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The purpose of the paper is to give the state of the art on Michael's problem, the long-standing open question odf continuity of characters on commutative Fréchet algebras. We first quote two well-known consequences of the "abstract Mittag-Leffler theorem", the theorem of Arens, which shows that characters on finitely rationally generated Fréchet algebras are continuous, and the fact that the existence of a nonincreasing sequence (Ωn) n≥1 of Fatou-Bieberbach domains in C p such that ∩ n≥1 Ωn = ∅ would imply that all characters on commutative Fréchet algebras are continuous.

In the opposite direction the existence of a discontinuous character on some commutative unital Fréchet algebra is equivalent to the existence of a character on a quotient algebra of the form U/I where U is a 'test algebra' for Michael's problem and where I is a dense ideal of U which is a Picard-Borel ideal, which means that every family of pairwise linearly independent invertible elements of U/I is linearly independent. It was recently shown that all Picard-Borel ideals in commutative unital Fréchet algebras are prime, and Picard-Borel ideals of H(C) can be easily described. We raise a question concerning Picard-Borel ideals of H(C p ), p ≥ 2 which could lead to important general information about the quotient of commutative unital Fréchet algebras by Picard-Borel ideals.

The fact that entire functions of several variables oerate on quotients of Fréchet algebras by ideals which are not necessarily closed plays an essential role in the paper.

Introduction

Seventy years after the seminal memoir of Michael [START_REF] Michael | Locally multiplicatively convex topological algebras[END_REF] the continuity of characters on commutative Fréchet algebras is still an open question, known as Michael's problem. The fact that the action of entire functions of several complex variables on finite families of elements of commutative Fréchet algebras extends to quotients of Fréchet algebras by non necessarily closed ideals plays a crucial role in the investigations on this elusive problem.

In the first part of the paper we fill a gap in the litterature by giving a (folklore) extension of this functional calculus to holomorphic functions on C p × (C \ {0}) q acting on families u = (u 1 , . . . , u p+q ) of elements of a quotient A/I of a commutative unital Fréchet algebra A by an ideal I when u p+1 , . . . , u p+q are invertible in A/I. This necessitates some work since in general invertible elements u of A/I do not have the form u = a + I where a is invertible in A.

We quote two well-known consequences of the "abstract Mittag-Leffler theorem", the theorem of Arens, which shows that characters on finitely rationally generated Fréchet algebras are continuous, and the fact that the existence of a nonincreasing sequence (Ω n ) n≥1 of Fatou-Bieberbach domains in C p for some p ≥ 2 such that ∩ n≥1 Ω n = ∅ would imply that all characters on commutative Fréchet algebras are continuous.

In the opposite direction the existence of a discontinuous character on some commutative unital Fréchet algebra is equivalent to the existence of a character on a quotient algebra of the form U/I where U is a 'test algebra' for Michael's problem and where I is a dense ideal of U which is a Picard-Borel ideal, which means that every family of pairwise linearly independent invertible elements of U/I is linearly independent. It was recently shown that all Picard-Borel ideals in commutative unital Fréchet algebras are prime. The proof relies on a discussion of ideals of H(C 2 ) and on the description of Picard-Borel ideals of H(C) given in [START_REF] Esterle | Picard-Borel ideals in Fréchet algebras and Michael's problem[END_REF].

The class of Picard-Borel ideals admits maximal elements with respect to inclusion, and it would be interesting to see whether these maximal elements can have infinite codimension.

We raise at the end of the paper a question concerning Picard-Borel ideals of H(C p ), p ≥ 2 which could lead to important general information about the quotient of commutative unital Fréchet algebras by Picard-Borel ideals, which could open rthe gate for a construction of discontinous characters on U.

Section

Recall that a unital Fréchet algebra is a complex unital algebra A equipped with a nondecreasing sequence ( . n ) n≥1 of submultiplicative seminorms satisfying the following properties

• 1 n = 1, n ≥ 1, where 1 denotes the unit element of A , • ∩ n≥1 Ker( . n ) = {0},
• For every sequence (x p ) p≥1 in A satisfying the Cauchy condition with respect to each seminorm . n , there exists x ∈ A such that lim n→+∞ x -x p n = 0 for n ≥ 1.

In the sequel we will identify λ1 ∈ A with the complex number λ, and such elements of A will be called constants. We will denote Inv(A) the group of invertible elements of A.

If (A, ( . n ) n≥1 ) a unital Fréchet algebra, denote by the same symbol . n the norm induced by the seminorm . n on the quotient algebra A/ ker( . n ), denote by A n the completion of (A/ker( . ) n , . n ), denote by π n : A → A n the map x → x + ker( . n ) and for n ≥ m denote by π n,m : A n → A m the extension by continuity to A n of the map x + ker( . n ) → x + ker( . m ),.

The map π : . A deeper result due to Arens [START_REF] Arens | Dense inverse limit rings[END_REF] shows that σ A (a 1 , . . . , a k ) = {(χ(a 1 ), . . . , χ(a k )} χ∈Spec(A) for every finite family {a 1 , . . . , a k )} of elements of A.

x → (π n (x)) n≥1 is a Fréchet algebra isomorphism from A onto the inverse limit lim ← (A m , π n,m ) = {(x m ) m≥1 ∈ Π m≥1 A m | x m = π n,m (x n ), n ≥ m ≥ 1},
A commutative unital Fréchet algebra A is said to be polynomially finitely generated if there exists a finite family (a 1 , . . . , a k ) of elements of A such that elements of the form p(a 1 , . . . , a k ), where p ∈ C[X 1 , . . . , X k ] are dense in A. Similarly A is said to be rationally finitely generated if elements of the form p(a 1 , . . . , a k )q(a 1 , . . . , a k ) -1 , where p ∈ C[X 1 , . . . , X k ], q ∈ C[X 1 , . . . , X k ], q(a 1 , . . . , a k ) ∈ Inv(A), are dense in A.

The following consequence of Arens' result seems to be the most general positive partial answer to Michael's problem. 

α = (α 1 , . . . , α k ) ∈ N p , a = (a 1 , . . . , a p ) ∈ A p , f ∈ H(U ), λ = (λ 1 , . . . , λ p ) ∈ U, set |α| = α 1 + • • • + α p , α! = α 1 ! . . . α p !, a α = a α1
1 . . . a αp p , and

∂ α f (λ) = ∂ |α| f ∂z α1 1 . . . ∂z αp p (λ 1 . . . λ p ), Set, for f ∈ H(C p ), a = (a 1 , . . . , a p ) ∈ A p , f (a) := α∈N p ∂ α f (0, . . . , 0) a α α! .
The map f → f (a) is a continuous algebra homomorphism from H(C p ) into A such that z j (a) = a j , wherez z j : (z 1 , . . . , z p ) → z j denotes the j th projection from C p onto C.

Denote by N p * the set of nonzero elements of N p . The above formula allows to compute ∂ α f (a) for f ∈ H(C p ), a ∈ A p , and we have,

for b = (b 1 , . . . , b p ) ∈ A p , f (b) = f (a) + α∈N p * ∂ α f (a) (b -a) α α! . (1) 
So given f ∈ H(C p ), there exists g 1 , . . . , g p ∈ H(C 2p ) such that we have

f (b) = f (a) + p j=1 (b j -a j )g j (a, b). a = (a 1 , . . . , a p ) ∈ A p , b = (b 1 , . . . , b p ) ∈ A p . ( 2 
)
This gives the following standard result.

Proposition 2.2. Let I be an ideal of a commutative Fréchet algfebra A, and let π I : A → A/I be the canonical surjection. Set, for f ∈ H(C p ), a = (a 1 , . . . , a p )

∈ A p , f (π I (a)) = f (π I (a 1 ), . . . , π I (a p )) = π I (f (a)).
Then the map f → f (π I (a)) is a well-defined algebra homomorphism from H(C p ) into A/I, and z j (π I (a)) = π I (a j ) for 1 ≤ j ≤ p.

We now give a folklore extension of this functional calculus by defining f (π

I (a)) for f ∈ H(C p × (C \ {0}) q ) when a = (a 1 , . . . , a p+q ) ∈ A p+q satisfies π I (a j ) ∈ Inv(A/I) for p + 1 ≤ j ≤ p + q. Proposition 2.3. (i) Set θ(z) = (z 1 , . . . , z p+q , z -1 p+1 , . . . , z -1 p+q ) for z = (z 1 , . . . , z p+q ) ∈ C p × (C \ {0}) q . Then the map θ : g → g • θ is a surjective continuous homomorphism from H(C p+2q ) onto H(C p × (C \ {.0}) q ).
(ii) Let I be an ideal of a commutative unital Fréchet algebra A, and let u :=

(u 1 , . . . , u p+q ) ∈ (A/I) p × Inv(A/I) q . Set, for f ∈ H(C p × (C \ {0}) q ), f (u) = g(a) + I, N. Surname, N. Surname: Short Title (pp. 1 -9)
where g ∈ H(C p+2q ) satisfies g•θ = f, and where a = (a 1 , . . . , a p+2q ) ∈ A p+2q satisfies π I (a j ) = u j for 1 ≤ j ≤ p + q and π I (a j ) = u -1 j-q for p + q + 1 ≤ j ≤ p + 2q.

Then the map f → f (u) is a well-defined homomorphism from H(C p × (C \ {0}) q ) into A/I such that z j (u) = u j for 1 ≤ j ≤ p + q. Proof: The map θ : g → g•θ is clearly a continuous homomorphism from H(C p+2q ) into H(C p × (C \ {0}) q ). Let f ∈ H(C p × (C \ {0}) q ).
We have

f (z 1 , . . . , z p+q ) = α∈N p ×Z q λ α z α ,
where λ α ∈ C, and where

z α = z α1 1 . . . z αp+q p+q for α = (α 1 , . . . , α p ) ∈ N p × Z q . Set (z 1 , . . . , z p+2q ) (α) = z|α1| 1 . . . z|αp+q| p+q ,
where zj = z j if α j ≥ 0, and where zj = z j+q if α j < 0.

Since the series

α∈N p ×Z q |λ α |R |α1|+•••+|αp+q| converges for every R > 0, the series α∈N p ×Z q λ α (z 1 , . . . , z p+2q ) (α) converges uniformly on compact subsets of C p+2q . Set g(z 1 , . . . , z p+2q ) = α∈N p ×Z q λ α (z 1 , . . . , z p+2q ) (α) .
Then g ∈ H(C p+2q ), and g

• θ = f, so θ is onto. Now let u = (u 1 , . . . , u p+q ) ∈ (A/I) p × Inv(A/I) q , let f ∈ H(C p × (C \ {0}) q
), and let g ∈ H(C p+2q ) such that g • θ = f . Let a = (a 1 , . . . a p+2q ) ∈ A p+2q and b = (b 1 , . . . b p+2q ) ∈ A p+2q such that π I (a j ) = π I (b j ) = a j for 1 ≤ j ≤ p + q and such that π I (a j ) = π I (b j ) = u -1 j-q for p + q + 1 ≤ j ≤ p + 2q. We have u j-q π I (a j ) = u j-q π I (b j ) = 1, hence u j-q (π I (a j ) -π I (b j )) = 0 for p + q + 1 ≤ j ≤ p + 2q. Since u j-q ∈ Inv(A/I), we have in fact π i (a j ) = π I (b j ) for 1 ≤ j ≤ p + 2q, and it follows from Proposition 2.2 that g(a) = g(b).

Clearly, (z

p+1 z p+q+1 -1)H(C p+2q ) + • • • + (z p+2q z p+2q-1)H(C p+2q ) ⊂ ker( θ). Now let g : (z 1 , . . . , z p+2q ) → α∈N p+2q λ α (z 1 , . . . , z p+2q ) α , where λ α = ∂ α (0,...,0) α! . Set αj = α j for 1 ≤ j ≤ p; for p + 1 ≤ j ≤ p + q, set αj = 0 if α j+q ≥ α j , αj = α j -α j+q otherwise; similarly for p + q + 1 ≤ j ≤ p + 2q, set αj = 0 if α j+q ≤ α j , αj = α j+q -α j otherwise.
Finally set αj = min(α j-q , α j-2q ) for p + 2q + 1 ≤ j ≤ p + 3q, and set, for

z = (z 1 , . . . , z p+3q ) ∈ C p+3q , g(z 1 , . . . , z p+3q ) = α∈N p+2q λ α (z 1 , . . . , z p+3q ) α.
Then g ∈ H(C p+3q ), and g(z 1 , . . . , z p+2q , z p+1 z p+q+1 , . . . z p+q z p+2q ) = g(z 1 , . . . , z p+2q ).

It follows from the definition of g that the Taylor series expansion at the origin of the function (z 1 , . . . , z p+2q ) → g(z 1 , . . . , z p+2q , 1 . . . , 1) has the form where ∆ = {β = (β 1 , . . . , β p+2q ) ∈ N p+2q | min(β j , β j+q ) = 0, p + 1 ≤ j ≤ p + q}. The map β → (z 1 , . . . , z p , z p+1 , . . . , z p+q , 1/z p+q+1 , . . . , 1/z p+2q ) β is a one to one map from ∆ into the set of Laurent monomials on C p × (C \ {0}) q .

So if g • θ = 0, then g(z 1 , . . . , z p+2q , 1, . . . , 1) = 0, and there exists h 1 , . . . , h q ∈ H(C p+3q ) such that we have g(z 1 , . . . , z p+2q ) = g(z 1 , . . . , z p+2q , z p+1 z p+q+1 . . . z p+q z p+2q )-g(z 1 , . . . , z p+2q , 1, . . . , 1)) = q j=1 (z p+j z p+q+j -1)h j (z 1 , . . . , z p+2q , z p+1 z p+q+1 , . . . z p+q z p+2q ) and so g ∈ q j=1

(z p+j z p+q+j -1)H(C p+2q ), and g(a 1 , . . . , a p+2q ) ∈ I if a p+j a p+q+j -1 ∈ I for 1 ≤ j ≤ q. So the definition of f (u 1 , . . . , u p+q ) does not depend on the choice of g, and the proposition follows.

The functional calculus described in Proposition 2.3 is easier to implement if Inv(A/I) = π I (Inv(A)), but this is not true in general.

Consider for example the Fréchet algebra A = H(C 2 ), and set I = (z 1 z 2 -1)A. Then A/I is isomorphic to H(C \ {0}, so A/I has an element without any square root while elements of π I (Inv(A)) = π I (exp(A)) have roots of all orders in A/I.

We now wish to describe the link between Michael's problem and iteration of holomorphic mappings pointed out by P.G. Dixon and the author in [START_REF] Dixon | Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon[END_REF]. We will use the following notion. Definition 2.4. A (sequential) projective system is a sequence (En, φ n ) n≥1 where E n is a sequence of set and where φ n is an application from E n+1 into E n for n ≥ 1. The direct limit of the projective system is defined by the formula

lim ←- (E n , φ n )) := {(x n ) n≥1 ∈ Π n≥1 E n | x n = φ n (x n+1 ), n ≥ 1}.
We will use the notation π 1 (x) = x 1 for x = (x n ) n≥1 ∈ Π n≥1 E n . The proof of Theorem 2.1 [START_REF] Arens | Dense inverse limit rings[END_REF] uses the following general result.

Theorem 2.5. (abstract Mittag-Leffler theorem) Let (E n , φ n ) n≥1 be a projective system of complete metric spaces. Assume that φ n : E n+1 → E n is continuous and has dense range for n ≥ 1.

Then π 1 (lim ←-(E n , φ n )) is dense in E 1 .
Notice that since open subsets of complete metric spaces are homeomorphic to complete metric spaces, it follows from the abstract Mittag-Leffler theorem that the intersection of a countable family of dense open subsets of a complete metric space E is dense in E, but there is no way to deduce the abstract Mittag-Leffler theorem from the category theorem.

If be a nonincreasing sequence of Fatou-Bieberbach domains in C p and for n ≥ 1 let

f = C p → C is holomorphic,
F n ∈ H(C p ) such that Ω n = F n (C p ). Set G 1 = F 1 , and set G n = F -1 n-1 • F n for n ≥ 1. Then F n = G 1 • • • • • G n , and so lim ←- (G n , C p ) is isomorphic to ∩ n≥1 Ω n .
So the existence of a nondereasing sequence (Ω n ) n≥1 of Fatou-Bieberbach domains such that ∩ n≥1 Ω n = ∅ would imply that all characters on commutative unital Fréchet algebras are continuous. The research about Fatou-Bieberbach domains remains active [START_REF] Forstneric | Holomorphic families of Fatou-Bieberbach domains and applications to Oka manifolds[END_REF][START_REF] Forstneric | Fatou-Bieberbach domains in C n \ R k[END_REF][START_REF] Fornaess | A Fatou-Bieberbach domain intersecting the plane in the unit disc[END_REF][START_REF] Rosay | Holomorphic maps from C n → C n[END_REF][START_REF] Sabiini | Chaînes de contractions holomorphes et domaines de Fatou-Bieberbach[END_REF][START_REF] Vivas | Fatou-Bieberbach domains as basins of attaction of automorphisms tangent to the identity[END_REF] but the existence of such a sequence of Fatou-Bieberbach domains remains unknown.

We now outline a strategy to construct discontinuous characters on a 'big' Fréchet algebra. We will need the following notions, introduced under a different name by Roitman and Sternfeld in [START_REF] Roitman | When is a linear fuctional multiplicative?[END_REF].

Definition 2.8. (i) A weak Picard-Borel algebra is a commutative, unital algebra A such that card(C \ σ A (x)) ≤ 1 for every x ∈ A \ C.

(ii) A Picard-Borel algebra is a commutative, unital algebra A such that every family (u λ ) λ∈Λ of invertible elements of A which are pairwise linearly independent is linearly independent.

It follows from these definitions that every unital subalgebra of a (weak) Picard-Borel algebra is a (weak) Picard-Borel algebra.

A Picard-Borel (resp weak Picard-Borel) algebra A will be said to be trivial if Inv(A) = C. Notice that weak Picard-Borel algebras (resp. Picard-Borel algebras) are those commutative unital complex algebras which have the Picard property (resp. the Borel property) in the sense of [START_REF] Roitman | When is a linear fuctional multiplicative?[END_REF]. It is very easy to see that a Picard-Borel algebra is a weak Picard Borel algebra. More precisely the following result was proved in [START_REF] Roitman | When is a linear fuctional multiplicative?[END_REF].

Proposition 2.9. Let A be a commutative unital algebra. Then the following conditions imply each other (i) A is a weak Picard-Borel algebra.

(ii) Every family (u j ) 1≤j≤3 of three invertible elements of A which are pairwise linearly independent is linearly independent.

We refer to [START_REF] Roitman | When is a linear fuctional multiplicative?[END_REF] for a (very short) proof of this elementary result. Denote by A the subalgebra of C(X 1 , X 2 ) consisting of elements of the form f

= p Π m i=1 (X1+λiX2+λ 2 i )
, where (λ 1 , . . . , λ m ) is a finite family of complex numbers, and where p ∈ C[X 1 , X 2 ]. Roitman and Sternfeld showed in [START_REF] Roitman | When is a linear fuctional multiplicative?[END_REF] that A is a weak Picard-Borel algebra which is not a Picard-Borel algebra. This algebra has no character. We do not know any example of a Picard-Borel algebra without any character.

Let α, β ∈ C, and let λ ∈ C be such that λ 2 + βλ + α = 0. Then (X 1 -α) + λ(X 2β) = X 1 + λX 2 + λ 2 ∈ Inv(A), and so σ A (X 1 , X 2 ) = ∅, despite trhe fact that the spectum of every nonconstant element of A is very large.

Another example of a weak Picard-Borel algebra which is not a Picard-Borel algebra is given by the Fréchet algebra H(C 2 )/z 1 z 2 H(C 2 ), see below. Recall that the Jacobson radical Rad(A) of a commutative unital complex algebra A is the intersection of all maximal ideals of A, and that A is said to be semisimple if Rad(A) = {0}. The following easy result was proved in [START_REF] Esterle | Picard-Borel algebras[END_REF].

Proposition 2.10. Every weak Picard-Borel algebra is semisimple.

The algebra of entire functions on C is a Picard-Borel algebra, this follows from Borel's proof of the Picard theorem [START_REF] Borel | Sur les zéros des fonctions entières[END_REF], [START_REF] Nevanlinna | Le théorème de Picard-Borel[END_REF], and implies that H(C p ) is a Picard-Borel algebra for p ≥ 1.

An ideal I of a commutative unital algebra A is said to be a Picard-Borel ideal (resp. weak Picard-Borel ideal) if the quotient algebra A/I is a Picard-Borel algebra (resp. weak Picard-Borel algebra).

The author showed in [START_REF] Esterle | Picard-Borel algebras[END_REF] that Picard-Borel Fréchet algebras are integral domains, by using the fact that the space of continuous characters on a weak Picard-Borel Fréchet algebra is connected with respect to the Gelfand topology. This follows from the extension to Fréchet algebras of the Shilov idempotent theorem [START_REF] Dales | Banach algebras and automatic continuity[END_REF], [START_REF] Rosenfeld | Commutative F -algebras[END_REF]. This shows that closed Picard-Borel ideals in Fréchet algebras are prime. In particular the quotient algebra H(C 2 )/z 1 z 2 H(C 2 ) provides an example of a weak Picard-Borel Fréchet algebra which is not a Picard-Borel algebra. This result was extended to not necessarily closed ideals by the author in [START_REF] Esterle | Picard-Borel ideals in Fréchet algebras and Michael's problem[END_REF].

Theorem 2.11. Every Picard-Borel ideal of a commutative unital Fréchet algebra is prime.

We now explain the relevance of dense Picard-Borel ideals in Fréchet algebras to Michael's problem. Denote by C N [[X]] the algebra of all formal power series in infinititely many commuting variables (X n ) n≥1 , and denote by ∆ the space of sequences α = (α n ) n≥1 of nonnegative integers such that the set supp(α)

:= {n ≥ 1 | α n > 0} is finite or empty. For α ∈ ∆ set |α| = +∞ n=1 α n and X α = Π n∈supp(α) X αn n , with the obvious convention X α = 1 if α is the zero sequence. For n ≥ 1 set ∆ n := {α ∈ ∆ | supp(α) ⊂ {1, . . . , n}, |α| ≤ n}. For f ∈ C N [[X]], α ∈ ∆, denote by f (α) ∈ C the coefficient of X α in the power series expansion of f, and set p n (f ) = α∈∆n | f (α)| for n ≥ 1. The topological algebra (C N [[X]], (p n ) n≥1
) is a Fréchet algebra, and we have

f = α∈∆ f (α)X α (f ∈ C N [[X]]).
The following Fréchet algebra, discussed in [START_REF] Dixon | Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon[END_REF], [START_REF] Esterle | Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras[END_REF] is the second of the 'test algebras' for Michael's problem introduced by Clayton in [START_REF] Clayton | A reduction of the continuous homomorphism problem for Falgebras[END_REF]. Definition 2.12. The algebra U is a Fréchet algebra with respect to the sequence ( . n ) n≥1 of submultiplicative norms, and U is a 'test algebra' for Michael's problem, which means that the existence of a discontinuous character on any commutative Fréchet algebra would imply the existence of a discontinuous character on U. As usual c 00 denotes the space of complex sequences which vanish eventually, and 1 denotes the space of summable complex sequences. The following result was proved by the author in [START_REF] Esterle | Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras[END_REF].

U := ∩ n≥1 {f ∈ C N [[x]] | f n := α∈∆ | f (α)|n |α| < +∞}, I p := X 1 U + • • • + X p U for p ≥ 1,
Theorem 2.13. Let λ = (λ n ) n≥1 ∈ 1 \ c 00 , and set I ∞,λ := I ∞ + +∞ n=1 λ n X n U.
Then I ∞,λ is a dense Picard-Borel ideal of U, and the following statements imply each other (i) There exists a discontinuous character on some commutative Fréchet algebra.

(ii) The Picard-Borel algebra U/I ∞,λ possesses a character.

Condition (ii) is indeed equivalent to the existence of a (necessarily discontinuous) character χ on U such that I ∞,λ ⊂ Ker(χ).

The union of a chain of (weak) Picard-Borel ideal is obviously a (weak) Picard Borel ideal, and so every (weak) Picard-Borel ideal is contained in a maximal (weak) Picard-Borel ideal.

Maximal weak Picard-Borel ideals of codimension > 1 cannot be maximal ideals, since σ

A (x) = ∅ for x ∈ A \ C if A is a division algebra of dimension > 1.
So any information on maximal weak Picard-Borel ideals or maximal Picard-Borel ideals would be relevant to Michael's problem. The fact that all Picard-Borel ideals in commutative unital Fréchet algebras are prime is already an important result.

We now give a (folklore) classification of singly rationally generated (weak) Picard-Borel Féchet algebras. on compact subsets of C, and u ∈ H(C), so that u = u(a). We thus see that the map u → u(a) is a continuous isomorphism from A onto H(C), and it follows from the closed graph theorem that this map is bicontinuous. Now assume that C \ σ A (a) = {α}. Replacing a by a -α, we may assume that σ A (a) = C \ {0}. Replacing C by C \ {0}, and replacing complex polynomials by complex Laurent polynomials in the proof above we see that A is isomorphic to H(C \ {0}).

The weak Picard-Borel ideals of H(C) (resp. H(C\{0}) have been characterized in [START_REF] Esterle | Picard-Borel ideals in Fréchet algebras and Michael's problem[END_REF]: these are the zero ideal and the kernels of point evaluations at elements of C (resp. C \ {0}). So these ideals are closed and are also Picard-Borel ideals. A consequence if this fact is that if I is a weak-Picard Borel ideal of a commutative unital Fréchet algebra and if f ∈ H(C) is not constant, then for λ ∈ C the only solutions in A/I of the equation f (x) = λ are the complex numbers µ such that f (µ) = λ.

In particular the solutions of the equation e x = 1 are the elements of 2iπZ, and e x and e y are linearly dependent if and only if x -y ∈ C. So if I is a Picard-Borel ideal of a commutative unital Fréchet algebra A, and if a family (x λ ) λ∈Λ of elements of A/I satisfies x λ -x µ / ∈ C for λ = µ, then the family (e x λ ) λ∈Λ is linearly independent.

The characterizatioin of Picard-Borel ideals of H(C) suggests the following question (we refer to [START_REF] Lelong | Entire functions of several complex variables[END_REF] for general information about H(C p ), p ≥ 2). A positive answer to this question would provide an interesting inductive structure on quotients of the form A/I, where A is a commutative unital Fréchet algebra and where I is a Picard-Borel ideal of A: if F = (u 1 , . . . , u k ) is a finite subset of A/I, set θ F (f ) = (f (u 1 ), . . . , f (u k )) for f ∈ H(C k ), and denote by U F the range of F. If the answer to question 2.15 were positive, then the Picard-Borel ideal ker(θ F ) would be closed, which would induce a Fréchet algebra structure on the Picard-Borel algebra

U F ≈ H(C k )/ker(θ F ). We have U F ⊂ U G if F ⊂ G. Denote i F,G : U F → U G the natural injection. It follows from theorem 2.1 that characters on U F and U G are continuous. If lim n→+∞ x n = a in U F and lim n→+∞ x n = b in U G , then χ(a) = χ(b)
for every character χ on U G and a = b since the Picard-Borel algebra U G is semisimple. It would follow then from the closed graph theorem that i F,G is continuous, and we would obtain A/I as the inductive limit of a family of finitely polynomially generated Fréchet algebras, which would suggest that A/I might possess characters.

Notice that if A is finitely rationally generated by a finite family (a 1 , . . . , a p ) and if I is a dense ideal of A then σ A/I (π I (a 1 ), . . . , π I (a p )) = ∅. To see this assume on the contrary that σ A/I (π I (a 1 ), . . . , π I (a p )) = ∅ and let (λ 1 , . . . , λ p ) ∈ σ A/I (π I (a 1 ), . . . , π I (a p )). Then (a 1 -λ 1 )A + • • • + (a p -λ p )A + uA A for every u ∈ I, and so there exists a continuous character χ u on A such that χ u (a 1 ) = λ 1 , . . . , χ u (a p ) = λ p , χ u (u) = 0. Since (a 1 , . . . , a p ) generates A, χ u does not depend on u, and I is not dense in A. But the example of the Roitman-Sternfeld algebra shows that the joint spectrum of two elements can be empty at least in weak Picard-Borel algebras.

N. Surname, N. Surname: Short Title (pp. 1 -9) Michael's problem, i.e. the question of continuity of characters on commutative unital Fréchet algebras is still unsolved. The fact that the answer is positive for finitely rationally generated Fréchet algebras, and the fact that the existence of a nonincreasing sequence of Fatou-Bieberbach domains in C p having an empty intersection for some p ≥ 2 would imply the continuity of characters on all commutative unital Fréchet algebras suggest that the answer to Michael's problem could be positive.

In the opposite direction the existence of a discontinuous character on some commutative unital Fréchet algebra is equivalent to the existence of a character on a quotient algebra of the form U/I where U is a 'test algebra' for Michael's problem and where I is a dense ideal of U which is a Picard-Borel ideal, which means that every family of pairwise linearly independent invertible elements of U/I is linearly independent. The class of such ideals admits maximal elements, and the study of these maximal elements could open the gate to a negative answer to Michael's problem. It was recently discovered that all Picard-Borel ideals in commutative unital Fréchet algebras are prime, and a characterization of Picard-Borel ideals of H(C p ), p ≥ 2, would provide general information on quotients of commutative unital Fréchet algebras by Picard-Borel ideals. .

  as was shown by Michael in his seminal memoir [14]. Denote by σ A (a) := {λ ∈ C | a -λ / ∈ Inv(A)} the spectrum of a ∈ A, and denote by σ A (a 1 , . . . , a k ) := {λ 1 , . . . , λ k ) ∈ C k | (a 1 -λ 1 )A + • • • + (a k -λ k )A A} the joint spectrum of a finite family (a 1 , . . . , a k ) of elements of A. When A is commutative, let Spec(A) be he space of continuous characters of A, equipped with the usual Gelfand topology, It follows from Michael's isomorphism theorem that σ(A)(a) = {χ(a)} χ∈Spec(A)

Theorem 2 . 1 .

 21 Characters on finitely rationally generated commutative unital Fréchet algebras are continuous.We now introduce the usual holomorphic functional calculus on quotients of a commutative unital Fréchet algebra A. Let H(U ) be the algebra of holomorphic functions on an open set U ⊂ C p , p ≥ 1.
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  and if I is an ideal of a commutative unital Fréchet algebra A, Proposition 2.1 allows to define f (u) ∈ A/I for u ∈ (A/I) p by using the formula f (π I (a)) = π I (f (a)) (a ∈ A p ). N. Surname, N. Surname: Short Title (pp. 1 -9)

N
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  and I ∞ := ∪ p≥1 I p . N. Surname, N. Surname: Short Title (pp. 1 -9)
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 214 Let A be a singly rationally generated Fréchet algebra which is a weak Picard-Borel algebra. Then there are three possibilities (i) Spec(A) is a singleton, and A ≈ C. (ii) Spec(A) is homeomorphic to C, and A ≈ H(C), (iii) Spec(A) is homeomorphic to C \ {0}, and A ≈ H(C \ {0}). Proof: Let a be a generator of A. The map χ → χ(a) is as well-known a homeomorphism from Spec A (a) onto σ A (a), and the only possibilities for σ A (a) are a singleton, C, or C \ {α} where α ∈ C. Since A is semisimple, the Gelfand transform G : u → u, where u(χ) = χ(u), is a one-to-one continuous homomorphism from A into C(Spec(A)). So A is isomorphic to C if σ A (a) is a singleton. Now assume that σ A (a) = C, and set u(λ) = χ λ (u) for u ∈ A, where χ λ ∈ Spec(A) denote the character of A satisfying χ λ (a) = λ. We can identify u with G(u), and so u ∈ C(C). If f ∈ H(C), λ ∈ C, we have f (a)(λ) = χ λ (f (a)) = f (χ λ (a)) = f (λ), so f = f. Let u ∈ A. There exists a sequence (p n ) n≥1 of complex polynomials such that lim n→+∞ p n (a) = u with respect to the topology of A. So lim n→+∞ p n (λ) = u(λ) uniformly N. Surname, N. Surname: Short Title (pp. 1 -9)

Question 2 . 15 :

 215 Are Picard-Borel ideals of H(C p ) closed for p ≥ 2?

N. Surname, N. Surname: Short Title (pp.1 -9) 

Similarly if p ≥ 1, q ≥ 1, and if F = (f 1 , . . . f q ) : C p → C q ) is holomorphic we can define f (u) ∈ (A/I) q for u ∈ (A/I) p by using the formula F (π I (a)) = π I (F (a)) (a ∈ A p ).

The following result [START_REF] Dixon | Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon[END_REF][START_REF] Esterle | Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras[END_REF] is a conqsequence of the abstract Mittag-Leffler theorem.

Theorem 2.6. Let (C pn , F n ) n≥1 be a projective system, where F n : C pn+1 → C pn is holomorphic for n ≥ 1, let A be a commutative unital Fréchet algebra and let I be an ideal of A.

If I is dense in A, then lim ←-

Proof: We give a proof for the convenience of the reader. Set E 1 = A p1 , E n = A pn × I p1+•••+pn-1 for n ≥ 2, and equip A with the given Fréchet topology, equip I with the discrete topology and equip E n with the associated product topology. The discrete topology on I is the topology associated to the distance d defined by the formulae d(x, y) = 1 if x = y, d(x, y) = 0 if x = y, and so E n is homeomorphic to a complete metric set.

For u = (v, w p1 , . . . , w pn ) ∈ E pn+1 , set

We have u n = (v n , w (n) ), where v n ∈ A n and w (n) ∈ I p1+•••+pn-1 , and it follows from the definition of

Let χ be a character on a commutative unital Fréchet algebra A. It follows from formula (2) that χ(f (a)) = F (χ p (a)) for a = (a 1 , . . . , a p ) ∈ A p , f ∈ H(C p ), where χ p (a) = (χ(a 1 ), . . . , χ(a p )).

Corollary 2.7. [START_REF] Dixon | Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon[END_REF] Assume that there exists a discontinuous character on some commutative unital Fréchet algebra A. Then lim

Proof: Assume that a character χ on some commutative unital Fréchet algebra A is discontinuous, and let I = Ker(χ). It follows from Theorem 2.6 that there exists a sequence (a (n) ) n≥1 ∈ Π n≥1 A pn such that a (n) -F n (a (n+1) ) ∈ I pn for n ≥ 1. We have

and so (χ pn (a

Classical results of Bieberbach and Fatou, see for example [START_REF] Rosay | Holomorphic maps from C n → C n[END_REF], show that there exist for p ≥ 2 some one-to-one holomorphic maps from C p into itself having nondense range, and the ranges of such maps are called Fatou-Bieberbach domains. Let (Ω n ) n≥1 N. Surname, N. Surname: Short Title (pp. 1 -9)