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A B S T R A C T   

The COVID-19 epidemic highlighted the necessity to integrate dynamic human behaviour change into infectious 
disease transmission models. The adoption of health protective behaviour, such as handwashing or staying at 
home, depends on both epidemiological and personal variables. However, only a few models have been proposed 
in the recent literature to account for behavioural change in response to the health threat over time. This study 
aims to estimate the relevance of TELL ME, a simple and frugal agent-based model developed following the 2009 
H1N1 outbreak to explain individual engagement in health protective behaviours in epidemic times and how 
communication can influence this. Basically, TELL ME includes a behavioural rule to simulate individual de-
cisions to adopt health protective behaviours. To test this rule, we used behavioural data from a series of 12 
cross-sectional surveys in France over a 6-month period (May to November 2020). Samples were representative 
of the French population (N = 24,003). We found the TELL ME behavioural rule to be associated with a moderate 
to high error rate in representing the adoption of behaviours, indicating that parameter values are not constant 
over time and that other key variables influence individual decisions. These results highlight the crucial need for 
longitudinal behavioural data to better calibrate epidemiological models accounting for public responses to 
infectious disease threats.   

1. Introduction 

The COVID-19 pandemic has shed light on the need for public health 
authorities to have reliable simulation tools in order to prevent or 
control the spread of infectious diseases (Keeling et al., 2021; Mari et al., 
2021; Gatto et al., 2020). Typically, epidemiologists have long applied a 
compartmental approach to predict the dynamic nature of an epidemic, 
such as SIR models. However, these epidemiological models, often based 
on ordinary differential equations used to describe how the disease is 
spreading, rarely incorporate a dynamic behavioural component of de-
cision making under risk to explain how people deal with the evolving 
parameters of an epidemic (Funk et al., 2015; Ferguson, 2007; Die-
kmann and Heesterbeek, 2000). Therefore, individuals’ decisions to 
adopt protective behaviours to prevent infection are often either exog-
enous or simply ignored. Despite the critical role that human behaviour, 
through person-to-person contacts, plays in increasing or reducing res-
piratory infectious disease transmission, risk of infection has to date 

mostly been examined through the lens of population density and 
mobility, which overlooks the dynamics of social and health behaviours. 

In the current literature, epidemiologists are increasingly interested 
in the modelling of human behaviour and its influence on the spread of 
an epidemic (Verelst et al., 2016; Manfredi and d’Onofrio, 2013; 
d’Onofrio and Manfredi, 2009). One possible way of modelling is to 
represent health protective behaviours in ordinary differential equations 
based models (Buonomo and Della Marca, 2020). However, this 
approach is not satisfactory because it does not adequately represent 
sophisticated behavioural decision rules. Whereas this type of modelling 
considering human behaviour as exogenous can lead to an overall good 
prediction, it often results in an inaccurate prediction at the individual 
level. It is only suitable if the modeller aims to predict the spread of the 
epidemic. If he wants to study the effect of non-pharmaceutical in-
terventions on this one, modelling the dynamics of human behaviour is 
unavoidable (Bedson et al., 2021; Funk et al., 2010). In particular, he 
needs to take account of the interactions between individuals and those 
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between people and their environment. In this respect, agent-based 
modelling is a promising method. This computational approach is 
increasingly used to describe infectious disease transmission (Weston 
et al., 2018; Verelst et al., 2016) because it is powerful to study the ef-
fects of changes in health protective behaviours on the spread of an 
epidemic. A few agent-based models have been developed to take ac-
count of the dynamics of human behaviour in disease transmission 
(Mniszewski and Del Valle, 2013), some of which a smaller number 
focused on COVID-19 (Lorig et al., 2021; Lu et al., 2021). 

In light of the COVID-19 pandemic and of the potential risk of even 
worse future pandemics, it seems crucial to estimate the relevance and 
interest of existing agent-based models of health protective behaviours, 
for which the decision to adopt protective behaviours depends on a 
small number of social cognitive variables. This is the objective of this 
article. Specifically, we focus on what, in our opinion, may represent one 
of the most promising agent-based models, the TELL ME model intro-
duced by Badham and Gilbert (2015), as it offers a relatively simple and 
frugal tool to represent change in health protective behaviours over 
time. 

1.1. The agent-based modelling of human behaviours 

Only a small number of disease transmission models provide an 
explicit modelling of individual behaviour during an epidemic. In their 
systematic review of behavioural change models applied to infectious 
disease transmission, Verelst et al. (2016) observe five types of model-
ling to represent the individual decision-making process. The behav-
ioural decision can be exogenous, based on an information threshold, 
depend on information modelled as a dynamic parameter, or be based 
on an economic objective function with or without social learning or 
imitation. The TELL ME model belongs to this last category, rendering 
the decision to adopt protective behaviours dependent upon an objec-
tive function based on social cognitive factors, which includes subjective 
norms. 

A challenge with which infectious disease modellers are faced is that 
their models are useful only insofar as they are able to identify how the 
agents react in an epidemic context and how they respond to prevention 
and control measures. This corresponds to the purpose of agent-based 
models of health protective behaviours (Funk et al., 2015). This 
modelling approach enables the simulation of individuals making de-
cisions according to programmable rules (Badham et al., 2018). Con-
trary to traditional modelling methods, agent-based modelling focuses 
on individual interactions rather than individuals. Programmed rules 
define the interactions between agents and the interactions of agents 
with their environment. The model is run during a simulated time, in 
which agents make their decisions and adapt them. This method is thus 
useful to generate heterogeneity across population characteristics and to 
observe large-scale patterns (Bedson et al., 2021). 

In their systematic review, Lorig et al. (2021) draw our attention to 
the rather striking heterogeneity among agent-based models in terms of 
purpose, transmission dynamics, geographical region and the number of 
simulated individuals. Only 14 % of the 126 agent-based social simu-
lations included in the review implement agent behaviour by a fixed 
behavioural pattern based on an empirical schedule derived from per-
sonal characteristics. Further, 5 % of the simulations use dynamic or 
adaptive behavioural patterns, i.e. behaviour is based on needs or utility. 
Regarding simulation, only 43.7 % use real-world census data to take 
into account sociodemographic features and to generate a population 
similar to the population in the simulated region or country. Further-
more, the simulation methods in agent-based modelling are based on the 
confrontation of data to multiple criteria to evaluate the best parameter 
set. Nonetheless, in the existing models, the choice of the best parameter 
set is made by using an arbitrary acceptance threshold, as categorical 
calibration, or arbitrarily by prioritising one criterion over the others. A 
rigorous selection method is rarely used. 

1.2. The TELL ME model of health protective behaviours 

In this paper, we investigate the relevance of an adaptive behav-
ioural pattern. This pattern is based on the three most cited psycho-
logical theories of health behaviour in disease transmission models and 
emergency response studies (Weston et al., 2020): i) the health belief 
model (Rosenstock, 1974); ii) the theory of planned behaviour (Ajzen, 
1991); and iii) the protection motivation theory (Maddux and Rogers, 
1983). The TELL ME model is one of the rare agent-based models to 
integrate the main components of these three main psychological the-
ories into a model of behavioural change. More precisely, this 
agent-based model, constructed by Badham and Gilbert (2015), follows 
two pillars: i) an epidemiological model which simulates the spread of 
an epidemic, and ii) a behavioural rule which represents individual 
decision-making about protective behaviour.1 This model, which was 
developed in the framework of the TELL ME European Project on 
transparent communication during epidemics, aims to simulate the ef-
fect of different communication strategies on the individual protective 
decisions in an epidemic context (Barbrook-Johnson et al., 2017).2 

The TELL ME behavioural rule bases the decision to adopt protective 
behaviours on attitude, subjective norms and perceived threat associ-
ated with the epidemic. The relevance of this design has been confirmed 
by empirical data. Reviewing studies of epidemics from 2002 to 2010, 
Bish and Michie (2010) found strong evidence that perceived suscepti-
bility, perceived disease severity, and perceived efficacy of behaviour 
are significantly associated with engaging in protection against the 
disease. There is also a limited amount of evidence in favour of social 
norms as a predictor of protective behaviours. In a recent integrated 
narrative review based on the period from 2000 to 2020, Seale et al. 
(2020) found that isolation was influenced by perceived susceptibility 
and perceived efficacy. During the COVID-19 epidemic, some studies 
examined the association of sociodemographic, cognitive and psycho-
logical variables with the adoption of health protective behaviours. 
Once again, engaging in health protective behaviours, such as mask 
wearing and social distancing, is found to be strongly associated with 
perceived efficacy (Scholz and Freund, 2021; Clark et al., 2020; Zickfeld 
et al., 2020). Moreover, perceived infection risk is also revealed to be a 
significant predictor of behaviours (Qin et al., 2021; Schneider et al., 
2021; Bruine de Bruin and Bennett, 2020; Ning et al., 2020; Storopoli 
et al., 2020; Vally, 2020). In France, two studies investigated these re-
lationships during the first lockdown. Raude et al. (2020) highlighted 
the role of perceived efficacy, perceived severity and subjective norms in 
the adoption of protective behaviours. For their part, Guillon and Ker-
gall (2020) found that perceived threat and perceived benefits influence 
attitudes and opinions regarding quarantine. 

Based on psychological theories, TELL ME is one of the rare agent- 
based models to simulate the spread of an epidemic by incorporating 
personal and epidemiologic variables. The objective of our study is to 
investigate the validity of the TELL ME behavioural rule to explain 
engagement in protective behaviours during the COVID-19 pandemic. In 
particular, we look at to what extent this rule is able to represent the 
overall behaviour of the population and individual behaviours. Further, 
we study whether the variables included in this rule are the most rele-
vant and which variables should be endogenised, as well as what min-
imal level of detail is required to capture individual differences in 
protective behaviour. 

1 See TELL ME (2015) for details on prototype software.  
2 A description of the TELL ME European project is available online: 

https://www.tellmeproject.eu/ Accessed July 8, 2022. 
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2. Materials and methods 

2.1. Variables of the TELL ME model 

As indicated previously, the TELL ME model focuses on the behav-
ioural rule which is based on three leading theories in health psychol-
ogy: i) the theory of planned behaviour; ii) the health belief model; and 
iii) the protection motivation theory. For an agent, it is assumed that the 
decision to adopt protective behaviour depends on three key variables 
drawn from these theories: attitude toward the behaviour, subjective 
norms and perceived threat. 

In the following, we summarise the main concepts regarding these 
constructs and how we implemented them in the present study: 

Attitude: This construct is generally defined as beliefs about the 
behaviour and its consequences, which underlie the willingness to adopt 
protective behaviour. Initially, Badham and Gilbert applied their model 
to the self-protective behaviours occurring during the 2009 H1N1 
epidemic, for which they used an empirically-based distribution 
extracted from the responses to questions about hand hygiene 
throughout the epidemic, as reported in Cowling et al. (2010). In line 
with the psychological theories of health behaviours (Brewer and Rimer, 
2008; Weinstein, 1993), in our analysis we disaggregated attitude into 
two associated variables: perceived efficacy and perceived barriers 
regarding protective behaviours. The first variable captures the expected 
benefit of the adoption of the protective behaviour by the agent, whereas 
the second assesses the expected cost of that behaviour. In our study, 
perceived efficacy and perceived barriers of protective behaviours were 
based on multi-item scale variables. These scores, between 0 and 1, 
represent averages of the responses to the following questions: i) for 
perceived efficacy (items from 0 to 10), “How effective do you think the 
improved hygiene measures are to prevent the COVID-19 infection?”, 
and “How effective do you think the social distancing measures are to 
prevent the COVID-19 infection?”; and ii) for perceived barriers (items 
from 0 to 10, in the reverse order for the analysis), “How difficult do you 
think it is to adopt improved hygiene measures to prevent COVID-19 
infection?”, and “How difficult do you think it is to adopt social 
distancing measures to prevent COVID-19 infection?”. 

Subjective norms: This construct refers in the literature to the “beliefs 
about the normative expectations of others” which lead to perceived 
social pressure (Stroebe, 2011). They are captured in the model through 
the proportion of agents in the same region that have adopted the 
behaviour. The underlying assumption is that agents make their de-
cisions according to the behaviour expected by their family, friends and 
other people who are important to them, and how they perceive this 
behaviour as a benchmark. In our study, subjective norms were 
measured through the proportion of agents’ in the same administrative 
region having adopted the behaviour, i.e. the proportion of “high 
compliance” response in each region. 

Perceived threat: This construct is often defined as the product of two 
components (Brewer et al., 2007): the perceived severity and frequency 
of the disease. Based on Durham and Casman’s method (2012), Badham 
and Gilbert (2015) represent the frequency of the disease as a cumula-
tive incidence time series, i.e. the sum of the current incidence level and 
the discounted past incidence levels. In our study, we made two 
important modifications to this model. Firstly, we used the death inci-
dence, defined by the number of new deaths per day, instead of the 
number of infected persons as the latter variable is not reliable due to 
underdetection of symptomatic COVID-19 cases (Pullano et al., 2021; 
Shaman, 2021). Secondly, we computed incidence at the national rather 
than the regional level. Indeed, during the epidemic, people were 
massively informed about the daily number of deaths in the country 
through intensive media coverage, whereas knowing the number of 
deaths in their region required an additional effort in the form of an 
information search. In our study, incidence was measured by the pub-
licised number of deaths expressed in thousands. For each period, cu-
mulative incidence time series comprises the current death incidence 

level and the death incidence in the last three weeks. The severity 
component refers to the perceived consequences of becoming infected. 
We performed an ANOVA to explore the difference in perceived severity 
over time. The difference was associated with a small effect (η2=0.01). 
That is why we assumed in our analysis that the perceived severity of 
infection is stable over time and we set the severity multiplier to 1, as 
Badham and Gilbert did for this factor in their initial study. 

Health protective behaviours: In our analysis, we sought to explain the 
change in the adoption of a range of protective behaviours recom-
mended by the authorities to tackle the COVID-19 epidemic. More 
precisely, we analysed six protective behaviours, including: 1) “Avoid 
close contacts with other people”; 2) “Avoid public transport”; 3) “Do 
not shake hands”; 4) “Stay at least 1 m away from other people”; 5) “Stay 
home as much as possible”; and 6) “Wash hands often”. In each of our 
surveys, participants were asked whether they engaged in each of these 
behaviours to reduce their risk of infection from COVID-19. They had to 
answer “Yes, systematically”, “Yes, often”, “Yes, sometimes”, or “No, 
never”. As we observed a ceiling effect in the responses in favour of the 
upper limit of the scale, we dichotomized each behaviour variable with 
the “high compliance” response (“Yes, systematically”) coded as 1, and 
the other options merged into a “lower compliance” category coded as 0. 
Percentages of people who reported engaging in protective behaviours 
over time are displayed in Fig. 1. 

For each protective behaviour, Table 1 indicates the difference in 
means of each component of the behaviour score between the agents 
who adopted the protective behaviour and the agents who did not. We 
see that all differences are significant, except for subjective norms, when 
the prescribed protective behaviour is “Wash hands often”, which can be 
explained by a small variance in this behaviour over time. Overall, our 
data show that all variables are significantly associated with the decision 
to adopt behaviour. Therefore, their inclusion in the TELL ME agent- 
based model is appropriate. 

2.2. Behavioural decision rule 

The TELL ME behavioural decision rule can be described as follows. 
An agent i that at time t is in the region r adopts the protective behaviour 
if his behaviour score (Bi) at the time t is greater than or equal to a 
threshold score (T). In the converse case, the behaviour is dropped. The 
behaviour score (Bi) is a weighted average of perceived efficacy (Ei), 
perceived barriers (Ci), subjective norms (Nr) and incidence (INC): 

Bi(t) = αEi(t) + βCi(t)+ γNr(t)+ (1 − α − β − γ)W
∑t

j=0
δjINC(t − j)

where α, β, γ are weights, δ is a discount rate and W = 1. The scores of 
perceived efficacy and perceived barriers are personal characteristics. 
Subjective norms are identical to all agents in the region r and, of course, 
cumulative incidence time series expressed in thousands is the same for 
all agents. 

2.3. Samples and data 

Our data was collected through 12 online, cross-sectional surveys 
conducted from May to November 2020 among large representative 
samples of adults residing in France.3 Therefore, the period studied does 
not cover the strict French lockdown which was implemented from 17 
March to 10 May. Only the last two surveys took place during a less strict 
lockdown, in which schools were open and face-to-face work was 
possible. A stratified sampling method was adopted to recruit partici-
pants so as to represent the distribution of the French population, based 
on sex, age, occupation, community size and region recorded during the 

3 Surveys were conducted by the BVA research institute (https://www. 
bvagroup.com/en/about-us/). 
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2016 national general census conducted by the National Institute of 
Statistics and Economic Studies (INSEE). Samples consisted of 
N = 24,003 responses. Missing data were replaced by a multivariate 
imputation procedure (van Buuren and Groothuis-Oudshoorn, 2011). 
More than half of these participants were women (56.87 %), and 14.18 
% had a high socioeconomic status, 34.81 % had a low socioeconomic 
status, and another 51.01 % were inactive (retired, students and persons 
engaged in activities in the household). Ages were between 18 and 99 
years, with a proportion of participants aged 65 years or older of 27.71 
%. Ethical approval was granted by the University Hospital Institute 
“Mediterranee Infection” Ethics Committee Marseille, France and the 
EHESP School of Public Health Office for Personal Data Protection. 

2.4. Calibration process 

We are not interested in this paper in the epidemiological component 
of the TELL ME model. Indeed, our purpose is not simulating the spread 
of the COVID-19 epidemic. Rather, we aim to determine to what extent 
the TELL ME behavioural rule is powerful in explaining the individual 
decisions to adopt protective behaviours during the epidemic. Five pa-
rameters are involved in the behavioural rule: the weights for perceived 
efficacy, perceived barriers and subjective norms, the discount rate of 
past incidence levels, and the threshold score (α,β, γ,δ,T). 

Our calibration process was based on the method used by Badham 
et al. (2017) in their own estimation of the TELL ME model. Their 
originality is to estimate their model against multiple macro validation 

criteria, that is pattern-oriented modelling (Railsback and Grimm, 2012; 
Wiegand et al., 2004). This simulation method is particularly useful to 
obtain both an overall good fit and an individual good fit. Indeed, with a 
sufficient number of parameters, an accurate assessment of percentages 
of individuals engaging in protective behaviours can be easily achieved, 
but such a fit may be associated with a problem of structural invalidity 
or other problems. For instance, the model can report the correct per-
centage of people adopting the behaviour in the targeted population, but 
it wrongly predicts that a careful agent does not adopt behaviours, or 
that a careless agent adopts behaviours. 

Having multiple selection criteria raises the question of how to 
choose the best fit parameter set. This may be chosen on the basis of an 
overall objective function in which each criterion would be weighted, 
the reasonableness of the model’s behaviour or an acceptance threshold 
for each criterion. The problem is that the choice of priority criterion or 
acceptance threshold is arbitrary and sometimes inefficient. That is why 
Badham et al. use a dominance analysis, which is already used in op-
erations research for multi-criteria decision-making or optimisation 
(Müssel et al., 2012). Although this approach is scarce in social simu-
lation, it is powerful in improving the fit with the empirical behaviour 
adoption curve. Dominance analysis involves determining all best fit 
candidates on the Pareto efficient frontier. On this frontier, an 
improvement in one criterion inevitably requires a reduction in another. 

Although it required some adjustments, in particular due to the 
absence of an epidemiological component in our analysis, the simulation 
method of Badham et al. was easy to implement with our data and 

Fig. 1. Percentages of participants engaging in protective behaviours over time in 2020. For each survey, each curve indicates the percentage of respondents who 
reported engaging in the particular protective behaviour. 

Table 1 
Mean differences according to the adoption of the protective behaviour (y = 1 vs. y = 0).   

Protective behaviour 

Variables Avoid close contacts with 
other people 

Avoid public 
transport 

Do not shake 
hands 

Stay at least 1 m away from 
other people 

Stay home as much as 
possible 

Wash hands 
often 

Efficacy 0.0491223 * ** 0.0309255 * ** 0.0799952 * ** 0.0610779 * ** 0.0310983 * ** 0.0570135 * ** 
Barriers 0.0217058 * ** 0.0328359 * ** 0.0417856 * ** 0.0357394 * ** 0.0222339 * ** 0.0394996 * ** 
Norms 0.0757643 * ** 0.0538871 * ** 0.0248763 * ** 0.0146448 * ** 0.1057802 * ** -0.0006659 
Incidence (day) 0.0645354 * ** 0.0316636 * ** 0.0430373 * ** 0.0194769 * ** 0.0743378 * ** 0.00808 * ** 
Incidence 

(a week ago) 
0.0657756 * ** 0.0401469 * ** 0.0460148 * ** 0.0242512 * ** 0.0765453 * ** 0.0096581 * ** 

Incidence 
(two weeks 
ago) 

0.0724176 * ** 0.0509014 * ** 0.0526307 * ** 0.0303889 * ** 0.0846327 * ** 0.0113325 * ** 

Incidence 
(three weeks 
ago) 

0.0845054 * ** 0.0683834 * ** 0.0649798 * ** 0.040627 * ** 0.099991 * ** 0.0139123 * ** 

Note: Comparison of means by t-test. *** p < 0.01, ** p < 0.05, * p < 0.1. 
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consisted of four steps. The first challenge was to generate enough 
heterogeneity in the agents’ behaviour. To do this, as indicated in  
Table 2, we excluded parameter combinations for which the behaviour 
score was not computed from perceived efficacy, perceived barriers, 
subjective norms and perceived threat (α + β + γ ≤ 0.95). Moreover, 
the range of the discount rate was restricted (δ ≤ 0.44) to prevent cu-
mulative incidence time series to exceed 1. We sampled the parameter 
space by the Latin Hypercube method and selected 3587 combinations, 
i.e. 1 % of all possible combinations. 

Second, we assessed the behavioural adoption curve associated with 
each combination against empirical data on two criteria: 1) the mean 
squared error between predicted and actual behaviour (MSE); and 2) the 
maximum difference in absolute terms between the predicted adoption 
proportion and actual adoption proportion per period (ΔMax). Indeed, 
MSE is an insufficient criterion to capture the shape of the behavioural 
adoption curve. Integrating the criterion ΔMax in the analysis permits us 
to take the shape into account. Contrary to Badham et al., we did not use 
a third criterion that would be the number of days between the timing of 
the maximum predicted adoption proportion and the maximum actual 
adoption proportion. This criterion is applicable only in the case where 
the agent-based model is launched. Our interest here is only to estimate 
the validity of the behavioural rule without looking at the epidemio-
logical model. 

Third, dominance analysis was used to identify the best fit candi-
dates. The principle is to assign each parameter set to a dominant front. 
Front 0 corresponds to the Pareto efficient frontier. Front 1 would be the 
Pareto efficient frontier if we remove front 0 parameter sets. We pro-
ceeded in the same way for higher front values until all parameter sets 
were assigned. 

Finally, to determine the best fit parameter set, we needed to 
distinguish between Pareto efficient sets. To this end, we selected the 
combination that minimised the average of MSE and ΔMax, i.e. indi-
vidual and total estimation errors. Thus, the selected parameter set 
places the estimated behaviour curve close to the empirical one, while 
ensuring a small individual estimation error. Simulation and dominance 
analyses were performed with Matlab. 

3. Results 

3.1. Selection of the best fit parameter set 

The parameter sets on the Pareto efficient frontier are not domi-
nated. On this frontier (front 0), it is not possible to distinguish between 
parameter sets on the basis of the two criteria MSE and ΔMax. An 
improvement in one criterion implies a reduction in the other one. For 
each protective behaviour, Fig. 2 displays the fit for all parameter sets. 
The best fit candidates on the Pareto efficient frontier are in bold and 
black. We see that the number of candidates depends on protective 
behaviour. For example, “Wash hands often” is associated with 61 best 
fit candidates, whereas there are only 11 for “Stay at least 1 m away 
from other people”. Regarding both selection criteria, on the one hand, 
the MSE associated with these parameter sets is never lower than 0.2247 
(achieved for “Do not shake hands”). MSE indicates the mean squared 
difference between the observed value and the estimated one. In our 
analysis, as the dependent variable is binary, MSE also represents the 
percentage of errors in individual predictions of engagement in 

protective behaviours. In other words, MSE is a measure of individual 
accuracy of the behavioural rule. Thus, we can argue that this is not 
possible to reduce the percentage of error in estimating the agent’s 
protective behaviour below 22.47 %. On the other hand, the Pareto 
efficient frontier exhibits parameter sets for which ΔMax is small (e.g. 
0.0485 for “Avoid close contacts with other people”). ΔMax can be 
considered as a measure of overall accuracy. On this point, our simu-
lation reveals that the TELL ME behavioural rule estimates quite accu-
rately the total percentage of individuals engaging in protective 
behaviours. Our two accuracy measures lead us to conclude that while 
individual estimation error remains moderate to high, total estimation 
error can be very low. This means that although some decisions of 
engagement in protective behaviours are mispredicted, the predicted 
adoption proportion by period is not far from the observed one. Overall, 
the prediction of the percentages of individuals engaging in protective 
behaviours at a population level is good but the individual prediction is 
inaccurate. 

The Pareto approach highlights a trade-off between individual esti-
mation error and the total one. To select the best fit parameter set among 
candidates on the Pareto efficient frontier, we minimised the average of 
both error types. This method led us to choose the parameter sets re-
ported in Table 3. For each protective behaviour, the total estimation 
error is small, while individual estimation error remains moderate at 
best, i.e. the percentage of individuals engaging in protective behaviour 
is consistent but there are many individual estimation errors. Individual 
estimation error is the lowest for the behaviour “Do not shake hands” 
(28.52 %) and the highest for the behaviour “Avoid close contacts with 
other people” (41.89 %). 

For a better visualisation of fit quality, actual and estimated per-
centages of individuals engaging in protective behaviours by survey are 
represented in Fig. 3 and percentages of errors in individual predictions 
by survey are displayed in Fig. 4. As expected, we see in Fig. 3 that our 
method implies close behaviour curves. Moreover, except for some pe-
riods, the slopes of behaviour curves are of the same sign. Fig. 4 shows 
that individual estimation error varies over time for all behaviours and, 
in particular, for both “Avoid public transport” and “Do not shake 
hands”. Notably, it is at least 18.25 % for the behaviour “Do not shake 
hands” on 13 May and at most 47.55 % for the behaviour “Avoid public 
transport” on 21 September. 

3.2. Analysis of the parameter set 

Although MSE is never small, the analysis of parameter values is 
interesting to understand how people make their decisions to adopt 
protective behaviours and how to provide them with good incentives. 
The six behaviours are characterised only by four different best fit 
parameter sets. Indeed, on the one hand “Avoid close contacts with other 
people” and “Stay home as much as possible”, and on the other hand, 
“Avoid public transport” and “Wash hands often” share the same 
parameter sets. This indicates that people use the same decision rule for 
these protective behaviours. 

We can analyse the importance of each parameter in the individual 
behaviour decisions. If each parameter behaves in the same way in the 
behaviour score, it should be equal to 0.25. If a parameter is more 
important, its weight should be greater than 0.25. In the opposite case, 
its weight should be lower than 0.25. With this method, we observe that 
all protective behaviours are associated with a high weight of perceived 
efficacy, which represents half of the behaviour score in each case 
(α ≥ 0.5). On the contrary, perceived barriers (β ≤ 0.25) and perceived 
threat (1 − α − β − γ ≤ 0.25) are never determining factors in the behav-
iour score. Subjective norms are important only for “Avoid public 
transport” and “Wash hands often” (γ = 0.3). These distinctions suggest 
that the adoption of protective behaviours is mainly based on perceived 
efficacy, i.e. how improved hygiene measures and social distancing are 
perceived as effective in preventing COVID-19 infection. With discount 
rate as a proxy for time preference, we find that past incidence levels are 

Table 2 
Parameter values tested in the calibration process.  

Parameter Range 

Efficacy weight (α) 0.05 by 0.05–0.85 
Barriers weight (β) 0.05 by 0.05–0.85 
Norms weight (γ) 0.05 by 0.05–0.85 
Incidence discount (δ) 0.02 by 0.02–0.44 
Behaviour threshold (T) 0.05 by 0.05–0.95  
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practically ignored for two behaviours: “Avoid public transport” and 
“Wash hands often” (δ = 0.08). For these last two protective behaviours, 
the perceived threat taken into account in the decision rule is almost 
reduced to the current incidence level. 

4. Discussion 

As part of the TELL ME European project, the TELL ME agent-based 
model was initially designed by Badham and Gilbert (2015) to model, 
based on leading health psychology theories, the effect of communica-
tion plans on protective behaviours during an epidemic. In their primary 
model, only three variables were included to explain the adoption of 
protective behaviours over time: attitude toward the behaviour, 

subjective norms, and perceived threat associated with the risk of 
infection. In line with the psychological theories underlying the TELL 
ME model, the construct of attitude was replaced in our analysis by two 
variables underlying behavioural change: perceived efficacy, and 
perceived barriers related to the protective behaviours. After the cali-
bration process of the behavioural decision rule, we found the best fit 
parameter values associated with these variables. Simulation led to a 
good prediction of each percentage of individuals engaging in protective 
behaviour at a population level but the individual prediction is unsat-
isfactory. Indeed, for each protective behaviour, the percentage of error 
in estimation remains relatively high. 

This high error could be due to a failure in the calibration process. In 
this paper, after considering all possible parameter values, we sampled 

Fig. 2. Selection criteria for each of 3587 parameter sets by protective behaviour. Each graph corresponds to a different protective behaviour. In each graph, the 
values of both selection criteria MSE and ΔMax associated with each parameter set are represented. Parameter sets on the Pareto efficient frontier are in bold 
and black. 

Table 3 
Best fit parameter set by protective behaviour and their assessment.   

Parameter values Criteria 

Protective behaviour α β γ 1 − α − β − γ δ T MSE ΔMax 

Avoid close contacts with other people  0.5  0.25  0.2  0.05  0.28  0.6  0.4189  0.0485 
Avoid public transport  0.5  0.15  0.3  0.05  0.08  0.6  0.3649  0.0874 
Do not shake hands  0.55  0.1  0.25  0.1  0.2  0.6  0.2852  0.063 
Stay at least 1 m away from other people  0.75  0.05  0.1  0.1  0.24  0.65  0.4038  0.095 
Stay home as much as possible  0.5  0.25  0.2  0.05  0.28  0.6  0.4088  0.0695 
Wash hands often  0.5  0.15  0.3  0.05  0.08  0.6  0.3563  0.1045  
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Fig. 3. Actual and estimated percentages of individuals engaging in protective behaviours over time. Each graph corresponds to a different protective behaviour. In 
each graph, for each survey, the blue continuous curve indicates the percentage of respondents engaging in protective behaviour. The red dash curve indicates the 
percentage of individuals engaging in protective behaviour as estimated by the TELL ME behavioural rule. 

Fig. 4. Percentages of errors in individual predictions over time. For each survey, each curve indicates the percentage of errors in individual predictions of 
engagement in the particular protective behaviour. 
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the parameter space by the Latin Hypercube method to keep only het-
erogeneous parameter sets. Then, we selected the best fit parameter set 
on the basis of two criteria, the mean squared error between predicted 
and actual behaviour, and the maximum difference in absolute terms of 
the predicted adoption proportion and actual adoption proportion per 
period. A trade-off between these two criteria consisted of selecting the 
parameter set for which the average between the two error criteria was 
the smallest. This method is consistent with finding an estimated 
behaviour curve close to the observed one. However, this curve is 
associated with a high MSE. As shown in Fig. 2, even if we selected the 
parameter set with the minimum MSE, MSE would nonetheless remain 
high. Thus, it is clear that failure in calibration does not explain this 
error. 

In contrast, the nature of our data can explain the error in individual 
predictions. Our analysis is based on 12 cross-sectional surveys. 
Compared to longitudinal data, cross-sectional investigations prevent us 
from studying how the behaviour of the same agent evolves over time. 
However, as revealed in Fig. 1, protective behaviours, and specifically 
social distancing measures, are not stable over time. Indeed, in our 
analysis, we succeeded in capturing the preferences of many agents in 
different time periods. To better control an epidemic, it is important for 
an estimation to reveal how the preferences of agents change depending 
on the evolution of the parameters of the epidemic. Unfortunately, for 
many reasons, only a few published studies of the COVID-19 epidemic 
use longitudinal data (Qin et al., 2021; Machida et al., 2020; Wise et al., 
2020). Moreover, these studies generally cover a short period corre-
sponding to the first wave of the epidemic. Therefore, they capture 
change in individual preferences during a timeline which does not 
represent all epidemic stages. To estimate the effect of public policies on 
individual protective behaviours, surveys should ideally be repeated 
with the same agents from the beginning of the epidemic to its end, or at 
least over several waves of the epidemic. 

The high percentage of individual errors could also be the result of 
the design of the TELL ME behavioural rule. Predicting how individuals 
engage in protective behaviours in social simulations is mostly associ-
ated with high error. Indeed, point prediction with a simple rule in 
complex social systems cannot be inherently accurate (Polhill et al., 
2021; Hofman et al., 2017). In our case, predictive power is limited by 
the individual heterogeneity that our frugal rule does not capture. The 
TELL ME behavioural rule including epidemiological and personal var-
iables results in a MSE higher than 0.4 for three of the six protective 
behaviours, whereas a random decision rule would predict on average 
the right individual behaviour with a 50/50 chance, i.e. a MSE equal to 
0.5. That is why the TELL ME behavioural rule cannot be used to predict 
individual protective behaviours and should be refined. Its simulation 
provides insights to understand better how to model the decision of 
engagement in protective behaviours. 

We can identify two sources to improve the modelling of individual 
decisions to be protected. Firstly, in the computation of the behaviour 
score, the weights of perceived efficacy, perceived barriers, perceived 
threat, and the discount rate are common for all agents over time. 
Moreover, all agents in the same region have the same weight of sub-
jective norms, regardless of the period. Nevertheless, the lack of indi-
vidualisation among parameters does not allow us to capture the 
heterogeneity between agents, leading to an error in prediction. In 
practice, the effect of variables can also decline over time. For instance, 
it is more likely that agents adopt mimetic behaviours due to higher 
perceived social pressure at the beginning of an outbreak, i.e. the effect 
of subjective norms would be higher in the first periods than in the later 
ones. Besides, the number of daily deaths is probably not taken into 
account in the same way over time due to the phenomenon of behav-
ioural fatigue (Petherick et al., 2021; World Health Organization, 2020) 
or a change in the perception of severity of the disease. 

Secondly, our analysis tested a simple and frugal model, which in-
cludes only four epidemiological and personal variables. As referenced 
in the systematic review report of the TELL ME European project from 

studies on SARS and H1N1 epidemics (TELL ME, 2012), other variables 
might be involved in the decision to adopt protective behaviours. 
Among sociodemographic factors, recent empirical studies of the 
COVID-19 epidemic highlighted that being a woman, elderly or having a 
high level of formal education is associated with a higher probability of 
engaging in the various protective behaviours (Papageorge et al., 2021; 
Smith et al., 2021; Wright and Fancourt, 2021; Lüdecke and von dem 
Knesebeck, 2020). Similarly, other potential cognitive and cultural 
variables seem to determine the adoption of such behaviours. It is highly 
plausible that anxiety and emotional distress, perceived self-efficacy, 
trust in science and institutions, or ideological world views may be 
predictors of engagement in protective behaviours (Schneider et al., 
2021; Scholz and Freund, 2021; Qin et al., 2021; Clark et al., 2020; Ning 
et al., 2020; Storopoli et al., 2020; Ye and Lyu, 2020). Obviously, 
neglecting these determinants of behavioural decision-making generates 
a large gap between empirical data and predicted values. 

Finally, by showing that a simple behavioural rule cannot result in an 
accurate prediction of the individual decision to be protected, our study 
also allows us to discuss the external validity of the results of epidemi-
ological models. In particular, caution is advised towards extrapolating 
the results of compartmental models. As these models exclude personal 
variables, it is likely that their predictive power is even poorer than the 
TELL ME behavioural rule. Compartmental models may be efficient to 
predict the spread of an epidemic, but it is doubtful that they are suitable 
to predict individual behaviours. Instead, in order to make individual 
predictions, epidemiologists should rely on models in which the decision 
to engage in protective behaviours is represented by a rule based on 
recent psychological findings and on modelling sufficient individual 
heterogeneity. 

5. Conclusion 

The objective of this paper was to estimate the relevance of the 
behavioural decision rule proposed by the TELL ME agent-based model 
in the COVID-19 epidemic context. According to this rule, the decision to 
adopt protective behaviours depends on attitude, subjective norms and 
perceived threat associated with the COVID-19 epidemic. Overall, our 
simulation of this decision rule, using 12 cross-sectional surveys con-
ducted in France from May to November 2020, highlights a relatively 
high error in prediction of individual behaviours. It appears therefore 
that the relevance of this rule to predict the decision to adopt protective 
behaviours cannot be taken for granted. Notwithstanding this persistent 
error in prediction, our analysis provides some insights to bridge the gap 
between theory and empirical data. In particular, there is a need for 
individualising the effects of epidemiological and personal variables, 
including other variables which are cognitive, psychological and soci-
odemographic, as well as for the collection of longitudinal data during a 
sufficiently long period. These issues should be integrated in future 
epidemiological simulations to enable public authorities ultimately to 
better control epidemic disease spread. 
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