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I. INTRODUCTION

Context. Real-time monitoring of the evolution of the Covid-19 pandemic is both crucial and difficult: Crucial as it is a prerequisite to the design of efficient health policies; Difficult because it must be carried out while the pandemic is still developing (and not retrospectively, after the pandemic is over) and from data -made available by National Health Authorities -that were and still are of limited quality (missing values, outlier values, pseudo-seasonalities, etc.). Within pandemic phases, epidemiologists often have recourse to the notion of time-varying reproduction number, Rt, to quantify the intensity of the pandemics [START_REF] Cori | A new framework and software to estimate time-varying reproduction numbers during epidemics[END_REF]. Research works, conducted during the earliest phase of the pandemics [START_REF] Abry | Spatial and temporal regularization to estimate COVID-19 reproduction number R(t): Promoting piecewise smoothness via convex optimization[END_REF], [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF], have lead to propose a robust and efficient estimation of Rt based on a variational formulation solved by nonsmooth convex minimization: the criterion results from augmenting the epidemiological model in [START_REF] Cori | A new framework and software to estimate time-varying reproduction numbers during epidemics[END_REF] with an error management strategy specifically built to handle low quality data [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF]. Further and more recently, a Bayesian reading of this criterion allowed us to obtain credibility intervals (CI) estimates of Rt computed via Markov chain Monte Carlo (MCMC) sampling [START_REF] Artigas | Credibility interval design for Covid19 reproduction number from nonsmooth Langevin-type Monte Carlo sampling[END_REF], [START_REF] Fort | Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers[END_REF]. However, the design of such samplers for the Bayesian model at hand turns out to be complex: the resulting a posteriori density Work partly funded by the Fondation Simone et Cino Del Duca, Institut de France.

π with respect to the Lebesgue measure on R d is concave and takes the general form:

π ∝ exp(-(f + g(C•)))1D, ( 1 
)
where 1D is the {0, 1}-valued indicator function of the support D of π, -f is a differentiable log-likelihood, C is a linear operator and -g(C•) is a nonsmooth log-prior. The composite structure of ln π and the composition of the nonsmooth component with a linear operator makes the MCMC sampling challenging. Related work. Numerous applications require to design MCMC methods targeting log-concave composite distributions [START_REF] Makni | A fully Bayesian approach to the parcel-based detectionestimation of brain activity in fMRI[END_REF], [START_REF] Vacar | Unsupervised joint deconvolution and segmentation method for textured images: a Bayesian approach and an advanced sampling algorithm[END_REF], [START_REF] Artigas | Credibility interval design for Covid19 reproduction number from nonsmooth Langevin-type Monte Carlo sampling[END_REF].

From the seminal paper by [START_REF] Parisi | Correlation functions and computer simulations[END_REF] on Langevin Monte Carlo (LMC) methods, many strategies taking benefit of first order information on π to design Markov chains approximating π were proposed. When π is smooth, the most popular is the Metropolis-Adjusted Langevin Algorithm sampler (MALA) [START_REF] Mengersen | Rates of convergence of the Hastings and Metropolis algorithms[END_REF] which uses a LMC iteration as a proposal mechanism in a Hastings-Metropolis (HM) sampler ( [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF], see also [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]): τ n+ 1 2 ∼ µ(τ n) + N (0, 2γ I) with µ(τ ) := τ + γ∇ ln π(τ ). This proposition step is then followed with an accept-reject (AR) step: τ n+1 = τ n+1/2 if the candidate is accepted and τ n+1 = τ n otherwise. The AR step guarantees that the MCMC sampler admits π as unique invariant density (see e.g., [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]) -and that the chain {τ n, n ≥ 0} is D-valued. To handle a nonsmooth density π, [START_REF] Pereyra | Proximal Markov chain Monte Carlo algorithms[END_REF] proposes the use of the proximal operator prox ( [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF], see also [14, Chapter 1]) leading to P-ULA (or P-MALA when an AR step is included). Because the composition of a nonsmooth function g with a linear operator C impairs an explicit analytical computation of prox g(C•) , even when prox g is known in closed-form, a direct application of P-ULA to a density π of the form (1) is not possible and one has to resort to more advanced schemes. In [START_REF] Durmus | Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau[END_REF] and [START_REF] Luu | Sampling from Non-smooth Distributions Through Langevin Diffusion[END_REF], the drifts µ rely on a differentiable approximation of g(C•) through its Moreau envelope (see e.g. [START_REF] Rockafellar | Variational Analysis[END_REF]Chapter 1]), which leads to a regular approximation of f + g(C•), whose gradient involves the proximal operator of g; µ is then the sum of a gradient term related to f and of a proximal term associated with g. The drifts proposed by [START_REF] Artigas | Credibility interval design for Covid19 reproduction number from nonsmooth Langevin-type Monte Carlo sampling[END_REF] and [START_REF] Fort | Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers[END_REF] define µ as the composition of a gradient term related to f and of a proximal term related to g. There are pro and cons for the introduction of the AR step (see e.g. [START_REF] Dwivedi | Log-concave sampling: Metropolis-Hastings algorithms are fast[END_REF]) -when not introduced, one set τ n+1 = τ n+1/2 . Note however that when D is not R d , AR forces the chain {τ n, n ≥ 0} to remain in D which is not guaranteed by Gaussian proposal distributions N (µ(τ ), 2γ I), with γ > 0 and I the identity matrix in dimension d. More elaborated LMC-based proposal mechanisms yield a D-valued Markov chain by using projections or reflections on the boundaries of D, see e.g. [START_REF] Bubeck | Sampling from a Log-Concave Distribution with Projected Langevin Monte Carlo[END_REF], [START_REF] Melidonis | Efficient bayesian computation for low-photon imaging problems[END_REF] nevertheless, they require assumptions on π and on the topology of D. Another class of methods for nonsmooth target densities is proposed in [START_REF] Vono | Split-and-augmented Gibbs sampler-Application to large-scale inference problems[END_REF]: it relies on variable splitting and data augmentation schemes inspired by the Alternating Direction Method of Multipliers algorithm. In this paper, for a fair comparison of the methods, we restrict our attention to MCMC samplers without data augmentation -a technique which may get simpler distributions, easier to sample from but at the price of a subtle balance between augmentation of the dimension of the sampling space and faster convergence rate inherited from a reduced correlation between samples. Outline, Goals and contributions. The first goal of the present work is to frame the relations between the proximal-Langevin based HM algorithms proposed in [START_REF] Artigas | Credibility interval design for Covid19 reproduction number from nonsmooth Langevin-type Monte Carlo sampling[END_REF], [START_REF] Fort | Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers[END_REF], [START_REF] Durmus | Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau[END_REF] and [START_REF] Luu | Sampling from Non-smooth Distributions Through Langevin Diffusion[END_REF], and to compare their performance on a toy example. The second goal is to use the most promising sampler for solving the estimation of credibility intervals for the daily reproduction numbers Rt of the Covid-19 pandemic. Section II provides, as a first contribution, a detailed and organized review of existing and proposed proximal-Langevin based HM algorithms. Then, as a second contribution of this paper, performance of these different HM samplers are compared in Section III, on a toy density. One of the samplers we proposed in a previous work (see [START_REF] Fort | Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers[END_REF]) is put forward from performance assessment in Section III. A last novelty of this paper, is to plug this sampler into a Metropoliswithin-Gibbs strategy for the estimation of the reproduction number Rt from real Covid-19 new infection counts, made available from the John Hopkins repository for 200+ territories in the world (cf. Section IV). Its relevance and potential interests are discussed in details.

II. PROXIMAL-LANGEVIN HASTINGS-METROPOLIS

This section is devoted to Langevin-based MCMC samplers, when the target density π with respect to the Lebesgue measure on R d satisfies: (H1) π is of the form (1); (H2) f : D → R is continuously differentiable on D ; (H3) g : D → R is a convex lower semicontinuous function, and possesses a proximal operator 1 having a closed-form expression, which is assumed not to be the case for the proximal operator of g(C•). We restrict our attention to HM samplers, and discuss how to design more efficient proposal distributions than in the Random Walk HM, from first order informations on the target density π. Since -ln π is a composite function (see H1, H2 and H3), we consider combinations of gradient steps with respect to f (see H2) and implicit gradient steps based on the proximal operator of g (see H3). Let us describe four possible proposal mechanisms, some of them requiring the additional assumption:

(H4) C is a d × d invertible matrix. Set Γ := C -1 C -⊤ and let γ, ρ > 0.
Moreau (M). First, let us use the semi-FBLMC iteration proposed in [START_REF] Luu | Sampling from Non-smooth Distributions Through Langevin Diffusion[END_REF]. It relies on the Moreau envelope of g with parameter ρ, which is a continuously differentiable function gρ satisfying

∇[gρ](τ ) = ρ -1 τ -prox ρ g (τ ) . Given the current value τ n of the chain, a jump to τ n+ 1 2 ∼ µ M (τ n) + N d (0, 2γ I) is proposed, where µ M (τ n) := τ n -γ∇f (τ n) -γρ -1 Cτ n -prox ρ g (Cτ n) .
1 The proximal operator of g is defined for ρ > 0 as

prox ρ g (τ ) := argmin χ 1 2 ∥χ -τ ∥ 2 2 + ρ g(χ).
Moreau in an image space (Mdual). 

n, n ≥ 0} targeting π(•) ∝ π(C -1 •) by setting τ n := C -1 τ n. We have -ln π(τ ) = f (C -1 τ ) + g(τ )
with support {τ : C -1 τ ∈ D}. A Moreau envelope approach for the smoothing of -ln π is known as a ULA iteration (see [START_REF] Pereyra | Proximal Markov chain Monte Carlo algorithms[END_REF], [START_REF] Durmus | Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau[END_REF]). It proposes a jump to

τ n+ 1 2 ∼ µ Mdual (τ n) + N d (0, 2γ I) where µ Mdual (τ n) := τ n -γC -⊤ ∇f (C -1 τ n) -γ ρ τ n -prox ρ g (τ n) .
In the original sampling space, this is equivalent to a jump from

τ n to τ n+ 1 2 ∼ τ n -γΓ∇f (τ n) -γρ -1 τ n -prox Γ -1 ρ g(C•) (τ n) + N d (0, 2γΓ); prox A
h is the proximal operator of h in the metric induced by the positive definite matrix A (see e.g. [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]Section XV.4]). Proximal-Gradient decomposition (PGdec). This method applies when g(C•) = J j=1 gj(Cj•) and gj(Cj•) has a proximal operator with a closed form expression; see Section III for an example. In [START_REF] Fort | Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers[END_REF], we introduced the following proposal distribution : sample Jn at random in {1, • • • , J} and set τ n+

1 2 ∼ µ PGdec (τ n, Jn)+N d (0, 2γ I) where µ PGdec (τ n, Jn) := prox γg Jn (C Jn •) (τ n -γ∇f (τ n)).
Proximal-Gradient in an image space (PGdual). As above for Mdual, let us apply a Proximal-Gradient step in the image of

D by C: given τ n, sample τ n+ 1 2 ∼ µ PGdual (τ n) + N d (0, 2γ I) where µ PGdual (τ n) := prox γg τ n -γC -⊤ ∇f (C -1 τ n) . In the original sampling space, this is equivalent to a jump from τ n to τ n+ 1 2 ∼ prox Γ -1 γg(C•) (τ n -γΓ∇f (τ n)) + N d (0, 2γΓ
), which is a Variable Metric Forward-Backward iteration ( [START_REF] Chen | Convergence rates in forward-backward splitting[END_REF], see also [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF]). Accept-reject step. None of these proposal strategies takes into account the support D of π; in order to obtain a D-valued sequence {τ n, n ≥ 0}, an accept-reject step is included at each iteration. Remark. When g = 0 (i.e. when -ln π is continuously differentiable), M and PGdec are the same algorithms and are equal to MALA ( [START_REF] Parisi | Correlation functions and computer simulations[END_REF], [START_REF] Roberts | Exponential convergence of Langevin distributions and their discrete approximations[END_REF]); and Mdual and PGdual are the same algorithms and are equal to a tempered MALA ([27], [START_REF] Roberts | Langevin Diffusions and Metropolis-Hastings Algorithms[END_REF]).

III. TOY EXAMPLE

Definition. Let πt be the penalized likelihood in a logistic regression model, defined on D := R d :

ln πt(τ ) := Y ⊤ Xτ - N j=1 ln (1 + exp((Xτ )j)) -λ∥D1τ ∥1;
Y ∈ {0, 1} N being the vector collecting the binary responses, X the N ×d matrix of covariates, D1 the (d-1)×d discrete differentiation matrix, λ > 0 the regularization parameter and ∥•∥1 the ℓ1-norm defined as the sum of the absolute values of the vector's coefficients. Samplers. By augmenting D1 with a raw into an invertible matrix denoted by D1, πt satisfies (H1-H4) and the four methods proposed in Section II apply with C := D1 and g(τ ) := λ∥τ 2:d ∥1 for any τ ∈ R d . For PGdec, the penalization decomposes into ∥(D1τ ) 2:d ∥1 = ∥D1,pτ ∥1 + ∥D1,iτ ∥1, where D1,p (resp. D1,i) concatenates the lines of D1 of even (resp. odd) indices; these two matrices satisfy D1,xD ⊤ 1,x = ν I for x ∈ {i, p} and some ν > 0 (here ν = 1) which makes the computation of the proximity operator of ∥D1,p • ∥1 and ∥D1,i • ∥1 explicit [START_REF] Pustelnik | Parallel ProXimal Algorithm for image restoration using hybrid regularization[END_REF]. To implement the samplers working in the image space, the first raw added to D1 to obtain the invertible D1 is equal to the projection of the vector (-1, 0, • • • , 0) ∈ R d on the space orthogonal to the range of D1. For M and Mdual, we choose ρ := γ. For all these methods, the value of γ is adapted during the 5 10 3 first iterations in order to reach an accept-reject rate of 0.25. We also run RW and RWdual which correspond resp. to τ n+ 1 2 ∼ τ n + N (0, I) and

τ n+ 1 2 ∼ τ n + N (0, Γ), where Γ := D -1 1 D -⊤
1 . The comparison to the four proposed approaches enable to asses the relevance of methods exploiting first order information about L := ln πt. Compared performance. To compare the performances of the different samplers, Log π measures the relative distance to the maximum L⋆ (-L being strictly convex) of L; the evolution of (L(τ n ) -L⋆) / L(τ 1 ) -L⋆ is plotted over the first 2 500 iterations of the chain. ACF represents the absolute value of the autocorrelation function in terms of the lag (from 0 to 600), computed from 17 500 points obtained after a burn-in of 2 500 points. The ACF reflects the ergodicity of the chain: the smaller the better [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]. The data set is simulated: N = 2.10 3 , d = 20; the matrix of covariates X is built from independent Rademacher random variables (r.v.), the rows of X being afterward normalized to 1; the components of Y are independent Bernoulli r.v. with probability of success (1 + exp(-(Xτ ⋆ )j)) -1 where τ ⋆ is blockwise constant, with six components equal to -2, then seven at 1.5, and then seven at -1. Finally, three different values of the regularization parameter λ are considered: λ ∈ {1, 15, 30}. Performances obtained as averages over 50 independent realizations are reported in Figure 1. It illustrates the gain of exploiting first order information on π to accelerate the move of the sampler toward high probability regions. For RW, PGdec and M, this gain decreases when λ is large. Exploiting partial information, as done by PGdec, remains possible when λ is small; for larger values of λ, PGdec is less efficient than M in the stationary regime of the chain (see the ACF criterion). The schemes proceeding in the image space, PGdual and Mdual, appears to be extremely robust to very different values of λ, with a slight advantage for PGdual when λ is medium to large. At last, altogether the plots of Figure 1 advocates to prefer the use of dual samplers, in particular PGdual and Mdual whose performance are systematically good, and better for medium to large values of λ.

IV. COVID-19 PANDEMIC INTENSITY ASSESSMENT

This section provides CI estimates of the reproduction numbers R := (R1, • • • , RT ) from day 1 to day T , defined by estimated quantiles of an a posteriori distribution on R. We first introduce the Bayesian model, and then describe the MCMC sampler used to explore the a posteriori distribution and compute empirical quantiles. Model. Among existing approaches for epidemic surveillance, Susceptible-Infectious-Recovered (SIR)-based methods are very popular [START_REF] Brauer | Mathematical Models in Epidemiology[END_REF]. Yet, a realistic use of compartmental models requires enriching the standard SIR model with additional compartments to match complex social realities [START_REF] Liu | Measurability of the epidemic reproduction number in data-driven contact networks[END_REF], resulting in a significant increase of the computational load thus impairing a daily updated estimation for 200+ countries. Further, accurate estimation of the parameters of compartmental models need consolidated data, and are thus incompatible with intrapandemy monitoring from the limited quality data reported on a daily basis by Health Authorities. The model we consider is built on the ones by [START_REF] Cori | A new framework and software to estimate time-varying reproduction numbers during epidemics[END_REF] and [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF] which was shown to be able to process highly corrupted new infection counts from different countries and time periods. [START_REF] Cori | A new framework and software to estimate time-varying reproduction numbers during epidemics[END_REF] proposed an epidemiology model designed to estimate the reproduction numbers R from the observed counts of new daily infections, denoted by At time t, Φt is a weighted mean of the number of new infections over the past τ ϕ days, with weights ϕ(•) which model the delay between a primary infection and a second one. In [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF], an extension of this model is designed to estimate simultaneously the reproduction numbers R and the errors O := (O1, • • • , OT ) when counting and reporting the true number of daily new infections. By using the model of [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF], we defined in [START_REF] Fort | Covid19 Reproduction Number: Credibility Intervals by Blockwise Proximal Monte Carlo Samplers[END_REF] an a posteriori distribution π of the parameter θ := (R, O) as follows. The support of π is This setting avoids the dependence of the order of magnitude of population or pandemic intensity on the choice of λ R and thus permits to use the same hyperparameters for most countries (see [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF]). The first two rows of D2 are orthogonal and orthogonal to the rows of D2; they are obtained from the vectors (1, 0,

Z = (Z1, • • • , ZT ). Given the past Z1, • • • Zt-1,
D := {θ ∈ (R+) T × R T : RtΦt + Ot ≥ 0 if Zt = 0} ∪ {θ ∈ (R+) T × R T : RtΦt + Ot > 0 if Zt > 0}. On D, -ln π(θ) = F (θ) + G(θ),
• • • , 0) and (-2, 1, 0, • • • , 0)/ √ 5.
As discussed in [START_REF] Artigas | Credibility interval design for Covid19 reproduction number from nonsmooth Langevin-type Monte Carlo sampling[END_REF], the augmentation D2 is not unique and this definition is numerically efficient.

Gibbs chains run for 10 7 iterations with a burn-in phase of 3.10 6 iterations. They are initialized at the Maximum a Posteriori, computed with a proximal convex non-smooth minimization algorithm (see [START_REF] Pascal | Nonsmooth convex optimization to estimate the Covid-19 reproduction number space-time evolution with robustness against low quality data[END_REF]). For each PGdual HM kernel, the step size γ is adapted during the burn-in phase in order to reach a mean accept-reject rate of 25% [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF]. The empirical quantiles are estimated from the ouput of the Gibbs sampler, after burn-in; the 95% CIs are computed for each component Rt of R and Ot of O, from the 2.5% and 97.5% empirical quantiles. Covid-19 data. The Covid-19 data used here are those made available at the Johns Hopkins University 2 . This repository collects and organizes, remarkably every day since the earliest phase of the pandemic till today, Covid19 pandemic data made available by the National health Authorities of 200+ countries or territories across the world. Use is made here of only daily new infection Zt for the most recent 10 weeks (T = 70 days, prior to the present day, Oct. 11th, 2022) and a few countries. Yet, tools devised here can be applied to any period of times and any country of interest. Counts Zt are not preprocessed prior to estimation, except for low-a priori informed 7day sliding median filtering, that removes totally irrelevant values, i.e., counts beyond ± 7 local standard deviations. Covid-19 pandemic intensity assessment. First, and at the methodological level, 95%-CIs yield realistic estimates of both Z (D) t and Rt for many different countries, and this, with a common choice of parameters (λR, λO) for all countries. Observe also that the CIs are very narrow (of the order of a few times 10 -2 for Rt), which indicates that given the actual Covid-19 data, the modeling proposed here, and the choice of (λR, λO), there remains little uncertainty on estimates. Further, Fig. 2 shows that CIs tend to be larger both at error in reported counts locations, and at changes in the pandemic intensity behavior, as measured by Rt (e.g. when it switches from increasing to decreasing).

Second and at the application level, Fig. 2 shows that Z (D) provides a smooth temporal evolution, that satisfactorily cancels the 7-day pseudo-seasonality when it exists in data, with filling up missing counts and decreasing mis-reported subsequent counts. This is obtained with no a priori information related to seasonalities or more generally, to the calendar. Other erroneous values not associated with the pseudo seasonality are also satisfactorily removed. Further, the CI estimates of R also provide a very regular evolution of t → Rt (almost piecewise linear). In agreement with a potential use of these analyses by epidemiologists, it indicates not only whether 2 https://coronavirus.jhu.edu/ Rt is above or below 1, thus betraying an increase/decrease of the intensity of the pandemics, but also whether the trend is locally increasing or decreasing, quantifying an acceleration/deceleration in the growth/decrease of the pandemics. For example, currently, the pandemics for most European countries is within an accelerating growth phase (Rt above one and with linearly increasing trend), while for most other countries of the world, Rt is below 1 and with stable or decreasing trends, indicating a slowly regressing pandemics at the time of writing.

It is also worth mentioning that the model, notably with a L 1norm constraint on D2R, the second derivative of the R ′ t s, promotes smooth quasi-piecewise linear estimates of Rt. Strictly speaking, while it only performs estimations at current date, it implicitly achieves nowcasting (as opposed to forecasting), i.e., a prediction of the short-term evolution of the pandemics. Given the intrinsic time scales of the pandemics, controlled by the serial distribution function ϕ(•), an estimated change in the intensity of Rt predicts a change in the evolution of the daily new infection counts about two weeks after. Hence, a change from linear increase to linear decrease in Rt today announces that a current Covid wave should reach its maximum within the next two/three weeks. At the time of writing, the maximum of the 8th wave for Europe can not yet be detected. The decreasing Rt recently observed for Italy, for instance, predicts that the maximum of infections should be reached in the coming days. For France, the lesser increase in Rt, observed after Sept. 18th, indicates a slower acceleration of the pandemics, and thus might be read as preliminaries to a pandemic deceleration. These observations, at the time of writing, may constitute the first signs of the soon to come maximum of the 8th wave for Europe. Conversely, the start of the current 8th wave in France was visible as early as the first days of August (as for most West-European countries) by a change from decrease to increase in Rt.

Finally, the estimate of Rt across a chosen period permits a retrospective analysis of the impacts of sanitary policies in given countries, by quantifying the subsequent evolution of Rt. As an interesting outcome, theses analyses show that the pandemics developed across West-European countries, essentially with the same dynamics and despite sometimes very different sanitary policies.

V. CONCLUSIONS AND PERSPECTIVES

This paper presents MCMC samplers designed to explore logconcave composite densities with a constrained support. Their performances are compared on a toy problem. Their relevance and interest have been illustrated on the assessment of the intensity in the Covid-19 pandemics, from daily new infection counts: credibility intervals for the reproduction number of the pandemic are updated automatically on a daily-basis for many countries and made available on the authors web pages 3 . Future works will be about hyperparameters: either automated and data-driven selections, or a Bayesian approach to analyze how the credibility intervals for the Rt's are affected by uncertainty on (λR, λO). They will also include a sequential statistical analysis to take into account the daily new observations.

  Zt is a Poisson distribution with intensity RtΦt where Φt := τ ϕ u=1 ϕ(u)Zt-u and ϕ(•) is the probability density function of a Gamma distribution with
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 1 Figure 1: Evolution of Log π with respect to the number of iterations, and of the ACF with respect to the lag. In dashed lines: RW in cyan, M in gray and PGdec in magenta. Methods based on the change of space are plotted in solid lines: RWdual in blue, Mdual in black and PGdual in red. The curves for PGdual and Mdual are often superimposed.

  up to an additive constant. The function G(θ) := λ R ∥D2R∥1 + λ O ∥O∥1 where λ R , λ O > 0 and D2 is proportional to the second order derivative operator ((D2R)t := (Rt+2 -2Rt+1 + Rt)/ √ 6 for t = 1, • • • , T -2), plays the role of a negative log-prior on θ. The function F (θ) is the negative loglikelihood of Poisson distributions with intensities RtΦt + Ot for t = 1, • • • , T : F (θ) := T t=1 {(RtΦt + Ot) -Zt ln(RtΦt + Ot)}. MCMC sampler. We consider a Metropolis-within-Gibbs sampler: since both conditional distributions of R given O (denoted by π1(•|o)) and O given R (denoted by π2(•|r)) can not be exactly sampled from, each iteration of the Gibbs sampler calls two HM kernels. Given the current value of the chain (Rn, On), (i) update first the R-component by sampling from a HM kernel P1(On, •) targeting π1(•|On) and obtain Rn+1 and then (ii) update the O-component by sampling from a HM kernel P2(Rn+1, •) targeting π2(•|Rn+1) and obtain On+1. From the expressions of F , G and D, it may be seen that -ln π1(•|On) = F (•, On) + λ R ∥(D2•)3:T ∥1 on {r ∈ (R+) T : (r, On) ∈ D}, where D2 is an invertible augmentation of D2 obtained by adding two rows on the top of D2; and -ln π2(•|Rn+1) = F (Rn+1, •) + λ O ∥ • ∥1 on {o ∈ R T : (Rn+1, o) ∈ D}. We can therefore use any of the HM kernels described in Section II. Based on the results of Section III, we will use the PGdual HM kernel. MCMC simulations. In the present work, τ ϕ := 26 and (λR, λO) := (3.5 σ Z √ 6/4, 0.05) with σ Z denoting the standard deviation of Z.

Fig. 2

 2 displays for different countries across the world, the reported daily new infection counts Zt (top plots, black solid line). 95%-CIs of pseudo denoised counts Z (D) := (Z (D) 1 , • • • , Z (D) T ) are superimposed (top plots, red filled bands), where Z (D) t := Zt -Ot and CIs for Z (D) t stem from those of Ot. Finally, the 95%-CIs for Rt are displayed (bottom plots, red filled bands). Fig. 2 permits to draw a number of conclusions.
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 2 Figure 2: Credibility interval estimations of the Covid-19 actual infection counts and of the reproduction numbers. For several countries Top: Observed counts (black) and 95% CIs estimations of actual counts of new infections (red); Bottom: 95% CIs estimations of the Rt's.

  The gradient of the Moreau envelope of g(C•) has no closed-form expression (see H3) and we propose a change of variable to remove C from the nonsmooth component of -ln π by using the following observation (see e.g. [21, Section 3] and [22, Section 4.2.] for similar ideas): a Markov chain {τ n, n ≥ 0} with stationary distribution π can be obtained from a Markov chain {τ
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