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Abstract

We theoretically study the impact of differential privacy on fairness in classification. We prove that, given a class
of models, popular group fairness measures are pointwise Lipschitz-continuous with respect to the parameters of the
model. This result is a consequence of a more general statement on accuracy conditioned on an arbitrary event (such
as membership to a sensitive group), which may be of independent interest. We use the aforementioned Lipschitz
property to prove a high probability bound showing that, given enough examples, the fairness level of private models is
close to the one of their non-private counterparts.

1 Introduction
The performance of machine learning models have mainly been evaluated in terms of utility, that is their ability to
solve specific tasks. However, they can be used in sensitive contexts, and impact people’s lives. It is thus crucial
that users can trust these models. While trustworthiness encompasses multiple concepts, fairness and privacy have
attracted a lot of interest in the past few years. Fairness requires models not to unjustly discriminate against specific
individuals or subgroups of the population, and privacy preserves individual-level information about the training data
from being inferred from the model. These two notions have been extensively studied in isolation: there exists numerous
approaches to learn fair models (Caton and Haas, 2020; Mehrabi et al., 2021), or to preserve privacy (Dwork et al.,
2014; Liu et al., 2021). However, only few works studied the interplay between privacy and fairness. In this paper, we
take a step forward in this direction, proposing a new theoretical bound on the relative impact of privacy on fairness in
classification.

Fairness takes various forms (depending on the task and context), and several definitions exist. On the one hand, the
goal may be to ensure that similar individuals are treated similarly. This is captured by individual fairness (Dwork
et al., 2012) and counterfactual fairness (Kusner et al., 2017). On the other hand, group fairness requires that decisions
made by machine learning models do not unjustly discriminate against subgroups of the population. In this paper, we
focus on group fairness and consider four popular definitions, namely Equalized Odds (Hardt et al., 2016), Equality of
Opportunity (Hardt et al., 2016), Accuracy Parity (Zafar et al., 2017), and Demographic Parity (Calders et al., 2009).

Differential privacy (Dwork, 2006) has been widely adopted for controlling how much information the output of an
algorithm may leak about its input data. It allows publishing machine learning models while preventing an adversary
from guessing too confidently the presence (or absence) of an individual in the training data. To enforce differential
privacy, one typically releases a noisy estimate of the true model (Dwork, 2006), so as to conceal any sensitive
information contained in individual data points. This induces a trade-off between the strength of the protection and the
utility of the learned model. While this trade-off has been extensively studied (Chaudhuri et al., 2011; Bassily et al.,
2014; Liu et al., 2021), its implications for fairness are not yet well understood.

Contributions. In this work, we quantify the difference in fairness levels between private and non-private models in
multi-class classification. We derive high probability bounds showing that this difference shrinks at a rate of Õ(

√
p/n).

To obtain this result, we first prove that the accuracy of a model conditioned on an arbitrary event (such as membership
to a sensitive group), is pointwise Lipschitz continuous with respect to the model parameters. This property is inherited
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by many popular group fairness notions, such as Equalized Odds, Equality of Opportunity, Accuracy Parity and
Demographic Parity. Consequently, two sufficiently close models will have similar fairness levels. We then upper-bound
the distance between the optimal non-private model and the private models obtained with privacy preserving mechanisms
like output perturbation (Chaudhuri et al., 2011; Lowy and Razaviyayn, 2021) or DP-SGD (Song et al., 2013; Bassily
et al., 2014). These bounds hold for strongly convex empirical risk minimization formulations, potentially allowing
explicit fairness-promoting convex regularization terms (Bechavod and Ligett, 2017; Huang and Vishnoi, 2019; Lohaus
et al., 2020; Tran et al., 2021). Combining these two results, we derive high probability bounds on the fairness loss due
to privacy. They show that, with enough training examples, (i) given an optimal non-private model, enforcing privacy
will not harm fairness too much, and (ii) given a private model, the corresponding (unknown) non-private optimal model
cannot be vastly fairer. Our results also highlight the role of the confidence margin of models in the disparate impact of
differential privacy: notably, if the non-private model has high per-group confidence, then our bound on the loss in
fairness due to privacy will be smaller. Our contributions can be summarized as follows:

• We prove that group fairness is pointwise Lipschitz, with a smaller constant for models with large margins.

• We bound the distance between private and optimal models, and show that the difference in their fairness levels
decreases in Õ(

√
p/n).

• We show that this bound can be computed even when the optimal model is unknown, and numerically demonstrate
that we obtain non-trivial guarantees.

Related work. The joint study of fairness and privacy in machine learning only goes back a few years, and has been
the focus of a recent survey Fioretto et al. (2022). One may identify three main research directions. First, it has been
empirically observed that privacy can exacerbate unfairness (Bagdasaryan et al., 2019; Pujol et al., 2020; Farrand et al.,
2020; Uniyal et al., 2021) and, conversely, that enforcing fairness can lead to more privacy leakage for the unprivileged
group (Chang and Shokri, 2020). These empirical results suggest that some properties of the dataset (such as group
sizes and groupwise input norms) and the choice of the private training method may affect the extent of these disparate
impacts. Unfortunately, these observations are not supported by theoretical results, and it is not clear why and when
disparate impact occurs. Second, a few approaches have been proposed to learn models that are both fair and privacy
preserving. However, these works either have limited theoretical guarantees on their performance (Kilbertus et al.,
2018; Xu et al., 2019, 2020; Tran et al., 2020), or learn stochastic models which might not be usable in contexts where
deterministic decisions are expected (Jagielski et al., 2019; Mozannar et al., 2020). Finally, a few works have shown
that fairness and privacy are incompatible in some settings, in the sense that there exists data distributions where
enforcing one prevents the other from being satisfied (Sanyal et al., 2022), or where enforcing both implies trivial
utility (Cummings et al., 2019; Agarwal, 2020). While appealing at first glance, these results usually consider unrealistic
cases that are hardly encountered in practice. In this paper, we also study fairness and privacy jointly but rather than
studying whether they may be achieved simultaneously, we investigate the relative difference in fairness level between
private and non-private models.

To the best of our knowledge, the work closest to ours is the one of Tran et al. (2021). They analyze the impact of
privacy on fairness in Empirical Risk Minimization, where their notion of fairness is defined as the difference between
the excess risk computed on the overall population and the excess risk computed on a subgroup of the population.
They study the expected behavior over the possible private models while our results are model-specific. In line with
our work, their results suggest that the distance to the decision boundary plays a key role in the disparate impact of
differential privacy. However, the quantity appearing in their result is based on a second-order Taylor approximations
which is loose for popular classification loss functions. In contrast, the quantity appearing in our bounds is precisely the
confidence margin considered in prior work on multi-class margin-based classification (Cortes et al., 2013). Finally and
most importantly, loss-based fairness does not necessarily imply that the actual decisions taken by the model are fair
with respect to standard group-fairness notions (Lohaus et al., 2020). In contrast, our work provides guarantees in terms
of these widely-accepted group fairness definitions.
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2 Preliminaries
In this section, we present the fairness and privacy notions that will be used throughout the paper. We consider a
multi-class classification setting with a feature space X , a finite set of labels Y , and a finite set S of values for the
sensitive attribute. Let D be a distribution over X × S × Y , and D = {(x1, s1, y1), . . . , (xn, sn, yn)} be a training set
of n examples drawn i.i.d. from D. LetH be a space of real-valued functions h : X × Y → R equipped with a norm
‖·‖H. For an example x ∈ X , the predicted label is the one with the highest value, that is H(x) = arg maxy∈Y h(x, y).
In case of a tie, a random label among the most likely ones is predicted. The confidence margin of a model h for an
example-label pair (x, y) is defined as ρ(h, x, y) = h(x, y)−maxy′ 6=y h(x, y′) (Cortes et al., 2013). This confidence
margin is positive when the example x is classified as y by h and negative otherwise. In this paper, we assume that the
margin is Lipschitz-continuous in the model h.

Assumption 2.1 (Lipschitzness of the margin). We assume that ρ is Lipschitz-continuous in its first argument, that is
for all h, h′ ∈ H and (x, y) ∈ X × Y ,

|ρ(h, x, y)− ρ(h′, x, y)| ≤ Lx,y ‖h− h′‖H ,

where Lx,y < +∞ may depend on the example (x, y).

This assumption is not very restrictive. Typically, it is satisfied by any class of differentiable model with bounded
gradients. As an illustration, consider linear models of the form h(x, y) = WT

y x where W is a real-valued matrix where
each line is a vector Wy of label-specific parameters. Define ‖h− h′‖H = ‖W −W ′‖2.Then, we have Lx,y = 2 ‖x‖2
since |ρ(h, x, y)− ρ(h′, x, y)| ≤ |h(x, y)− h′(x, y)|+ maxy′ 6=y |h(x, y′)− h′(x, y′)| ≤ 2 ‖x‖2 ‖h− h′‖H.

The goal of a learning algorithm A : (X × S × Y)n → H is to find the best possible model to solve the task. In this
work, the quality of a model h is evaluated through its accuracy Acc(h) = P (H(X) = Y ) but also its fairness level (as
defined in Section 2.1). Furthermore, given a non-private algorithm A, our goal will be to compare the quality of its
output to that of a private version Apriv of A that guarantees differential privacy.

2.1 Fairness
In this paper, we focus on group fairness. These definitions are based on the idea that a group of individuals should not
be discriminated against, compared to the overall population. Usually, these groups are defined by the sensitive attribute
from S . However, in some cases, it is necessary to consider more fine grained partitions. This is for example the case in
Equalized Odds (Hardt et al., 2016), where a model is fair if its performance is the same on the overall population and
on subgroups of individuals that share the same sensitive group and the same label. Thus, for the sake of generality, we
assume that the data can be partitioned into K disjoint groups denoted by D1, . . . , Dk, . . . , DK . As in Maheshwari
and Perrot (2022), we consider fairness definitions that, for each group k, can be written as:

Fk(h,D) = C0
k +

K∑
k′=1

Ck
′

k P (H(X) = Y | Dk′) , (1)

where the Ck
′

k ’s are group specific values independent of h, that typically depend on the size of the groups. In
Appendix A, we show that usual group fairness notions such as Demographic Parity (with binary labels) (Calders et al.,
2009), Equality of Opportunity (Hardt et al., 2016), Equalized Odds (Hardt et al., 2016), and Accuracy Parity (Zafar
et al., 2017) can all be expressed in the form of (1). By convention, we consider that Fk(h,D) > 0 when the group k is
advantaged by h compared to the overall population, Fk(h,D) < 0 when the group is disadvantaged and Fk(h,D) = 0
when h is fair for group k.

In some cases, rather than measuring fairness for each group k independently, it is interesting to summarize the
information with an aggregate value. For example, we will use the mean of the absolute fairness level of each group:

Fair(h,D) =
1

K

K∑
k=1

|Fk(h,D)| , (2)

which is 0 when h is fair and positive when it is unfair.

3



2.2 Differential Privacy
We measure the privacy of machine learning models with differential privacy (see Definition 2.2 below). Differential
privacy (DP) guarantees that the outcomes of a randomized algorithm are similar when run on datasets that differ in
at most one data point. It effectively preserves privacy by preventing an adversary observing the trained model from
inferring the presence of an individual in the training set. A key property of differential privacy is that it still holds after
post-processing of the algorithm’s outcome (Dwork, 2006), as long as this post-processing is independent of the data.
Let D,D′ ∈ (X × S × Y)n be two datasets of n elements. We say that they are neighboring (denoted by D ≈ D′) if
they differ in at most one element.

Definition 2.2 (Differential Privacy – Dwork (2006)). Let Apriv : (X × S × Y)n → H be a randomized algorithm.
We say that Apriv is (ε, δ)-differentially private if, for all neighboring datasets D,D′ ∈ (X × S × Y)n and all subsets
of hypothesesH′ ⊆ H,

P(Apriv(D) ∈ H′) ≤ exp(ε)P(Apriv(D′) ∈ H′) + δ .

To design differentially private algorithms to estimate a function A : (X × S × Y)n → Rp, we need to quantify how
much changing one point in a dataset can impact the output of A. This is typically measured by (an upper bound on)
the `2-sensitivity of A, defined as

∆(A) = sup
D≈D′

‖A(D)−A(D′)‖2 .

The value of A on a dataset D ∈ (X × S × Y)n can then be released privately using the Gaussian mechanism (Dwork
et al., 2014). Formally, to guarantee (ε, δ)-differential privacy, we add Gaussian noise to A(D), calibrated to its
sensitivity and the desired level of privacy:

Apriv(D) = A(D) +N
(

0,
2∆(A)2 log(1.25/δ)

ε2
Ip
)
,

whereN (0, σ2Ip) is a sample from the normal distribution with mean zero and variance σ2Ip. In many cases (e.g., when
the dataset D is large), Apriv is computed on a random subsample of D. Assuming Apriv is (ε, δ)-differentially private,
applying Apriv to a randomly selected fraction q of D satisfies (O(qε), qδ)-differential privacy, thereby amplifying
privacy guarantees (Kasiviswanathan et al., 2011; Beimel et al., 2014). This privacy amplification by subsampling
phenomenon, together with the Gaussian mechanism, serve as building blocks in more complex algorithms. In particular,
they can be composed (Dwork et al., 2014), allowing the design of iterative private algorithms such as DP-SGD (Bassily
et al., 2014; Abadi et al., 2016).

3 Pointwise Lipschitzness and Group Fairness
Here, we show that several group fairness notions are pointwise Lipschitz with respect to the model. To this end, we
first prove a more general result on the pointwise Lipschitzness of accuracy conditionally on an arbitrary event.

3.1 Pointwise Lipschitzness of Conditional Accuracy
We first relate the difference of conditional accuracy of two models to the distance that separates them. This is
summarized in the next theorem.

Theorem 3.1 (Pointwise Lipschitzness of Conditional Accuracy). LetH be a set of real-valued functions with LX,Y
the Lipschitz constants defined in Assumption 2.1. Let h, h′ ∈ H be two models, (X,Y, S) be a triple of random
variables with distribution D, and E be an arbitrary event. Assume that E (LX,Y/

∣∣ρ(h′, X, Y )
∣∣ | E) < +∞, then

|P(H(X) = Y | E)− P(H ′(X) = Y | E)| ≤ E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ E) ‖h− h′‖H . (Lip)
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Proof. (Sketch) The proof of this theorem is in two steps. First, we use the Lipschitzness of the margin (Assump-
tion 2.1), the triangle inequality, and the union bound to show that |P (H(X) = Y | E)− P (H ′(X) = Y | E)| ≤
P (LX,Y/|ρ(h,X, Y )| ≥ 1/

∥∥h− h′∥∥H | E). Then, applying Markov’s inequality gives the desired result. The complete
proof can be found in Appendix B.

Theorem 3.1 shows the pointwise lipschitzness of the function h 7→ P (H(X) = Y | E). Furthermore, it underlies the
importance of having a large confidence margin ρ(h, x, y) for a model h predicting label y for an example x. Hence,
Lx,y/|ρ(h, x, y)| is small when the model h is confident in its prediction for the true label y. This implies that, when the
probability (given E) that a point has a small margin is small, E

(
LX,Y

|ρ(h,X,Y )|

∣∣∣ E) is also small. This is notably the case
for large margin classifiers.

It is worth noting that the bound presented Theorem 3.1 can be tightened (at the expense of readability) without
affecting the quantities that need to be controlled, that is the margin |ρ(h, x, y)| and the distance ‖h− h′‖H. Hence,
note that given (x, y) ∈ X × Y , if |ρ(h, x, y)| ≥ Lx,y ‖h− h′‖H, then it means that h’s margin is large enough
to ensure that h and h′ have the same prediction on x. The corresponding term in the expectation may then be
accounted for as zero, improving the upper bound (Remark B.2). Interestingly, if all the examples are classified with
such a large margin, our bound becomes 0, further hinting toward the importance of large margin classifiers. This
result may be further tightened by using a Chernoff bound instead of Markov’s inequality (Remark B.1), yielding
|P(H(X)=Y |E)−P(H ′(X)=Y |E)| ≤ βX,Y (h), with

βX,Y (h) = inf
t≥0

{
et‖h−h

′‖H E
(
e
− t|ρ(h,X,Y )|

LX,Y

∣∣∣E)} .

In the subsequent theoretical developments, we use the bound derived in Theorem 3.1 for the sake of readability. In the
numerical experiments (Section 5), we use the version of the bound that yields the tightest results by combining both of
the aforementioned techniques.

3.2 Pointwise Lipschitzness of Group Fairness Notions
We now use Theorem 3.1’s general result to relate the fairness levels of two classifiers, based on their distance. In
Theorem 3.2, we show that fairness notions in the form of (1) are pointwise Lipschitz.

Theorem 3.2 (Pointwise Lipschitzness of Fairness). Let h, h′ ∈ H, and LX,Y defined as in Assumption 2.1. For any
fairness notion of the form of (1), we have, for all k ∈ [K],

|Fk(h,D)− Fk(h′, D)| ≤ χk(h,D) ‖h− h′‖H .

with χk(h,D) =
∑K
k′=1

∣∣∣Ck′k ∣∣∣E( LX,Y
|ρ(h,X,Y )|

∣∣∣ Dk′

)
. Similarly, for the aggregate measure of fairness defined in (2),

|Fair(h,D)−Fair(h′, D)|≤ 1

K

K∑
k=1

χk(h,D) ‖h− h′‖H .

Proof. (Sketch) To prove the first claim, we use the triangle inequality to show that, for each group, the absolute
difference in fairness is bounded by a combination of absolute differences between conditional probabilities. We can
then apply Theorem 3.1. The second claim follows by applying the first one to each group independently. The complete
proof is provided in Appendix C.

Theorem 3.2 implies that classifiers that are sufficiently close have similar fairness levels. This has two major
consequences when studying a given model. On the one hand, we have an upper bound on the harm that can be done to
fairness: small variations of the model cannot make it much more unfair. On the other hand, we have a lower bound on
the distance needed to make a model fair: making the model significantly more fair requires to substantially alter it. In
the next corollary, we instantiate Theorem 3.2 for various popular group fairness notions, and for accuracy.
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Corollary 3.3. Let h, h′ ∈ H, and LX,Y defined as in Assumption 2.1. The difference in fairness or accuracy between
h and h′ can be bounded as follows.

Equalized Odds (Hardt et al., 2016): the data is divided into K = |Y × S| groups such that for all (y, r) ∈ Y × S,

χ(y,r)(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ Y = y

)
+ E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ Y = y, S = r

)
.

Equality of Opportunity (Hardt et al., 2016): we let Y ′ ⊆ Y the set of desirable outcomes. The data is divided into
K = |Y × S| such that for all (y, r) ∈ Y × S,

χ(y,r)(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ Y = y, S = r

)
+ E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ Y = y

)
,

if y is a desired outcome, and χ(y,r)(h,D) = 0 otherwise.

Accuracy Parity (Zafar et al., 2017): the data is divided into K = |S| groups such that for all r ∈ S,

χ(r)(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

)
+ E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ S = r

)
.

Demographic Parity (Binary Labels) (Calders et al., 2009): the data is divided into K = |Y × S| groups such that for
all (y, r) ∈ Y × S ,

χ(y,r)(h,D)=E
(

LX,Y
|ρ(h,X, Y )|

)
+E

(
LX,Y

|ρ(h,X, Y )|

∣∣∣∣ S = r

)
.

Accuracy: the data is in a single group, such that

χ(h,D) = E
(

LX,Y
|ρ(h,X, Y )|

)
.

Proof. This corollary follows from Theorem 3.2 by replacing the Ck
′

k ’s by their appropriate values (depending on the
considered notion). See Appendix A for more details.

Corollary 3.3 shows that our results are applicable to several group fairness notions, but also to accuracy. Note that the
pointwise Lipschitz constant χk(h,D) depends on the considered notion. In Section 4, we use these results to quantify
the relative fairness level between private and non-private models.

Finite sample analysis. In practice, it is often assumed that one does not have access to the true distribution D but
rather to a finite sample D = {(x1, s1, y1), . . . , (xn, sn, yn)} of size n. An empirical estimate of the expectation from
a finite sample is then defined as Ê (f(X)) = 1

n

∑n
i=1 f(xi). The results presented in Theorem 3.1, Theorem 3.2, and

Corollary 3.3 also hold in this finite sample setting. For instance, denoting by χ̂k the empirical version of χk, we have
that ∀k ∈ [K], ∣∣∣F̂k(h,D)− F̂k(h′, D)

∣∣∣ ≤ χ̂k(h,D) ‖h− h′‖H .

One may then wonder whether it is possible to connect the true fairness of a model h to the empirical fairness of a
second model h′, that is bound

∣∣∣Fk(h,D)− F̂k(h′, D)
∣∣∣. In the next lemma, we show that such bound can indeed be

obtained when h and h′ were learned on D.

Lemma 3.4. LetD be a finite sample of n ≥ 8 log( 2K+1
δ )

mink′ pk′
examples drawn i.i.d. fromD, where pk′ is the true proportion

of examples from group k′. Assume that PD∼Dn
(∑K

k′=0

∣∣Ck′k − Ĉk′k ∣∣ > αC
)
≤ B3 exp

(
−B4α

2
Cn
)
. Let H be an
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hypothesis space and dH be the Natarajan dimension of H. With probability at least 1 − δ over the choice of D,
∀h, h′ ∈ H

∣∣∣Fk(h,D)− F̂k(h′, D)
∣∣∣ ≤ χ̂k(h,D) ‖h− h′‖H + Õ

(
K∑
k′=1

∣∣∣Ĉk′k ∣∣∣
√
dH + log (K/δ)

npk′

)
.

Proof. (Sketch) This lemma follows from bounding the two terms in the following inequality:∣∣∣Fk(h′, D)− F̂k(h,D)
∣∣∣ ≤ ∣∣∣F̂k(h′, D)− F̂k(h,D)

∣∣∣+
∣∣∣Fk(h′, D)− F̂k(h′, D)

∣∣∣ .
The first term can be bounded using the empirical counterpart of Theorem 3.2. The second term is then bounded with
high probability using standard uniform convergence bounds (Shalev-Shwartz and Ben-David, 2014). The complete
proof can be found in Appendix D where the result is also extended to the simpler case where h and h′ are fixed rather
than learned on D.

4 Bounding the Relative Fairness of Private Models
In this section, we quantify the difference of fairness between a private model and its non-private counterpart. Let
` : H×X × S × Y → R be a loss function. Assume ` is Λ-Lipschitz, and µ-strongly-convex with respect to its first
variable. Assume the norm ‖·‖H is Euclidean, and thatH is convex. We define the optimal model h∗ ∈ H as

h∗ = arg min
h∈H

f(h) =
1

n

n∑
i=1

`(h;xi, si, yi) . (3)

Two mechanisms are commonly used to find a differentially private approximation hpriv of h∗: output perturbation
(Chaudhuri et al., 2011; Lowy and Razaviyayn, 2021), and DP-SGD (Bassily et al., 2014; Abadi et al., 2016). For both
mechanisms, the distance

∥∥hpriv − h∗
∥∥
H can be upper bounded with high probability. In this section, we recall these

two mechanisms and the corresponding high probability upper bounds. We then plug these bounds in Theorem 3.2 to
bound the fairness level of the private solution hpriv relatively to the one of the true solution h∗.

4.1 Bounding the Distance between Private and Optimal Classifiers
Output perturbation. Output perturbation computes the non-private solution h∗ of (3), and releases a private estimate
by the Gaussian mechanism:

hpriv = πH(h∗ +N (σ2Ip)) ,

where πH is the projection onH. Let ∆ be the sensitivity of the function D 7→ arg minw∈H f(w;D). In our setting,
we have ∆ = 2Λ/µn. Then, given 0 < ε, δ < 1, hpriv is (ε, δ)-differentially private as long as σ2 ≥ 2∆2 log(1.25/δ)/ε2.
We bound the distance between hpriv and h∗ with high probability in Lemma 4.1 (proved in Appendix E).

Lemma 4.1. Let hpriv be the vector released by output perturbation with noise σ2 = 8Λ2 log(1.25/δ)/µ2n2ε2, and
0 < ζ < 1, then with probability at least 1− ζ,

∥∥hpriv − h∗
∥∥2

2
≤ 32pΛ2 log(1.25/δ) log(2/ζ)

µ2n2ε2
.

DP-SGD. DP-SGD starts from some h0 ∈ H and updates it using stochastic gradients. That is, with γ > 0,
i ∼ U([n]), and ηt ∼ N (0, σ2Ip), we iteratively update

ht+1 = πH(ht − γ(∇`(ht;xi, yi) + ηt)) .
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After T > 0 iterations, we release hpriv = hT . Given 0 < ε, δ < 1, hpriv is (ε, δ)-differentially private when
σ2 ≥ 64Λ2T 2 log(3T/δ) log(2/δ)/n2ε2. Assuming the loss function is smooth in its first parameter, we bound the distance
between hpriv and h∗ with high probability in Lemma 4.2 (proved in Appendix F).

Lemma 4.2. Let hpriv be the vector released by DP-SGD with σ2 = 64Λ2T 2 log(3T/δ) log(2/δ)/n2ε2. Assume that
σ2
∗ = Ei∼[n] ‖∇`(h∗;xi, yi)‖

2 ≤ σ2. Let 0 < ζ < 1, then with probability at least 1− ζ,

∥∥hpriv − h∗
∥∥2

2
= Õ

(
pΛ2 log(1/δ)2

ζµ2n2ε2

)
,

where Õ ignores logarithmic terms in n (the number of examples) and p (the number of model parameters).

Remark 4.3. For clarity of exposition in Lemma 4.2, we did not use minimal assumptions and used the simplest variant
of DP-SGD. Notably, the assumption on σ∗ can be removed by using variance reduction schemes, and tighter bounds
on σ can also be obtained using Rényi Differential Privacy (Mironov, 2017). Similarly, the assumption ε < 1 is only
used to give simple closed-form bounds. Strong convexity and smoothness assumptions can be relaxed as well.

Table 1: Upper bound, with 99% probability, on the difference of fairness between private and non-private models for
different fairness measures and accuracy. Privacy parameters are ε = 1 and δ = 1/n2 where n is the number of samples
in the training data.

Dataset Equality of Opportunity Equalized Odds Demographic Parity Accuracy Parity Accuracy

celebA (n = 182, 339) 0.1044 0.0975 0.0975 0.0975 0.0487
folktables (n = 1, 498, 050) 0.0017 0.0026 0.0026 0.0026 0.0013

4.2 Bounding the Fairness of Private Models
We now state our central result (Theorem 4.4), where we bound the fairness of hpriv relatively to the one of h∗.

Theorem 4.4. Let h∗ be the solution of (3), and hpriv its private estimate obtained by output perturbation. Let
href ∈ {hpriv, h∗}, and 0 < ζ < 1. Then, the difference of fairness of group k ∈ [K] satisfies, with probability at least
1− ζ,

∣∣Fk(hpriv, D)− Fk(h∗, D)
∣∣ ≤ χk(href , D)LΛ

√
32p log(1.25/δ) log(2/ζ)

µnε
.

Similarly, if hpriv is estimated through DP-SGD, we have that, with probability at least 1− ζ,

∣∣Fk(hpriv, D)− Fk(h∗, D)
∣∣ ≤ Õ(χk(href , D)LΛ

√
p log(1/δ)√

ζµnε

)
,

where Õ ignores logarithmic terms in n (the number of examples) and p (the number of model parameters).

Proof. By Lemma 4.1 or Lemma 4.2, we control the distance
∥∥hpriv − h∗

∥∥. Plugging this bound in Theorem 3.2 gives
the result.

This result shows that, when learning a private model, the unfairness due to privacy vanishes at a Õ(
√
p/n) rate. To the

best of our knowledge, our result is the first to quantify this rate. Importantly, it highlights the role of the confidence
margin of the classifier on the impact of differential privacy on fairness. This is in line with previous empirical and
theoretical work that identified the groupwise distances to the decision boundary as an important factor (Tran et al.,
2021; Fioretto et al., 2022). However, our bounds are the first to quantify this impact through a classic notion of
confidence margin studied in learning theory (Cortes et al., 2013).

8



Our result may be interpreted and used in various ways. A first example is the case where the private model is known
but its optimal non-private counterpart is not. There, our result guarantees that, given enough examples, the fairness
level of the private model is close to the one of the optimal non-private model. This allows the practitioner to give
guarantees on the model, that the end user can trust. A second example is the case where the true model h∗ is owned
by someone who cannot share it, due to privacy concerns. Imagine that the model needs to be audited for fairness.
Then, the model owner can compute a private estimate of their model, and send it to the (honest but curious) auditing
company. The bound allows to obtain fairness bounds for the true model from the inspection of the private one, and
thus acts as a certificate of correctness of the audit done on the private version of the model.

Remark 4.5. The fairness guarantee for the private model given by Theorem 4.4 is relative to the fairness of the optimal
model h∗, which may itself be quite unfair. A standard approach to promote fair models is to use convex relaxations
of fairness as regularizers to the ERM problem (Bechavod and Ligett, 2017; Huang and Vishnoi, 2019; Lohaus et al.,
2020). Interestingly, to be able to use output perturbation, we only require the objective function of (3) to be strongly
convex and Lipschitz over h ∈ H, which is the case for these relaxations when they are combined with a squared
`2-norm. For binary classification with two sensitive groups, Lohaus et al. (2020) proved that, with a proper choice of
regularization parameters, this approach can yield a fair h∗ (see their Theorem 1 for more details). Combined with our
results, this paves the way for the design of algorithms that learn provably private and fair classifiers. However, several
crucial challenges remain to make this approach work in practice, such as (i) finding the appropriate regularization
parameters privately, and (ii) providing guarantees on the resulting classifiers’ accuracy. We leave this for future work.

5 Numerical Experiments
In this section, we numerically illustrate the upper bounds from Section 4.2. We use the celebA (Liu et al., 2015)
and folktables (Ding et al., 2021) datasets, which respectively contain 202, 599 and 1, 664, 500 samples, with 39
and 10 features (including one sensitive attribute, sex, that is not not used for prediction), and binary labels. For each
dataset, we use 90% of the records for training, and the remaining 10% for empirical evaluation of the bounds. We train
`2-regularized logistic regression models, ensuring that the underlying optimization problem is 1-strongly-convex. This
allows learning private models by output perturbation, for which the bound from Theorem 4.4 holds.

In Section 5.1, we show that we obtain non-trivial guarantees on the private model’s fairness and accuracy. Then,
we study the influence of the number of training samples and of the privacy budget ε in Section 5.2, and discuss the
tightness of our result in Section 5.3.

5.1 Value of the Upper Bounds
In Table 1, we compute the value of Theorem 4.4’s bounds. We learn a non-private `2-regularized logistic regression
model, and use it to compute the bounds (averaged over the two groups) for multiple fairness and accuracy measures
on two datasets. In all cases, our results give non-trivial guarantees on the difference of fairness: it is bounded by at
most 0.105 for celebA and 0.0026 for folktables. This means that any (1, 1/n2)-DP model learned by output
perturbation will, with high probability, achieve a fairness level within this margin of that of the non-private model.

5.2 Influence of the Number of Training Samples and Privacy Budget
We now verify numerically the rate at which fairness and accuracy levels decrease when increasing the number of
training records or privacy budget. In Figure 1, we plot the optimal model’s equality of opportunity and accuracy, as a
function of (i) in the first line, the number of samples n used for training, or (ii) in the second line, the privacy budget ε
(see Appendix G for results with other fairness measures). For each value of n and ε, we plot Theorem 4.4’s theoretical
guarantees (solid blue line). With ε = 1, our bounds give meaningful guarantees for n ≥ 100, 000 records on both
celebA and folktables datasets (Figures 1a to 1d). When using all records, we obtain meaningful bounds for
ε ≥ 1 for celebA and ε ≥ 0.1 for folktables (Figures 1e to 1h). Additionally, note that we obtain both upper and
lower bounds on fairness and accuracy, confirming remarks from Section 3.2.
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Figure 1: Equality of opportunity (Equal. Opp.) and Accuracy levels for optimal non-private model and random private
ones as a function of the number of training records n (first line, with ε = 1 and δ = 1/n2) and of the privacy budget ε
(second line, using all available training records). For each value of n and ε, we sample 100 private models and take
their minimum and maximum fairness/accuracy values to mark the area of attainable values. The solid blue line gives
the theoretical guarantees from Theorem 4.4, while the dashed and dotted line give finer bounds when more information
is available (see Section 5.3 for details).

We also report the fairness and accuracy levels of 100 private models computed by output perturbation (in green in
Figure 1). As predicted by our theory, their fairness and accuracy converges towards the ones of their non-private
counterparts as n and ε increase. Interestingly, our bounds seem to follow the same tendency as what we observe
empirically (albeit with a larger multiplicative constant), suggesting that they capture the correct dependence in n and ε.
We further discuss the tightness of our results in next section.

5.3 Tightness of the Bound
We now argue that the two major factors of looseness in our results are (i) the upper bound on

∥∥hpriv − h∗
∥∥ and (ii) the

looseness of Assumption 2.1. While these cannot be improved in general, specific knowledge of hpriv and h∗ (that is
typically not available due to privacy) can lead to tighter bounds. First, when the distance

∥∥hpriv − h∗
∥∥ is known, we

can use its actual value rather than the upper bounds of Section 4.1 (see dashed blue line in Figure 1). Second, when
both hpriv and h∗ are known, Assumption 2.1 can be substantially refined (see details in Appendix G.3). We evaluate
this bound for the private model that is the farthest away from the non-private one (see dotted blue line in Figure 1).
The resulting bound appears to be tight up to a small multiplicative constant. These two observations suggest that our
bounds cannot be significantly tightened, unless one can obtain such knowledge through either private computation or
additional assumptions on the data.

6 Conclusion
In this work, we proved that the fairness (and accuracy) costs induced by privacy in differentially private classification
vanishes at a Õ(

√
p/n) rate, where n is the number of training records, and p the number of parameters. This rate follows
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from a general statement on group fairness measures’ regularity, that we prove to be pointwise Lipschitz with respect to
the model. The pointwise Lipschitz constant explicitly depends on the confidence margin of the model, and we show it
can be computed from a finite data sample. Importantly, our bounds does not require the knowledge of the optimal
(non-private) model: they can thus be used in practical privacy-preserving scenarios. We numerically evaluate our
bounds on real datasets, and highlight practical settings where non-trivial guarantees can be obtained.

Our results could help build more trustworthy machine learning models, by guaranteeing that their fairness and accuracy
approximately match the one of the non-private model. We believe that our results are applicable to privacy-preserving
methods beyond output perturbation and DP-SGD. Indeed, deriving high-probability bounds on the distance between
the private and the non-private model is sufficient to apply them. Note however that our bounds crucially rely on the
uniqueness of problem (3)’s solution, which is guaranteed by strong convexity. Relaxing this hypothesis is challenging,
but would greatly broaden the scope of our results.

We stress that our results do not provide fairness guarantees per se, but only bound the difference of fairness between
models. It is nonetheless a first step towards a more complete understanding of the interplay between privacy, fairness,
and accuracy. We believe that our results can guide the design of fairer privacy-preserving machine learning algorithms.
A first promising direction in this regard is to combine our bounds with fairness-promoting convex regularizers, as
discussed in Remark 4.5. Another direction is the design of methods to privately learn models with large-margin
guarantees, as recently considered by Bassily et al. (2022). Our results, which explicitly depend on the confidence
margin of the model, suggest that better fairness guarantees could be obtained for these methods.
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This appendix provides several examples of group fairness functions compatible with our framework (Appendix A), the
proofs of the main theoretical results that were omitted in the main paper for the sake of readability (Appendices B
to F), and additional experiments (Appendix G).

A Fairness functions
In this section we recall several well known fairness functions and show that they can be written in the form of
Equation (1).

Example 1 (Equalized Odds (Hardt et al., 2016)). A model h is fair for Equalized Odds when the probability of
predicting the correct label is independent of the sensitive attribute, that is, ∀(y, r) ∈ Y × S

F(y,r)(h,D) = P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y) .

We can then write F(y,r)(h,D) in the form of Equation (1) as

F(y,r)(h,D) = C0
(y,r) +

∑
(y′,r′)∈Y×S

C
(y′,r′)
(y,r) P (H(x) = Y |Y = y′, S = r′) (4)

with

C0
(y,r) = 0

C
(y,r)
(y,r) = 1− P (S = r | Y = y)

∀r′ 6= r, C(y,r′)
(y,r) = − P (S = r′ | Y = y)

∀y′ 6= y, ∀r′ ∈ S, C(y′,r′)
(y,r) = 0

Proof. We have that

F(y,r)(h,D) = P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y)

= P (H(X) = Y | Y = y, S = r)−
∑
r′∈S

P (H(X) = Y | Y = y, S = r′)P (S = r′ | Y = y)

which gives the result.

Example 2 (Equality of Opportunity Hardt et al. (2016)). A model h is fair for Equality of Opportunity when the
probability of predicting the correct label is independent of the sensitive attribute for the set of desirable outcomes
Y ′ ⊂ Y , that is ∀(y, r) ∈ Y × S

F(y,r)(h,D) =

{
P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y) if y ∈ Y ′,
0 otherwise.

We can then write F(y,r)(h,D) in the form of Equation (1) as

F(y,r)(h,D) = C0
(y,r) +

∑
(y′,r′)∈Y×S

C
(y′,r′)
(y,r) P (H(X) = Y |Y = y′, S = r′) (5)

with, if y ∈ Y ′,

C0
(y,r) = 0

C
(y,r)
(y,r) = 1− P (S = r | Y = y)
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∀r′ 6= r, C(y,r′)
(y,r) = − P (S = r′ | Y = y)

∀y′ 6= y, ∀r′ ∈ S, C(y′,r′)
(y,r) = 0

and, if y ∈ Y \ Y ′,

∀y′ ∈ Y , ∀r′ ∈ S, C(y′,r′)
(y,r) = 0.

Proof. We consider the two cases. On the one hand, when y ∈ Y \ Y ′, then we have that

F(y,r)(h,D) = 0

which gives the first part of the result. On the other hand, when y ∈ Y ′, then we have that

F(y,r)(h,D) = P (H(X) = Y | Y = y, S = r)− P (H(X) = Y | Y = y)

= P (H(X) = Y | Y = y, S = r)−
∑
r′∈S

P (H(X) = Y | Y = y, S = r′)P (S = r′ | Y = y)

which gives the second part of the result.

Example 3 (Accuracy Parity Zafar et al. (2017)). A model h is fair for Accuracy Parity when the probability of being
correct is independent of the sensitive attribute, that is, ∀(r) ∈ S

F(r)(h,D) = P (H(X) = Y | S = r)− P (H(X) = Y ) .

We can then write F(r)(h,D) in the form of Equation (1) as

F(r)(h,D) = C0
(r) +

∑
(r′)∈S

C
(r′)
(r) P (H(X) = Y |S = r′) (6)

with

C0
(r) = 0

C
(r)
(r) = 1− P (S = r)

∀r′ 6= r, C(r′)
(r) = − P (S = r′)

Proof. We have that

F(r)(h,D) = P (H(X) = Y | S = r)− P (H(X) = Y )

= P (H(X) = Y | S = r)−
∑
r′∈S

P (H(X) = Y | S = r′)P (S = r′)

which gives the result.

Example 4 (Demographic Parity (Binary Labels) Calders et al. (2009)). A model h is fair for Demographic
Parity with binary labels when the probability of predicting a label is independent of the sensitive attribute, that is,
∀(y, r) ∈ Y × S

F(y,r)(h,D) = P (H(X) = y | S = r)− P (H(X) = y) .

Assuming that given a label y, the second binary label is denoted ȳ, we can then write F(y,r)(h,D) in the form of
Equation (1) as

F(y,r)(h,D) = C0
(y,r) +

∑
(y′,r′)∈Y×S

C
(y′,r′)
(y,r) P (H(X) = Y |Y = y′, S = r′) (7)
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with

C0
(y,r) = P (Y = y)− P (Y = y | S = r)

C
(y,r)
(y,r) = P (Y = y | S = r)− P (Y = y, S = r)

C
(ȳ,r)
(y,r) = P (Y = ȳ, S = r)− P (Y = ȳ | S = r)

∀r′ 6= r, C(y,r′)
(y,r) = − P (Y = y, S = r′)

∀r′ 6= r, C(ȳ,r′)
(y,r) = P (Y = ȳ, S = r′)

Proof. We have that

F(y,r)(h,D) = P (H(X) = y | S = r)− P (H(X) = y)

= P (H(X) = y | Y = y, S = r)P (Y = y | S = r) + P (H(X) = y | Y 6= y, S = r)P (Y 6= y | S = r)

−
∑
r′∈S

(
P (H(X) = y | Y = y, S = r′)P (Y = y, S = r′)

+ P (H(X) = y | Y 6= y, S = r′)P (Y 6= y, S = r′)
)

= P (H(X) = y | Y = y, S = r)P (Y = y | S = r)

+ 1− P (H(X) 6= y | Y 6= y, S = r)P (Y 6= y | S = r)

−
∑
r′∈S

(
P (H(X) = y | Y = y, S = r′)P (Y = y, S = r′)

+ 1− P (H(X) 6= y | Y 6= y, S = r′)P (Y 6= y, S = r′)
)
.

Here, we only consider binary labels, y and ȳ. Hence, H(X) 6= y ⇔ H(X) = ȳ and Y 6= y ⇔ Y = ȳ. Thus, we
obtain

F(y,r)(h,D)

= P (H(X) = y | Y = y, S = r)P (Y = y | S = r) + (1− P (H(X) = ȳ | Y = ȳ, S = r))P (Y = ȳ | S = r)

−
∑
r′∈S

(
P (H(X) = y | Y = y, S = r′)P (Y = y, S = r′)

+ (1− P (H(X) = ȳ | Y = ȳ, S = r′))P (Y = ȳ, S = r′)
)

= P (H(X) = y | Y = y, S = r) [P (Y = y | S = r)− P (Y = y, S = r)]

+ P (H(X) = ȳ | Y = ȳ, S = r) [P (Y = ȳ, S = r)− P (Y = ȳ | S = r)]

+
∑

r′∈S,r′ 6=r

P (H(X) = y | Y = y, S = r′) (−P (Y = y, S = r′))

+
∑

r′∈S,r′ 6=r

P (H(X) = ȳ | Y = ȳ, S = r′)P (Y = ȳ, S = r′)

+ P (Y = ȳ | S = r)− P (Y = ȳ)

= P (H(X) = Y | Y = y, S = r) [P (Y = y | S = r)− P (Y = y, S = r)]

+ P (H(X) = Y | Y = ȳ, S = r) [P (Y = ȳ, S = r)− P (Y = ȳ | S = r)]

+
∑

r′∈S,r′ 6=r

P (H(X) = Y | Y = y, S = r′) (−P (Y = y, S = r′))

+
∑

r′∈S,r′ 6=r

P (H(X) = Y | Y = ȳ, S = r′)P (Y = ȳ, S = r′)

+ P (Y = y)− P (Y = y | S = r)

which gives the result.
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B Proof of Theorem 3.1
Theorem (Pointwise Lipschitzness of Conditional Negative Predictions). Let H be a set of real vector-valued
functions with LX,Y the Lipschitz constants defined in Assumption 2.1. Let h, h′ ∈ H be two models, (X,Y, S) be a

triple of random variables having distribution D, and E be an arbitrary event. Assume that E
(

LX,Y
|ρ(h,X,Y )|

∣∣∣ E) < +∞,
then

|P(H(X) = Y | E)− P(H ′(X) = Y | E)| ≤ E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ E) ‖h− h′‖H .

Proof. The proof of this theorem is in two steps. First, we use the Lipschitz continuity property associated withH, the tri-
angle inequality, and the union bound to show that |P (H(X) = Y | E)− P (H ′(X) = Y | E)| ≤ P

(
LX,Y

|ρ(h,X,Y )| ≤ ‖h− h
′‖H

∣∣∣ E).
Then, applying Markov’s inequality gives the desired result.

Bounding |P (H(X) = Y | E)− P (H ′(X) = Y | E)|. We have that

P (H(X) = Y | E)−P (H ′(X) = Y | E)

≤ P (ρ(h,X, Y ) ≥ 0 | E)− P (ρ(h′, X, Y ) > 0 | E)

= P (ρ(h′, X, Y ) ≤ 0 | E)− P (ρ(h,X, Y ) < 0 | E)

= P (ρ(h′, X, Y )− ρ(h,X, Y ) + ρ(h,X, Y ) ≤ 0 | E)− P (ρ(h,X, Y ) < 0 | E)

= P (ρ(h,X, Y ) ≤ ρ(h,X, Y )− ρ(h′, X, Y ) | E)− P (ρ(h,X, Y ) < 0 | E)

≤ P (ρ(h,X, Y ) ≤ |ρ(h,X, Y )− ρ(h′, X, Y )| | E)− P (ρ(h,X, Y ) < 0 | E)

↓ Assumption 2.1.

≤ P (ρ(h,X, Y ) ≤ LX,Y ‖h− h′‖H | E)− P (ρ(h,X, Y ) < 0 | E)

= P
(
ρ(h,X, Y ) < 0

⋃
0 ≤ ρ(h,X, Y ) ≤ LX,Y ‖h− h′‖H

∣∣∣ E)− P (ρ(h,X, Y ) < 0 | E)

↓ Union bound on disjoint events.

= P (0 ≤ ρ(h,X, Y ) ≤ LX,Y ‖h− h′‖H | E)

≤ P (|ρ(h,X, Y )| ≤ LX,Y ‖h− h′‖H | E)

= P
(
|ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H

∣∣∣∣ E)
Similarly, we have that

P (H ′(X) = Y | E)−P (H(X) = Y | E)

≤ P (ρ(h′, X, Y ) ≥ 0 | E)− P (ρ(h,X, Y ) > 0 | E)

= P (ρ(h′, X, Y ) + ρ(h,X, Y )− ρ(h,X, Y ) ≥ 0 | E)− P (ρ(h,X, Y ) > 0 | E)

= P (ρ(h,X, Y ) ≥ − (ρ(h′, X, Y )− ρ(h,X, Y )) | E)− P (ρ(h,X, Y ) > 0 | E)

≤ P (ρ(h,X, Y ) ≥ − |ρ(h′, X, Y )− ρ(h,X, Y )| | E)− P (ρ(h,X, Y ) > 0 | E)

↓ Assumption 2.1

≤ P (ρ(h,X, Y ) ≥ −LX,Y ‖h− h′‖H | E)− P (ρ(h,X, Y ) > 0 | E)

= P
(
ρ(h,X, Y ) > 0

⋃
0 ≥ ρ(h,X, Y ) ≥ −LX,Y ‖h− h′‖H

∣∣∣ E)− P (ρ(h,X, Y ) > 0 | E)

↓ Union bound on disjoint events.

= P (0 ≥ ρ(h,X, Y ) ≥ −LX,Y ‖h− h′‖H | E)

≤ P (− |ρ(h,X, Y )| ≥ −LX,Y ‖h− h′‖H | E)

= P
(
|ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H

∣∣∣∣ E)
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It implies that

|P (H(X) = Y | E)− P (H ′(X) = Y | E)| ≤ P
(
|ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H

∣∣∣∣ E)

Bounding P
(
|ρ(h,X,Y )|
LX,Y

≤ ‖h− h′‖H
∣∣∣ E). We use the Markov’s Inequality and we assume that E

(
LX,Y

|ρ(h,X,Y )|

∣∣∣ E) <
+∞. Hence, we have that

P
(
|ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H

∣∣∣∣ E) = P
(

LX,Y
|ρ(h,X, Y )|

≥ 1

‖h− h′‖H

∣∣∣∣ E)
↓ Markov’s inequality.

≤ E
(

LX,Y
|ρ(h,X, Y )|

∣∣∣∣ E) ‖h− h′‖H
It concludes the proof.

Remark B.1. In the last step of the proof of Theorem 3.1, we can also use the Chernoff bound:

P
(
|ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H

∣∣∣∣ E) = P
(

exp

(
−t |ρ(h,X, Y )|

LX,Y

)
≥ exp (−t ‖h− h′‖H)

∣∣∣∣ E)
≤ E

(
exp

(
−t |ρ(h,X, Y )|

LX,Y

) ∣∣∣∣ E) exp (t ‖h− h′‖H) .

A correct choice of t would lead to potentially tighter bounds than the Markov’s inequality at the expense of readability.

Remark B.2. Before using Markov’s inequality or Chernoff bound in Theorem 3.1, we can modify the probability as

P
(
|ρ(h,X, Y )|

LX,Y
≤ ‖h− h′‖H

∣∣∣∣ E) = P

([
|ρ(h,X, Y )|

LX,Y

]‖h−h′‖H
≤ ‖h− h′‖H

∣∣∣∣∣ E
)

,

where [
|ρ(h,X, Y )|

LX,Y

]‖h−h′‖H
=

{
|ρ(h,X,Y )|
LX,Y

if |ρ(h,X, Y )| ≤ LX,Y ‖h− h′‖H ,

+∞ otherwise .

This essentially means that, whenever the model’s margin on a data record is large enough, its precise value is no more
meaningful, as its prediction will not change whatsoever. The remaining of Theorem 3.1’s proof is unchanged, except

with
[
|ρ(h,X,Y )|
LX,Y

]‖h−h′‖H instead of |ρ(h,X,Y )|
LX,Y

.

Note that this can lead to much tighter bounds. Notably, when distance ‖h− h′‖H between h and h′ is small enough,
the difference of fairness may even become zero.

C Proof of Theorem 3.2
Theorem (Pointwise Lipschitzness of Fairness). Let h, h′ ∈ H, LX,Y be defined as in Assumption 2.1, and
(X,S, Y ) ∼ D. For any fairness notion of the form of Equation (1), we have:

∀k ∈ [K], |Fk(h,D)− Fk(h′, D)| ≤ χk(h,D) ‖h− h′‖H ,

with χk(h,D) =
∑K
k′=1

∣∣∣Ck′k ∣∣∣E( 1
|h(X)|

∣∣∣ Dk′

)
. Similarly, for the aggregate measure of fairness defined in Equa-

tion (2), we have:

|Fair(h,D)− Fair(h′, D)| ≤ 1

K

K∑
k=1

χk(h,D) ‖h− h′‖H .
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Proof. The first part follows from the following derivation. For all k,

|Fk(h,D)− Fk(h′, D)| =

∣∣∣∣∣C0
k +

K∑
k′=1

Ck
′

k P (H(X) = Y |Dk′)− C0
k −

K∑
k′=1

Ck
′

k P (H ′(X) = Y |Dk′)

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k′=1

Ck
′

k

(
P (H(X) = Y |Dk′)− P (H ′(X) = Y |Dk′)

)∣∣∣∣∣
↓ Triangle inequality.

≤
K∑
k′=1

∣∣∣Ck′k ∣∣∣ |P (H(X) = Y |Dk′)− P (H ′(X) = Y |Dk′)|

↓ Theorem 3.1.

≤
K∑
k′=1

∣∣∣Ck′k ∣∣∣E( LX,Y
|ρ(h,X, Y )|

∣∣∣∣ Dk′

)
‖h− h′‖H .

The second part is obtained thanks to the triangle inequality:

|Fair(h,D)− Fair(h′, D)| =

∣∣∣∣∣ 1

K

K∑
k=1

|Fk(h,D)| − 1

K

K∑
k=1

|Fk(h′, D)|

∣∣∣∣∣
↓ Triangle inequality.

≤ 1

K

K∑
k=1

||Fk(h,D)| − |Fk(h′, D)||

↓ Reverse triangle inequality.

≤ 1

K

K∑
k=1

|Fk(h,D)− Fk(h′, D)| ,

which gives the claim when combined with the first part of the theorem.

D Proof of Lemma 3.4

Lemma (Finite Sample analysis). Let D be a finite sample of n ≥ 8 log( 2K+1
δ )

mink′ pk′
examples drawn i.i.d. from D,

where pk′ is the true proportion of examples from group k′. Assume that PD∼Dn
(∑K

k′=0

∣∣Ck′k − Ĉk′k ∣∣ > αC
)
≤

B3 exp
(
−B4α

2
Cn
)
. LetH be an hypothesis space and dH be the Natarajan dimension ofH.

• Assuming that h and h′ are independent of D. With probability 1− δ over the choice of D,∣∣∣Fk(h,D)− F̂k(h′, D)
∣∣∣ ≤ χ̂k(h,D) ‖h− h′‖H + Õ

(
K∑
k′=1

∣∣∣Ĉk′k ∣∣∣
√

log (K/δ)

npk′

)

• Assuming that h and h′ are dependent of D. With probability 1− δ over the choice of D, ∀h, h′ ∈ H,∣∣∣Fk(h,D)− F̂k(h′, D)
∣∣∣ ≤ χ̂k(h,D) ‖h− h′‖H + Õ

(
K∑
k′=1

∣∣∣Ĉk′k ∣∣∣
√
dH + log (K/δ)

npk′

)

Proof. First of all, notice that we have∣∣∣Fk(h,D)− F̂k(h′, D)
∣∣∣ =

∣∣∣Fk(h,D)− F̂k(h,D) + F̂k(h,D)− F̂k(h′, D)
∣∣∣
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≤
∣∣∣Fk(h,D)− F̂k(h,D)

∣∣∣+
∣∣∣F̂k(h,D)− F̂k(h′, D)

∣∣∣
↓ Theorem 3.2

≤
∣∣∣Fk(h,D)− F̂k(h,D)

∣∣∣+ χ̂k(h′, D) ‖h− h′‖H

Hence it remains to bound the first term. By definition of our fairness notions, notice that we have the following.

∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ =

∣∣∣∣∣C0
k +

K∑
k′=1

Ck
′

k P (H(X) = Y |Dk′)− Ĉ0
k −

K∑
k′=1

Ĉk
′

k P̂ (H(X) = Y |Dk′)

∣∣∣∣∣
≤
∣∣∣C0
k − Ĉ0

k

∣∣∣+

∣∣∣∣∣
K∑
k′=1

Ck
′

k P (H(X) = Y |Dk′)− Ĉk
′

k P̂ (H(X) = Y |Dk′)

∣∣∣∣∣
≤
∣∣∣C0
k − Ĉ0

k

∣∣∣+

K∑
k′=1

∣∣∣Ck′k P (H(X) = Y |Dk′)− Ĉk
′

k P (H(X) = Y |Dk′)

+ Ĉk
′

k P (H(X) = Y |Dk′)− Ĉk
′

k P̂ (H(X) = Y |Dk′)
∣∣∣

≤
∣∣∣C0
k − Ĉ0

k

∣∣∣+

K∑
k′=1

∣∣∣Ck′k P (H(X) = Y |Dk′)− Ĉk
′

k P (H(X) = Y |Dk′)
∣∣∣

+

K∑
k′=1

∣∣∣Ĉk′k P (H(X) = Y |Dk′)− Ĉk
′

k P̂ (H(X) = Y |Dk′)
∣∣∣

≤
∣∣∣C0
k − Ĉ0

k

∣∣∣+

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣ ∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣

+

K∑
k′=1

∣∣∣Ck′k − Ĉk′k ∣∣∣P (H(X) = Y |Dk′)

≤
∣∣∣C0
k − Ĉ0

k

∣∣∣+

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣ ∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣

+

K∑
k′=1

∣∣∣Ck′k − Ĉk′k ∣∣∣
≤

K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣+

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣ ∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣

We now need to consider two cases, depending on whether h depends on D or not.

Assuming that h is independent of D. In this case, our goal is to upper bound

P
D∼Dn

(∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)

Notice that, using the same trick that Woodworth et al. (2017) used to prove their Equation (38), we have that

P
D∼Dn

(∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)
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≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣+

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣ ∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC
⋃[

K⋃
k′=1

∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

])

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)
+

K∑
k′=1

P
D∼Dn

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

)
≤ P

D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

n∑
i=0

P
D∼Dn

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

∣∣∣ |Dk′ | = i
)

P
D∼Dn

(|Dk′ | = i)

↓ Let pk′ = P (Dk′)

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

np
k′/2−1∑
i=0

P
D∼Dn

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

∣∣∣ |Dk′ | = i
)

P
D∼Dn

(|Dk′ | = i)

+

K∑
k′=1

n∑
i=npk′/2

P
D∼Dn

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

∣∣∣ |Dk′ | = i
)

P
D∼Dn

(|Dk′ | = i)

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

np
k′/2−1∑
i=0

P
D∼Dn

(|Dk′ | = i)

+

K∑
k′=1

n∑
i=npk′/2

P
Dk′∼Dik′

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

)
P

D∼Dn
(|Dk′ | = i)

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

P
D∼Dn

(
|Dk′ | <

npk′

2

)
+

K∑
k′=1

n∑
i=npk′/2

P
Dk′∼Dik′

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

)
P

D∼Dn
(|Dk′ | = i)

Using Hoeffding’s inequality, we can show that

P
Dk′∼D

n
k′
k′

(∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > β

)
≤ 2 exp

(
−2β2nk′

)
which implies

P
D∼Dn

(∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)
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↓ 2 exp
(
−2β2i

)
≥ 2 exp

(
−2β2(i+ 1)

)
.

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

P
D∼Dn

(
|Dk′ | <

npk′

2

)
+

K∑
k′=1

2 exp
(
−α2

k′npk′
)

↓ By assumption, P
D∼Dn

(
K∑

k′=0

∣∣∣Ck′
k − Ĉk′

k

∣∣∣ > αC

)
≤ B3 exp

(
−B4α

2
Cn
)
.

≤ B3 exp
(
−B4α

2
Cn
)

+

K∑
k′=1

P
D∼Dn

(
|Dk′ | <

npk′

2

)
+

K∑
k′=1

2 exp
(
−α2

k′npk′
)

↓ Chernoff multiplicative bound.

≤ B3 exp
(
−B4α

2
Cn
)

+

K∑
k′=1

exp
(
−npk

′

8

)
+

K∑
k′=1

2 exp
(
−α2

k′npk′
)

Now, by assumption that n ≥ 8 log( 2K+1
δ )

mink′ pk′
and setting

αC =

√√√√ log
(
B3(2K+1)

δ

)
B4n

αk′ =

√√√√ log
(

2(2K+1)
δ

)
npk′

yields that, with probability at least 1− δ,

∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ ≤

√√√√ log
(
B3(2K+1)

δ

)
B4n

+

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣
√√√√ log

(
2(2K+1)

δ

)
npk′

Assuming that h is dependent of D. In this case, our goal is to bound

P
D∼Dn

(
sup
h∈H

∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)

Using similar arguments that in the independent case, we have that

P
D∼Dn

(
sup
h∈H

∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)
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≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

P
D∼Dn

(
|Dk′ | <

npk′

2

)
+

K∑
k′=1

n∑
i=npk′/2

P
Dk′∼Dik′

(
sup
h∈H

∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > αk′

)
P

D∼Dn
(|Dk′ | = i)

Using the Multiclass Fundamental Theorem (Shalev-Shwartz and Ben-David, 2014, Theorem 29.3, Lemma 29.4) with
dH the Natarajan dimension ofH, we have that

P
Dk′∼D

n
k′
k′

(
sup
h∈H

∣∣∣P (H(X) = Y |Dk′)− P̂ (H(X) = Y |Dk′)
∣∣∣ > β

)
≤ 8ndHk′ |Y|

2dH exp

(
−nk

′β2

32

)
which implies

P
D∼Dn

(
sup
h∈H

∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ > αC +

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣αk′
)

≤ P
D∼Dn

(
K∑
k′=0

∣∣∣Ck′k − Ĉk′k ∣∣∣ > αC

)

+

K∑
k′=1

P
D∼Dn

(
|Dk′ | <

npk′

2

)
+

K∑
k′=1

8
(npk′

2

)dH
|Y|2dH exp

(
−
(npk′

2

)
α2
k′

32

)

Now, by assumption that n ≥ 8 log( 2K+1
δ )

mink′ pk′
and setting

αC =

√√√√ log
(
B3(2K+1)

δ

)
B4n

αk′ =

√√√√√64 log

(
8(
np
k′
2 )

dH |Y|2dH (2K+1)

δ

)
npk′

=

√√√√64
(
dH
(
log
(npk′

2

)
+ 2 log (|Y|)

)
+ log

(
8(2K+1)

δ

))
npk′

yields that, with probability at least 1− δ, ∀h ∈ H

∣∣∣Fk(h,D)− F̂k(h,D)
∣∣∣ ≤

√√√√ log
(
B3(2K+1)

δ

)
B4n

+

K∑
k′=1

∣∣∣Ĉk′k ∣∣∣
√√√√64

(
dH
(
log
(npk′

2

)
+ 2 log (|Y|)

)
+ log

(
8(2K+1)

δ

))
npk′

.

This concludes the proof.

E Bound for Output Perturbation (Proof of Lemma 4.1)
Lemma. Let hpriv be the vector released by output perturbation with noise σ2 = 8Λ2 log(1.25/δ)/µ2n2ε2, and 0 < ζ < 1,
then with probability at least 1− ζ,∥∥hpriv − h∗

∥∥2

2
≤ 32pΛ2 log(1.25/δ) log(2/ζ)

µ2n2ε2
.
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Proof. We prove this lemma in two steps. First, we show that for a given sensitivity, the distance
∥∥hpriv − h∗

∥∥ is
bounded. Second, we estimate the sensitivity.

Bounding the Error. Let ∆ be the sensitivity of the function D → arg minw∈C f(w;D). Its value can be released
under (ε, δ) differential privacy (Chaudhuri et al., 2011; Lowy and Razaviyayn, 2021) as follows:

hpriv = h∗ +N (0, σ2Ip) , (8)

where σ2 = 2∆2 log(1.25/δ)
ε2 and h∗ = arg minh∈C f(h). Then, Chernoff’s bound gives, for t, α > 0,

P(
∥∥hpriv − h∗∥∥2 ≥ α) ≤ exp(−tα)E(exp(t

∥∥hpriv − h∗∥∥2
)) (9)

= exp(−tα)

p∏
j=1

E(exp(t(hprivj − h∗j )2)) , (10)

by independence of the noise’s p coordinates. Since hprivj − h∗j is a Gaussian random variable of mean 0 and variance
σ2, we can compute E(exp(t(hprivj − h∗j ))) = (1− 2tσ2)−1/2. We then obtain

P(
∥∥hpriv − h∗∥∥2 ≥ α) ≤ exp(−tα)(1− 2tσ2)−p/2 . (11)

Let t = 1/4pσ2, then it holds that 1− 2tσ2 = 1− 1/2p ≤ 1 and

(1− 2tσ2)−p/2 = exp

(
−p

2
log(1− 1

2p
)

)
≤ exp

(
1

2(1− 1
p )

)
≤ exp(1/2) ≤ 2 , (12)

since p
2 log(1− 1

2p ) ≥ p
2
−1/2p
1−1/2p ≥ −

1
2 . Let 0 < ζ < 1, t = 1/4pσ2 and α = 4pσ2 log(2/ζ), we have proven

P(
∥∥hpriv − h∗∥∥2 ≥ α) ≤ 2 exp

(
− α

4pσ

)
≤ ζ . (13)

The error obtained by output perturbation is thus upper bounded by
∥∥hpriv − h∗∥∥2 ≤ 4pσ2 log(2/ζ) = 8p∆2 log(1.25/δ) log(2/ζ)

ε2

with probability at least 1− ζ.

Estimating the Sensitivity. Define g(h) = 1
n

∑n
i=1 `(w; d′i) with d′i ∈ X × Y such that d′i = di for all i 6= 1. By

strong convexity, the two following inequalities hold for h, h′,

f(h) ≥ f(h′) + 〈∇f(h′), h− h′〉+
µ

2
‖h− h′‖2 , (14)

f(h′) ≥ f(h) + 〈∇f(h), h′ − h〉+
µ

2
‖h− h′‖2 . (15)

Summing these two inequalities give 〈∇f(h) − ∇f(h′), h − h′〉 ≥ µ
2 ‖h− h

′‖2. Let h∗1 and h∗2 be the respective
minimizers of f and g over C, taking h = h∗1 and h′ = h∗2 gives

µ

2
‖h∗1 − h∗2‖2 ≤ 〈∇f(h∗1)−∇f(h∗2), h∗1 − h∗2〉 ≤ ‖∇f(h∗1)−∇f(h∗2)‖ · ‖h∗1 − h∗2‖ . (16)

Now, if C = Rp, optimality conditions give

∇f(h∗1) = 0 = ∇g(h∗2) = ∇f(h∗2)−∇F (h∗2; d1) + F (h∗2; d′1) , (17)

resulting in ‖∇f(h∗1) − ∇f(h∗2)‖ = ‖ 1
n∇(h∗2; d1) − 1

n∇(h∗2; d′1)‖ ≤ 2Λ
n . Combined with (16), this shows that the

sensitivity of arg minh∈C f(h) is ∆ = 2Λ
nµ , which concludes the proof.
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F Convergence of DP-SGD (Proof of Lemma 4.2)
Lemma. Let hpriv be the vector released by DP-SGD with σ2 = 64Λ2T 2 log(3T/δ) log(2/δ)/n2ε2. Assume that σ2

∗ =

Ei∼[n] ‖∇`(h∗;xi, yi)‖
2 ≤ σ2. Let 0 < ζ < 1, then with probability at least 1− ζ,

∥∥hpriv − h∗
∥∥2

2
= Õ

(
pΛ2 log(1/δ)2

ζµ2n2ε2

)
,

where Õ ignores logarithmic terms in n (the number of examples) and p (the number of model parameters).

Proof. We start by recalling that in DP-SGD,

ht+1 = πH(ht − γ(gt + ηt)) . (18)

Since h∗ ∈ H, andH is convex, we have∥∥ht+1 − h∗
∥∥2

=
∥∥πH(ht − γ(gt + ηt))− h∗

∥∥2
(19)

=
∥∥ht − h∗∥∥2 − 2γ〈gt + ηt, ht − h∗〉+ γ2

∥∥gt + ηt
∥∥2

(20)

≤
∥∥ht − h∗∥∥2 − 2γ〈gt + ηt, ht − h∗〉+ 2γ2

∥∥gt∥∥2
+ 2γ2

∥∥ηt∥∥2
, (21)

where we developed the square and used ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 for a, b ∈ Rp. Taking the expectation with
respect to the stochastic gradient computation and noise, we obtain

E
∥∥ht+1 − h∗

∥∥2 ≤
∥∥ht − h∗∥∥2 − 2γ〈∇f(ht), ht − h∗〉+ 2γ2 E

∥∥gt∥∥2
+ 2γ2 E

∥∥ηt∥∥2
, (22)

since E(ηt) = 0 and E(gt) = ∇f(ht). Now recall that, by strong-convexity of f , we have

f(h∗) ≥ f(ht) + 〈∇f(ht), h∗ − ht〉+
µ

2

∥∥ht − h∗∥∥2
. (23)

By reorganizing, we obtain −2γ〈∇f(ht), ht − h∗〉 ≤ −2γ(f(ht)− f(h∗))− γµ ‖ht − h∗‖2, which gives

E
∥∥ht+1 − h∗

∥∥2 ≤ (1− γµ)
∥∥ht − h∗∥∥2 − 2γ(f(ht)− f(h∗)) + 2γ2 E

∥∥gt∥∥2
+ 2γ2 E

∥∥ηt∥∥2
. (24)

Finally, remark that if f = 1
n

∑n
i=1 fi with each fi being β-smooth and E fi = f , we have, for i ∼ [n],

E
∥∥∇fi(ht)∥∥2

= E
∥∥∇fi(ht)−∇fi(h∗) +∇fi(h∗)

∥∥2
(25)

≤ E(2
∥∥∇fi(ht)−∇fi(h∗)∥∥2

+ 2 ‖∇fi(h∗)‖2) (26)

≤ E(4β(fi(h
t)− fi(h∗)− 〈∇fi(h∗), ht − h∗〉) + 2 ‖∇fi(h∗)‖2) (27)

= 4β(f(ht)− f(h∗)) + 2E ‖∇fi(h∗)‖2 , (28)

since fi is β-smooth, which implies, for all w, v ∈ Rp,

‖∇fi(w)−∇fi(v)‖2 ≤ 2β(fi(w)− fi(v)− 〈∇fi(v), w − v〉 , (29)

and E∇fi(h∗) = 0. Combined with the fact that E ‖∇fi(h∗)‖2 ≤ σ2
∗ and E ‖ηt‖2 = pσ2, we obtained

E
∥∥ht+1 − h∗

∥∥2 ≤ (1− γµ)
∥∥ht − h∗∥∥2

+ (4βγ2 − 2γ)(f(ht)− f(h∗)) + 2γ2(σ2
∗ + σ2) (30)

≤ (1− γµ)
∥∥ht − h∗∥∥2

+ 4γ2σ2 , (31)
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since γ ≤ 1/2β, which implies 4βγ2 − 2γ ≤ 0 and σ∗ ≤ σ. By induction, we obtain that, after T iterations,

E
∥∥hT − h∗∥∥2 ≤ (1− γµ)T

∥∥h0 − h∗
∥∥2

+ 4γ2
T−1∑
t=0

(1− γµ)T−tσ2 (32)

≤ (1− γµ)T
∥∥h0 − h∗

∥∥2
+

4γσ2

µ
. (33)

Now, recall that DP-SGD is (ε, δ)-differentially private for σ2 = 64Λ2T log(3T/δ) log(2/δ)
n2ε2 (following from the Gaussian

mechanism, advanced composition theorem and amplification by subsampling). Thus, taking γ = 1/2β, and setting
T = 2β

µ log(µβ
∥∥h0 − h∗

∥∥2
/2M2), where M2 = 64Λ2T log(2/δ)

n2ε2 , yields

E
∥∥hT − h∗∥∥2 ≤ 2(T log(3T/δ) + 1)M2

βµ
≤ 8M2

µ2
log
(µβ ∥∥h0 − h∗

∥∥2

2M2

)
log
(6β log(

µβ‖h0−h∗‖2
2M2 )

µδ

)
. (34)

Using Markov inequality, we obtain

P

∥∥hT − h∗∥∥2 ≥ 8M2

ζµ2
log
(µβ ∥∥h0 − h∗

∥∥2

2M2

)
log
(6β log(

µβ‖h0−h∗‖2
2M2 )

µδ

) ≤ ζ . (35)

This results in the following upper bound, with probability at least 1− ζ,

∥∥hT − h∗∥∥2 ≤ 512Λ2 log(3T/δ) log(2/δ)

ζµ2n2ε2
log
(µβ ∥∥h0 − h∗

∥∥2

2M2

)
log
(6β log(

µβ‖h0−h∗‖2
2M2 )

µδ

)
(36)

= Õ

(
G2 log(1/δ)

ζµ2n2ε2

)
, (37)

which is the result of our lemma.

G Additional Experimental Details

G.1 Experimental Setup
The celebA dataset (Liu et al., 2015) is a face attributes dataset, that can be downloaded at http://mmlab.ie.
cuhk.edu.hk/projects/CelebA.html, and the folktables dataset (Ding et al., 2021) is derived from
US Census, and can be downloaded using a Python package available here https://github.com/zykls/
folktables.

On each dataset, for each value of n, we train a `2-regularized logistic regression model using scikit-learn
(Pedregosa et al., 2011). Private models are then learned using the output perturbation mechanism as described in
Section 4.1. We then compute our bounds using the non-private model as reference, over a test set containing 10%
of the data, that has not been used for training (containing 20, 260 records for celebA and 166, 450 records for
folktables). The value of the bound is computed by minimizing the experession given by the Chernoff bound using
the golden section search algorithm (Kiefer, 1953). The code is in the supplementary, and will be made public.

For the plots with different number of training records, we train 20 non-private models with a number of records
logarithmically spaced between 10 and the number of records in the complete training set (that is, 182, 339 for celebA
and 1, 498, 050 for folktables). For the plots with different privacy budgets, we use 20 values logarithmically
spaced between 10−3 and 10 for both datasets.
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G.2 Results for Other Fairness Measures
Our bounds also hold for accuracy parity, demographic parity and equalized odds. The same plots as those presented in
Figure 1 for these fairness notions are in Figure 2 and Figure 3. The comments from Section 5 on equality of opportunity
and accuracy also hold for these three notions of fairness.
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Figure 2: Fairness and accuracy levels for optimal non-private model and random private ones as a function of the
number n of training samples. For each value of n, we sample 100 private models and take their minimum and
maximum fairness/accuracy values to mark the area of attainable values. The solid blue line and the dashed one give our
guarantees, respectively from Theorem 4.4 with Lemma 4.1’s bounds and with an empirical evaluation of

∥∥hpriv − h∗
∥∥.

G.3 Refined Bounds with Additional Knowledge of hpriv and h∗

In Assumption 2.1, we use a uniform Lipschitz bound for all h, h′ ∈ H. Let’s consider the classH of linear models,
where, for h ∈ H, we denote by hy the parameters of h associated with the label y, that is h(x, y) = hTy x. For linear
models, we derived the bound ‖ρ(h, x, y)− ρ(h′, x, y)‖H ≤ 2 ‖x‖2 ‖h− h′‖H, as derived in Section 2. Note that this
inequality can be very loose whenever x and hy − h′y (for y ∈ Y) are (close to) orthogonal. When they are orthogonal,
this bounds only gives 0 = (hy − h′y)Tx ≤

∥∥hy − h′y∥∥2
‖x‖2. We can thus improve the inequality by remarking that

we have

|ρ(h, x, y)− ρ(h′, x, y)| ≤ |h(x, y)− h′(x, y)|+ max
y′ 6=y
|h(x, y′)− h′(x, y′)|

=
∣∣hTy x− h′Ty x∣∣+ max

y′ 6=y

∣∣hTy′x− h′y′x∣∣
=
∣∣(hy − h′y)Tx

∣∣+ max
y′ 6=y

∣∣(hy′ − h′y′)x∣∣
=
∣∣∣(hy − h′y)T phy−h′y (x)

∣∣∣+ max
y′ 6=y

∣∣∣(hy′ − h′y′)phy−h′y (x)
∣∣∣

≤ 2 max
y′∈Y

∥∥∥phy−h′y (x)
∥∥∥ ‖h− h′‖H ,
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Figure 3: Fairness and accuracy levels for optimal non-private model and random private ones as a function of privacy
budget ε. For each value of ε, we sample 100 private models and take their minimum and maximum fairness/accuracy
values to mark the area of attainable values. The solid blue line and the dashed one respectively give our guarantees,
respectively from Theorem 4.4 with Lemma 4.1’s bounds and with an empirical evaluation of

∥∥hpriv − h∗
∥∥.

where phy−h′y (x) is the projection of x on the axis defined by hy − h′y. We can thus define a variant of LX,Y which
depends on h− h′

Lh−h
′

X,Y = 2 max
y∈Y

∥∥∥phy−h′y (x)
∥∥∥ . (38)

Replacing Assumption 2.1 by this inequality in the proof of Theorem 3.1, we end up with the inequality

|P (H(X) = Y | E)− P (H ′(X) = Y | E)| ≤ P

(
|ρ(h,X, Y )|
Lh−h

′

X,Y

≤ ‖h− h′‖H

∣∣∣∣∣ E
)

,

where the probability is over (X,S, Y ) ∼ D. We obtained the same bound as Theorem 3.1, except with Lh−h
′

X,Y instead
of LX,Y . Note that even if this gives a much tighter bound, this can generally not be computed, as one of h or h′ is
typically not known.
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