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Abstract—Providing a level of confidence in the estimation of epi-
demiological indicators during pandemics is essential to inform decision
makers. Monitoring the time evolution of the epidemic intensity despite
the limited quality of the data is both crucial and challenging. For
the estimation of the Covid-19 reproduction number through credibility
intervals, a Bayesian model robust to errors in reported counts were
proposed, yielding a non differentiable composite a posteriori log-density
which required the design of advanced Proximal Langevin schemes. The
first goal of this paper is to customize and compare on a pedagogically
designed toy example, four different Hastings-Metropolis algorithms
combining Langevin approaches and proximal operators. Then, the
most efficient one is plugged into a Metropolis-within-Gibbs algorithm
performing a credibility intervals-based estimation of Covid-19 pandemic
indicators, exemplified for several countries worldwide.

Index Terms—Markov chain Monte Carlo, log-concave composite
density, Langevin Monte Carlo, Proximal operators, Bayesian credibility
intervals, Covid-19, Reproduction number.

I. INTRODUCTION

Context. Real-time monitoring of the evolution of the Covid-19
pandemic is both crucial and difficult: Crucial as it is a prerequisite
to the design of efficient health policies; Difficult because it must
be carried out while the pandemic is still developing (and not
retrospectively, after the pandemic is over) and from data - made
available by National Health Authorities - that were and still are of
limited quality (missing values, outlier values, pseudo-seasonalities,
etc.). Within pandemic phases, epidemiologists often have recourse to
the notion of time-varying reproduction number, Rt, to quantify the
intensity of the pandemics [1]. Research works, conducted during
the earliest phase of the pandemics [2], [3], have lead to propose
a robust and efficient estimation of Rt based on a variational
formulation solved by nonsmooth convex minimization: the criterion
results from augmenting the epidemiological model in [1] with an
error management strategy specifically built to handle low quality
data [3]. Further and more recently, a Bayesian reading of this
criterion allowed us to obtain credibility intervals (CI) estimates of
Rt computed via Markov chain Monte Carlo (MCMC) sampling [4],
[5]. However, the design of such samplers for the Bayesian model
at hand turns out to be complex: the resulting a posteriori density
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π with respect to the Lebesgue measure on Rd is concave and takes
the general form:

π ∝ exp(−(f + g(C·)))1D, (1)

where 1D is the {0, 1}-valued indicator function of the support D
of π, −f is a differentiable log-likelihood, C is a linear operator and
−g(C·) is a nonsmooth log-prior. The composite structure of lnπ and
the composition of the nonsmooth component with a linear operator
makes the MCMC sampling challenging.
Related work. Numerous applications require to design MCMC
methods targeting log-concave composite distributions [6], [7], [4].
From the seminal paper by [8] on Langevin Monte Carlo (LMC)
methods, many strategies taking benefit of first order information on
π to design Markov chains approximating π were proposed. When π
is smooth, the most popular is the Metropolis-Adjusted Langevin Al-
gorithm sampler (MALA) [9] which uses a LMC iteration as a proposal
mechanism in a Hastings-Metropolis (HM) sampler ([10], see also
[11]): τn+ 1

2
∼ µ(τn) +N (0, 2γ I) with µ(τ ) := τ + γ∇ lnπ(τ ).

This proposition step is then followed with an accept-reject (AR)
step: τn+1 = τn+1/2 if the candidate is accepted and τn+1 = τn

otherwise. The AR step guarantees that the MCMC sampler admits
π as unique invariant density (see e.g., [11]) - and that the chain
{τn, n ≥ 0} is D-valued. To handle a nonsmooth density π, [12]
proposes the use of the proximal operator prox ([13], see also
[14, Chapter 1]) leading to P-ULA (or P-MALA when an AR step
is included). Because the composition of a nonsmooth function g
with a linear operator C impairs an explicit analytical computation
of proxg(C·), even when proxg is known in closed-form, a direct
application of P-ULA to a density π of the form (1) is not possible
and one has to resort to more advanced schemes. In [15] and [16], the
drifts µ rely on a differentiable approximation of g(C·) through its
Moreau envelope (see e.g. [14, Chapter 1]), which leads to a regular
approximation of f + g(C·), whose gradient involves the proximal
operator of g; µ is then the sum of a gradient term related to f and
of a proximal term associated with g. The drifts proposed by [4]
and [5] define µ as the composition of a gradient term related to f
and of a proximal term related to g. There are pro and cons for the
introduction of the AR step (see e.g. [17]) - when not introduced, one
set τn+1 = τn+1/2. Note however that when D is not Rd, AR forces



the chain {τn, n ≥ 0} to remain in D which is not guaranteed by
Gaussian proposal distributions N (µ(τ ), 2γ I), with γ > 0 and I the
identity matrix in dimension d. More elaborated LMC-based proposal
mechanisms yield a D-valued Markov chain by using projections or
reflections on the boundaries of D, see e.g. [18], [19] nevertheless,
they require assumptions on π and on the topology of D.
Another class of methods for nonsmooth target densities is pro-
posed in [20]: it relies on variable splitting and data augmentation
schemes inspired by the Alternating Direction Method of Multipliers
algorithm. In this paper, for a fair comparison of the methods, we
restrict our attention to MCMC samplers without data augmentation
– a technique which may get simpler distributions, easier to sample
from but at the price of a subtle balance between augmentation of the
dimension of the sampling space and faster convergence rate inherited
from a reduced correlation between samples.
Outline, Goals and contributions. The first goal of the present work
is to frame the relations between the proximal-Langevin based HM
algorithms proposed in [4], [5], [15] and [16], and to compare their
performance on a toy example. The second goal is to use the most
promising sampler for solving the estimation of credibility intervals
for the daily reproduction numbers Rt of the Covid-19 pandemic.
Section II provides, as a first contribution, a detailed and organized
review of existing and proposed proximal-Langevin based HM algo-
rithms. Then, as a second contribution of this paper, performance of
these different HM samplers are compared in Section III, on a toy
density. One of the samplers we proposed in a previous work (see
[5]) is put forward from performance assessment in Section III. A
last novelty of this paper, is to plug this sampler into a Metropolis-
within-Gibbs strategy for the estimation of the reproduction number
Rt from real Covid-19 new infection counts, made available from
the John Hopkins repository for 200+ territories in the world (cf.
Section IV). Its relevance and potential interests are discussed in
details.

II. PROXIMAL-LANGEVIN HASTINGS-METROPOLIS

This section is devoted to Langevin-based MCMC samplers, when
the target density π with respect to the Lebesgue measure on Rd

satisfies: (H1) π is of the form (1); (H2) f : D → R is continuously
differentiable on D ; (H3) g : D → R is a convex lower semi-
continuous function, and possesses a proximal operator1 having a
closed-form expression, which is assumed not to be the case for the
proximal operator of g(C·). We restrict our attention to HM samplers,
and discuss how to design more efficient proposal distributions than
in the Random Walk HM, from first order informations on the target
density π. Since − lnπ is a composite function (see H1, H2 and
H3), we consider combinations of gradient steps with respect to f
(see H2) and implicit gradient steps based on the proximal operator
of g (see H3). Let us describe four possible proposal mechanisms,
some of them requiring the additional assumption: (H4) C is a d×d
invertible matrix. Set Γ := C−1C−⊤ and let γ, ρ > 0.
Moreau (M). First, let us use the semi-FBLMC iteration proposed
in [16]. It relies on the Moreau envelope of g with parameter
ρ, which is a continuously differentiable function gρ satisfying
∇[gρ](τ ) = ρ−1

(
τ − proxρ g(τ )

)
. Given the current value τn of

the chain, a jump to τn+ 1
2

∼ µM(τn) + Nd(0, 2γ I) is proposed,
where µM(τn) := τn − γ∇f(τn)− γρ−1

(
Cτn − proxρ g(Cτn)

)
.

1The proximal operator of g is defined for ρ > 0 as

proxρ g(τ ) := argmin
χ

1

2
∥χ− τ∥22 + ρ g(χ).

Moreau in an image space (Mdual). The gradient of the Moreau
envelope of g(C·) has no closed-form expression (see H3) and we
propose a change of variable to remove C from the nonsmooth
component of − lnπ by using the following observation (see e.g.
[21, Section 3] and [22, Section 4.2.] for similar ideas): a Markov
chain {τn, n ≥ 0} with stationary distribution π can be obtained
from a Markov chain {τ̃n, n ≥ 0} targeting π̃(·) ∝ π(C−1·) by
setting τn := C−1τ̃n. We have − ln π̃(τ̃ ) = f(C−1τ̃ ) + g(τ̃ ) with
support {τ̃ : C−1τ̃ ∈ D}. A Moreau envelope approach for the
smoothing of − ln π̃ is known as a ULA iteration (see [12], [15]).
It proposes a jump to τ̃n+ 1

2
∼ µMdual(τ̃n) + Nd(0, 2γ I) where

µMdual(τ̃n) := τ̃n − γC−⊤∇f(C−1τ̃n) − γ
ρ

(
τ̃n − proxρ g(τ̃n)

)
.

In the original sampling space, this is equivalent to a jump from τn

to τn+ 1
2

∼ τn − γΓ∇f(τn) − γρ−1
(
τn − proxΓ−1

ρ g(C·)(τn)
)
+

Nd(0, 2γΓ); proxA
h is the proximal operator of h in the metric

induced by the positive definite matrix A (see e.g. [23, Section
XV.4]).
Proximal-Gradient decomposition (PGdec). This method applies
when g(C·) =

∑J
j=1 gj(Cj ·) and gj(Cj ·) has a proximal operator

with a closed form expression; see Section III for an example. In
[5], we introduced the following proposal distribution : sample Jn at
random in {1, · · · , J} and set τn+ 1

2
∼ µPGdec(τn, Jn)+Nd(0, 2γ I)

where µPGdec(τn, Jn) := proxγgJn (CJn ·) (τn − γ∇f(τn)).
Proximal-Gradient in an image space (PGdual). As above for
Mdual, let us apply a Proximal-Gradient step in the image of
D by C: given τ̃n, sample τ̃n+ 1

2
∼ µPGdual(τ̃n) + Nd(0, 2γ I)

where µPGdual(τ̃n) := proxγg

(
τ̃n − γC−⊤∇f(C−1τ̃n)

)
. In the

original sampling space, this is equivalent to a jump from τn to
τn+ 1

2
∼ proxΓ−1

γg(C·) (τn − γΓ∇f(τn)) + Nd(0, 2γΓ), which is a
Variable Metric Forward-Backward iteration ([24], see also [25]).
Accept-reject step. None of these proposal strategies takes into
account the support D of π; in order to obtain a D-valued sequence
{τn, n ≥ 0}, an accept-reject step is included at each iteration.
Remark. When g = 0 (i.e. when − lnπ is continuously differen-
tiable), M and PGdec are the same algorithms and are equal to MALA
([8], [26]); and Mdual and PGdual are the same algorithms and are
equal to a tempered MALA ([27], [28]).

III. TOY EXAMPLE

Definition. Let πt be the penalized likelihood in a logistic regression
model, defined on D := Rd:

lnπt(τ ) := Y⊤Xτ −
N∑

j=1

ln (1 + exp((Xτ )j))− λ∥D1τ∥1;

Y ∈ {0, 1}N being the vector collecting the binary responses, X the
N×d matrix of covariates, D1 the (d−1)×d discrete differentiation
matrix, λ > 0 the regularization parameter and ∥·∥1 the ℓ1-norm
defined as the sum of the absolute values of the vector’s coefficients.
Samplers. By augmenting D1 with a raw into an invertible matrix
denoted by D1, πt satisfies (H1-H4) and the four methods pro-
posed in Section II apply with C := D1 and g(τ ) := λ∥τ 2:d∥1
for any τ ∈ Rd. For PGdec, the penalization decomposes into
∥(D1τ )2:d∥1 = ∥D1,pτ∥1 + ∥D1,iτ∥1, where D1,p (resp. D1,i)
concatenates the lines of D1 of even (resp. odd) indices; these
two matrices satisfy D1,xD

⊤
1,x = ν I for x ∈ {i, p} and some

ν > 0 (here ν = 1) which makes the computation of the proximity
operator of ∥D1,p · ∥1 and ∥D1,i · ∥1 explicit [29]. To implement
the samplers working in the image space, the first raw added to
D1 to obtain the invertible D1 is equal to the projection of the
vector (−1, 0, · · · , 0) ∈ Rd on the space orthogonal to the range



of D1. For M and Mdual, we choose ρ := γ. For all these
methods, the value of γ is adapted during the 5 103 first iterations in
order to reach an accept-reject rate of 0.25. We also run RW and
RWdual which correspond resp. to τn+ 1

2
∼ τn + N (0, I) and

τn+ 1
2

∼ τn + N (0,Γ), where Γ := D
−1
1 D

−⊤
1 . The comparison

to the four proposed approaches enable to asses the relevance of
methods exploiting first order information about L := lnπt.
Compared performance. To compare the performances of the
different samplers, Log π measures the relative distance to the
maximum L⋆ (−L being strictly convex) of L; the evolution of
(L(τn)− L⋆) /

(
L(τ 1)− L⋆

)
is plotted over the first 2 500 it-

erations of the chain. ACF represents the absolute value of the
autocorrelation function in terms of the lag (from 0 to 600), computed
from 17 500 points obtained after a burn-in of 2 500 points. The ACF
reflects the ergodicity of the chain: the smaller the better [11]. The
data set is simulated: N = 2.103, d = 20; the matrix of covariates
X is built from independent Rademacher random variables (r.v.),
the rows of X being afterward normalized to 1; the components
of Y are independent Bernoulli r.v. with probability of success
(1 + exp(−(Xτ ⋆)j))

−1 where τ ⋆ is blockwise constant, with six
components equal to −2, then seven at 1.5, and then seven at −1.
Finally, three different values of the regularization parameter λ are
considered: λ ∈ {1, 15, 30}. Performances obtained as averages over
50 independent realizations are reported in Figure 1. It illustrates the
gain of exploiting first order information on π to accelerate the move
of the sampler toward high probability regions. For RW, PGdec and M,
this gain decreases when λ is large. Exploiting partial information, as
done by PGdec, remains possible when λ is small; for larger values
of λ, PGdec is less efficient than M in the stationary regime of the
chain (see the ACF criterion). The schemes proceeding in the image
space, PGdual and Mdual, appears to be extremely robust to very
different values of λ, with a slight advantage for PGdual when λ is
medium to large. At last, altogether the plots of Figure 1 advocates
to prefer the use of dual samplers, in particular PGdual and Mdual
whose performance are systematically good, and better for medium
to large values of λ.

IV. COVID-19 PANDEMIC INTENSITY ASSESSMENT

This section provides CI estimates of the reproduction numbers
R := (R1, · · · ,RT ) from day 1 to day T , defined by estimated
quantiles of an a posteriori distribution on R. We first introduce
the Bayesian model, and then describe the MCMC sampler used to
explore the a posteriori distribution and compute empirical quantiles.
Model. Among existing approaches for epidemic surveillance,
Susceptible-Infectious-Recovered (SIR)-based methods are very pop-
ular [30]. Yet, a realistic use of compartmental models requires
enriching the standard SIR model with additional compartments
to match complex social realities [31], resulting in a significant
increase of the computational load thus impairing a daily updated
estimation for 200+ countries. Further, accurate estimation of the
parameters of compartmental models need consolidated data, and are
thus incompatible with intrapandemy monitoring from the limited
quality data reported on a daily basis by Health Authorities. The
model we consider is built on the ones by [1] and [3] which
was shown to be able to process highly corrupted new infection
counts from different countries and time periods. [1] proposed an
epidemiology model designed to estimate the reproduction numbers
R from the observed counts of new daily infections, denoted by
Z = (Z1, · · · ,ZT ). Given the past Z1, · · ·Zt−1, Zt is a Poisson
distribution with intensity RtΦt where Φt :=

∑τϕ
u=1 ϕ(u)Zt−u and

ϕ(·) is the probability density function of a Gamma distribution with

Figure 1: Evolution of Log π with respect to the number of
iterations, and of the ACF with respect to the lag. In dashed
lines: RW in cyan, M in gray and PGdec in magenta. Methods based
on the change of space are plotted in solid lines: RWdual in blue,
Mdual in black and PGdual in red. The curves for PGdual and
Mdual are often superimposed.

mean 6.68 days, standard deviation 3.53 days and a mode at 4.8 days.
At time t, Φt is a weighted mean of the number of new infections
over the past τϕ days, with weights ϕ(·) which model the delay
between a primary infection and a second one. In [3], an extension
of this model is designed to estimate simultaneously the reproduction
numbers R and the errors O := (O1, · · · ,OT ) when counting and
reporting the true number of daily new infections. By using the model
of [3], we defined in [5] an a posteriori distribution π of the parameter
θ := (R,O) as follows. The support of π is

D := {θ ∈ (R+)
T × RT : RtΦt + Ot ≥ 0 if Zt = 0}

∪ {θ ∈ (R+)
T × RT : RtΦt + Ot > 0 if Zt > 0}.

On D, − lnπ(θ) = F (θ) + G(θ), up to an additive constant. The
function G(θ) := λR∥D2R∥1 + λO∥O∥1 where λR, λO > 0 and D2

is proportional to the second order derivative operator ((D2R)t :=
(Rt+2 − 2Rt+1 + Rt)/

√
6 for t = 1, · · · , T − 2), plays the role of

a negative log-prior on θ. The function F (θ) is the negative log-
likelihood of Poisson distributions with intensities RtΦt + Ot for
t = 1, · · · , T :

F (θ) :=

T∑
t=1

{(RtΦt + Ot)− Zt ln(RtΦt + Ot)}.

MCMC sampler. We consider a Metropolis-within-Gibbs sampler:
since both conditional distributions of R given O (denoted by π1(·|o))
and O given R (denoted by π2(·|r)) can not be exactly sampled from,
each iteration of the Gibbs sampler calls two HM kernels. Given the
current value of the chain (Rn,On), (i) update first the R-component
by sampling from a HM kernel P1(On, ·) targeting π1(·|On) and ob-
tain Rn+1 and then (ii) update the O-component by sampling from a
HM kernel P2(Rn+1, ·) targeting π2(·|Rn+1) and obtain On+1. From
the expressions of F , G and D, it may be seen that − lnπ1(·|On) =
F (·,On) + λR∥(D2·)3:T ∥1 on {r ∈ (R+)

T : (r,On) ∈ D}, where
D2 is an invertible augmentation of D2 obtained by adding two rows
on the top of D2; and − lnπ2(·|Rn+1) = F (Rn+1, ·) + λO∥ · ∥1 on



{o ∈ RT : (Rn+1, o) ∈ D}. We can therefore use any of the HM
kernels described in Section II. Based on the results of Section III,
we will use the PGdual HM kernel.
MCMC simulations. In the present work, τϕ := 26 and (λR, λO) :=
(3.5σZ

√
6/4, 0.05) with σZ denoting the standard deviation of Z.

This setting avoids the dependence of the order of magnitude of
population or pandemic intensity on the choice of λR and thus
permits to use the same hyperparameters for most countries (see
[3]). The first two rows of D2 are orthogonal and orthogonal to the
rows of D2; they are obtained from the vectors (1, 0, · · · , 0) and
(−2, 1, 0, · · · , 0)/

√
5. As discussed in [4], the augmentation D2 is

not unique and this definition is numerically efficient.
Gibbs chains run for 107 iterations with a burn-in phase of 3.106

iterations. They are initialized at the Maximum a Posteriori, computed
with a proximal convex non-smooth minimization algorithm (see [3]).
For each PGdual HM kernel, the step size γ is adapted during the
burn-in phase in order to reach a mean accept-reject rate of 25% [32].
The empirical quantiles are estimated from the ouput of the Gibbs
sampler, after burn-in; the 95% CIs are computed for each component
Rt of R and Ot of O, from the 2.5% and 97.5% empirical quantiles.
Covid-19 data. The Covid-19 data used here are those made available
at the Johns Hopkins University2. This repository collects and orga-
nizes, remarkably every day since the earliest phase of the pandemic
till today, Covid19 pandemic data made available by the National
health Authorities of 200+ countries or territories across the world.
Use is made here of only daily new infection counts Zt for the most
recent 10 weeks (T = 70 days, prior to the present day, Oct. 11th,
2022) and a few countries. Yet, tools devised here can be applied to
any period of times and any country of interest. Counts Zt are not
preprocessed prior to estimation, except for low-a priori informed 7-
day sliding median filtering, that removes totally irrelevant values,
i.e., counts beyond ± 7 local standard deviations.
Covid-19 pandemic intensity assessment. Fig. 2 displays for dif-
ferent countries across the world, the reported daily new infection
counts Zt (top plots, black solid line). 95%-CIs of pseudo denoised
counts Z(D) := (Z

(D)
1 , · · · ,Z(D)

T ) are superimposed (top plots, red
filled bands), where Z

(D)
t := Zt − Ot and CIs for Z

(D)
t stem from

those of Ot. Finally, the 95%-CIs for Rt are displayed (bottom plots,
red filled bands). Fig. 2 permits to draw a number of conclusions.

First, and at the methodological level, 95%-CIs yield realistic
estimates of both Z

(D)
t and Rt for many different countries, and

this, with a common choice of parameters (λR, λO) for all countries.
Observe also that the CIs are very narrow (of the order of a few
times 10−2 for Rt), which indicates that given the actual Covid-19
data, the modeling proposed here, and the choice of (λR, λO), there
remains little uncertainty on estimates. Further, Fig. 2 shows that CIs
tend to be larger both at error in reported counts locations, and at
changes in the pandemic intensity behavior, as measured by Rt (e.g.
when it switches from increasing to decreasing).

Second and at the application level, Fig. 2 shows that Z(D)

provides a smooth temporal evolution, that satisfactorily cancels
the 7-day pseudo-seasonality when it exists in data, with filling up
missing counts and decreasing mis-reported subsequent counts. This
is obtained with no a priori information related to seasonalities or
more generally, to the calendar. Other erroneous values not associated
with the pseudo seasonality are also satisfactorily removed. Further,
the CI estimates of R also provide a very regular evolution of
t 7→ Rt (almost piecewise linear). In agreement with a potential use
of these analyses by epidemiologists, it indicates not only whether

2https://coronavirus.jhu.edu/

Figure 2: Credibility interval estimations of the Covid-19 actual
infection counts and of the reproduction numbers. For several
countries Top: Observed counts (black) and 95% CIs estimations of
actual counts of new infections (red); Bottom: 95% CIs estimations
of the Rt’s.

Rt is above or below 1, thus betraying an increase/decrease of the
intensity of the pandemics, but also whether the trend is locally
increasing or decreasing, quantifying an acceleration/deceleration in
the growth/decrease of the pandemics. For example, currently, the
pandemics for most European countries is within an accelerating
growth phase (Rt above one and with linearly increasing trend), while
for most other countries of the world, Rt is below 1 and with stable
or decreasing trends, indicating a slowly regressing pandemics at the
time of writing.

It is also worth mentioning that the model, notably with a L1-
norm constraint on D2R, the second derivative of the R′

ts, promotes
smooth quasi-piecewise linear estimates of Rt. Strictly speaking,
while it only performs estimations at current date, it implicitly
achieves nowcasting (as opposed to forecasting), i.e., a prediction
of the short-term evolution of the pandemics. Given the intrinsic
time scales of the pandemics, controlled by the serial distribution
function ϕ(·), an estimated change in the intensity of Rt predicts a
change in the evolution of the daily new infection counts about two
weeks after. Hence, a change from linear increase to linear decrease

https://coronavirus.jhu.edu/


in Rt today announces that a current Covid wave should reach its
maximum within the next two/three weeks. At the time of writing,
the maximum of the 8th wave for Europe can not yet be detected.
The decreasing Rt recently observed for Italy, for instance, predicts
that the maximum of infections should be reached in the coming
days. For France, the lesser increase in Rt, observed after Sept. 18th,
indicates a slower acceleration of the pandemics, and thus might be
read as preliminaries to a pandemic deceleration. These observations,
at the time of writing, may constitute the first signs of the soon to
come maximum of the 8th wave for Europe. Conversely, the start of
the current 8th wave in France was visible as early as the first days
of August (as for most West-European countries) by a change from
decrease to increase in Rt.

Finally, the estimate of Rt across a chosen period permits a retro-
spective analysis of the impacts of sanitary policies in given countries,
by quantifying the subsequent evolution of Rt. As an interesting
outcome, theses analyses show that the pandemics developed across
West-European countries, essentially with the same dynamics and
despite sometimes very different sanitary policies.

V. CONCLUSIONS AND PERSPECTIVES

This paper presents MCMC samplers designed to explore log-
concave composite densities possibly with a constrained support.
Their performances are compared on a toy problem. Their relevance
and interest have been illustrated on the assessment of the intensity in
the Covid-19 pandemics, from daily new infection counts: credibility
intervals for the reproduction number of the pandemic are updated au-
tomatically on a daily-basis for many countries and made available on
the authors web pages3. Future works will be about hyperparameters:
either automated and data-driven selections, or a Bayesian approach
to analyze how the credibility intervals for the Rt’s are affected by
uncertainty on (λR, λO). They will also include a sequential statistical
analysis to take into account the daily new observations.
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