS generating T (π0). We assume that χ0 = ∃. Let BP = (P ×Q,Σ,∆′, 〈(p0,
q0),⊥〉, P×F) be a Büchi pushdown automaton, where the set of transitions ∆′ is

such that if q
a−→ q′ ∈ δ and (p, γ)

a−→ (p′, w) ∈ ∆, then ((p, q), γ)
a−→ ((p′, q′), w) ∈

∆′. BP represents the fully quantified formula ∃π0, χ1π1, . . . , χnπn, ϕ. Obviously,
B is not empty if and only if T |= ψ.

If χ0 = ∀, we consider instead the complement B′1 of B1, then define a Büchi
pushdown automaton BP in a similar manner. B is empty if and only if T |= ψ.

It has been proven in [3, 7] that the emptiness problem is decidable for Büchi
pushdown automata. Hence, given our initial constraints on T and ψ, we can
determine whether T |= ψ or not. ut

The Büchi automaton Bϕ has O(2|ϕ|) states; if we assume that all variables
are existentially quantified, the BPDS BP has ν = O(2|ϕ||P||K1| . . . |Kn|) states.
According to [7], checking the emptiness of BP can be done in O(ν2k) operations,
where k is the number of transitions of BP, hence, in O(ν4|Γ |2).

Complementation of a Büchi Automaton may increase its size exponentially,
hence, this technique may incur an exponential blow-up depending on the number
of universal quantifiers.

Application. If we consider that π0 range over Tracesω(P) and that π1, . . . , πn
range over a regular abstraction α(Tracesω(P)) of the actual set of traces, and

we assume that χ1, . . . , χn = ∀, we can apply this result to over-approximate the
model-checking problem, as detailed earlier in this section.

It is worth noting that the complement of an ω context-free language is
not necessarily an ω context-free language. Hence, we can’t use the previous
procedure to check a HyperLTL formula of the form ψ = ∃π,∀π′ϕ where π′

is a context-free variable and π is regular. We know, however, that ω visibly
pushdown languages are closed under complementation. We therefore consider
the case of a single visibly pushdown variable in the following subsection.

4.2 With One Visibly Pushdown Variable and n Regular Variables

Let P be a VPDS such that T (πi) = Tracesω(P), and (Kj)j 6=i finite state
transition systems such that for j 6= i, T (πj) = Tracesω(Kj). Unlike the previous
case, the visibly context-free variable no longer has to be the first one π0.

Theorem 4. If a variable πi is visibly pushdown w.r.t. T and the other variables
are regular, we can decide whether T |= χ0π0, . . . , χnπn, ϕ or not.

The proof of this theorem is similar to the proof of Theorem 3. We first build
a sequence of Büchi automata Bn+1, . . . ,Bi+1 in a similar manner to the proof
of Theorem 3, starting from a finite state automaton Bn+1 = Bϕ on the alphabet
Σn+1 representing the unquantified formula ϕ then computing products with the
transition systems Kn+1, . . . ,Ki+1 until we end up with a Büchi automaton Bi+1

on the alphabet Σi+1.
Having computed Bi+1 = (Q,Σi+1, δ, q0, F), let P = (P,Σ, Γ,∆,

〈p0,⊥〉) be the VPDS generating T (πi). We assume that χi = ∃. Let BPi =
(P ×Q,Σi+1, ∆′, 〈(p0, q0),
⊥〉, P × F) be a visibly Büchi pushdown automaton, where ∆′ is such that if

q
(a0,...,ai−1,a)−−−−−−−−−→ q′ ∈ δ and (p, γ)

a−→ (p′, w) ∈ ∆, then ((p, q), γ)
(a0,...,ai−1,a)−−−−−−−−−→

((p′, q′), w) ∈ ∆′. BPi is indeed a BVPDA on the alphabet Σi+1 as its stack
operations only depend on its i+ 1-th variable. If χi = ∀, we consider instead
the complement B′i+1.

From the i-th variable onwards, we compute a sequence of visibly Büchi
pushdown automata BPi, . . . ,BP0 on the alphabets Σi+1, . . . , Σi respectively.
For i ≥ k ≥ 1, if BPk = (P ′, Σk+1, ∆′, 〈p′0,⊥〉, F ′), Ki = (S,Σ, δ, s0), and χk = ∃,
let BPk−1 = (P ′ × S,Σk, ∆′′, 〈(p′0, s0),⊥〉, F ′′ × S) be a visibly Büchi pushdown

automaton, where the set of transitions ∆′′ is such that if (p, γ)
(a0,...,ak−1,ai)−−−−−−−−−−→

(p′, w) ∈ ∆′ and q
ak−1−−−→ q′ ∈ δ, then ((p, q), γ)

(a0,...,ak−2,ai)−−−−−−−−−−→ ((p′, q′), w) ∈ ∆′′.
The last letter of each tuple always stands for the visibly pushdown path variable
πi: BPk−1 is visibly pushdown as its stack operations only depend on this variable.
If χk = ∀, we consider the complement BP ′k of BPk instead, which is a visibly
pushdown automaton as well.

We can check the emptiness of BP0. If it is indeed empty, then T |= ψ. ut
It has been proven in [1] that the complement of a VPDA incurs an exponential

blow-up in terms of states. Hence, the technique shown here is exponential (in
terms of time) in the size of P and ϕ.

Application. If we consider that πi range over Tracesω(P) and that πj , j 6= i
range over a regular abstraction α(Tracesω(P)) of the actual set of traces, and
we assume that χj = ∀ for j 6= i, we can apply this result to over-approximate
the model-checking problem, as detailed earlier in this section.

5 Model-checking HyperLTL with Bounded Phases

In this section, we use results on Multi-Stack Pushdown Automata to define an
under-approximation of the model-checking problem of HyperLTL formulas with
universal quantifiers for PDSs.

Multi-stack pushdown systems (MPDSs) are pushdown systems with multiple
stacks. Their semantics is defined in a manner similar to PDSs, and so are
configurations, traces, runs, Multi-Stack Pushdown Automata (MPDA), and the
semantics of LTL. MPDA are unfortunately Turing powerful even with only two
stacks. Thus, La Torre et al. introduced in [13] a restriction called phase-bounding :

Definition 6 (Phases of runs). A run r of a MPDS M is said to be k-phased
if it can be split in a sequence of k runs r1, . . . , rk of M (i.e. r = r1 . . . rk) such
that during the execution of a given run ri, at most a single stack is popped from.

For a given integer k, this restriction can be used to define a phase-bounded
semantics on MPDSs: only traces matched to runs with at most k phases are
considered. It has been proven in [11] that the backward reachability set of
MPDSs with bounded phases is regular and can be effectively computed; this
property can then be used to show that the following theorem holds:

Theorem 5 (Model-checking with bounded phases [11]). The model-
checking problem of LTL for MPDSs with bounded phases is decidable.

Phase-bounding can be used to under-approximate the set of traces of a
MPDS. If a given LTL property ϕ does not hold for a MPDS M with a phase-
bounding constraint, it does not hold for the MPDSM w.r.t. the usual semantics
as well. We write M |=k ϕ if the LTL formula ϕ holds for traces of M with at
most k phases.

We can use decidability properties of MPDSs with bounded phases to
under-approximate the model-checking problem for pushdown systems. Let
P = (P,Σ, Γ,∆, c0〉) be a PDS on the input alphabet Σ = 2AP , and ψ =
∀π1, . . . ,∀πn, ϕ, a HyperLTL formula on n trace variables with only universal
quantifiers.

Our intuition is to define a MPDS M such that each stack represents a path
variable of the HyperLTL formula. This MPDS is the product of n copies of P.
Because ψ features universal quantifiers only, the model-checking problem of
the LTL formula ϕ for M is then equivalent to the model-checking problem of
ψ for P: M simulates n runs of P simultaneously, hence, LTL formulas on M
can be used to synchronize these runs. We can therefore use a phase-bounded
approximation of the former problem to under-approximate the latter.

We introduce the MPDS M = (Pn, Σn, Γn, n,∆′, c′0), with an initial configu-
ration c′0 = 〈(p0, . . . , p0),⊥, . . . ,⊥〉) ∈ Pn×Γn and a set of transitions ∆′ defined

as follows: ∀d1, . . . , dn ∈ ∆n where di = (pi, γi)
ai−→ (p′i, wi) for i = 1, . . . , n, the

transition ((p1, . . . , pn), γ1, . . . , γn)
(a1,...,an)−−−−−−→ ((p′1, . . . , p

′
n), w1, . . . , wn) belongs

to ∆′. The following lemma then holds:

Lemma 2. M |= ϕ if and only if P |= ψ.

As a consequence, if M 6|= ϕ, then P 6|= ψ. We can then consider a phase-
bounded analysis of M: for a given integer k, if M 6|=k ϕ, then M 6|= ϕ, hence
P 6|= ψ. We can therefore under-approximate the model-checking problem of
HyperLTL formulas with universal quantifiers only.

6 Applications to Security Properties

We apply in this section our results to information flow security, and remind how,
as shown in [5], security policies can be expressed as HyperLTL formulas. If we
model a given program as a PDS or a VPDS P following the method outlined
in [7], we can then either over-approximate or under-approximate an answer
to the model-checking problem P |= ψ of a policy represented by a HyperLTL
formula ψ for this program.

6.1 Observational Determinism

The strict non-interference security policy is the following: an attacker should
not be able to distinguish two computations from their outputs if they only vary
in their secret inputs. Few actual programs meet this requirement, and different
versions of this policy have thus been defined.

We partition variables of a program into high and low security variables, and
into input and output variables. The observational determinism property holds if,
assuming two starting configurations have identical low security input variables,
their low security output variables will be equal as well.

We model the program as a PDS P on the input alphabet 2AP , where atomic
propositions in AP contain variable values: if a variable x can take a value a,
then (x, a) ∈ AP . We can express the observational determinism policy as the
following HyperLTL formula:

ψOD = ∀π1,∀π2, (
∧

a∈LSi

(aπ1
⇔ aπ2

))⇒ G (
∧

b∈LSo

(bπ1
⇔ bπ2

))

where LSi (resp. LSo) is the set of low security input (resp. output) variables
values. Using our techniques detailed in Sections 5 and 4.1, we can both under-
approximate and over-approximate the model-checking problem P |= ψOD that
is otherwise undecidable.

A context-free example. Let AP = {i, o, h1, h2}, LSi = {i}, LSo = {o}, and
let HSi = {h1, h2} be a set of high security inputs. We suppose we are given a

program that can be abstracted by the following PDS P on the alphabet Σ = 2AP ,
the stack alphabet Γ = {γ,⊥}, and the set of states P = {p0, p1, p2, p3, p4}, with
the following set of transitions, as represented by Figure 1:

(init) (p0,⊥)
{i}−−→ (p0, γ⊥) (µ2) (p2, γ)

{h1}−−−→ (p3, ε)

(λ1) (p0, γ)
{h1}−−−→ (p1, γγ) (µ3) (p3, γ)

{o}−−→ (p2, γ)

(λ2) (p0, γ)
{h2}−−−→ (p1, γγ) (ν1) (p3,⊥)

{o}−−→ (p4,⊥)

(λ3) (p1, γ)
{o}−−→ (p0, γ) (ν2) (p4,⊥)

{o}−−→ (p4,⊥)

(µ1) (p1, γ)
{o}−−→ (p2, γ)

p0

p1 p2 p3 p4

⊥ → γ⊥ : {i}

γ → γγ : {h1},
γ → γγ : {h2}

γ → γ : {o}

γ → γ : {o} γ → ε : {h1}

γ → γ : {o}

⊥ → ⊥ : {o}

⊥ → ⊥ : {o}

Fig. 1: The PDS P

We would like to check if P |= ψOD, where ψOD is the observational de-
terminism HyperLTL formula outlined above. Intuitively, it will not hold: two
runs always have the same input i but, if they do not push the same number of
symbols on the stack, their low-security outputs will differ.

Since transitions of P are only labelled by singletons, we can write ρ instead
of {ρ} when describing traces. The set Tracesω(P) of infinite traces of P is equal
to

⋃
n∈N

i · ((h1 + h2) · o)n · (h1 · o)n+1 · o∗: from the bottom symbol ⊥, rules (init),

(λ1), (λ2), and (λ3) push n+ 1 symbols γ on the stack, rules (µ1), (µ2), and (µ3)
pop these (n+ 1) symbols, then rule (ν2) loop in state p4 once the bottom of the
stack is reached again and rule (ν1) has been applied. Tracesω(P) is context-free,
hence, we can’t model-check the observational determinism policy on P using
the algorithms outlined in [6].

Using the under-approximation technique outlined in Section 5, we can show
that ψOD does not hold if we bound the number of phases to 2: we find a
counter-example π1 = i · h2 · o · h1 · o · o∗ and π2 = i · (h2 · o)2 · (h1 · o)2 · o∗. We
can therefore reach the conclusion that P 6|= ψOD; the observational determinism
security policy therefore does not hold for the original program.

6.2 Declassification

The strict non-interference security policy is very hard to enforce as many
programs must, one way or another, leak secret information during their execution.
Thus, we must relax the previously defined security properties.

We introduce instead a declassification policy: at a given step, leaking a
specific high security variable is allowed, but the observational determinism must
otherwise holds. As an example, let’s consider a program accepting a password
as a high security input in its initial state, whose correctness is then checked
during the next execution step. The program’s behaviour then depends on the
password’s correctness. We express this particular declassification policy as the
following HyperLTL formula:

ψD = ∀π1,∀π2, ((
∧

a∈LSi

(aπ1
⇔ aπ2

)) ∧X (ρπ1
⇔ ρπ2

))⇒ G (
∧

b∈LSo

(bπ1
⇔ bπ2

))

where ρ is a high security atomic proposition specifying that an input password
is correct. Again, using our techniques detailed in Sections 5 and 4.1, we can both
under-approximate and over-approximate the model-checking problem P |= ψD.

Checking a password. We consider a program where the user can input a
low-security username and a high-security password, then get different outputs
depending on whether the password is true or not.

Let AP = {u, pw1, pw2, pw3, o, ρ, h1, h2}, LSi = {u}, LSo = {o}, let ρ be
a variable that is allowed to leak, and let HSi = {pw1, pw2, pw3, h1, h2} be a
set of high security inputs. Assuming there is only a single username u and
three possible passwords pw1, pw2, pw3, pw3 being the only right answer, we can
consider the following PDS P on the alphabet Σ = 2AP , the stack alphabet
Γ = {γ,⊥}, the set of states P = {p0, p1, p2, p3, ptrue, pfalse}, with the following
set of transitions, as represented by Figure 2:

(init1) (p0,⊥)
{u,pw1}−−−−−→ (pfalse,⊥) (µ1) (p1,⊥)

{o}−−→ (p1,⊥)

(init2) (p0,⊥)
{u,pw2}−−−−−→ (pfalse,⊥) (µ2) (p2, γ)

{h1}−−−→ (p2, γγ)

(init3) (p0,⊥)
{u,pw3}−−−−−→ (ptrue,⊥) (µ3) (p2, γ)

{h2}−−−→ (p3, γ)

(pwtrue) (ptrue,⊥)
{ρ}−−→ (p1,⊥) (µ4) (p3, γ)

{h2}−−−→ (p3, ε)

(pwfalse) (pfalse,⊥)
{o}−−→ (p2, γ⊥) (µ2) (p3,⊥)

{h1}−−−→ (p3,⊥)

We would like to check if P |= ψD, where ψD is the declassification HyperLTL
formula outlined above. Obviously, if we consider that ρ ∈ LSo, then observational
determinism does not hold: given the same username u, depending on whether
the high-security password pi chosen is right or not, the low-security output will
differ. However, intuitively, the declassification policy should hold: given two
different input passwords, the PDS will behave in the same manner as long as
both are either true or false.

p0 ptrue

pfalse

p1

p2 p3

⊥ → ⊥ : {u, p1},
⊥ → ⊥ : {u, p2}

⊥ → ⊥ : {u, p3} ⊥ → ⊥ : {ρ}
⊥ → ⊥ : {o}

⊥ → γ⊥ : {o}

γ → γγ : {h1}

γ → γ : {h2}

γ → ε : {h2}

⊥ → ⊥ : {h1}

Fig. 2: The PDS P

The set Tracesω(P) of infinite traces of P is equal to ({u, p3} · {ρ} · {o1}∗)∪⋃
n∈N

(({u, p1}+ {u, p2}) · {o} · {h1}n · {h2}n+2 · {h1}∗): from the bottom symbol ⊥,

if the right password pw3 has been input, rules (init3) and (ptrue) lead to state
p1 where the PDS loops; otherwise, if the password is wrong, rules (init1), (init2)
and (pfalse) push a symbol γ and lead to state p2, where rule (µ2) pushes n
symbols γ on the stack, then the PDS switches to state p3 where it pops these
(n + 1) symbols with rules (µ3) and (µ4) then loops with rule (µ5) once the
bottom of the stack has been reached. Tracesω(P) is context-free, hence, we
can’t model-check the declassification policy on P using the algorithms outlined
in [6].

Using the overapproximation techniques detailed in Section 4.1, we can con-
sider the regular abstraction α(Tracesω(P)) = ({u, p3} · {ρ} · {o1}∗)∪ (({u, p1}+
{u, p2}) · ∅ · {h1}∗ · {h2}∗ · {h1}∗) of the actual set of traces. We can then reach
the conclusion that P |= ψD, since this property holds for the over-approximation
as well; the declassification security policy therefore holds for this example.

6.3 Non-Inference

Non-inference is a variant of the non-interference security policy. It states that,
should all high security input variables be replaced by a dummy input λ, the
behaviour of low security variables should not change.

We express this property as the following HyperLTL formula:

ψ = ∀π1,∃π2,G (
∧
x∈V h

i

(x, λ)π2
) ∧G (

∧
b∈LS

(bπ1
⇔ bπ2

))

where LS stands for the set of all low security variables values, V hi for the
set of high security input variables, and (x, λ) means that variable x has value λ.
We can’t rely on the method outlined in 4.1 because π2 is existentially quantified,
but an over-approximation can nonetheless be found using the method detailed
in Section 4.2, if we model the program as a VPDS P, choose π2 as the visibly

context-free path variable, and make it so that π1 ranges over a regular abstraction
of the traces.

References

1. Rajeev Alur and P. Madhusudan. Visibly pushdown languages. STOC ’04.
2. Manuel E. Bermudez and Karl M. Schimpf. Practical arbitrary lookahead lr parsing.

Journal of Computer and System Sciences, 1990.
3. Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of

pushdown automata: Application to model-checking. CONCUR ’97.
4. Dario Carotenuto, Aniello Murano, and Adriano Peron. 2-visibly pushdown au-

tomata. DLT ’15.
5. Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,

Markus N. Rabe, and César Sánchez. Temporal logics for hyperproperties. POST
’14.

6. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,
2010.

7. Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient
algorithms for model checking pushdown systems. CAV ’00.

8. Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model-
checking hyperltl and hyperctl*. CAV ’15.

9. Fernando C. N. Pereira and Rebecca N. Wright. Finite-state approximation of
phrase structure grammars. ACL ’91.

10. Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In TACAS’05.

11. Anil Seth. Global reachability in bounded phase multi-stack pushdown systems. In
CAV’10.

12. A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem
for büchi automata with applications to temporal logic. Theoretical Computer
Science, 49(2):217 – 237, 1987.

13. Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust
class of context-sensitive languages. In LICS ’07.

14. Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff
Higher Order Workshop, volume 1043 of Lecture Notes in Computer Science, 1995.

A Proof of Theorem 1

Let L1 and L2 be two context-free languages, and P1 = (P1, Σ ∪ {f}, Γ,∆1, 〈p10,
⊥〉, F1) and P2 = (P2, Σ ∪ {f}, Γ,∆2, 〈p20,⊥〉, F2) two PDA accepting L1 and L2

respectively. Without loss of generality, we can consider that P1 ∩ P2 = ∅. Let
e1 /∈ P1, e2 /∈ P2, and f /∈ Σ.

We define two BPDA BPi = (Pi, 2
Σ∪{f}, Γ,∆′i, 〈pi0,⊥〉, {ei}) for i = 1, 2,

where ∆′i is such that (ei, γ)
{f}−−→ (ei, γ) ∈ ∆i and (pf , γ)

{f}−−→ (ei, γ) ∈ ∆i for

all γ ∈ Γ and pf ∈ Fi, and if (p, γ)
a−→ (p′, w) ∈ ∆i, then (p, γ)

{a}−−→ (p′, w) ∈ ∆′i.
If we consider that {a} is equivalent to the label a ∈ Σ ∪ {f}, BP1 and BP2

accept L1f
ω and L2f

ω respectively. Since HyperLTL formulas apply to infinite
words in 2AP , for i = 1, 2, we have designed a BPDA BPi that extends words in
Li by adding a final dead state ei from which the automaton can only output an
infinite sequence of a special ending symbol f .

We consider the PDS P = ({p0} ∪ P1 ∪ P2, {{ι1}, {ι2}} ∪ 2Σ∪{f}, Γ,∆, c0),

where p0 /∈ P1 ∪ P2, ι1, ι2 /∈ Σ ∪ {f}, c0 = 〈p0,⊥〉, and ∆ = {(p0,⊥)
{ι1}−−−→

(p10,⊥), (p0,⊥)
{ι2}−−−→ (p20,⊥)} ∪∆′1 ∪∆′2. The PDS P can simulate either BP1 or

BP2, depending on whether it applies first a transition labelled by {ι1} or {ι2}
from the initial configuration c0.

We introduce the formula ψ = ∃π1,∃π2, ϕstart ∧ ϕsync ∧ ϕend on AP =
{ι1, ι2} ∪Σ ∪ {f}, where ϕstart = ι1π1

∧ ι2π2
, ϕsync = XG

∧
a∈AP

(aπ1
⇔ aπ2

), and

ϕend = FG (fπ1
∧ fπ2

). We suppose that P |= ψ; ϕstart expresses that trace
variables π1 and π2 represent runs of BP1 and BP2 respectively. ϕsync means
that the two traces are equal from their second letter onwards. ϕend implies that
the two traces are accepting runs.

Therefore, if P |= ψ, then B1 and B2 share a common accepting run and
L1 ∩ L2 6= ∅. On the other hand, if L1 ∩ L2 6= ∅, there is an accepting run π
common to B1 and B2, and we can then find two traces π1 and π2 of P such
that the formula ∃π1,∃π2, ϕstart ∧ ϕsync ∧ ϕend holds. The emptiness problem is,
however, undecidable, and therefore so must be the model-checking problem.

B Proof of Theorem 2

In order to prove this theorem, we will rely on a class of two-stack automata
called 2-Visibly Pushdown Automata (2-VPDA) introduced in [4]. Let Σ be a
finite input alphabet with two partitions Σ = Σcj ∪ Σrj ∪ Σlj , j ∈ {1, 2}. We
then introduce a 2-pushdown alphabet ℵ = 〈(Σc1 , Σr1 , Σl1) , (Σc2 , Σr2 , Σl2)〉 on
Σ.

Definition 7 (2-Visibly Pushdown Automaton). A 2-Visibly Pushdown
Automaton (2-VPDA) over ℵ is a tuple D = (P,Σ, Γ,∆, c0, F) where P is a
finite set of control states, Σ a finite input alphabet, Γ a finite stack alphabet,
∆ ⊆ (P × Γ × Γ) × Σ × (P × Γ ∗ × Γ ∗) a finite set of transition rules, c0 =

〈p0,⊥,⊥〉 ∈ P × Γ × Γ an initial configuration, and F ⊆ P a set of final states.
Moreover, ∆ is such that ∀d ∈ ∆, and for i ∈ {1, 2}:

– if d is labelled by a letter in Σci , d pushes a word on the i-th stack regardless
of its top stack symbol;

– if d is labelled by a letter in Σri , d pops the top letter of of the i-th stack;
– if d is labelled by a letter in Σli , d does not modify the i-th stack.

The semantics of 2-VPDA is defined in a manner similar to PDA, and so are
configurations, runs, execution paths, languages, and 2-Büchi Visibly Pushdown
Automata (2-BVPDA). The following theorem holds:

Theorem 6 (Undecidability of the emptiness problem for 2-VPDA [4]).
The emptiness problem for 2-VPDA is undecidable.

Our intuition is to prove theorem 2 by reducing the emptiness problem for
2-VPDA to the model-checking problem of HyperLTL for VPDSs.

Let D = (P,Σ, Γ,∆, 〈p0,⊥,⊥〉, F) be a 2-VPDA on an input alphabet Σ
according to a partition ℵ = 〈(Σc1 , Σr1 , Σl1) , (Σc2 , Σr2 , Σl2)〉. We introduce

a 2-BVPDA BD = (P, 2Σ∪{f}, Γ,∆′, 〈p0,⊥,⊥〉, {e}) such that (e, γ, γ′)
{f}−−→

(e, γ, γ′) ∈ ∆′ and (pf , γ, γ
′)
{f}−−→ (e, γ, γ′) ∈ ∆′ for all γ, γ′ ∈ Γ and pf ∈ F ,

and if (p, γ, γ′)
a−→ (p′, w, w′) ∈ ∆, then (p, γ, γ′)

{a}−−→ (p′, w, w′) ∈ ∆′ on the
input alphabet Σ ∪ {f}. Obviously, BD is visibly if we add the symbol f to Σl1
and Σl2 and accepts L(D)fω, assuming the label {a} is equivalent to the label
a ∈ Σ ∪ {f}.

Let P 1 and P 2 (resp. ∆1 and ∆2) be two disjoint copies of P (resp. ∆′). To
each p ∈ P (resp. d ∈ ∆′), we match its copies p1 ∈ P 1 and p2 ∈ P 2 (resp. d1 ∈ ∆1

and d2 ∈ ∆2). We define a PDS P = ({σ} ∪ P 1 ∪ P 2, {{ι1}, {ι2}, {f}} ∪ 2∆
1 ∪

2∆
2

, Γ, δ, 〈σ,⊥, 〉). The set δ is such that, for each transition d = (p, γ1, γ2)
a−→

(p′, w1, w2) ∈ ∆, a 6= f , we add two transitions (p1, γ1)
{d1}−−−→ (p′1, w1) and

(p2, γ2)
{d2}−−−→ (p′2, w2) to δ. If a = f , we add instead (p1, γ1)

{f}−−→ (p′1, w1) and

(p2, γ2)
{f}−−→ (p′2, w2). Transitions in δ are projections of the original transitions

of the 2-BVPDA on one of its two stacks; their label depends on the original

transition in ∆, unless they are labelled by f . Moreover, (σ,⊥)
{ι1}−−−→ (p10,⊥) and

(σ,⊥)
{ι2}−−−→ (p20,⊥) both belong to δ.

P is such that it can either simulate the first or the second stack of the
2-BVPDA BD, depending on which transition was used first. P is indeed a
VPDS: a suitable partition of its input alphabet can be computed depending on
which operation on the i-th stack transitions in ∆ perform. As an example, if
d ∈ ∆ pushes a symbol on the first stack and pops from the second, d1 belongs
to the call alphabet and d2, to the return alphabet.

Given a set of trace variables V = {π1, π2} and a predicate alphabet AP =
{ι1, ι2, f} ∪∆1 ∪∆2, we then consider an unquantified HyperLTL formula ϕ of
the form ϕ = ϕstart ∧ϕsync ∧ϕend, where ϕ’s sub-formulas are defined as follows:

Initialization formula: ϕstart = ι1π1
∧ ι2π2

; Π |= ϕstart if and only if for i ∈
{1, 2}, Π[1,∞](πi) is a run that simulates the i-th stack of BD;

Synchronization formula: ϕsync = XG
∧
d∈∆

(d1π1
⇔ d2π2

); Π |= ϕstart ∧ ϕsync

if and only if Π[1,∞](π1) and Π[1,∞](π2) can be matched to a common run
of the 2-BVPDA BD;

Acceptation formula: ϕend = FG (fπ1 ∧ fπ2); Π |= ϕstart ∧ ϕsync ∧ ϕend if
and only if Π[1,∞](π1) and Π[1,∞](π2) can be used to define an accepting
run of the 2-BVPDA BD.

Therefore, if Π |= ϕ, we have Π(πi) = (ιi, di1, d
i
2 . . .) for i = 1, 2, and the sequence

of transitions (d1, d2, . . .) ∈ ∆ω defines an accepting run on BD. Therefore, we
can solve the model-checking problem P |= ∃π1,∃π2, ϕ, if and only if we can
determine whether L (BD) is empty or not, hence, L (D) as well. By here is a
contradiction and the former problem is undecidable.

