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ABSTRACT

Monitoring the time evolution of the intensity of the Covid-19 pan-
demic within the pandemic and despite the limited quality of the
data is both crucial and challenging. In the context of a pandemic,
providing a level of confidence in the estimation of epidemiological
indicators is essential to inform decision makers. The present work
proposes a Bayesian estimation of the pandemic Covid-19 reproduc-
tion number and of the denoised reported counts through credibility
intervals. The challenge stems from an epidemiological Bayesian
model robust to errors in reported counts, which yields a non differ-
entiable a posteriori log-density. Four different Hastings-Metropolis
algorithms combining Langevin approaches and proximal operators
are compared on a toy example; the most efficient one is plugged
into a Metropolis-within-Gibbs algorithm performing a credibility
intervals-based estimation of Covid-19 pandemic indicators, exem-
plified for several countries worldwide.

Index Terms— Markov chain Monte Carlo, log-concave com-
posite density, Langevin Monte Carlo, Proximal operators, Bayesian
credibility intervals, Covid-19, Reproduction number.

1. INTRODUCTION
Context. Real-time monitoring of the evolution of the Covid-19
pandemic is both crucial and difficult: Crucial as it is a prerequisite
to the design of efficient health policies; Difficult because it must be
carried out while the pandemic is still developing (and not retrospec-
tively, after the pandemic is over) and from data - made available by
National Health Authorities - that were and still are of limited quality
(missing values, outlier values, pseudo-seasonalities, · · · ). Within
pandemic phases, epidemiologists often have recourse to the notion
of time-varying reproduction number, Rt, to quantify the intensity
of the pandemics [1]. Research works, conducted during the earli-
est phase of the pandemics [2, 3], have lead to propose a robust and
efficient estimation of Rt based on a variational formulation solved
by nonsmooth convex minimization: the criterion results from aug-
menting the epidemiological model in [1] with an error management
strategy specifically built to handle low quality data [3]. Further and
more recently, a Bayesian reading of this criterion allowed us to ob-
tain credibility intervals (CI) estimates of Rt computed via Markov
chain Monte Carlo (MCMC) sampling [4, 5]. However, the design
of such samplers for the Bayesian model at hand turns out to be
complex: the resulting a posteriori density π with respect to the
Lebesgue measure on Rd is concave and takes the general form:

π ∝ exp(−(f + g(C·)))1D, (1)
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where 1D is the {0, 1}-valued indicator function of the support D
of π, −f is a differentiable log-likelihood, C is a linear operator
and −g(C·) is a nonsmooth log-prior. The composite structure of
lnπ and the composition of the nonsmooth component with a linear
operator makes the MCMC sampling challenging.
Related work. Numerous applications require to design MCMC
methods targeting log-concave composite distributions [6, 7, 4].
From the seminal paper by [8] on Langevin Monte Carlo (LMC)
methods, many strategies taking benefit of first order information
on π to design Markov chains approximating π were proposed.
When π is smooth, the most popular is the Metropolis-Adjusted
Langevin Algorithm sampler (MALA) [9] which uses a LMC it-
eration as a proposal mechanism in a Hastings-Metropolis (HM)
sampler ([10], see also [11]): τn+ 1

2
∼ µ(τn) + N (0, 2γ I) with

µ(τ ) := τ + γ∇ lnπ(τ ). This proposition step is then followed
with an accept-reject (AR) step: τn+1 = τn+1/2 if the candidate
is accepted and τn+1 = τn otherwise. The AR step guarantees
that the MCMC sampler admits π as unique invariant density (see
e.g., [11]) - and that the chain {τn, n ≥ 0} is D-valued. To han-
dle a nonsmooth density π, [12] proposes the use of the proximal
operator prox ([13], see also [14, Chapter 1]) leading to P-ULA (or
P-MALA when an AR step is included). Because the composition of
a nonsmooth function g with a linear operator C impairs an explicit
analytical computation of proxg(C·), even when proxg is known in
closed-form, a direct application of P-ULA to a density π of the form
(1) is not possible and one has to resort to more advanced schemes.
In [15] and [16], the drifts µ rely on a differentiable approximation
of g(C·) through its Moreau envelope (see e.g. [14, Chapter 1]),
which leads to a regular approximation of f + g(C·), whose gra-
dient involves the proximal operator of g; µ is then the sum of a
gradient term related to f and of a proximal term associated with g.
The drifts proposed by [4] and [5] define µ as the composition of a
gradient term related to f and of a proximal term related to g. There
are pro and cons for the introduction of the AR step (see e.g. [17])
- when not introduced, one set τn+1 = τn+1/2. Note however
that when D is not Rd, AR forces the chain {τn, n ≥ 0} to remain
in D which is not guaranteed by Gaussian proposal distributions
N (µ(τ ), 2γ I). More elaborated LMC-based proposal mechanisms
yield a D-valued Markov chain by using projections or reflections
on the boundaries of D, see e.g. [18, 19] nevertheless, they require
assumptions on π and on the topology of D.
Another class of methods for nonsmooth target densities is proposed
in [20]: it relies on variable splitting and data augmentation schemes
inspired by the Alternating Direction Method of Multipliers algo-
rithm. In this paper, for a fair comparison of the methods, we restrict
our attention to MCMC samplers without data augmentation – a
technique which may get simpler distributions, easier to sample



from but at the price of a subtle balance between augmentation of
the dimension of the sampling space and faster convergence rate
inherited from a reduced correlation between samples.
Outline, Goals and contributions. The first goal of the present
work is to frame the relations between the proximal-Langevin based
HM algorithms proposed in [4, 5, 15] and [16], and to compare their
performance on a toy example. The second goal is to use the most
promising sampler for solving the estimation of credibility intervals
for the daily reproduction numbers Rt of the Covid-19 pandemic.
Section 2 provides, as a first contribution, a detailed and organized
review of existing and proposed proximal-Langevin based HM al-
gorithms. Then, as a second contribution of this paper, performance
of these different HM samplers are compared in Section 3, on a toy
density. One of the samplers we proposed in a previous work (see
[5]) is put forward from performance assessment in Section 3. A
last novelty of this paper, is to plug this sampler into a Metropolis-
within-Gibbs strategy for the estimation of the reproduction number
Rt from real Covid-19 new infection counts, made available from the
John Hopkins repository for 200+ territories in the world (cf. Sec-
tion 4). Its relevance and potential interests are discussed in details.

2. PROXIMAL-LANGEVIN HASTINGS-METROPOLIS

This section is devoted to Langevin-based MCMC samplers, when
the target density π with respect to the Lebesgue measure on Rd
satisfies: (H1) π is of the form (1); (H2) f : D → R is contin-
uously differentiable on D ; (H3) g : D → R is a convex lower
semi-continuous function, and possesses a proximal operator hav-
ing a closed-form expression, which is assumed not to be the case
for the proximal operator of g(C·). We restrict our attention to HM
samplers, and discuss how to design more efficient proposal distribu-
tions than in the Random Walk HM, from first order informations on
the target density π. Since − lnπ is a composite function (see H1,
H2 and H3), we consider combinations of gradient steps with re-
spect to f (see H2) and implicit gradient steps based on the proximal
operator of g (see H3). Let us describe four possible proposal mech-
anisms, some of them requiring the additional assumption: (H4) C
is a d× d invertible matrix. Set Γ := C−1C−> and let γ, ρ > 0.
Moreau (M). First, let us use the semi-FBLMC iteration proposed
in [16]. It relies on the Moreau envelope of g with parameter
ρ, which is a continuously differentiable function gρ satisfying
∇[gρ](τ ) = ρ−1

(
τ − proxρ g(τ )

)
. Given the current value τn of

the chain, a jump to τn+ 1
2
∼ µM(τn) + Nd(0, 2γ I) is proposed,

where µM(τn) := τn−γ∇f(τn)−γρ−1
(
Cτn − proxρ g(Cτn)

)
.

Moreau in an image space (Mdual). The gradient of the Moreau
envelope of g(C·) has no closed-form expression (see H3) and we
propose a change of variable to remove C from the nonsmooth
component of − lnπ by using the following observation (see e.g.
[21, Section 3] and [22, Section 4.2.] for similar ideas): a Markov
chain {τn, n ≥ 0} with stationary distribution π can be obtained
from a Markov chain {τ̃n, n ≥ 0} targeting π̃(·) ∝ π(C−1·) by
setting τn := C−1τ̃n. We have − ln π̃(τ̃ ) = f(C−1τ̃ ) + g(τ̃ )
with support {τ̃ : C−1τ̃ ∈ D}. A Moreau envelope approach for
the smoothing of − ln π̃ is known as a ULA iteration (see [12, 15]).
It proposes a jump to τ̃n+ 1

2
∼ µMdual(τ̃n) + Nd(0, 2γ I) where

µMdual(τ̃n) := τ̃n−γC−>∇f(C−1τ̃n)− γ
ρ

(
τ̃n − proxρ g(τ̃n)

)
.

In the original sampling space, this is equivalent to a jump from τn

to τn+ 1
2
∼ τn − γΓ∇f(τn) − γρ−1

(
τn − proxΓ−1

ρ g(C·)(τn)
)

+

Nd(0, 2γΓ); proxAh is the proximal operator of h in the metric in-
duced by the positive definite matrixA (see e.g. [23, Section XV.4]).

Proximal-Gradient decomposition (PGdec). This method applies
when g(C·) =

∑J
j=1 gj(Cj ·) and gj(Cj ·) has a proximal operator

with a closed form expression; see Section 3 for an example. In [5],
we introduced the following proposal distribution : sample Jn at ran-
dom in {1, · · · , J} and set τn+ 1

2
∼ µPGdec(τn, Jn) +Nd(0, 2γ I)

where µPGdec(τn, Jn) := proxγgJn (CJn ·)
(τn − γ∇f(τn)).

Proximal-Gradient in an image space (PGdual). As above for
Mdual, let us apply a Proximal-Gradient step in the image of D
by C: given τ̃n, sample τ̃n+ 1

2
∼ µPGdual(τ̃n) + Nd(0, 2γ I)

where µPGdual(τ̃n) := proxγg
(
τ̃n − γC−>∇f(C−1τ̃n)

)
. In the

original sampling space, this is equivalent to a jump from τn to
τn+ 1

2
∼ proxΓ−1

γg(C·) (τn − γΓ∇f(τn)) +Nd(0, 2γΓ), which is a
Variable Metric Forward-Backward iteration ([24], see also [25]).
Accept-reject step. None of these proposal strategies takes into
account the support D of π; in order to obtain a D-valued sequence
{τn, n ≥ 0}, an accept-reject step is included at each iteration.
Remark. When g = 0 (i.e. when − lnπ is continuously differ-
entiable), M and PGdec are the same algorithms and are equal to
MALA ([8, 26]); and Mdual and PGdual are the same algorithms
and are equal to a tempered MALA ([27, 28]).

3. TOY EXAMPLE
Definition. Let πt be the penalized likelihood in a logistic regression
model, defined on D := Rd:

lnπt(τ ) := Y>Xτ −
N∑
j=1

ln (1 + exp((Xτ )j))− λ‖D1τ‖1;

Y ∈ {0, 1}N being the vector collecting the binary responses, X the
N × d matrix of covariates, D1 the (d− 1)× d discrete differentia-
tion matrix and λ > 0 the regularization parameter.
Samplers. By augmenting D1 with a raw into an invertible matrix
denoted by D1, πt satisfies (H1-H4) and the four methods pro-
posed in Section 2 apply with C := D1 and g(τ ) := λ‖τ 2:d‖1
for any τ ∈ Rd. For PGdec, the penalization decomposes into
‖(D1τ )2:d‖1 = ‖D1,pτ‖1 + ‖D1,iτ‖1, where D1,p (resp. D1,i)
concatenates the lines of D1 of even (resp. odd) indices; these two
matrices satisfy D1,xD

>
1,x = ν I for x ∈ {i, p} and some ν > 0

(here ν = 1) which makes the computation of the proximity oper-
ator of ‖D1,p · ‖1 and ‖D1,i · ‖1 explicit [29]. To implement the
samplers working in the image space, the first raw added to D1

to obtain the invertible D1 is equal to the projection of the vec-
tor (−1, 0, · · · , 0) ∈ Rd on the space orthogonal to the range of
D1. For M and Mdual, we choose ρ := γ. For all these meth-
ods, the value of γ is adapted during the 5 103 first iterations in
order to reach an accept-reject rate of 0.25. We also run RW and
RWdual which correspond resp. to τn+ 1

2
∼ τn + N (0, I) and

τn+ 1
2
∼ τn + N (0,Γ), where Γ := D

−1
1 D

−>
1 . The comparison

to the four proposed approaches enable to asses the relevance of
methods exploiting first order information about L := lnπt.
Compared performances. To compare the performances of the
different samplers, Log π measures the relative distance to the
maximum L? (−L being strictly convex) of L; the evolution of
(L(τn)− L?) /

(
L(τ 1)− L?

)
is plotted over the first 2 500 it-

erations of the chain. ACF represents the absolute value of the
autocorrelation function in terms of the lag (from 0 to 600), com-
puted from 17 500 points obtained after a burn-in of 2 500 points.
The ACF reflects the ergodicity of the chain: the smaller the bet-
ter [11]. The data set is simulated: N = 2.103, d = 20; the matrix
of covariates X is built from independent Rademacher random vari-
ables (r.v.), the rows of X being afterward normalized to 1; the



Fig. 1: Evolution of Log π with respect to the number of iter-
ations, and of the ACF with respect to the lag. In dashed lines:
RW in cyan, M in gray et PGdec in magenta. Methods based on the
change of space are plotted in solid lines: RWdual in blue, Mdual
in black and PGdual in red. The curves for PGdual and Mdual
are often superimposed.

components of Y are independent Bernoulli r.v. with probability of
success (1 + exp(−(Xτ ?)j))

−1 where τ ? is blockwise constant,
with six components equal to −2, then seven at 1.5, and then seven
at −1. Finally, three different values of the regularization param-
eter λ are considered: λ ∈ {1, 15, 30}. Performances obtained as
averages over 50 independent realizations are reported in Figure 1.
It illustrates the gain of exploiting first order information on π to
accelerate the move of the sampler toward high probability regions.
For RW, PGdec and M, this gain decreases when λ is large. Ex-
ploiting partial information, as done by PGdec, remains possible
when λ is small; for larger values of λ, PGdec is less efficient
than M in the stationary regime of the chain (see the ACF criterion).
The schemes proceeding in the image space, PGdual and Mdual,
appears to be extremely robust to very different values of λ, with a
slight advantage for PGdual when λ is medium to large. At last,
altogether the plots of Figure 1 advocates to prefer the use of dual
samplers, in particular PGdual and Mdual whose performance are
systematically good, and better for medium to large values of λ.

4. COVID-19 PANDEMIC INTENSITY ASSESSMENT

This section provides CI estimates of the reproduction numbers R :=
(R1, · · · ,RT ) from day 1 to day T , defined by estimated quantiles
of an a posteriori distribution on R. We first introduce the Bayesian
model, and then describe the MCMC sampler used to explore the a
posteriori distribution and compute empirical quantiles.
Model. The model we consider is built on the ones by [1] and
[3]. [1] proposed an epidemiology model designed to estimate
the reproduction numbers R from the observed counts of new
daily infections, denoted by Z = (Z1, · · · ,ZT ). Given the past
Z1, · · ·Zt−1, Zt is a Poisson distribution with intensity RtΦt where
Φt :=

∑τφ
u=1 φ(u)Zt−u and φ(·) is the probability density function

of a Gamma distribution with mean 6.68 days, standard deviation
3.53 days and a mode at 4.8 days. At time t, Φt is a weighted
mean of the number of new infections over the past τφ days, with
weights φ(·) which model the delay between a primary infection
and a second one. In [3], an extension of this model is designed to
estimate simultaneously the reproduction numbers R and the errors
O := (O1, · · · ,OT ) when counting and reporting the true number
of daily new infections. By using the model of [3], we defined in

[5] an a posteriori distribution π of the parameter θ := (R,O) as
follows. The support of π is

D := {θ ∈ (R+)T × RT : RtΦt + Ot ≥ 0 if Zt = 0}

∪ {θ ∈ (R+)T × RT : RtΦt + Ot > 0 if Zt > 0}.
On D, − lnπ(θ) = F (θ) + G(θ), up to an additive constant.

The function G(θ) := λR‖D2R‖1 + λO‖O‖1 where λR, λO >
0 and D2 is proportional to the second order derivative operator
((D2R)t := (Rt+2 − 2Rt+1 + Rt)/

√
6 for t = 1, · · · , T − 2),

plays the role of a negative log-prior on θ. The function F (θ) is
the negative log-likelihood of Poisson distributions with intensities
RtΦt + Ot for t = 1, · · · , T :

F (θ) :=

T∑
t=1

{(RtΦt + Ot)− Zt ln(RtΦt + Ot)}.

MCMC sampler. We consider a Metropolis-within-Gibbs sam-
pler: since both conditional distributions of R given O (denoted
by π1(·|o)) and O given R (denoted by π2(·|r)) can not be exactly
sampled from, each iteration of the Gibbs sampler calls two HM
kernels. Given the current value of the chain (Rn,On), (i) update
first the R-component by sampling from a HM kernel P1(On, ·)
targeting π1(·|On) and obtain Rn+1 and then (ii) update the O-
component by sampling from a HM kernel P2(Rn+1, ·) targeting
π2(·|Rn+1) and obtain On+1. From the expressions of F , G and
D, it may be seen that− lnπ1(·|On) = F (·,On) +λR‖(D2·)3:T ‖1
on {r ∈ (R+)T : (r,On) ∈ D}, where D2 is an invertible aug-
mentation of D2 obtained by adding two rows on the top of D2;
and − lnπ2(·|Rn+1) = F (Rn+1, ·) + λO‖ · ‖1 on {o ∈ RT :
(Rn+1, o) ∈ D}. We can therefore use any of the HM kernels
described in Section 2. Based on the results of Section 3, we will
use the PGdual HM kernel.
MCMC simulations. In the present work, τφ := 26 and (λR, λO) :=

(3.5σZ

√
6/4, 0.05) with σZ denoting the standard deviation of Z.

This setting avoids the dependence of the order of magnitude of
population or pandemic intensity on the choice of λR and thus
permits to use the same hyperparameters for most countries (see
[3]). The first two rows of D2 are orthogonal and orthogonal to the
rows of D2; they are obtained from the vectors (1, 0, · · · , 0) and
(−2, 1, 0, · · · , 0)/

√
5. As discussed in [4], the augmentation D2 is

not unique and this definition is numerically efficient.
Gibbs chains run for 107 iterations with a burn-in phase of 3.106

iterations. They are initialized at the Maximum a Posteriori, com-
puted with a proximal convex non-smooth minimization algorithm
(see [3]). For each PGdual HM kernel, the step size γ is adapted
during the burn-in phase in order to reach a mean accept-reject rate
of 25% [30]. The empirical quantiles are estimated from the ouput
of the Gibbs sampler, after burn-in; the 95% CIs are computed for
each component Rt of R and Ot of O, from the 2.5% and 97.5%
empirical quantiles.
Covid-19 data. The Covid-19 data used here are those made avail-
able at the Johns Hopkins University1. This repository collects and
organizes, remarkably every day since the earliest phase of the pan-
demic till today, Covid19 pandemic data made available by the Na-
tional health Authorities of 200+ countries or territories across the
world. Use is made here of only daily new infection counts Zt for
the most recent 10 weeks (T = 70 days, prior to the present day,
Oct. 11th, 2022) and a few countries. Yet, tools devised here can be
applied to any period of times and any country of interest. Counts
Zt are not preprocessed prior to estimation, except for low-a priori
informed 7-day sliding median filtering, that removes totally irrele-
vant values, i.e., counts beyond ± 7 local standard deviations.

1https://coronavirus.jhu.edu/

https://coronavirus.jhu.edu/


Fig. 2: Credibility interval estimations of the Covid-19 actual
infection counts and of the reproduction numbers. For several
countries Top: Observed counts (black) and 95% CIs estimations of
actual counts of new infections (red); Bottom: 95% CIs estimations
of the Rt’s.

Covid-19 pandemic intensity assessment. Fig. 2 displays for dif-
ferent countries across the world, the reported daily new infection
counts Zt (top plots, black solid line). 95%-CIs of pseudo denoised
counts Z(D) := (Z

(D)
1 , · · · ,Z(D)

T ) are superimposed (top plots, red
filled bands), where Z

(D)
t := Zt − Ot and CIs for Z(D)

t stem from
those of Ot. Finally, the 95%-CIs for Rt are displayed (bottom plots,
red filled bands). Fig. 2 permits to draw a number of conclusions.

First, and at the methodological level, 95%-CIs yield realistic
estimates of both Z

(D)
t and Rt for many different countries, and this,

with a common choice of parameters (λR, λO) for all countries. Ob-
serve also that the CIs are very narrow (of the order of a few times
10−2 for Rt), which indicates that given the actual Covid-19 data,
the modeling proposed here, and the choice of (λR, λO), there re-
mains little uncertainty on estimates. Further, Fig. 2 shows that CIs
tend to be larger both at error in reported counts locations, and at
changes in the pandemic intensity behavior, as measured by Rt (e.g.
when it switches from increasing to decreasing).

Second and at the application level, Fig. 2 shows that Z(D) pro-
vides a smooth temporal evolution, that satisfactorily cancels the 7-
day pseudo-seasonality when it exists in data, with filling up missing
counts and decreasing mis-reported subsequent counts. This is ob-

tained with no a priori information related to seasonalities or more
generally, to the calendar. Other erroneous values not associated
with the pseudo seasonality are also satisfactorily removed. Fur-
ther, the CI estimates of R also provide a very regular evolution
of t 7→ Rt (almost piecewise linear). In agreement with a poten-
tial use of these analyses by epidemiologists, it indicates not only
whether Rt is above or below 1, thus betraying an increase/decrease
of the intensity of the pandemics, but also whether the trend is locally
increasing or decreasing, quantifying an acceleration/deceleration
in the growth/decrease of the pandemics. For example, currently,
the pandemics for most European countries is within an accelerat-
ing growth phase (Rt above one and with linearly increasing trend),
while for most other countries of the world, Rt is below 1 and with
stable or decreasing trends, indicating a slowly regressing pandemics
at the time of writing.

It is also worth mentioning that the model, notably with a L1-
norm constraint on D2R, the second derivative of the R′ts, promotes
smooth quasi-piecewise linear estimates of Rt. Strictly speaking,
while it only performs estimations at current date, it implicitly
achieves nowcasting (as opposed to forecasting), i.e., a prediction
of the short-term evolution of the pandemics. Given the intrinsic
time scales of the pandemics, controlled by the serial distribution
function φ(·), an estimated change in the intensity of Rt predicts a
change in the evolution of the daily new infection counts about two
weeks after. Hence, a change from linear increase to linear decrease
in Rt today announces that a current Covid wave should reach its
maximum within the next two/three weeks. At the time of writing,
the maximum of the 8th wave for Europe can not yet be detected.
The decreasing Rt recently observed for Italy, for instance, predicts
that the maximum of infections should be reached in the coming
days. For France, the lesser increase in Rt, observed after Sept.
18th, indicates a slower acceleration of the pandemics, and thus
might be read as preliminaries to a pandemic deceleration. These
observations, at the time of writing, may constitute the first signs of
the soon to come maximum of the 8th wave for Europe. Conversely,
the start of the current 8th wave in France was visible as early as
the first days of August (as for most West-European countries) by a
change from decrease to increase in Rt.

Finally, the estimate of Rt across a chosen period permits a ret-
rospective analysis of the impacts of sanitary policies in given coun-
tries, by quantifying the subsequent evolution of Rt. As an inter-
esting outcome, theses analyses show that the pandemics developed
across West-European countries, essentially with the same dynamics
and despite sometimes very different sanitary policies.

5. CONCLUSIONS AND PERSPECTIVES
This paper presents MCMC samplers designed to explore log-
concave composite densities possibly with a constrained support.
Their performances are compared on a toy problem. Their relevance
and interest have been illustrated on the assessment of the intensity
in the Covid-19 pandemics, from daily new infection counts: cred-
ibility intervals for the reproduction number of the pandemic are
updated automatically on a daily-basis for many countries and made
available on the authors web pages2. Future works will be about
hyperparameters: either automated and data-driven selections, or a
Bayesian approach to analyze how the credibility intervals for the
Rt’s are affected by uncertainty on (λR, λO). They will also include
a sequential statistical analysis to take into account the daily new
observations.

2perso.math.univ-toulouse.fr/gfort/project/opsimore-2/, https://perso.ens-
lyon.fr/patrice.abry.

https://perso.math.univ-toulouse.fr/gfort/project/opsimore/
https://perso.ens-lyon.fr/patrice.abry
https://perso.ens-lyon.fr/patrice.abry
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[15] A. Durmus, É. Moulines, and M. Pereyra, “Efficient Bayesian
Computation by Proximal Markov Chain Monte Carlo: When
Langevin Meets Moreau,” SIAM J Imaging Sci, vol. 11, pp.
473–506, 2018.

[16] T.D. Luu, J. Fadili, and C. Chesneau, “Sampling from Non-
smooth Distributions Through Langevin Diffusion,” Methodol
Comput Appl Probab, 2020.

[17] R. Dwivedi, Y. Chen, M.J. Wainwright, and B. Yu, “Log-
concave sampling: Metropolis-Hastings algorithms are fast,”
Journal of Machine Learning Research, vol. 20, no. 183, pp.
1–42, 2019.

[18] S. Bubeck, R. Eldan, and J. Lehec, “Sampling from a Log-
Concave Distribution with Projected Langevin Monte Carlo,”
Discrete Comput Geom, vol. 59, pp. 757–783, 2018.

[19] S. Melidonis, P. Dobson, Y. Altmann, M. Pereyra, and K.C. Zy-
galakis, “Efficient bayesian computation for low-photon imag-
ing problems,” Tech. Rep. arXiv:2206.05350, arXiv, 2022.

[20] M. Vono, N. Dobigeon, and P. Chainais, “Split-and-augmented
Gibbs sampler—Application to large-scale inference prob-
lems,” IEEE Trans. Signal Process., vol. 67, no. 6, pp. 1648–
1661, 2019.

[21] R.J. Tibshirani and J. Taylor, “The solution path of the gen-
eralized lasso,” Ann. Stat., vol. 39, no. 3, pp. 1335 – 1371,
2011.

[22] A.S. Dalalyan, “Theoretical guarantees for approximate sam-
pling from smooth and log-concave densities,” J. Roy. Statist.
Soc. B, vol. 79, no. 3, pp. 651–676, 2017.

[23] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and
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