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COMPUTING ERROR BOUNDS FOR ASYMPTOTIC

EXPANSIONS OF REGULAR P-RECURSIVE SEQUENCES

RUIWEN DONG, STEPHEN MELCZER, AND MARC MEZZAROBBA

Abstract. Over the last several decades, improvements in the fields of ana-
lytic combinatorics and computer algebra have made determining the asymp-

totic behaviour of sequences satisfying linear recurrence relations with poly-

nomial coefficients largely a matter of routine, under assumptions that hold
often in practice. The algorithms involved typically take a sequence, encoded

by a recurrence relation and initial terms, and return the leading terms in an

asymptotic expansion up to a big-O error term. Less studied, however, are ef-
fective techniques giving an explicit bound on asymptotic error terms. Among

other things, such explicit bounds typically allow the user to automatically

prove sequence positivity (an active area of enumerative and algebraic combi-
natorics) by exhibiting an index when positive leading asymptotic behaviour

dominates any error terms.

In this article, we present a practical algorithm for computing such asymp-
totic approximations with rigorous error bounds, under the assumption that

the generating series of the sequence is a solution of a differential equation
with regular (Fuchsian) dominant singularities. Our algorithm approximately

follows the singularity analysis method of Flajolet and Odlyzko, except that

all big-O terms involved in the derivation of the asymptotic expansion are re-
placed by explicit error terms. The computation of the error terms combines

analytic bounds from the literature with effective techniques from rigorous nu-

merics and computer algebra. We implement our algorithm in the SageMath
computer algebra system and exhibit its use on a variety of applications (in-

cluding our original motivating example, solution uniqueness in the Canham

model for the shape of genus one biomembranes).

1. Introduction

1.1. Context and motivation. A sequence (fn) ∈ KN is said to be P-recursive
over a field K if it satisfies a linear recurrence relation

(1) 0 = cr(n)fn+r + · · ·+ c1(n)fn+1 + c0(n)fn

with polynomial coefficients cj(n) ∈ K[n]. The sequence (fn) is P-recursive if and
only if its generating series (or generating function) f(z) =

∑
n≥0 fnz

n is D-finite
as a formal power series, meaning the series satisfies a formal linear differential
equation

(2) 0 = pq(z)f
(q)(z) + · · ·+ p1(z)f

′(z) + p0(z)f(z)

with polynomial coefficients pj(z) ∈ K[z]. A complex-valued function f(z) that
satisfies an equation of the form (2) with K = C is also called D-finite. Given
sufficiently many initial terms, the sequence (fn) is uniquely determined by either
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the linear recurrence relation (1) or the linear differential equation (2). Numerous
sequences arising in combinatorics and the analysis of algorithms are P-recursive,
while many elementary and special functions have D-finite power series.

Example 1.1 (Lattice walks in N2). The kernel method [34, Chapter 4], a standard
technique used to study lattice path families restricted to cones, implies that the
generating function f(z) for the number fn of lattice walks beginning at the origin,
staying in N2, and taking n steps in S = {(1, 0), (−1, 0), (0, 1), (0,−1)} satisfies the
linear differential equation

z2(4z − 1)(4z + 1)f ′′′(z) + 2z(4z + 1)(16z − 3)f ′′(z)

+ 2(112z2 + 14z − 3)f ′(z) + 4(16z + 3)f(z) = 0.

Standard generating function manipulations then imply that fn satisfies the linear
recurrence

(n+ 4)(n+ 3)fn+2 − 4(2n+ 5)fn+1 − 16(n+ 1)(n+ 2)fn = 0 ,

and is uniquely defined by this recurrence and the initial terms

(f0, f1, f2) = (1, 2, 6).

Characterizing when the generating function of a lattice path model in N2 is D-
finite has been an active corner of enumerative combinatorics in recent years; see [34,
Chapter 4] for an overview of the techniques and results in this area, and [39] for a
broad survey of lattice path applications. (This example continued in Section 1.2
below.)

Algorithms to compute asymptotic expansions of P-recursive sequences have a
long history, including methods that have been implemented in computer algebra
systems [e.g., 51, 8, 50, 13, 54, 30]. These algorithms take as input an encod-
ing of (fn), typically a recursion it satisfies or an equation satisfied by its gener-
ating function, and return explicitly defined functions A(n) and B(n) such that
fn = A(n) + O(B(n)) as n → ∞. Although this (usually) allows the user to de-
termine dominant asymptotic behaviour of fn, in some applications such a ‘big-O’
error is not sufficient and an explicit bound on the difference between the sequence
and its dominant asymptotic behavior is required. The original application moti-
vating the line of work presented here is the complete positivity problem: given a
linear recurrence relation and enough initial terms, determine if all terms in the
corresponding P-recursive sequence are positive.

Example 1.2 (Canham Model for Biomembranes). The Canham model is an influ-
ential energy-minimization model to predict the structure of biomembranes such as
blood cells. Yu and Chen [53] reduced the question of proving solution uniqueness
of the model for genus one surfaces to a proof of positivity for all terms1 in the
P-recursive sequence (dn) defined by the initial terms

(d0, d1, d2, d3, d4, d5, d6) = (72, 1932, 31248, 790101/2, 17208645/4,

338898609/8, 1551478257/4)

and an explicit order seven linear recurrence relation
∑7
i=0 ri(n)dn+i = 0, with

ri(n) ∈ Z[n] defined in [35, Appendix]. Although standard algorithms show dn =
A(n) + O(B(n)) for a simple positive function A(n) and asymptotically smaller
B(n), the unknown constant in the big-O term does not allow one to conclude
positivity of dn for all n. Instead, Melczer and Mezzarobba [35] found an explicit
constant C > 0 such that |dn − A(n)| ≤ C|B(n)| for all n. Once C is known, it is
possible to determine n0 ∈ N sufficiently large such that dn ≥ A(n)− C|B(n)| > 0

1A more direct proof has since been given by Bostan and Yurkevich [5].
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for all n > n0, then computationally check positivity of the finitely many remaining
terms d0, . . . , dn0

by computing them. (This example continued in Section 1.2
below.)

Example 1.2 is an instance of a complete positivity problem (CPP), which asks
whether all terms in a sequence encoded by a P-recursion and a set of initial val-
ues are positive. Such positivity problems are, in general, extremely difficult: as
noted by Ouaknine and Worrell [44], proving decidability of the complete posi-
tivity problem even for C-finite sequences (satisfying P-recursions with constant
coefficients) of order 6 would already entail major breakthroughs in the Diophan-
tine approximation of transcendental numbers. Furthermore, the famous Skolem
problem, which asks whether it is decidable to take a real P-recursive sequence
{fn}n and determine whether there exists n ∈ N with fn = 0, can be reduced to
CPP since P-recursiveness of the real sequence {fn}n implies P-recursiveness of
the non-negative sequence {f2n}n. The Skolem problem (for C-finite sequences) has
essentially been open for almost one hundred years.

Despite the difficulty in the general case, complete positivity can be determined
in many cases. Indeed, given a C-finite recurrence and initial values that determine
a unique solution un, one can compute a representation of un as a finite linear
combination of terms of the form φnnk where φ is an algebraic number and k is an
integer, and, if one of these terms dominates all others for large n, explicitly find
an n0 starting from which un has the same sign as that term. The difficulty arises
when two terms have exponential growths φ1, φ2 such that |φ1| = |φ2| and φ1/φ2 is
not a root of unity — in this case it can be hard (perhaps undecidable) to see how the
sums of the algebraic powers involved interact as n grows. Thankfully, it is a “meta-
principle” that rational generating functions arising from combinatorial problems
always seem to lie the special class of N-rational functions, meaning (among other
things) that their positivity can be decided (see, for instance, [6]).

Further difficulties can arise for P-recursive sequences, including some that do
occur for combinatorial generating functions. Unlike the rational generating func-
tions of C-finite sequences, which can be explicitly encoded and manipulated, the
D-finite generating functions of P-recursive sequences are typically manipulated
implicitly through the differential equations they satisfy. As discussed below, the
singularities of a generating function dictate the asymptotic behaviour of its coeffi-
cient sequence, and it can be very hard (perhaps undecidable in general) to separate
singularities of a D-finite generating function from the singularities of other solu-
tions to a differential equation it satisfies (see Remark 2.11 below). To work around
this difficulty, our algorithms allow the user to pass as input a set of points which
are known not to be singularities of a D-finite function of interest.

1.2. Contributions. This paper generalizes the ad-hoc approach of [35] for the
Canham problem and extends it to a wide class of P-recursive sequences.

It is well-known to specialists that many of the methods used to obtain asymp-
totic expansions of P-recursive sequences can, in principle, provide computable error
bounds. However, the error bounds are far from explicit—in the best case, they
are expressed in terms of maxima of potentially complicated analytic functions over
certain domains, and buried in the proofs of results of a more asymptotic nature.

The main contribution of the present work is a practical algorithm that, taking
as input any P-recursive sequence whose associated differential equation has regular
dominant singular points, computes an asymptotic approximation of that sequence
along with an explicit error bound. In favorable cases, the approximation is a
truncated asymptotic expansion (to arbitrary order) of the sequence.
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We provide a complete implementation of our algorithm in the SageMath com-
puter algebra system. Before going further, we illustrate our methods, using this
implementation, on the two examples introduced above.

Example 1.2 continued. Returning to the Canham model sequence (dn), our
algorithm provides a brief and almost automatic proof of its positivity. Setting the
parameters n0 = 50 and r0 = 2 in Algorithm 1 below, we produce the expansion

dn ∈ (3− 2
√
2)−nn3 ·

([
8.072± 2.30 · 10−4

]
log n+

[
1.371± 8.94 · 10−4

]
+
[
50.51± 1.98 · 10−3

] log n
n

+
[
29.70± 4.42 · 10−3

] 1
n

+
[
±3.11 · 103

] log n
n2

)
,

where [a ± b] denotes a real constant2 certified to be in the interval [a − b, a + b].
The first four constants that appear are the leading coefficients in an asymptotic
expansion of fn and can be computed to any desired precision ε (here they are
displayed to approximately three decimal places). The final term, with a large
constant, is an explicit error bound. It can easily be seen directly from this bound
that dn > 0 for all n ≥ 50. Thus, by computing all dn for n < 50 and verifying
their positivity we conclude that (dn) contains only positive terms.

Example 1.1 continued. Let f(z) be the lattice path generating function intro-
duced above. Setting the parameters r0 = 3 and n0 = 0, our algorithm produces
the rigorous approximation

fn ∈ 4nn−1 ·
([

1.27± 3.44 · 10−3
]
+
[
−1.91± 3.76 · 10−3

] 1
n

+
([
4.93± 8.13 · 10−3

]
+ (−1)n

[
0.318± 6.18 · 10−4

]) 1

n2

+
[
±1.51 · 103

] log2 n
n3

)
and determines that it is valid for n ≥ 9. Despite the oscillatory behaviour of the
third term, the leading constants can still be computed to any desired accuracy. By
increasing the expansion order to r0 = 6, we obtain for instance that the probability
that a random walk in Z2 starting at the origin has not left the quarter plane after a
million steps is equal to [1.27323763487919 ·10−6±7 ·10−21]. In less than 4 seconds
on a modern laptop we can compute a 20-term approximation of fn with constants
certified to more than 1000 decimal places.

Our approach is based on the singularity analysis method as developed by Fla-
jolet and Odlyzko [11, 14]. Roughly speaking, in singularity analysis one estimates
the nth term of a convergent power series f(z) by representing it as a complex
Cauchy integral. The path of the Cauchy integral is deformed into a union of small
circular arcs around singularities of f(z) closest to the origin (dominant singular-
ities), arcs of a big circle containing all dominant singularities in its interior, and
straight lines connecting these circles. One computes asymptotic expansions of the
analytic continuation of f in the neighborhood of the dominant singularities, then
integrates the leading terms of these local expansions over the small arcs close to
the dominant singularities to compute dominant asymptotic terms. Finally, one

2Technically our algorithm returns real and imaginary components of the coefficients appearing
in this asymptotic expansion, however when it is clear a priori that the coefficients must be real

we omit the imaginary parts (which are certified to be zero to several decimal places) from the
outputs displayed in the text.
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proves that the contributions of both the remainders of the local expansions and
the rest of the integration path are negligible for large enough n. Our algorithm
follows the same pattern, except that we show how to compute explicit bounds on
all the asymptotically negligible terms. To do so, we leverage the representation of
the series f(z) as a D-finite function and make use of techniques for the rigorous
numerical solution of differential equations.

We limit ourselves here to D-finite functions because of their link to P-recursive
sequences, their ubiquity in combinatorics, and because this restriction causes all
pieces of the analysis to fit together in a way that provides a complete, imple-
mentable algorithm. However, much of what we discuss actually applies to more
general situations. In particular, the procedure for computing asymptotic expan-
sions with error bounds of coefficients of algebro-logarithmic monomials

(1− z)−α logk(1/(1− z))

has independent interest. Our main algorithm can also, in principle, be adapted
to other classes of differential equations with analytic coefficients, the main re-
quirements being that coefficients are given as computable series expansions with
suitable convergence bounds, and that singular points, in addition to being regular,
can be computed exactly (as elements of an effective field).

1.3. Related work. Singularity analysis, and more generally complex-analytic
methods for asymptotic enumeration, are a classical topic and the subject of abun-
dant literature. Good entry points to the theory include the now-classic book by
Flajolet and Sedgewick [14] and a survey of Odlyzko [42]. The focus in such com-
binatorial contexts is typically on obtaining asymptotic equivalents, or asymptotic
expansions with big-O error terms, as opposed to sharp error bounds with explicit
constants as one finds for example in work on special functions [e.g., 43]. More
specifically, our algorithm is based on the well-established method of singularity
analysis of linear differential equations [14, Section VII.9.1], with our main tools
coming from or inspired by works of Jungen [28], Flajolet–Puech [12], and Flajolet–
Odlyzko [11].

Automating such asymptotic techniques using symbolic computation is not a
new idea. Already in the late 1980s, Salvy and collaborators [50, 13] developed
and implemented algorithms to compute asymptotic expansions of the coefficients
of wide classes of generating series, typically given by closed-form formulas. In the
case of series defined by functional equations, such as algebraic or linear differential
equations, one can still often determine the dominant singularities and singular
behaviour of a general solution, but it is typically difficult to pinpoint that of
the particular solution of interest using purely symbolic methods. As noted by
Flajolet and Puech [12, Section 5.4], however, one can use numerical methods for
this purpose. The case of algebraic equations is detailed in Chabaud’s thesis [8,
Part III], while Julliot [27] recently developed a prototype implementation of the
D-finite case.

Singularity analysis is not the only available method to determine the asymp-
totic behaviour of P-recursive sequences. In fact, as early as 1930 Birkhoff [3]
described the construction of formal solutions of general linear difference equations
with formal asymptotic series as coefficients. Implementations of this method [54,
30, 31] are widely used as a heuristic way of obtaining asymptotic expansions of
P-recursive sequences. As linking formal asymptotic solutions to actual solutions
is already difficult [4, 24, 48], it seems challenging (though probably possible in
principle) to extract error bounds from this general approach.

In the special case of a linear difference equation with polynomial coefficients,
one can also produce a basis of analytic solutions with well-understood asymptotic
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behaviour using Mellin transforms of solutions of the associated differential equa-
tion, a technique going back to Pincherle in the late nineteenth century [e.g., 46,
10, 25]. Barkatou [1] implemented an algorithm based on this idea for computing
a basis of asymptotic expansions of solutions of a given difference equation. Van
der Hoeven [22], in concurrent work with ours, uses a construction of this type to
extend the approach of [35] to asymptotic expansions and positivity, and study the
computational complexity of evaluating P-recursive sequence to moderate precision
at large values of the index. As the focus of his paper is on feasibility and complex-
ity theorems rather than detailed algorithms, the overlap with the present work is
minimal.

Various algorithms based on sufficient conditions have been proposed to partially
deal with the complete positivity problem, such as [17, 32, 45]. More recently there
has been progress that focuses on special P-recursive sequences, notably low-order
C-finite sequences [44], as well as second order P-recursive sequences [33, 41].

An earlier version of the present work also appeared in the first author’s Masters
thesis [9].

1.4. Outline. The remainder of this article starts in Section 2, where we recall
some definitions and facts related to differential equations with polynomial coeffi-
cients, their numerical solution, and complex ball (interval) arithmetic. Sections
3 to 6 are dedicated to our algorithm and its proof of correctness. In Section 3,
we decompose the Cauchy integral representing a term of the sequence into several
contributions that are then bounded separately, and give an overview of the main
algorithm. Section 4 deals with the contribution to the final bound of the initial
terms of local expansions at individual singularities. In particular, we describe a
subroutine for computing approximations with error bounds of the coefficient of zn

in a series of the “standard scale” (1− z/ρ)−α log((1− z/ρ)−1)k in which the local
expansions are written. Then, in Section 5, we explain how to bound the contri-
bution of the remainders of these local expansions. In Section 6, we do the same
for the error term associated to the portion of the integration path away from the
singularities, and conclude the proof of correctness of the algorithm. Finally, in Sec-
tion 7, we discuss our implementation in more detail with the support of additional
examples.

2. Preliminaries

2.1. Differential operators and singular points. Let K ⊂ C be a number field
and define the linear differential operator

(3) D = pq(z)
dq

dzq
+ · · ·+ p1(z)

d

dz
+ p0(z)

with polynomial coefficients pj(z) ∈ K[z] where pq ̸= 0. We call q the order of D
and the linear differential equation

Df := pq(z)
dqf

dzq
(z) + · · ·+ p1(z)

df

dz
(z) + p0(z)f(z) = 0

the (homogeneous) D-finite equation defined by D. We also say that a series or
complex function f(z) is a solution of D, or is annihilated by D, if it satisfies Df = 0
(where defined, in the case of a complex function). Linear differential operators of
the form (3) can be encoded as elements of the Weyl algebra K[z]⟨d/dz⟩, which
contains skew polynomials over K[z] in the indeterminate d/dz, subject to the
relation d/dz · z = z · d/dz + 1.

A D-finite power series f(z) can be represented by an annihilating differential
operator D and enough initial conditions to specify it as a unique solution. If
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f(z) =
∑
n≥0 fnz

n satisfies Df = 0 then extracting the coefficient of the general
term zn in

0 = pq(z)
dq

dzq

∑
n≥0

fnz
n + · · ·+ p0(z)

∑
n≥0

fnz
n

yields a linear recurrence relation

(4) 0 = cr(n)fn+r + · · ·+ c1(n)fn+1 + c0(n)

for the sequence (fn) with polynomial coefficients cj(n) ∈ K[n]. If M is the largest
natural number root of cr(n), or zero if cr(n) has no natural number roots, then any
solution (fn)n∈N to (4) is uniquely determined by the values of f0, f1, . . . , fr+M .

A point ρ ∈ C is called a singular point of D if pq(ρ) = 0, and an ordinary
point otherwise. Cauchy’s existence theorem for differential equations [47, Ch. 1.2]
implies that if ρ is an ordinary point of D then there exist q linearly independent
solutions f1(z), . . . , fq(z) to D analytic in the disk {z : |z − ρ| < |ρ′ − ρ|}, where ρ′
is the closest singular point of D to ρ. If some solution of D is analytic on an open
set with ρ on its boundary, but singular at ρ, then ρ is a singular point of D.

Definition 2.1. A singular point ρ of D is called

• an apparent singularity if there exist q complex solutions f1(z), . . . , fq(z)
for D which are analytic at z = ρ and linearly independent over C,

• a regular singular point if, for all j = 0, 1, . . . , q− 1 the order of the pole of
pj(z)
pq(z)

at z = ρ is at most q − j.

An apparent singularity is also a regular singular point. We say that ρ is at most
a regular singular point if it is an ordinary point or regular singular point, and let
Ξ = {ρ : pt(ρ) = 0} denote the set of all singular points.

Remark 2.2. Suppose f(z) is a solution of a D-finite equation with power series
solution f(z) =

∑
n≥0 fnz

n at the origin, where (fn) is an integer sequence such

that |fn| ≤ Cn for some C > 0. A series of deep results due to André, the
Chudnovsky brothers, and Katz combine to show that the differential operator
corresponding to any minimal order D-finite equation satisfied by f(z) has only
regular singular points. Thus, it is very common to encounter D-finite equations
with regular singularities in combinatorial applications. See Melczer [34, Section
2.4] for more details.

To study the analytic solutions of D-finite equations near their singularities we
need to allow for more general series expansions than usual power series. Here, and
everywhere in this article, the complex logarithm and the complex power function
of a non-integer exponent take their principal value, which is defined on C \ {0},
analytic on C \ R≤0, and continuous as z approaches the negative real line from
above in the complex plane. It will be convenient to express the local behavior of
solutions at nonzero singular points in terms of the functions z 7→ (1− z/ρ)ν with
ν ∈ C and z 7→ log

(
(1− z/ρ)−1

)
, both analytic on the complex plane with the ray

from ρ to ∞ removed.

Proposition 2.3 (Solution basis at regular singular points). At any regular sin-
gular point ρ of D the D-finite equation defined by D admits a C-basis of solutions
(yρ,1(z), . . . , yρ,q(z)) with

(5)


y0,j(z) = zνj

∞∑
i=0

κj∑
k=0

di,k,jz
i logk(z),

yρ,j(z) = (1− z/ρ)νj
∞∑
i=0

κj∑
k=0

di,k,j(1− z/ρ)i logk
(

1

1− z/ρ

)
, ρ ̸= 0,

where
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• the νj are algebraic, the κj are nonnegative integers, and the di,k,j are
elements of K(ρ, νj),

• for each j, at least one of the d0,k,j is nonzero, and νj1 = νj2 implies
min{k : d0,k,j1 ̸= 0} ̸= min{k : d0,k,j2 ̸= 0} (the basis is in “triangular
form”).

These series solutions converge on B(ρ, r) \ [ρ, (1 + r)ρ), the open disk around ρ
with radius r = sup{R : B(ρ,R) ∩ Ξ = ∅}, slit along a radius.

See Poole [47, Chapter 5] for a proof of Proposition 2.3. As noted above, if z = ρ
is an ordinary point then there is a basis of power series solutions also satisfying (5),
with νj ∈ N and κj = 0 for j = 1, . . . , t.

We fix once and for all a basis (yρ,j)j of the form (5) for each regular singular
point ρ. In what follows, we will write yj(z) instead of yρ,j(z) when ρ is clearly
indicated by the context.

2.2. Numerical approximations. Our method for deriving explicit asymptotic
bounds on the coefficient sequence fn involves numerically approximating certain
constants associated with the solutions of D. First, we introduce a class of numbers
that suffices to represent all values that we will encounter.

Definition 2.4 (Holonomic constants). A number α ∈ C is said to be a (regular)
singular holonomic constant [15, 20], or D-finite number3 [23], if α = f(1) for some
solution f ∈ Q[[z]] to a linear differential operator D having at most a regular
singular point at the origin and no other singular point in the closed unit disk.

We write Qrhol for the class of regular singular holonomic constants. Compu-
tationally, an element α ∈ Qrhol is represented by an operator D ∈ Q[z]⟨d/dz⟩
and enough initial conditions at the origin to define a unique solution f of D with
α = f(1).

Let Qrhol,Γ denote the Q-algebra generated by

(6) Qrhol ∪
{
Γ(z)−1 : z ∈ Q

}
∪
{
γ(j)(z) : z ∈ Q, j ∈ N

}
,

where Γ(z) denotes the gamma function and γ(j)(z) = dj+1

dzj+1 log Γ(z) denotes the

polygamma function of order j. An element of Qrhol,Γ is represented as a polynomial
expression in the elements of the generating set (6).

The following proposition shows that it is possible to efficiently approximate
elements of Qrhol,Γ rigorously to any prescribed accuracy.

Proposition 2.5 (Computing in Qrhol,Γ). Let E be a fixed polynomial expression
in the elements of the set (6). As n tends to infinity, one can compute the value
of E to precision ε = 2−n in time

O(M(n log n) log n),

where M(n) is the time needed to multiply two n-digit numbers.

Proof. The value of an element in Qrhol can be computed with an error bounded
by ε in O(M(n log n) log n) operations by solving the corresponding differential
equation using a Taylor method where partial sums of Taylor series are computed
by binary splitting [21]. The Gamma function can be evaluated to precision ε at
any fixed z ∈ Q in time O(M(n log n) log n) using the strategy mentioned in [7, §1,
last paragraph]. Combining this method with fast evaluation of the logarithm and
automatic differentiation allows one to evaluate ψ(j)(z) for any fixed j ∈ N and z ∈

3Some of the cited definitions allow one to take the limit of f at a regular singular point. The
equivalence of these definitions follows from [20, Corollary B.4]. Note that the statement of that
corollary contains a typo: the inclusion should read Krhol ⊆ Khola.
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Q in the same complexity. (See also Karatsuba [29] for a more detailed discussion
of the evaluation of the Hurwitz zeta function ζ(j, z) = (−1)jψ(j−1)(z)/(j − 1)!
based on similar ideas, and an explicit complexity result.) Thus, the value of any
element of the set (6) can be computed in the claimed time complexity. For a fixed
expression E, one only needs a bounded number of extra ‘guard digits’ to recover
the value of E to precision ε, so one can increase the precision of intermediate
computations until the final result is accurate without the asymptotic running time
being affected. Adding and multiplying together the intermediate results to recover
the value of E takes O(M(n)) operations. □

Remark 2.6. Although it is possible to evaluate elements of Qrhol to arbitrary
precision, there is no known zero test for its elements, nor, a fortiori, for elements
of Qrhol,Γ. This can be problematic when certifying singularities of solutions to D-
finite equations (see Remark 2.11 below) and subsequently when proving positivity.
Fortunately, in most applications all constants that one needs to test turn out to
be nonzero, and thus arbitrary precision evaluation suffices to prove that this is the
case.

In order to manipulate and perform arithmetic operations on bounds, we use
complex ball arithmetic.

Definition 2.7. Let C• denote the set of complex rectangles of the form

I(a, b, εa, εb) = [a− εa, a+ εa] + i · [b− εb, b+ εb],

where a, b ∈ R and εa, εb ∈ R≥0 are real numbers. We call the elements of C• balls.
The ball I(a, b, εa, εb) is exact if εa = εb = 0. Addition, subtraction and multi-
plication of balls are performed following the standard rule of interval arithmetic:
I ∗ I ′ is a rectangle containing {z ∗ z′ : z ∈ I, z′ ∈ I ′}, where ∗ denotes addition,
subtraction or multiplication. We do not require I ∗ I ′ to be the smallest such
rectangle, but do assume that, for fixed a, b,′ a, b′, the diameter of

I(a, b, εa, εb) ∗ I(a′, b′, εa′ , εb′)

tends to zero when εa, εb, εa′ , εb′ all tend to zero. In particular, I ∗I ′ is exact if both
I and I ′ are, and we often identify I(Re(z), Im(z), 0, 0) with the complex number z.

For theoretical purposes, it is convenient in this definition to allow a and b to be
arbitrary real numbers. In practice, however, a, b, εa, and εb need to be machine-
representable numbers, so that not all complex numbers can be represented by
exact balls. When we say that a ball manipulated by an algorithm is exact, this
may not hold true in an actual implementation using finite-precision arithmetic.
Nevertheless, the balls we manipulate in this article are defined by computable real
numbers (in fact, elements of Qrhol,Γ), so that quantities represented by “exact”
balls can at least be approximated to arbitrary precision.

The set C• is not a ring, despite its resemblance to one, yet the usual ring
operations are well-defined over C•. In fact, we can define polynomial “rings”
C•[x] (where x denotes a vector of variables): the elements of C•[x] have the form

I

(∑
α

aαx
α,
∑
α

bαx
α,
∑
α

εa,αx
α,
∑
α

εb,αx
α

)
≜
∑
α

I(aα, bα, εa,α, εb,α) · xα,

and arithmetic operations are defined in the natural way.
We denote by B(f, r) the ball I(Re(f), Im(f), r, r) for f ∈ C and r ∈ R, or

for f ∈ C[x] and r ∈ R[x]. Here, if f ∈ C[x] then Re(f) means, by abuse of
notation,

∑
αRe(fα)x

α where f =
∑
α fαx

α, and similarly for Im(f). We denote
B(I(a, b, εa, εb), r) = I(a, b, εa + r, εb + r), both for a, b ∈ C• and for a, b ∈ C•[x].
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2.3. Connection coefficients. If f(z) is a solution of D which is analytic at ρ,
and Γ is any piecewise linear curve in C starting at ρ and avoiding the elements of
Ξ, then it is possible to define a unique analytic continuation of f along Γ. If U
is any simply connected open set in C which contains ρ and does not contain any
element of Ξ, then this process defines a (unique) analytic continuation of f to U .
The following domain will be particularly useful for our considerations.

Definition 2.8 (Multi-slit disk ∆). The multi-slit disk ∆ defined by D is the set

∆ = ∆D = C−

 ⋃
ζ∈Ξ\{0}

{
z :

z

ζ
∈ [1,∞)

}
∪ (Ξ ∩ {0})


obtained by removing the rays from the non-zero singular points of D to infinity
from C, and removing zero if it is a singular point of D.

In our applications, we start with knowledge of the series expansion of a function
at the origin and want to determine properties of this function near other points in
the complex plane. The first step to doing this is expressing the function of interest
in terms of the basis of solutions provided by Proposition 2.3.

Proposition 2.9 (Computing coefficients). Suppose that ρ is at most a regular
singular point of D, let

(
y1(z), . . . , yq(z)

)
be a basis of solutions at z = ρ for D

as provided by Proposition 2.3, and let f(z) =
∑
n≥0 fn(1 − z/ρ)n be a power

series solution of D. Given enough coefficients fn we can compute c1, . . . , cq ∈
K(f0, . . . , fM ) (for large enough M) such that

(7) f(z) = c1y1(z) + · · ·+ cqyq(z)

in a neighbourhood of ρ in ∆D.

Given a representation of f(z) in terms of a basis of solutions near one point, we
represent f(z) near another point using analytic continuation.

Definition 2.10 (Connection matrix). Let ρ1 and ρ2 be at most regular singu-
lar points for D, and let yρ1 = (yρ1,1, . . . , yρ1,q) and yρ2 = (yρ2,1, . . . , yρ2,q) be
bases of solutions for D in terms of series at ρ1 and ρ2 of the form provided by
Proposition 2.3. The connection matrix for D defined by

• a polygonal path ρ1 → ρ2 linking ρ1 to ρ2 that lies, except for its endpoints,
entirely within the domain ∆D, and

• the bases of solutions yρ1 and yρ2
is the change of basis matrix Cρ1→ρ2(yρ1 ,yρ2) ∈ GLq(C) satisfying

yρ1 = yρ2Cρ1→ρ2(yρ1 ,yρ2),

on some interval [ζ, ρ2) contained in the last edge of the path, where the entries of
yρ1 consist of the analytic continuation of the entries of yρ1 along the path4.

For convenience we usually assume that the bases of solutions yρ1 and yρ2 are
fixed, and write Cρ1→ρ2(yρ1 ,yρ2) = Cρ1→ρ2 .

It follows from the closure properties of D-finite functions that the entries of
Cρ1→ρ2 are in Qrhol (see [20, Proposition B.3] and [23, Theorem 19] for details).
Efficient numerical methods are available [21, 36, 38] that compute Cρ1→ρ2 to
arbitrary precision and with rigorous error bounds given the operator D and the
path ρ1 → ρ2. If c0 = (c0,1, . . . , c0,q)

T and cρ = (cρ,1, . . . , cρ,q)
T denote the vectors

4When ρ1 or ρ2 is the origin, the general convention that the complex logarithm is continuous
“from above” on its branch cut applies. For example, the path 0 → −1 defines the same connection

matrix as an infinitesimally close path lying entirely in the upper half-plane. In general, this matrix
differs from the one defined by a similar path in the lower half-plane.
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of coefficients appearing when representing f in (7) using bases of solutions y0 and
yρ then

(8) cρ = C0→ρc0.

If f(z) is analytic at z = 0 then, because of the triangular form of the solution
basis that we have chosen, all non-zero entries c0,j of c0 correspond to solutions y0,j
that are analytic at z = 0, thus analytic in ∆0

D = ∆D ∪ {0}. Since ∆0
D is simply

connected, the analytic continuation of y0,j to ρ within the domain ∆0
D does not

depend on the choice of the path. The expression C0→ρc0 in (8) is therefore solely
dependent on ρ, and independent of the choice of path 0 → ρ in C0→ρ.

Using Proposition 2.9 and (8) we can thus compute, for any ρ and to any preci-
sion, constants cρ,1, . . . , cρ,q such that

f(z) = cρ,1yρ,1(z) + . . .+ cρ,qyρ,q(z).

In what follows, we will write cj instead of cρ,j when ρ is clearly indicated by the
context.

Remark 2.11 (Certifying singularity). Given D and initial terms of f at z = 0
it can be difficult to verify when f is analytic at a singular point z = ρ ∈ Ξ.
This is mainly due to a lack of an exact zero test for elements of Qrhol: when f is
singular this can be detected by computing connection coefficients to a sufficiently
high accuracy, however when f is not singular we can show only that it is a linear
combination of basis elements whose singular terms have coefficients that are zero
to any given number of decimal places. However, there are a few cases where
non-singularity can be rigorously verified:

• Apparent singularities, that is, singular points where all solutions are an-
alytic. This is equivalent to the existence of a full basis of formal power
series solutions, so testing this reduces to linear algebra in K[ρ].

• When f is algebraic, meaning there exists a bivariate polynomial P (z, y) ∈
K[x, y] such that P (z, f(z)) = 0, the singularities of f(z) can be determined
using this algebraic relation. See Chabaud [8] or Flajolet and Sedgewick [14,
Chapter VII. 7] for details.

There are other, more sporadic approaches that can be used to rule out singu-
larities. For instance, if one is studying the generating function g(z) =

∑
n≥0 fnz

n

of a combinatorial class and combinatorial arguments can be used to bound the ex-
ponential growth of fn then this may give a meaningful bound on the singularities
of g. When g(z) can be represented as the diagonal of a multivariate rational func-
tion, techniques from the field of analytic combinatorics in several variables can be
used to determine asymptotic information about fn, and thus analytic information
about g(z); see Melczer [34, Chapters 5 and 9].

3. Algorithm Overview

We now fix a power series solution

f(z) = f0 + f1z + f2z
2 + . . .

to the differential operator D from (3) that converges in a disk around the origin.
Our goal is to take f(z), encoded by D and enough initial terms to uniquely specify
it among the solutions of D, and express fn as a linear combination of explicit
functions of n plus an explicit error term (see Theorem 3.1 for the exact form). In
many circumstances, the first terms of the sum correspond to a truncated asymp-
totic expansion of fn as n → ∞, and the expression can be made arbitrarily tight
relative to |fn|. However, as discussed in the introduction above, interference of
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terms with the same order of magnitude can make the bounds either too weak or
too complicated to provide any useful information.

The singularities of f(z) that are closest to the origin are called the dominant
singularities of f . Because the Cauchy existence theorem implies that these sin-
gularities are singular points of D, we let Ξd ⊆ Ξ denote the set of dominant
singularities of f . Our results assume the following.

Global Assumptions. We assume that f has at least one singularity on C \ {0}
and that all dominant singularities of f are regular singular points of D.

The first of these assumptions is a matter of convenience; starting from an ar-
bitrary D-finite series, one can usually reduce to it by means of a formal Borel
or Laplace transform. The second assumption, however, is more restrictive but is
crucial for our method.

The goal of this section is to describe an algorithm that computes the aforemen-
tioned bound for fn. Algorithm 1 provides an overview of the construction. In
addition to the function f and an expansion order r0, Algorithm 1 takes as input
a lower bound n0 for the desired validity range {n ≥ N0} of the output. The rea-
son for distinguishing between n0 and N0 is that the constant factor in the result
depends heavily on N0. If one only needs a bound valid for large n, one can input
a large n0 in order to make the bound tighter. The algorithm also accepts a sub-
set Ξa of the singular points of D where f is known to be analytic. One can always
assume that Ξa contains the apparent singularities of D, as these are effectively
computable.

Theorem 3.1. Let M = minρ∈Ξ\Ξa |ρ| be the minimal modulus of a singular point
of D, excluding any point where f is known to be analytic. Algorithm 1 (page 13)
computes an integer N0 ≥ n0 and an estimate

(9) fn =
∑
ρ∈Ξd

ρ−nnγ
mρ∑
i=0

κ∑
k=0

aρ,i,k
logk n

nγρ,i
+R(n), |R(n)| ≤ AM−nnRe(γ) log

κ n

nr0

for all n ≥ N0, where 0 ≤ Re(γρ,0) ≤ Re(γρ,1) ≤ . . . ≤ Re(γρ,mρ
) < r0. In this

estimate, γ and the γρ,i are algebraic numbers, the aρ,i,l belong to the class Qrhol,Γ

and can be computed to arbitrary precision with rigorous error bounds, and A is a
nonnegative real number.

In practice, the real and imaginary parts of all terms in (9) are represented by
balls that contain them. We can make the radii of balls corresponding to the as-
ymptotic series coefficients for fn arbitrarily small by increasing numeric precision,
however the radii of balls for the constants in the error bound for |R(n)| are limited
by the behaviour of the sequence.

Our derivation of these bounds will not need to deal explicitly with the non-
dominant singularities of f . However, we will need to take into account the singular
points of D that are closer to the origin than all singularities of f .

Definition 3.2. A dominant singular point of D for f is any singular point of D
whose modulus is at most the modulus of the dominant singularities of f . We write
Ξe for the set of dominant singular points of D, and note that Ξd ⊆ Ξe.

Theorem 3.1 is proved in Section 6.3, based on the bounds developed in Sections 4
to 6 below. An overview of the proof is as follows. First, in the remainder of the
present section, we express fn as a Cauchy integral and divide it into an “explicit”
contribution of the leading asymptotic behavior of f(z) at each of its dominant
singularities, a “local” error term associated to each of these singularities, and a
“global” error term. In Section 4, we give a subroutine for computing bounds on the
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Algorithm 1: Asymptotic expansion with error bound

Input: A linear differential operator D ∈ K[z]⟨d/dz⟩ and sufficiently many initial
coefficients f0, f1, . . . to uniquely determine a series f(z) = f0 + f1z + . . .
satisfying Df = 0. Integers n0 and r0. A set of points Ξa where f is known
to be analytic.

Output: An integer N0 and an estimation for fn with explicit error bounds of
the form (9), valid for all n ≥ N0.

(1) Compute the set Ξ of singular points of D. Let Ξ̃d be the set of elements of
minimal modulus of Ξ \ Ξa.

(2) Compute the structure of a local solution basis of D at z = 0 as in
Proposition 2.3 and the coordinate vector c0 = (c0,1, . . . , c0,q) of f in this
basis as in Proposition 2.9.

(3) Compute R0 according to Equation (11) and N0 according to
Equations (10) and (45).

▶ Contribution of each singularity
(4) For each ρ ∈ Ξ̃d:

▶ Singular expansions
(a) Compute the structure of a local solution basis (y1(z), . . . , yq(z)) of D at

z = ρ as in Proposition 2.3. Let νj , κj be the corresponding parameters
appearing in Equation (5).

(b) Let C0→ρ be the connection matrix for D along a straight path 0 → ρ,
making small detours to avoid other singular points if needed (see
Definition 2.10). Compute local coordinates cρ at z = ρ for f using
cρ = C0→ρc0.

(c) For j = 1, . . . , q:
(i) Let rj be as in Definition 3.4 and s = N0/maxj(|νj |+ rj + 1).
▶ Explicit part (Section 4)

(ii) Compute the coefficients di,k,j of ℓj in the decomposition
yj(z) = ℓj(z) + gj(z) given by Equations (12)–(14). Save these
coefficients for later reuse in Step (5).

(iii) For i = 0, . . . , rj − 1, call Algorithm 2 with α := −νj − i, K := κj ,
r := rj − i, n0 := N0 to compute bounds of the form

nα−1ek(n
−1, log n) on [zn](1− z)νj+i logk

(
1

1−z

)
for 0 ≤ k ≤ K.

(iv) Deduce a bound for [zn]ℓρ,j(z) using Equation (18).
▶ Local error term (Section 5)

(v) If νj + rj ∈ Z≥0 and κj = 0, continue with the next loop iteration
(setting to zero the bounds otherwise computed by the next two
steps).

(vi) Compute bounds b0, . . . , bκj
satisfying Equation (39) using [38,

Algorithm 6.11] and Equation (40). Define the polynomial B as in
Equation (41).

(vii) Deduce a bound for 1
2πi

∫
Sρ(n)

z−n−1gρ(z) dz using Proposition 5.2,

and a bound for limφ→0
1

2πi

∫
Lρ(n)

z−n−1gρ(z) dz using

Corollary 5.5 (with n0 := N0, r := rj and ν := νj , and B from the
previous step).

▶ Global error term and final bound (Section 6)
(5) Bound values on the circle {|z| = R0} of f(z)−

∑
ρ∈Ξ̃d ℓρ(z) as described in

Section 6.1.
(6) Combine the bounds produced in steps 4(c)iv, 4(c)vii, and 5 into a bound

for fn according to (15), (16), and (17). Simplify it as described in
Section 6.2.

(7) Return N0 and the simplified sum.
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R0 ρ1

ρ2

ρ3

Sρ1(n)

Lρ1(n)

B

Sρ2(n)

Sρ3(n)

L
ρ
2 (n

)

L ρ 3
(n
)

Bρ2

Bρ1

Bρ3

φ

Non-dominant singularities
Dominant singularities

Figure 1. The domain of integration P(n).

contribution of the explicit part. Section 5 deals with the local error terms. Finally,
in Section 6, we discuss how to combine these bounds, incorporate the global error
term, and trim them down to an expression of the form given in Theorem 3.1.

3.1. Expressing fn as a Cauchy integral. Recall that, as a solution of D an-
alytic at the origin, the function f(z) can be analytically continued to the do-
main ∆D. Following the transfer method of Flajolet and Odlyzko [11], we express
fn as a Cauchy integral

fn =
1

2πi

∫
P(n)

f(z)

zn+1
dz

over a (counter-clockwise oriented) simple closed path P(n) depending on n, sitting
completely inside ∆D. See Figure 1 for an illustration.

In order to specify P(n) we pick constants R0, R1 ∈ Q with

0 < R1 < min
ρ1∈Ξd

ρ2∈Ξ

|ρ1 − ρ2|, M < R0 < M +R1, R0 < min
ρ∈Ξ\Ξe

|ρ|,

where M is the common modulus of the elements of Ξd. We set

(10) N1 =

⌈
2maxρ∈Ξd |ρ|

minρ1∈Ξd,ρ2∈Ξ |ρ1 − ρ2|

⌉
if |Ξ| ≥ 2 and N1 = 0 otherwise. When n > N1 and φ > 0 is sufficiently small, we
define a path P(n) consisting of

• Arcs B of a big circle of radius R0 centered at 0,
• Arcs Sρ(n) of small circles of radius |ρ|/n centered at each ρ ∈ Ξd, and
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• Pairs of line segments Lρ(n) connecting the arcs of the big and small circles,
supported on lines passing through ρ at angles ±φ with the ray from 0 to
ρ.

For ρ ∈ Ξd we furthermore define Bρ to be the arc of the big circle between the
ends of Lρ.

The choice of the constants N1, R0, and R1 guarantees that P(n) is a simple
closed path and that its interior does not contain any singularity of f(z) (recall
that f is analytic at z = 0). The value of φ does not play a large role since we will
let φ→ 0 in what follows.

For concreteness in the algorithm, we again let M be the modulus of the domi-
nant singularities and take

(11) R0 ≃ min

M8 +
7

8
min

ρ∈Ξ\Ξe
|ρ|, M +

3

4
min
ρ1∈Ξd

ρ2∈Ξ

|ρ1 − ρ2|

 , R1 ≃ R0 −M,

rounded down to the numeric working precision. Empirically, these values provide
good bounds, the reason being roughly as follows. On one hand, for any ρ ∈ Ξd, the
disk {|z−ρ| ≤ R1} stays at sufficient distance from other dominant singular points,
so that when estimating integrals on Sρ(n) and Lρ(n), a bound (39) of reasonable
size can be produced using the algorithm from [38]. On the other hand, the big
circle B also stays at sufficient distance from non-dominant singularities, so that
when estimating integrals on B a bound of reasonable size can also be produced.

3.2. Decomposing the integral. Now fix a dominant singularity ρ ∈ Ξd, let(
y1(z), . . . , yq(z)

)
be a basis of solutions at ρ specified as in Proposition 2.3, and

let c1, . . . , cq be the constants such that

f(z) = c1y1(z) + · · ·+ cqyq(z).

Since ρ is a regular singular point we may select each function yi(z) to have an
expansion of the form (5), and split off any number rj ∈ N>0 of leading terms to
obtain a decomposition

(12) yj(z) = ℓρ,j(z) + gρ,j(z)

with

ℓρ,j(z) = (1− z/ρ)νj
rj−1∑
i=0

(1− z/ρ)i
κ∑
k=0

di,k,j log
k

(
1

1− z/ρ

)
(13)

and

gρ,j(z) = (1− z/ρ)νj+rj
κ∑
k=0

hj,k(z) log
k

(
1

1− z/ρ

)
.(14)

In this expression, all constants νj , di,k,j are computable and the functions hj,k(z)
are analytic at z = ρ. We view the finite series ℓρ,j as the (explicit) leading terms
of this expansion, and gρ,j as the (implicitly defined) error term obtained when
approximating yj by these leading terms.

Remark 3.3. By replacing elements cjyj(z) having the same exponent νi modulo
Z with the sum of these elements, we can suppose all νj different from each other
modulo Z. This is not done in Algorithm 1 to keep the pseudocode simple, but
accelerates the algorithm by decreasing the number of elements in the solution basis
considered.
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Definition 3.4. Let λ = minj∈{1,...,q} Re νj be the minimal real part of the leading
exponents of the basis elements, excluding basis elements that are analytic at ρ.
If r0 > 0 is the desired expansion order in the statement of Theorem 3.1 we take
rj = r0 + ⌈λ− Re νj⌉ − 1 in the expansions (12) and let

(15) ℓρ(z) = c1ℓρ,1(z)+ · · ·+ cqℓρ,q(z) and gρ(z) = c1gρ,1(z)+ · · ·+ cqgρ,q(z).

Proposition 3.5. One has

(16) [zn]f(z) =
∑
ρ∈Ξd

(
[zn]ℓρ(z) +

1

2πi

∫
Sρ(n)+Lρ(n)

gρ(z)

zn+1
dz

)
+ IB ,

where

(17) lim
φ→0

|IB| ≤
1

Rn0
· max
|z|=R0

∣∣∣f(z)− ∑
ρ∈Ξd

ℓρ(z)
∣∣∣.

Proof. We begin by writing

(2πi)[zn]f(z)

=

∫
P(n)

f(z)

zn+1
dz

=
∑
ρ∈Ξd

∫
Sρ(n)

f(z)

zn+1
dz +

∑
ρ∈Ξd

∫
Lρ(n)

f(z)

zn+1
dz +

∫
B

f(z)

zn+1
dz

=
∑
ρ∈Ξd

∫
Sρ(n)

ℓρ(z) + gρ(z)

zn+1
dz +

∑
ρ∈Ξd

∫
Lρ(n)

ℓρ(z) + gρ(z)

zn+1
dz +

∫
B

f(z)

zn+1
dz.

Because P(n) can be contracted to a small circle |z| = ε around the origin without
crossing any singularities of the ℓρ(z), for any ρ ∈ Ξd we can express

∫
Sρ(n)

ℓρ(z)

zn+1
dz +

∫
Lρ(n)

ℓρ(z)

zn+1
dz =

[zn]ℓρ −
∫
B

ℓρ(z)

zn+1
dz −

∑
ρ′∈Ξd

ρ′ ̸=ρ

(∫
Sρ′ (n)

ℓρ(z)

zn+1
dz +

∫
Lρ′ (n)

ℓρ(z)

zn+1
dz

)

where [zn]ℓρ(z) =
∫
|z|=ε

ℓρ(z)
zn+1 dz denotes the degree n coefficient of the series ex-

pansion of ℓρ(z). Thus, summing over all ρ ∈ Ξd and performing some algebraic
manipulation gives

[zn]f(z) =
1

2πi

∑
ρ∈Ξd

(
[zn]ℓρ +

∫
Sρ(n)+Lρ(n)

gρ(z)

zn+1
dz

)
+ IB,

where

2πiIB =

∫
B

f(z)−
∑
ρ∈Ξd ℓρ(z)

zn+1
dz −

∑
ρ∈Ξd

∫
Sρ(n)+Lρ(n)

∑
ρ′∈Ξd\{ρ} ℓρ′(z)

zn+1
dz.
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Because ℓρ′(z) is holomorphic in an open region containing the area enclosed by
Bρ,Sρ(n), and Lρ(n) when ρ′ ̸= ρ, we have

2π |IB| =

∣∣∣∣∣∣
∫
B

f(z)−
∑
ρ∈Ξd ℓρ(z)

zn+1
dz −

∑
ρ∈Ξd

∫
Bρ

∑
ρ′∈Ξd\{ρ} ℓρ′(z)

zn+1
dz

∣∣∣∣∣∣
≤
∫
|z|=R0

∣∣∣f(z)−∑ρ∈Ξd ℓρ(z)
∣∣∣

|z|n+1
dz +

∣∣∣∣∣∣
∑
ρ∈Ξd

∫
Bρ

∑
ρ′∈Ξd\{ρ} ℓρ′(z)

zn+1
dz

∣∣∣∣∣∣ .
Since the second term tends to zero as φ→ 0, we obtain the bound (17). □

Our goal is now to bound the components of (16). The next three sections deal

respectively with [zn]ℓρ, followed by
∫
Sρ(n)+Lρ(n)

gρ(z)
zn+1 , and finally limφ→0 IB.

4. Contribution of a Singularity: The Explicit Part

Expanding the explicit leading part ℓρ(z) of the local expansion of f(z) at a
singular point ρ of D using its definition in Equations (14) and (15) gives [zn]ℓρ(z) =∑q
j=1 cj [z

n]ℓρ,j where

[zn]ℓρ,j(z) =

rj−1∑
i=0

κj∑
k=0

di,k,j [z
n](1− z/ρ)νj+i logk

(
1

1− z/ρ

)

=

rj−1∑
i=0

κj∑
k=0

di,k,jρ
−n[zn](1− z)νj+i logk

(
1

1− z

)
.(18)

Thus, to obtain an asymptotic expansion (and corresponding error bound) of [zn]ℓρ
it suffices to compute asymptotic expansions with error bounds for the coefficient

extraction [zn](1− z)−α logk
(

1
1−z

)
for any k ∈ N and α = −νj , . . . ,−νj − rj + 1.

More precisely, given a complex number α and nonnegative integers k and r, we
aim to compute an expression e(1/n, log n) such that

(19) [zn](1− z)−α logk
(

1

1− z

)
∈ e(1/n, log n) = nα−1

r+δ∑
i=0

k∑
ℓ=0

ei,ℓn
−i logℓ n

where the coefficients ei,ℓ for 0 ≤ i ≤ r − 1 are exact, and the ei,ℓ for i ≥ r are
complex balls. We ask that (19) hold as soon as n > max(n0, s |α|) for some fixed
s > 2.

Flajolet and Odlyzko’s proof [11, Theorem 3A] of the asymptotic analogue of (19)
yields as a byproduct a simple and efficient algorithm for computing the coeffi-
cients ei,ℓ [49, Section IV.2], and implicitly contains a bound for the remainder
of the asymptotic expansion. Unfortunately, we were not able to obtain satisfac-
tory numeric bounds for the error terms using this approach. Instead, we take a
less direct route, closer to the older method of Jungen [28], that allows us to in-
voke sharp bounds readily available in the literature for subexpressions involving
gamma and polygamma functions5. The starting point is the following observa-
tion [14, Note VI.7].

Proposition 4.1. For all α ∈ C and k ∈ N, one has

(20) [zn](1− z)−α logk
(

1

1− z

)
=

dk

dαk

(
n+ α− 1

n

)
=

dk

dtk
Γ(n+ t)

Γ(t)Γ(n+ 1)

∣∣∣∣
t=α

where, in the case α ∈ Z≤0, the evaluation is to be understood as a limit.

5It remains an interesting question to see if a more careful analysis of the error terms in Flajolet

and Odlyzko’s expansion could yield bounds suitable for our purposes.
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Fix α ∈ C. By taking logarithmic derivatives, we write

(21)
dk

dαk
Γ(n+ α)

Γ(α)Γ(n+ 1)
= H(n, k) · Γ(n+ α)

Γ(n+ 1)

for some factor H(n, k), and let

G(n) = n1−α
Γ(n+ α)

Γ(n+ 1)

so that

(22)
dk

dαk
Γ(n+ α)

Γ(α)Γ(n+ 1)
= nα−1G(n)H(n, k).

We now proceed to bound each of the factors G(n) and H(n, k) with an expression
of the same shape as the right-hand side of (19), after replacing nα−1 by n0 = 1.

The case α ∈ Z≤0 is special. When α ∈ Z≤0 and k = 0, the factor H(n, k)
reduces to 1/Γ(α) and vanishes. The factor G(n) has a simple pole when α ∈ Z≤0

and 0 ≤ n ≤ −α; however, this subcase does not occur in our setting due to the
assumption that n > s|α|. When n > −α, the factor G(n) remains finite, and
hence the whole expression vanishes when α ∈ Z≤0 with k = 0. Finally, as we will
see, H(n, k) takes a finite value when α ∈ Z≤0 with k ≥ 1 and n > −α despite the
apparent presence of a factor 1/Γ(α).

Lemma 4.2. For all α ∈ C and n ∈ N with n > s|α| for s ≥ 1, one has

(n+ α)
−1

=

r−2∑
j=0

(−α)jn−j−1 +R(1), |R(1)| ≤ |α|r−1

1− 1/s
n−r(23)

log (n+ α) = log n−
r−1∑
j=1

(−α)j

j
n−j +R(2), |R(2)| ≤ log(1 + 1/s) |α|rn−r.(24)

Proof. The bounds result directly from the Taylor expansions of (1 + z)−1 and
log(1 + z). □

4.1. The Gamma Ratio. Up to a convenient normalization factor, G(n) is a
quotient of the form Γ(n + α)/Γ(n + β). Erdélyi [52] gave an explicit asymptotic

expansion of this quotient in terms of the generalized Bernoulli numbers B
(2σ)
2j (σ)

defined by (
t

et − 1

)2σ

eσt =

∞∑
j=0

t2j

(2j)!
B

(2σ)
2j (σ).

In order to bound the remainder term, we use the following result of Frenzen (stated
here in the special case β = 0).

Theorem 4.3 (Frenzen [16]). Let σ be any complex number, let w be a complex
number such that

(25) |arg(w)| < π/2 and Re(w) > | Im(σ)|,

and let η be a positive integer. Then one has

(26)
Γ(w + σ)

Γ(w − σ + 1)
=

η−1∑
j=0

Γ(1− 2σ + 2j)

Γ(1− 2σ)(2j)!
B

(2σ)
2j (σ)w2σ−1−2j +RFr

η (w, σ),

where

(27) |RFr
η (w, σ)| ≤ Γ(1− Re(2σ) + 2η)

|Γ(1− 2σ)|(2η)!

∣∣∣B(|2σ|)
2η (|σ|)

∣∣∣ · Re(w)Re(2σ)−1−2η.
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To apply this theorem, we further decompose G(n) as G1(n)G2(n) with

G1(n) =
(
n+

α

2

)1−α Γ(n+ α)

Γ(n+ 1)
and G2(n) =

(
1 +

α

2n

)α−1

.

Corollary 4.4. Let α be any complex number, and let η be a positive integer. For
any integer n > s|α| (where s ≥ 2), one has

(28) G1(n) =

η−1∑
j=0

Γ(1− α+ 2j)

Γ(1− α)(2j)!
B

(α)
2j (α/2)

(
n+

α

2

)−2j

+R(G1),

with

|R(G1)| ≤ Γ(1− Re(α) + 2η)

|Γ(1− α)|(2η)!
·
∣∣∣B(|α|)

2η

(∣∣∣α
2

∣∣∣)∣∣∣ e| Im(α)| arcsin 1
2s

·
(
s+ 1/2

s− 1/2

)max{0,2η+1−Re(α)} ∣∣∣n+
α

2

∣∣∣−2η

.

(29)

Proof. Letting w = n + α/2 and σ = α/2, one can verify that the conditions (25)
are met when n > |α|, and the asymptotic expansion becomes

(30)
Γ(n+ α)

Γ(n+ 1)
=

η−1∑
j=0

Γ(1− α+ 2j)

Γ(1− α)(2j)!
B

(α)
2j (α/2)

(
n+

α

2

)α−1−2j

+RFr
η

(
n+

α

2
, σ
)
.

Multiplying by
(
n+ α

2

)1−α
then gives (28), with R(G1) = RFr

η (n+ α/2, σ) and∣∣∣R(G1)
∣∣∣ ≤ Γ(1− Re(α) + 2η)

|Γ(1− α)|(2η)!

∣∣∣B(|α|)
2η

(∣∣∣α
2

∣∣∣)∣∣∣ ·Re(n+α/2)Re(α)−1−2η

∣∣∣∣(n+
α

2

)1−α∣∣∣∣ .
Writing |(n+α/2)1−α| = |n+α/2|1−Reα · e− arg(n+α/2) Imα and observing that the
assumption on n implies |arg(n+ α/2)| ≤ arcsin 1

2s , we have

Re(n+ α/2)Re(α)−1−2η

∣∣∣∣(n+
α

2

)1−α∣∣∣∣ ≤ e| Im(α)| arcsin 1
2s ·
∣∣∣n+

α

2

∣∣∣−2η

·
(

|n+ α/2|
Re(n+ α/2)

)2η+1−Re(α)

.

Since Re(n+ α/2) ≥ n− |α/2|, the last factor satisfies(
|n+ α/2|

Re(n+ α/2)

)2η+1−Re(α)

≤
(
s+ 1/2

s− 1/2

)max{0,2η+1−Re(α)}

,

leading to (29). □

This corollary, applied with η = ⌈r/2⌉, provides us with an explicit error bound
for an asymptotic expansion of nα−1G1(n). However, the expansion is in descending
powers of n+ α/2, while our algorithm aims to compute expansions in descending
powers of n. To obtain such an expression, we substitute for (n + α/2)−1 its
expansion in powers of 1/n with the error term given by Lemma 4.2 (applied to s′ =
2s).

The asymptotic expansion of the normalization factor G2(n) is convergent and
reduces to the binomial series.

Lemma 4.5. Let α ∈ C and let r be a nonnegative integer. For all n ∈ N such
that n ≥ s|α| (with s ≥ 2), one has

(31) G2(n) =
(
1 +

α

2n

)α−1

=

r−1∑
j=0

(
α− 1

j

)(α
2

)j
n−j +R(G2)(n)
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with

(32) |R(G2)(n)| ≤ n−r · |α|r

1− 1/s
·max

{
(3/2)

Re(α)−1
, (1/2)

Re(α)−1
}
· e| Im(α)|/2.

Proof. Let φ(z) = (1 + z)α−1 and consider the Taylor expansion

φ(z) =

∞∑
j=0

(
α− 1

j

)
zj =

r−1∑
j=0

(
α− 1

j

)
zj + R̃(z).

Cauchy’s estimate on the disk |z| ≤ 1/2 gives
∣∣(α−1

j

)∣∣ ≤ 2jM where

M = max
|z|=1/2

∣∣φ(z)∣∣ = |1 + z|Re(α)−1 · e− arg(1+z)·Im(α)

≤ max
{
(3/2)

Re(α)−1
, (1/2)

Re(α)−1
}
· e| Im(α)|/2,

and hence

|R̃(z)| ≤ M (2|z|)r

1− 2|z|
.

Our assumptions on n and s ensure that n ̸= 0 and α/(2n) ≤ 1/s < 1/2. The
bound (32) follows by substituting α/(2n) for z. □

Remark 4.6. In the special case α ∈ Z≥1, the normalized gamma ratio G(n)
reduces to a polynomial in n−1 of degree α−1. Computing this polynomial directly
when r ≥ α instead of using the previous results avoids introducing a spurious error
term. When α = 0, one has G(n) = 1, but the error terms (29) (for η ≥ 1) and (32)
already vanish naturally.

4.2. Derivatives. We now turn to the last factor in (22),

(33) H(n, k) =
1

Γ(n+ α)

dk

dαk
Γ(n+ α)

Γ(α)
.

It can be checked that the product Γ(α)H(n, k) for any given k can be written as
a polynomial (with integer coefficients) in the differences

ψ(m)(n+ α)− ψ(m)(α), 0 ≤ m ≤ k − 1,

where ψ(m) is the polygamma function defined by

ψ(m)(z) =
dm+1

dzm+1
log Γ(z).

Therefore, to obtain an asymptotic enclosure of H(n, k) it suffices in principle
(at least when α /∈ Z≤0) to have expansions with error bounds of the various

ψ(m)(n+ α). For this we rely on the following theorem.

Theorem 4.7 (Nemes [40]). Let z be a nonzero complex number with |arg z| ≤ π/4,
and let m ≥ 0 and η ≥ 1 be integers. Then

(34) ψ(m)(z) =



log z − 1

2z
−
η−1∑
j=1

b2j
2jz2j

+Rψ,0η (z) if m = 0

(−1)m+1

(
(m− 1)!

zm
+

m!

2zm+1
+

η−1∑
j=1

b2j
(2j)!

(2j +m− 1)!

z2j+m

)
+Rψ,mη (z)

if m ≥ 1,

where the bj are the Bernoulli numbers and the error term satisfies

(35) |Rψ,mη (z)| ≤ (2η +m− 1)!
|b2η|
(2η)!

|z|−m−2η.
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Proof. The second and third paragraph of Section 4 in [40] give

Rψ,mη (z) = (−1)m+1m!z−mRη(m+ 1, z) (m ≥ 0, η ≥ 1,Re z > 0)

in terms of the quantity Rη(µ, z) defined by [40, Equation (2.1)]. When |arg z| ≤
π/4, one has

|Rη(µ, z)| ≤
|b2η|
(2η)!

Γ(2η + µ− 1)

Γ(µ)
|z|−2η

by [40, Equation (5.1)]. □

The expression of H(n, k) in terms of ψ(m)(n+α)−ψ(m)(α) mentioned above is
complicated, and computing it symbolically before substituting in the expansions
from Theorem 4.7 would be rather inefficient. The following variants using gener-
ating series, however, lead to a reasonably simple algorithm for computing H(n, k).
The main advantage is that we avoid building the full expression of H(n, k) as a
polynomial in the ψ(m)(n+α) (which would contain, in general, many occurrences
of each ψ(m)) and minimize the algebraic operations to be performed on the expres-
sions in n that result from substituting for the ψ(m) their asymptotic expansions.
In addition, we can compute all H(n, k) for 0 ≤ k ≤ K at once.

Proposition 4.8. Assume α ∈ C \ Z≤0. Then, for all n ≥ 0 and K ≥ k, one has

(36) H(n, k) =
k!

Γ(α)
[εk] exp

(
K−1∑
m=0

ψ(m)(n+ α)− ψ(m)(α)

(m+ 1)!
εm+1

)
.

Now assume α ∈ C \ Z>0. Then, for all n ≥ |α| and K ≥ k, one has

(37) H(n, k) = k!Γ(1−α)[εk]

(
sin
(
π(α+ ε)

)
π

· exp

(
K−2∑
m=0

ψ(m)(n+ α) + (−1)m+1ψ(m)(1−α)
(m+ 1)!

εm+1

))
.

For α ∈ Z≤0 (the main case of interest), the factor sin
(
π(α+ ε)

)
in (37) reduces

to (−1)α sin(πε). In particular, as already noted, one then has H(n, 0) = 0.

Proof. In the case α ∈ C \ Z≤0, the function z 7→ log
(
Γ(n + z)/Γ(z)

)
is analytic

at α, with Taylor expansion

log
Γ(n+ α+ ε)

Γ(α+ ε)
= log

Γ(n+ α)

Γ(α)
+

∞∑
m=0

ψ(m)(n+ α)− ψ(m)(α)

(m+ 1)!
εm+1.

Therefore, one has

Γ(α)

Γ(n+ α)

Γ(n+ α+ ε)

Γ(α+ ε)
= exp

( ∞∑
m=0

ψ(m)(n+ α)− ψ(m)(α)

(m+ 1)!
εm+1

)
.

The coefficient of εk in this series only depends on the coefficients of εm with m ≤ k
in the sum. Comparing with the definition (33) of H(n, k) gives (36).

Now consider the case α ∈ C \ Z>0. Euler’s reflection formula gives

Γ(n+ α+ ε)

Γ(α+ ε)
= Γ(n+ α+ ε)Γ(1− α− ε)

sin
(
π(α+ ε)

)
π

,
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where the product Γ(n+α+ ε)Γ(1−α− ε) does not vanish at ε = 0. By the same
reasoning as above, for small ε ∈ C one has

1

Γ(n+ α)Γ(1− α)

Γ(n+ α+ ε)

Γ(α+ ε)

=
sin
(
π(α+ ε)

)
π

exp

( ∞∑
m=0

ψ(m)(n+ α) + (−1)m+1ψ(m)(1−α)
(m+ 1)!

εm+1

)
,

and (36) follows. □

In order to compute bounds onH(n, k), we replace each occurrence of ψ(m)(n+α)
in (36) or (37) by the corresponding expression from Theorem 4.7, then expand the
result as a power series in ε and extract the coefficient of εk. Doing so yields an
expression in C•[(n+α)−1, log(n+α)] whose evaluation at any sufficiently large n
contains H(n, k). As in the previous subsection, we replace log(n+α) and (n+α)−1

by their expansions in powers of 1/n given by Lemma 4.2.

4.3. Algorithm. Algorithm 2 (page 23) summarizes the steps that result from
our previous discussion for bounding the coefficient of zn for large n in the series
(1− z)−α logk(1/(1− z)).

On several occasions, the algorithm needs to trim a given p ∈ C•[z] to degree d;
that is, compute a polynomial p̃ of degree at most d such that p(z) ⊆ p̃(z) for all
z in a certain range of interest.

Proposition 4.9. Given α, K, r, s, and n0 with n0 > s|α|, Algorithm 2 computes
a polynomial

e(n−1, w, ε) = e0(n
−1, w) + · · ·+ eK(n−1, w)εK

such that, for all k ≤ K and n ≥ n0,

(38) [zn](1− z)−α logk
(

1

1− z

)
∈ nα−1 · ek(n−1, log n).

The polynomial ek(n
−1, w) has degree at most r with respect to n−1 and degree

at most k with respect to w, and its coefficients of degree less than r in n−1 are
elements of Qrhol,Γ.

Proof. Fix n ≥ n0 > s|α| and k ≤ K. Step (1a) implements Remark 4.6 and
computes G(n) = g(n−1) exactly. In the general case, the polynomial ĝ1 computed
at step (1b) satisfies G1(n) ∈ ĝ1

(
(n + α/2)−1

)
by Corollary 4.4. By Lemma 4.2

applied with α replaced by α/2 and s replaced by 2s, the result of the substitution
at step (1c), evaluated at n, also contains G1(n). The same property holds for
g1(n

−1) since, for all c ∈ C, one has cn−r−j ∈ cn−rB(0, n−j). The fact that
G2(n) ∈ g2(n) after step (1d) comes directly from Lemma 4.5. In both cases, we
have G(n) ∈ g(n−1) after step (1).

Let us now show that H(n, k) ∈ [εk]
(
h1(n

−1, ε)h2(n
−1, log n, ε)

)
. Assume first

that α ∈ C\Z≤0. Theorem 4.7 proves that it is possible to compute polynomials pk
satisfying the condition (∗) appearing at step (2a). Thus, for any v ̸= 0 with
|arg v| ≤ π/4, we have after step (2a)

[εk] exp

(
K−1∑
m=0

ψ(m)(v−1)− ψ(m)(α)

(m+ 1)!
εm+1

)
∈ [εk]

(
v−ε exp

(
K−1∑
m=0

pm(v)εm+1

))
,

and therefore, using Proposition 4.8,

H(n, k)

k!
∈ [εk]

(
v−εĥ1(v, k)

)
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Algorithm 2: Coefficient bounds for algebraic-logarithmic monomials

Input: An “algebraic” singularity order α ∈ Q, a logarithmic singularity
order K ∈ N, an expansion order r ∈ N, parameters s ≥ 2 and n0 ∈ N.

Output: A polynomial e ∈ C•[n−1, w, ε] satisfying (38).

(1) If α ∈ Z≥1 and r ≥ α:
(a) Compute g(n−1) =

∏α
j=1(1 + jn−1) ∈ C•[n−1].

Else:
(b) Using (28) with η = ⌈r/2⌉, compute a polynomial ĝ1(u) ∈ C•[u] of

degree ≤ 2η such that G1(n) ∈ ĝ1
(
(n+ α/2)−1

)
for all n > sα.

(c) Make the substitution

u =

r−2∑
j=0

(−α/2)jn−j−1 +B(0, δ1)n
−r where δ1 =

|α/2|r−1

1− 1/(2s)

in ĝ1(u). Trim the result to degree ≤ r in n−1 by replacing every

occurrence of n−r−j with j > 0 by B(0, n−j0 )n−r, resulting in a
polynomial g1(n

−1) ∈ C•[n−1].
(d) Compute g2(n

−1) ∈ C•[n−1] such that G2(n) ∈ g2(n) for all n > s|α|
using (31).

(e) Set g(n−1) = g1(n
−1)g2(n

−1).
(2) If α /∈ Z≤0:

(a) Using (34) with η = max(1, ⌈r/2⌉), compute polynomials
p0, . . . , pK−1 ∈ C•[v] of degree r such that, for |arg v| ≤ π/4,

(∗)


ψ(0)(v−1)− log(v−1)− ψ(0)(α) ∈ p0(v)

ψ(m)(v−1)− ψ(m)(α)

(m+ 1)!
∈ pm(v) if m ≥ 1.

Set p(v, ε) =
∑K−1
m=0 pm(v)εm+1.

(b) Compute the truncated series expansion

Γ(α)−1 exp
(
p(v, ε)

)
= ĥ1(v, ε) +O(εK+1),

resulting in a polynomial ĥ1(v, ε) ∈ C•[v, ε] of degree ≤ K in ε. Trim the

polynomial ĥ1(v, ε) to degree ≤ r in v by replacing every occurrence
of vr+j with j > 0 by B(0, (n0 − |α|)−j)vr.

Else:
(c) Perform steps (2a) and (2b) with p(v, ε) and ĥ1(v, ε) replaced,

respectively, by

p(v, ε) =

K−2∑
m=0

ψ(m)(v−1) + (−1)m+1ψ(m)(1− α)

(m+ 1)!
εm+1

and ĥ1(v, ε) = (−1)αΓ(1− α) exp
(
p(v, ε)

)
sin(πε)/π.

(3) In ĥ1(v, ε), substitute for v the enclosure of (n+ α)−1 (a polynomial in n−1

with ball coefficients) given by (23). Trim the result to degree ≤ r in n−1 as
in step (1c). Call the result h1(n

−1, ε) ∈ C•[n−1, ε].

(4) Let δ2 = log(1 + 1/s)|α|r and q(n−1) =
∑r−1
j=1

(−α)j
j! n−j +B(0, δ2)n

−r

Compute the truncated series expansions

exp
(
q(n−1)ε

)
= h2(n

−1, ε) +O(εK+1),

exp(wε) = h3(w, ε) +O(εK+1).

(5) Compute g(n−1)h1(n
−1, ε)h2(n

−1, ε)h3(w, ε), truncated to degree K in ε.
Multiply the coefficient of εk by k! for each k. Trim the result to degree ≤ r
in n−1 as in step (1c) and return it.
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at step (2b) before ĥ1(v, ε) is trimmed to degree ≤ r. Now, since n > s|α| we have
|arg(n+ α)−1| ≤ π/4 and |(n+ α)−1| ≤ (n− |α|)−1, so that

H(n, k) ∈ k! [εk]
(
(n+ α)εĥ1((n+ α)−1, ε)

)
after step (2b). A similar argument shows that the same conclusion holds after
step (2c) in the case α ∈ Z≤0. Lemma 4.2 turns this into

H(n, k) ∈ k! [εk]
(
(n+ α)εh1(n

−1, ε)
)
.

Using the series expansion of v−ε with respect to ε, and Lemma 4.2 again, we have

[εk](n+ α)ε ∈ [εk]h2(n
−1, ε)h3(log n, ε)

for all k ≤ K after step (4).
Summing up, after step (4), we have

G(n) ∈ g(n−1) and H(n, k) ∈ k! [εk]
(
h1(n

−1)h2(n
−1, ε)h3(log n, ε)

)
.

The bound (38) then follows from (20) and (22).
Due to the final trimming step, the polynomial e(n−1, w, ε) returned by the

algorithm has degree at most r in n−1. It is clear from the formula in step (4)
that the degree in w of [εk]h3(w, ε) is at most k. Thus the same bound holds for
[εk] e(n−1, w, ε).

Finally, the only non-exact balls manipulated by the algorithm are the explicit
B(0, . . . ) appearing in the pseudo-code, those implicit in the remainder terms of
(28), (23), (31), and (34), and balls created from these by subsequent algebraic
operations. All other numeric values belong to the field extension of Q generated
by α and the Γ(z) and γ(m)(z) for z ∈ Q(α) and m ≥ 0. Since only the coefficient
of degree r of the final result depends on the “wide” balls B(0, . . . ) listed above,
the coefficients of degree less than r belong to this field extension, and in particular
to Qrhol,Γ. □

Remark 4.10. The output of Algorithm 2 is actually more precise than Proposi-
tion 4.9 suggests in special cases where some terms of the asymptotic expansion of
[zn](1− z)−α logk(1/(1− z)) as n→ ∞ vanish.

Firstly, when α ∈ Z≤0, the degree in w of ek(n
−1, w) is at most k − 1 in-

stead of k. Indeed, the polynomial h1(n, ε) vanishes at ε = 0, so that one has
degw[ε

k] ek(n
−1, w, ε) ≤ k − 1. In particular, e0(n

−1, w) is exactly zero, as could
be expected since (1− z)−α is a polynomial in z.

Secondly, in the case α ∈ Z≥0, the polynomial g has degree α − 1 < r, i.e.,
contains no error term, when r ≥ α (cf. Remark 4.6). Additionally, the coeffi-
cient of highest degree in w in the product h1h2h3 does not depend on n, because
[ε0]h1(n

−1, ε) and [ε0]h2(n
−1, ε) are constants. Thus, for each k, the leading coef-

ficient of ek(n
−1, w) viewed as a polynomial in w is a polynomial in n−1 of degree

at most α− 1. In particular, e0(n
−1, w) has degree at most α− 1 in n−1 (and does

not depend on w). This reflects the fact that [zn](1− z)−α is a polynomial in n.
The previous two observations combine when α = 0: one then has

[zn] logk(1/(1− z)) ∼ c log(n)k−1n−1 + d2(log(n))n
−2 + d3(log(n))n

−3 + · · ·
for polynomials di of degree at most k − 2, and the approximations computed by
Algorithm 2 reveal this form.

5. Contribution of a Singularity: The Local Error Term

We now examine the term

1

2πi

∫
Sρ(n)+Lρ(n)

gρ(z)

zn+1
dz =

1

2πi

q∑
j=1

cj

∫
Sρ(n)+Lρ(n)

gρ,j(z)

zn+1
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ρ2
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B
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Other dominant singular points

Dominant singularities of f

R1

Figure 2. Choice of R1

in the decomposition (16), focusing on the summand of index j. Recall from (14)
that we have

gρ,j(z) = (1− z/ρ)ν+r
κ∑
k=0

hk(z) log
k

(
1

1− z/ρ

)
,

where ν = νρ,j , r = rρ,j , and hk(z) = hj,k(z) is analytic at z = ρ. We consider ρ
and j to be fixed in this section and omit them in notation whenever the context
is clear.

The first step is to provide an upper bound on |hk(z)| for k = 0, . . . , κ that is valid
on the paths Sρ(n) and Lρ(n). Recall from Section 3.1 that both Sρ(n) and Lρ(n)
are contained in the disk {z : |z − ρ| < R1}. Since R1 < minρ1∈Ξd,ρ2∈Ξ |ρ1 − ρ2|, it
follows that ρ is the only singular point in the disk {z : |z−ρ| < R1} (see Figure 2).
Thus it suffices to find real numbers b0, . . . , bκ such that

(39) |hk(z)| ≤ bk for all z with |z − ρ| < R1 and k = 0, . . . , κ.

Our method for computing b0, . . . , bκ is a generalization of [35, Lemma 3.5]. We
compute some initial terms of the Taylor expansion of each hk(z) (in addition to
those already collected in ℓρ,j) with rigorous error bounds, until we can apply [38,
Algorithm 6.11] to obtain a bound on the tail. (It is useful in practice to include
a few more terms than strictly necessary in the explicitly computed part in order
to limit overestimation.) The following result is a reformulation of [38, Proposi-
tion 6.12], in slightly weakened form to avoid introducing unnecessary notation.

Proposition 5.1. Let L denote the operator obtained from D by the change of
independent variable z = ρ+ z. In the notation of Proposition 2.3, let E be the set
of exponents νj′ , for 1 ≤ j′ ≤ q, such that νj′ − νj ∈ Z. Let λ be the element of E
of minimum real part, and let δ = νj − λ.

Given L, λ, an integer N ≥ max
(
1,maxν′∈E(ν

′ − λ)
)
, and the coefficients di,k,j

in (5) for 0 ≤ i < N − δ, Algorithm 6.11 in [38] computes two rational functions
G(z) and H(z) admitting power series expansions at 0 with nonnegative coefficients
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such that

|di,k,j | ≤
1

k!
[zδ+i]

(
zN G(z)

∫ z

0

H(w) dw

)
for all i ≥ N − δ and k ≤ κj.

As discussed in [38], by running the algorithm at sufficient precision, the radii
of convergence of G and H can be made arbitrarily close to the distance from ρ
to the nearest other singular point of D while keeping the coefficients of G and H
bounded. In particular, the radii can be made larger than R1. It follows that one
can take

(40) bk =
1

k!
RN−δ+1

1 G(R1)H(R1) <∞

in (39). See also [38, Section 8.1] for a slightly tighter bound.
These bounds on |hk(z)| allow us to bound the integrals of gρ,j(z) over Sρ(n)

and Lρ(n). Define the polynomial

(41) B(z) = b0 + b1z + · · ·+ bκz
κ.

Proposition 5.2. For all n ≥ n0,∣∣∣∣∣ 1

2πi

∫
Sρ(n)

gρ,j(z)

zn+1
dz

∣∣∣∣∣ ≤ |ρ|−nn−Re(ν)−1−r · eπ|Im ν|

(1− 1/n0)
n0+1 ·B(π + log n).

Proof. This is a generalization of [35, Proposition 3.7]. Parametrize z ∈ Sρ(n) by
z = ρ+ ρeiθ/n. Then |z| ≥ |ρ|(1− 1/n) and we have∣∣∣∣log 1

1− z/ρ

∣∣∣∣ = | log(−e−iθ)− log n| ≤ π + log n,

∣∣(1− z/ρ)ν+r
∣∣ = ∣∣∣∣∣

(
−eiθ

n

)ν+r∣∣∣∣∣ ≤ eπ|Im ν|n−Re ν−r.

Since |z/ρ| < R1 for z ∈ Sρ(n), the function |hk| is bounded by bk on Sρ(n).
Therefore,

|gρ,j(z)| =
∣∣(z − ρ)ν+r

∣∣ κ∑
k=0

|hk(z)|
∣∣∣∣logk 1

1− z/ρ

∣∣∣∣ ≤ eπ|Im ν|n−Re ν−rB(π + log n)

for all z ∈ Sρ(n). The previous inequalities combine to give∣∣∣∣∣ 1

2πi

∫
Sρ(n)

gρ,j(z)

zn+1
dz

∣∣∣∣∣ ≤ length(Sρ(n))
2π

supz∈Sρ(n) |gρ,j(z)|
|z|n+1

≤ ρ

n

n−Re ν−r · eπ|Im ν| ·B(π + log n)

|ρ|n+1(1− 1/n)n+1

≤ |ρ|−nn−Re(ν)−1−r · eπ|Im ν|

(1− 1/n0)
n0+1 ·B(π + log n). □

We now consider the integral over Lρ(n). In order to treat the case Re(ν)+r > 0,
we use the following lemma.

Lemma 5.3. If β > 0 and s > 2 then, for all n > sβ and x > 0,

(42) xβ ≤
(
(s− 2)e

2sβ

)β (
1 +

x

n

)n/2
.
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Proof. Let

ψ(x) := x−β
(
1 +

x

n

)n/2
.

Solving (logψ(x))′ = 0 gives the minimum as x = (2nβ)/(n− 2β), so

ψ(x) ≥ ψ

(
2nβ

n− 2β

)
=

(
1 + 2β

n−2β

)n/2
(

2nβ
n−2β

)β .

Using the inequality
(
1− 1

m

)m
< e−1, and substituting m = n

2β > 1, gives(
1 +

2β

n− 2β

)n/2
> eβ ,

so n > sβ implies (
2nβ

n− 2β

)β
<

(
2sβ

s− 2

)β
.

Combining the bounds for the numerator and the denominator yields the desired
inequality. □

Proposition 5.4. For all n ≥ s|ν + r| and small enough φ,∣∣∣∣∣ 1

2πi

∫
Lρ(n)

gρ,j(z)

zn+1
dz

∣∣∣∣∣ ≤ |ρ|−nn−Re(ν)−1−rC(Re(ν) + r, φ)

π
eπ|Im ν|B(π + log n),

where

C(β, φ) =


1

cosφ : β ≤ 0,

2
cosβ+1 φ

(
(s−2)e
2sβ

)β
: β > 0.

Proof. This is a generalization of [35, Proposition 3.8]. The integral over the upper
part of Lρ(n) equals

L+(n) =
1

2πi

∫ ρ(1+Eeiφ)

ρ(1+eiφ/n)

gρ,j(z)

zn+1
dz

=
1

2πi

κ∑
k=0

∫ ρ(1+Eeiφ)

ρ(1+eiφ/n)

(1− z/ρ)ν+r
hk(z) log

k( 1
1−z/ρ )

zn+1
dz

for some E < R1. Substituting z = ρ(1 + eiφt/n) yields, when φ is small enough,

|L+(n)| =
1

2π

∣∣∣∣∣
κ∑
k=0

∫ En

1

(−eiφt/n)ν+r hk(ρ(1 + eiφt/n)) logk(−e−iφn/t)

ρn+1(1 + eiφt/n)n+1

ρeiφ

n
dt

∣∣∣∣∣
≤ |ρ|−nn−Re(ν)−r−1e(π−φ) Im ν

2π

·
κ∑
k=0

bk

∫ ∞

1

|i(π − φ) + log(n/t)|k · tRe(ν)+r

(
1 +

t cosφ

n

)−n−1

dt

≤ |ρ|−nn−Re(ν)−1 · e
π|Im ν|

2π
· n−r ·B(π + log n)

·
∫ ∞

1

tRe(ν)+r

(
1 +

t cosφ

n

)−n−1

dt.

Let

In(β) =

∫ ∞

1

tβ
(
1 +

t cosφ

n

)−n−1

dt.
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When β ≤ 0, as n ≥ 1, we have

In(β) ≤
∫ ∞

1

(
1 +

t cosφ

n

)−n−1

dt =
1

cosφ

(
1 +

cosφ

n

)−n
≤ 1

cosφ
.

On the other hand, when β > 0 then an application of Lemma 5.3 with x = t cosφ
implies

In(β) =
1

cosβ φ

∫ ∞

1

(t cosφ)β
(
1 +

t cosφ

n

)−n−1

dt

≤ 1

cosβ φ

(
(s− 2)e

2sβ

)β ∫ ∞

1

(
1 +

t cosφ

n

)−n−1+n/2

dt,

where ∫ ∞

1

(
1 +

t cosφ

n

)−n−1+n/2

dt =
2

cosφ

(
1 +

cosφ

n

)−n/2
≤ 2

cosφ
.

In both cases we conclude that In(β) ≤ C(β, φ), and therefore

|L+(n)| ≤ |ρ|−nn−Re(ν)−1−rC(Re(ν) + r, φ)

2π
eπ|Im ν|B(π + log n).

The same reasoning applies to the integral over the other part of Lρ(n), replacing
φ by 2π − φ, and their sum yields the desired bound. □

Letting φ→ 0 in Proposition 5.4 gives the following.

Corollary 5.5. For all n ≥ s|ν + r|,

(43) lim
φ→0

∣∣∣∣∣ 1

2πi

∫
Lρ(n)

gρ,j(z)

zn+1
dz

∣∣∣∣∣
≤ |ρ|−nn−Re(ν)−1−r · C(Re(ν) + r)

π
eπ|Im ν| ·B(π + log n),

where

C(β) =

1 : β ≤ 0,

2
(

(s−2)e
2sβ

)β
: β > 0.

Remark 5.6. The error term computed here may not be of the same order of mag-
nitude as that from the previous section. In particular, our approach overestimates
the order of magnitude of the error by a factor of log n when ν+ r is a nonnegative
integer and κ ≥ 1. This is no significant limitation since one can always increase
the expansion order by one unit to recover an error term of the “correct” form. It
is useful, however, to treat the case where both ν + r ∈ Z≥0 and κ = 0 (where g(z)
is analytic at ρ) specially in order to avoid artificially introducing error terms in
terminating expansions in powers of n.

6. Computing The Global Error Term and Combining the Bounds

6.1. The Global Error Term. Inequality (17) implies that an upper bound for
limφ→0 |IB| can be determined by finding some CB > 0 such that

(44)
∣∣∣f(z)− ∑

ρ∈Ξd

ℓρ(z)
∣∣∣ ≤ CB whenever |z| = R0.

We cover the circle {|z| = R0} with small squares as illustrated in Figure 3, and
compute approximations of f(z) −

∑
ρ∈Ξd ℓρ(z) on each square. The size of the

squares should be small enough so that they do not contain any singularity of D.
For definiteness, we take squares of constant side length minρ∈Ξ |R0 − |ρ||/5 which
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Figure 4. Analytic continuation path

guarantees that the squares are sufficiently far away from singular points, helping to
obtain bounds of reasonable size. (If minρ∈Ξ |R0−|ρ||/5 is very small, it is better to
use a non-uniform covering to limit the number of small squares to be considered.)

Since we have explicit expressions for ℓρ(z), we obtain enclosures of their ranges
on each square by evaluations in ball arithmetic. It remains to bound f(z) on
each of the small squares. To do so we use a rigorous numerical solver for D-finite
equations. The procedure is a simpler variant of the one used above to compute the
connection matrices C0→ρ and deduce bounds on each gρ(z) in the neighborhood
of ρ. We construct paths in ∆D that connect the origin to each component of B,
making small detours to avoid singular points within ∆D if necessary, and then
cover the corresponding component of B (see Figure 4). By solving the differential
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equation Df = 0 along these paths, we compute connection matrices from 0 to the
centers of the small squares covering B. Finally, for each square we compute a few
initial terms of the series expansion of f at the center, evaluate them in interval
arithmetic, and bound the remainder of the series using Proposition 5.1. This yields
a bound of the form

|IB| ≤ CBR
−n
0 ,

where CB is the computed bound satisfying (44).
We note in passing that the rigorous numerical solver necessary for following the

paths and computing the connection matrices can itself be realized using the same
approach. Essentially, one discretizes the integration path and, at each step zn →
zn+1, computes approximations of f(zn+1), f

′(zn+1), . . . , f
(q−1)(zn+1) by summing

the Taylor expansion of f at zn. In the case of a D-finite equation, the coefficients of
the Taylor series are easily generated using the associated recurrence. Computing
a partial sum can be done in ball arithmetic, hence the critical issue for obtaining
a rigorous enclosure of the solution is to bound the tails of each of the series, for
which we can use Proposition 5.1 again (see [38] for details).

6.2. Combining the bounds. Now that we have bounds for each component in
(16), it suffices to combine and simplify them to match the result given in Theo-
rem 3.1.

We begin by computing the constant N0 in Theorem 3.1. Firstly, in order for
the integration path P(n) to be closed for all n ≥ N0, we require that N0 ≥ N1

where N1 is defined in (10). Secondly, we need to guarantee the existence of an
s > 2 such that N0 > s|α| for all the exponents α to which we will apply the results
of Sections 4 and 5 (Propositions 4.9 and 5.4). These exponents are of the form
νρ,i + r for some ρ, i, and r ≤ r0, where r0 is the desired expansion order. Finally,
the statement of the theorem specifies that N0 ≥ n0. Thus, we set

(45) N2 =
⌈
2.1(max

ρ,i
|νρ,i|+ r0 + 1)

⌉
and N0 = max {n0, N1, N2} .

Recall from (16) that we have

(46) fn = [zn]f(z) =
∑
ρ∈Ξd

[zn]ℓρ +
∑
ρ∈Ξd

1

2πi

∫
Sρ(n)+Lρ(n)

gρ(z)

zn+1
dz + IB,

and from (9) that we are aiming for a bound of the form
(47)

fn =
∑
ρ∈Ξd

ρ−nnγ
mρ∑
i=0

κ∑
k=0

aρ,i,k
logk n

nγρ,i
+R(n), |R(n)| ≤ AM−nnRe(γ) log

κ n

nr0
.

In Sections 4 and 5 we computed a rigorous estimate for the first two sums
in (46). This estimate can be viewed as a sum of monomials

(48) B(a, ε) · ρ−nnθ logk n,

where a ∈ Qrhol,Γ and the ball B(a, ε) is exact whenever Re(θ) > Re(γ) − r0.
We call the terms such that Re(θ) ≤ Re(γ) − r0 error terms, and those with
Re(θ) < Re(γ) − r0 secondary error terms. In order to simplify the sum to the
desired form, we need to identify γ and trim down any secondary error terms that
may appear. Let κ be the maximum value of the parameter k occurring among all
error terms.

When Re(θ) < Re(γ)− r0, using the assumption n ≥ N0, we can replace a term

of the form B(a, ε) · ρ−nnθ logk n with

(49) B
(
0, (a+ ε) ·NRe(θ)−Re(γ)+r0

0 logk−κN0

)
·M−nnRe(γ) log

κ n

nr0
,
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because

B(a, ε) · nθ−Re(γ)+r0 logk−κ n ⊆ B
(
0, (a+ ε) ·NRe(θ)−Re(γ)+r0

0 logk−κN0

)
when n > N0. Replacing all secondary error terms in the sum of (48) with (49)
standardizes all the error terms to the form B(0, a′) ·M−nnRe(γ)−r0 logκ n.

Remark 6.1. Remarks 4.10 and 5.6 imply that, in some cases, the sum contains
no error terms at all. When this happens, and if the next singular points of the
differential equation by increasing modulus are also regular, one can subtract the
sum of the corresponding local expansions from f(z) and iterate the algorithm to
improve the approximation of fn with exponentially smaller terms. It can also
make sense to do something similar when the constant in the combined error term
has been verified to be very small but could not be checked to be exactly zero for
lack of a zero-test for connection coefficients.

In Section 6.1 we computed a bound for |IB| of the form CBR
−n
0 . When n ≥ N0,

letting β = Re(γ)− r0, we have

R−n
0 Mnn−β ≤ A =

e
β
(

β
log(M/R0)

)−β
: β ≤ N0 log

M
R0
,(

M
R0

)N0

N−β
0 : β > N0 log

M
R0
.

In both cases, we can absorb IB into an error term of the form

B

(
0,

CB A

logκN0

)
·M−nnRe(γ)−r0 logκ n.

6.3. Proof of Theorem 3.1. Finally, we recall the statement of Theorem 3.1 and
conclude its proof.

Theorem 3.1. Let M = minρ∈Ξ\Ξa |ρ| be the minimal modulus of a singular point
of D, excluding any point where f is known to be analytic. Algorithm 1 (page 13)
computes an integer N0 ≥ n0 and an estimate

(50) fn =
∑
ρ∈Ξd

ρ−nnγ
mρ∑
i=0

κ∑
k=0

aρ,i,k
logk n

nγρ,i
+R(n), |R(n)| ≤ AM−nnRe(γ) log

κ n

nr0

for all n ≥ N0, where 0 ≤ Re(γρ,0) ≤ Re(γρ,1) ≤ . . . ≤ Re(γρ,mρ) < r0. In this

estimate, γ and the γρ,i are algebraic numbers, the aρ,i,l belong to the class Qrhol,Γ

and can be computed to arbitrary precision with rigorous error bounds, and A is a
nonnegative real number.

Proof. The proof is a matter of checking that Algorithm 1 correctly implements
the analysis from the previous sections. By Definition 3.4 and Proposition 3.5, we
have

(51) [zn]f(z) =
∑
ρ∈Ξd

q∑
j=1

cρ,j

(
[zn]ℓρ,j(z) +

1

2πi

∫
Sρ(n)+Lρ(n)

gρ,j(z)

zn+1
dz

)
+ IB

where cρ,1, . . . , cρ,q are the coordinates of f in the basis (yρ,j)j , the functions ℓρ,j
and gρ,j are defined by (12)–(14) in terms of initial coefficients di,k,j of the local
expansion (5) of yρ,j , the paths Sρ(n) and Lρ(n) are defined in Section 3.2 and
implicitly depend on φ, and IB is a quantity, also depending on φ, known to satisfy
the inequality (17).

The algorithm essentially computes the terms of (51) one by one. Fix ρ and j
and consider the corresponding terms.

As discussed in Section 2.3, since the path 0 → ρ is contained in the domain ∆0
D

and f is analytic on ∆0
D, the coefficients cρ computed by steps (2) and (4b) agree
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with those appearing in (51). The parameters defining ℓρ,j and gρ,j are computed
at steps (4a), 4(c)i, and 4(c)ii, by direct application of the definitions. In particular,
after step 4(c)ii at each loop iteration, we have (cf. (18))

(52) [zn]ℓρ,j(z) =

rj−1∑
i=0

κj∑
k=0

di,k,jρ
−n[zn](1− z)νj+i logk

(
1

1− z

)
where all free variables on the right-hand side stand for computed values. The
choice of s at step 4(c)i ensures that N0 > s|α| at each call to Algorithm 2; hence,
by Proposition 4.9, step 4(c)iii computes bounds that are valid for all n ≥ N0. It
follows that, for each ρ and j, step 4(c)iv yields a bound Eρ,j(n) for [zn]ℓρ,j also
valid for all n ≥ N0.

Proposition 4.9 also states that, for each (i, k), ek(n
−1, log n) has degree at

most κj with respect to log n and its coefficients of degree in n−1 less than rj − i
are elements of Qrhol,Γ. The choice of rj at step 4(c)i, referring to Definition 3.4,
ensures that we have Re νj + rj +1 ≥ λ+ r0 where λ = minj Re νj . This, combined
with the algebraicity of ρ and di,j,k, implies that the terms of Eρ,j(n) that are not
contained in O

(
n−λ−r0 log(n)κj

)
have coefficients belonging to Qrhol,Γ.

Turning to the local error term, let

Gρ,j(n) =
1

2πi
lim
φ→0

∫
Sρ(n)+Lρ(n)

gρ(z)

zn+1
.

Step 4(c)v implements Remark 5.6: when nj is a nonnegative integer and κj = 0,
one can see from (14) that the function z 7→ gρ(z)z

−n−1 is analytic at ρ, and hence
on the disk {|z − ρ| ≤ R1} defined by (11). As the path Sρ(n) + Lρ(n) tends to a
closed contour contained in this disk as φ → 0, we have Gρ,j(n) = 0 in this case.
Otherwise steps 4(c)vi and 4(c)vii are executed. These steps are a direct application
of Proposition 5.2 and Corollary 5.5. They yield a bound on Gρ,j(n) of the form

O
(
nRe νj−1−rj log(n)κj

)
= O

(
n−λ−r0 log(n)κj

)
and valid for all n ≥ max(N0, s|νj + rj |) = N0.

Let CB ∈ R≥0 denote the bound computed at step (5). By Equation (51) we
have∣∣∣∣∣∣[zn]

(
f(z)−

∑
ρ∈Ξd

q∑
j=1

cρ,jℓρ,j(z)
)∣∣∣∣∣∣ ≤

∑
ρ∈Ξd

q∑
j=1

cρ,j

∣∣∣∣∣ 1

2πi

∫
Sρ(n)+Lρ(n)

gρ,j(z)

zn+1
dz

∣∣∣∣∣+|IB|

for all small enough φ > 0, and Equation (17) states that limφ→0|IB| ≤ R−n
0 CB for

R0 given by (11) (which agrees with the value computed at step (3)). Therefore

(53)

∣∣∣∣∣∣[zn]
f(z)− ∑

ρ∈Ξd

q∑
j=1

cρ,jℓρ,j(z)

∣∣∣∣∣∣ ≤
∑
ρ∈Ξd

q∑
j=1

cρ,j |Gρ,j(n)|+ CBR−n
0

for all n ≥ N0.
Finally, step (6) ensures that the output represents a bound of the form (50).

More precisely, the simplification process sets γ = −νj for one of the j such
that Re νj = λ, and κ = maxj κj . Combining the bounds Eρ,j(n) into the sum∑
ρ∈Ξd

∑q
j=1 cρ,jEρ,j(n) yields an expression of the form (51). Since all contribu-

tions from steps 4(c)vii and (5) are in O
(
n−λ−r0 log(n)κj

)
, adding them to R(n)

preserves its form. By (53), the resulting bound holds for all n ≥ N0. □

Remark 6.2. In special circumstances, such as when dealing with algebraic series
or diagonals, it is possible to express the coefficients in closed form. In particular,
when dealing with an algebraic series, by choosing bases of solutions of D at the
origin and at each singular point that are also solutions of the algebraic relation,
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the corresponding connection matrix (in Definition 2.10) is simply a permutation
matrix. In this case, instead of dealing with coefficients inQrhol,Γ, we only encounter
elements of the Q-algebra generated by {Γ(α)−1 : α ∈ Q}∪{γ(j)(z) : z ∈ Q, j ∈ N}.

7. Implementation and Further Examples

We have implemented the algorithm described in this article (up to minor vari-
ations) using the SageMath computer algebra system. Our implementation is part
of the ore algebra package [31], available at

https://github.com/mkauers/ore_algebra/

under the GNU General Public License. The version described here corresponds
to git revision 47e05a456. The examples were run under SageMath 9.7.beta27.
The documentation and test suite of ore algebra contain executable versions of all
examples from this paper, sometimes with minor changes.

Example 1.1 continued. Using this version of ore algebra, Example 1.1 (page 4) can be repro-
duced through the following commands:

sage: from ore_algebra import OreAlgebra

sage: from ore_algebra.analytic.singularity_analysis import bound_coefficients

sage: Pol.<z> = PolynomialRing(QQ)

sage: Dop.<Dz> = OreAlgebra(Pol) # Dz represents the operator d/dz

sage: dop = (z^2*(4*z - 1)*(4*z + 1)*Dz^3 + 2*z*(4*z+1)*(16*z-3)*Dz^2

....: + 2*(112*z^2 + 14*z - 3)*Dz + 4*(16*z + 3))

sage: bound_coefficients(dop, [1, 2, 6], order=2)

On a standard laptop, the computation takes about 3.5 s, of which roughly 3 s are spent bounding
the global error term by evaluation on the big circle.

The implementation builds on pre-existing code in ore algebra for computing the
connection matrices of Definition 2.10 (see [37]) and for computing bounds on tails
of logarithmic series solutions of D-finite equations, as in Proposition 5.1 (see [38]).
Except for singularities and local exponents, which are algebraic numbers and are
represented exactly, numeric coefficients are represented as elements of SageMath’s
ComplexBallField, based on the Arb library [26]. We perform intermediate com-
putations that lead to the coefficients of the output at a working precision selected
by the user, with the occasional addition of some guard digits for steps where we
expect a loss of accuracy, but do not attempt to provide any guarantees on the
radius of the output intervals. For operations that only affect the error terms, we
currently use a fixed, hardcoded working precision. Our code also relies on Sage-
Math’s AsymptoticRing [18] to represent the asymptotic expansion it outputs.

The implemented algorithm deviates from the one described here in some minor
ways. Perhaps the most significant difference is that we implement the following
variant of Remark 3.3: at step (4c) of Algorithm 1, elements yj of the local basis
are partitioned according to their value modulo the integers of the exponent νj ,
and the computations associated to of elements of a given class are carried out
simultaneously.

Below we discuss some examples that illustrate the behaviour of our implementa-
tion on “real-life” P-recursive sequences. Except where noted, we call the algorithm
with r0 = 2, n0 = 50, and an initial working precision of 53 bits. Taking n0 = 50
makes the constants in the error terms slightly smaller than with the default n0 = 0.
There is room for improvement in the performance of the code: as of this writing,
calls to bound_coefficients take about 2 to 15 seconds each on a standard lap-
top, with the vast majority of the time spent computing the global error term. All
outputs were slightly edited for readability.

6SWHID: swh:1:rev:47e05a4556c854847f0ed9239fc3e288fde28ab3.
7SWHID: swh:1:rev:a6e696e91d2f2a3ab91031b3e1fcd795af3e6e62.

https://github.com/mkauers/ore_algebra/
https://archive.softwareheritage.org/swh:1:rev:47e05a4556c854847f0ed9239fc3e288fde28ab3/
https://archive.softwareheritage.org/swh:1:rev:a6e696e91d2f2a3ab91031b3e1fcd795af3e6e62/
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Example 7.1 (Diagonals of symmetric rational functions). Due to a connection to certain spe-

cial functions, Baryshnikov et al. [2] studied the diagonals of the family of rational functions

f(z1, . . . , zd) = (1− (z1 + ...+ zd) + c · z1 . . . zd)−1 with d ∈ N and c ∈ R, obtained by expanding
f(z) as a power series and taking the terms with monomials (z1z2 · · · zd)n where all exponents

are equal. Taking d = 4 and making the substitution z1z2 · · · zd = z, the methods of creative
telescoping imply that the operator [2, Equation 11]

D =z2(c4z4 + 4c3z3 + 6c2z2 + 4cz − 256z + 1)(3cz − 1)2 d3

dz3

+ 3z(3cz − 1)(6c5z5 + 15c4z4 + 8c3z3 − 6c2z2 − 384cz2 − 6cz + 384z − 1) d2

dz2

+ (cz + 1)(63c5z5 − 3c4z4 − 66c3z3 + 18c2z2 + 720cz2 + 19cz − 816z + 1) d
dz

+ (9c6z5 − 3c5z4 − 6c4z3 + 18c3z2 − 360c2z2 + 13c2z − 384cz + c− 24)

annihilates the diagonal fdiag(z). Baryshnikov et al. showed that fdiag(z) is ultimately positive if

and only if c < (d− 1)d−1, with certain interesting phenomena happening at c = (d− 1)d−1. We

illustrate this result for d = 4 and c ∈ {28, 27, 26}.
When c = 28: The diagonal fdiag(z) has the initial coefficient sequence (f0, f1, f2) = (1,−4,−56).
Our implementation returns

fn ∈ ϕnn−3/2 ·
(
([−0.0311212622056357± 10−16] + [−0.0345183803114027± 10−16]i)

+ ([0.050269964085834± 10−15] + [−0.0298161277530909± 10−16]i)n−1
)

+ ϕ
n
n−3/2 ·

(
([−0.0311212622056357± 10−16] + [0.0345183803114027± 10−16]i)

+ ([0.050269964085834± 10−15] + [0.0298161277530909± 10−16]i)n−1
)

+B(6.11 |ϕ|nn−7/2, n ≥ 50)

where ϕ ≈ 79.33+25.48i is algebraic of degree 4 and B(εn, n ≥ N0) indicates an term of absolute

value bounded by εn for all n ≥ N0. In this case, fn is not ultimately positive.
When c = 27: In this case (f0, f1, f2) = (1,−3, 9), and our implementation returns

fn ∈ ϕnn−3/2 ·
(
([0.306608607103967± 10−15] + [0.146433894558384± 10−15]i)

+ ([−0.26554984277221± 10−15] + [−0.03529869348794± 10−15]i)n−1
)

+ ϕ
n
n−3/2 ·

(
([0.306608607103967± 10−15] + [−0.146433894558384± 10−15]i)

+ ([−0.26554984277221± 10−15] + [0.03529869348794± 10−15]i)n−1
)

+B(50.1 · 9nn−7/2, n ≥ 50)

where one can check that ϕ = −7 + 4
√
2i. In this case fn is also not ultimately positive, however

an interesting phenomenon observed in [2] is explicitly illustrated here: as c → 27 the exponential

growth rate of |fn| drops from around 81 to 9.

When c = 26: One has (f0, f1, f2) = (1,−2, 76), and our implementation gives

fn ∈ ϕn ·
(
[0.0484997667050581± 10−16]n−3/2 + [−0.068160009777454± 10−15]n−5/2

+B(8.41n−7/2, n ≥ 50)
)

for a real algebraic number ϕ ≈ 108.10 of degree 4. From this, we can immediately see that fn is

positive for all n ≥ 50, verifying the ultimate positivity derived in [2] using multivariate methods.

Next, we give an example that illustrates how our algorithm deals with complex
exponents.

Example 7.2 (Complex exponents). Consider the power series f(z) = f0+f1z+f2z2+ · · · with
the initial conditions (f0, f1, f2) = (1, 2,−1/8) satisfying Df = 0 where

D = (z − 2)2
d2

dz2
+ z(z − 2)

d

dz
+ 1.

Algorithm 1 finds that

fn ∈ 2−n ·
(
([1.1243375066147± 10−14] + [−0.4622196104635± 10−14]i)n−αi−1/2

+ ([1.1243375066147± 10−14] + [−0.4622196104635± 10−14]i)nαi−1/2

+ ([−0.4002939247887± 10−14] + [−0.9737048431560± 10−14]i)n−αi−3/2

+ ([−0.4002939247887± 10−14] + [0.9737048431560± 10−14]i)nαi−3/2

+B(9 · 103 n−5/2, n0 ≥ 50)
)
,
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with α =
√

3
2
. We can conclude in particular that the series (fn) is not ultimately positive, since

for any ε > 0, there exist infinitely many n such that arg(nαi) ∈ (π − ε, π).

The following example from [32] illustrates how a priori knowledge about domi-
nant singularities can affect the usefulness of the bound produced.

Example 7.3 (Difficulty of certifying singularities). Consider the sequence (fn) with the initial

conditions (f0, f1) =
(
1, 1

4

)
satisfying the recurrence equation

(n+ 3)2fn+2 −
1

2
(n+ 2)(3n+ 11)fn+1 +

1

2
(n+ 4)(n+ 1)fn = 0.

The generating function f(z) of {fn} is a solution of the operator

D =

(
1

2
z4 −

3

2
z3 + z2

)
d4

dz4
+
(
7z3 − 16z2 + 7z

) d3

dz3
+
(
26z2 − 41z + 9

) d2

dz2
+(26z − 22)

d

dz
+4.

Without any a priori knowledge of dominant singularities of f , the algorithm assumes the
singular point of D with the smallest modulus apart from 0, which is z = 1, to be the dominant

singularity of f . Our implementation, with the initial working precision raised to 1000 bits,

determines that

fn ∈ [±10−300] + [±10−300]i +B(3 · 103 (4/7)n, n ≥ 50)

This estimate does not give much useful information about the asymptotic behaviour of fn, since

we do not know if the dominant term is zero or not. The output suggests however that the
corresponding constant might indeed be zero, in other words, that f might be analytic at z = 1.

A direct computation shows that indeed fn = 2−n

n+1
and f(z) = 1

2
log 1

1−z/2 .

Adding Ξa = {0, 1} to the input of Algorithm 1 results in the bound

fn ∈ 2−n ·
(
[1.0± 10−15]n−1 + ([1.0± 10−15])n−2 +B(66n−3 logn, n ≥ 50)

)
,

which characterizes the dominant asymptotic behaviour of fn.
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Ruiwen Dong, École polytechnique, Institut polytechnique de Paris, 91200 Palaiseau,

France

Current address: Department of Computer Science, University of Oxford, OX1 3QG, Oxford,
United Kingdom

Email address: ruiwen.dong@kellogg.ox.ac.uk

Stephen Melczer, Department of Combinatorics and Optimization, University of Wa-

terloo, Waterloo, Ontario, Canada

Email address: smelczer@uwaterloo.ca
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