
HAL Id: hal-03902054
https://hal.science/hal-03902054v1

Preprint submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributionally robust chance-constrained Markov
decision processes

Hoang Nam Nguyen, Abdel Lisser, Vikas Vikram Singh

To cite this version:
Hoang Nam Nguyen, Abdel Lisser, Vikas Vikram Singh. Distributionally robust chance-constrained
Markov decision processes. 2022. �hal-03902054�

https://hal.science/hal-03902054v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Distributionally robust chance-constrained Markov decision
processes

Hoang Nam Nguyen · Abdel Lisser · Vikas Vikram
Singh

Received: date / Accepted: date

Abstract Markov decision process (MDP) is a decision making framework where a deci-
sion maker is interested in maximizing the expected discounted value of a stream of rewards
received at future stages at various states which are visited according to a controlled Markov
chain. Many algorithms including linear programming methods are available in the literature
to compute an optimal policy when the rewards and transition probabilities are deterministic.
In this paper, we consider an MDP problem where the transition probabilities are known and
the reward vector is a random vector whose distribution is partially known. We formulate
the MDP problem using distributionally robust chance-constrained optimization framework
under various types of moments based uncertainty sets, and statistical-distance based un-
certainty sets defined using q-divergence and Wasserstein distance metric. For each type of
uncertainty set, we consider the case where a random reward vector has either a full support
or a nonnegative support. For the case of full support, we show that the distributionally robust
chance-constrained Markov decision process is equivalent to a second-order cone program-
ming problem for the moments and q-divergence distance based uncertainty sets, and it
is equivalent to a mixed-integer second-order cone programming problem for an Wasser-
stein distance based uncertainty set. For the case of nonnegative support, it is equivalent to
a copositive optimization problem and a biconvex optimization problem for the moments
based uncertainty sets and Wasserstein distance based uncertainty set, respectively. As an
application, we study a machine replacement problem and illustrate numerical experiments
on randomly generated instances.
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1 Introduction

An MDP is a decision making framework to model the performance of a stochastic system
which evolves over time according to a controlled Markov chain. We consider the case where
the system has a finite number of states. At time C = 0, the system is at some initial state
B0 ∈ (, where ( is a finite state space, according to an initial distribution W, and a decision
maker chooses an action 00 ∈ �(B0), where �(B0) denotes the set of finite number of actions
available to the decision maker at state B0. As a consequence a reward '(B0, 00) is earned
and at time C = 1, the system moves to a new state B1 with probability ?(B0, 00, B1). The
same thing repeats at time C = 1 and it continues for the infinite horizon. The decision taken
at time C, which could be deterministic or randomized, may depend on the history ℎC at time
C, where ℎC = (B0, 00, B1, . . . , BC−1, 0C−1, BC ). Let �C be the set of all possible histories at time
C. A history dependent decision rule 5C at time C is defined as 5C (ℎC ) ∈ ℘(�(BC )) for every
history ℎC with final state BC , where ℘(�(BC )) denotes the set of probability distributions on
the action set �(BC ). A sequence of history dependent decision rules 5 ℎ = ( 5C )∞C=0 is called a
history dependent policy. The policy is called Markovian if each 5C in the sequence ( 5C )∞C=0
depends only on the state at time C. A Markovian policy ( 5C )∞C=0 is called a stationary policy
if there exists a decision rule 5 such that 5C = 5 for all C. Therefore, a stationary policy can
be represented as a sequence of the same decision rules ( 5 , 5 , . . . ) and with some abuse
of notations we can denote it as 5 , and define 5 = ( 5 (B))B∈( such that 5 (B) ∈ ℘(�(B))
for every B ∈ (. As per a stationary policy 5 , whenever the Markov chain visits state B, the
decision maker chooses an action 0 with probability 5 (B, 0). We denote the set of all history
dependent and stationary policies by %$�� and %$( , respectively. A history dependent
policy 5 ℎ ∈ %$�� and an initial distribution W define a probability measure % 5

ℎ

W over the
state and action trajectories, and � 5

ℎ

W denotes the expectation operator corresponding to the
probability measure % 5

ℎ

W . For a given policy 5 ℎ and an initial distribution W, the expected
discounted reward at a discount factor U ∈ (0, 1) is defined as [1, 32]

+U (W, 5 ℎ) = (1 − U)E 5
ℎ

W

( ∞∑
C=0

UC'(-C , �C )
)
,

=
∑
B∈(

∑
0∈�(B)

6U (W, 5 ℎ; B, 0)'(B, 0), (1)

where -C and �C represent the state and the action at time C, respectively. For a given policy
5 ℎ , the set {6U (W, 5 ℎ; B, 0)} (B,0) is the occupation measure defined by

6U (W, 5 ℎ; B, 0) = (1 − U)
∞∑
C=0

UC%
5 ℎ

W (XC = B,AC = 0), ∀ B ∈ (, 0 ∈ �(B).

When the running rewards and the transition probabilities are stationary, i.e., '(-C = B, �C =
0) = '(B, 0) and %(-C+1 = B′ |-C = B, �C = 0) = ?(B, 0, B′) for all C, we can restrict to
stationary policies without loss of optimality [1, 32]. It follows from Theorem 3.2 on p. 28
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in [1] that the set of occupation measures corresponding to history dependent policies is
equal to the set of occupation measures corresponding to stationary policies and further it is
equal to the set

QU (W) =
{
d ∈ R |K |

�� ∑
(B,0) ∈K

d(B, 0)
(
X(B′, B) − U?(B, 0, B′)

)
= (1 − U)W(B′), ∀ B′ ∈ (,

d(B, 0) ≥ 0, ∀ B ∈ (, 0 ∈ �(B)
}
,

such that the value of the expected discounted reward defined by (1) remains the same;
X(B′, B) is the Kronecker delta and K = {(B, 0) | B ∈ (, 0 ∈ �(B)}. Therefore, the optimal
policy of the MDP problem can be obtained by solving the following linear programming
problem [32]

max
d∈QU (W)

dT', (2)

where ' = ('(B, 0))B∈(,0∈�(B) is a running reward vector and T denotes the transposition.
If d∗ is an optimal solution of (2), the stationary optimal policy 5 ∗ can be defined as

5 ∗ (B, 0) = d∗ (B, 0)∑
0∈�(B) d∗ (B, 0)

, ∀ B ∈ (, 0 ∈ �(B),

whenever the denominator is nonzero
(
if it is zero, we choose 5 ∗ (B) arbitrarily from ℘(�(B))

)
[1]. In practice, the MDP model parameters '(·) and ?(·) are not known in advance and
are estimated from historical data. This leads to errors in the optimal policies [26]. Most
efforts to take into account this uncertainty focused on the study of robust MDPs where
the rewards or the transition probabilities are known to belong to a prespecified uncertainty
set [22,28,41,46,47]. However, Delage andMannor [9] showed that the robustMDP approach
usually leads to conservative policies. For this reason, a chance-constrainedMarkov decision
process (CCMDP)was introduced in [9],where the controller obtains the expected discounted
reward with certain confidence. In [9], the case of random rewards and random transition
probabilities are considered separately and it is shown that a CCMDP is equivalent to a
second-order cone programming (SOCP) problem when the running reward vector follows
a multivariate normal distribution and the transition probabilities are exactly known. When
the transition probabilities follow Dirichlet distribution and the running rewards are exactly
known, the CCMDP problem becomes intractable and the optimal policies can be computed
using approximation methods. Varagapriya et al. [42] considered a CMDP problem with
joint chance constraint where the running cost vectors are random vectors and the transition
probabilities are known. They proposed two SOCP based approximations which give upper
and lower bounds to the CMDP problem if the cost vectors follow multivariate elliptical
distributions and the dependence among the constraints is driven by a Gumbel-Hougaard
copula.

In many practical situations, it is often the case that only a partial information about the
underlying distribution is available based on historical data. In that case, a distributionally
robust approach, is used to model the uncertainties, which assumes that the true distribution
belongs to an uncertainty set based on its partially available information. Such an approach
has been used in modelling the uncertainties of many optimization and game problems
[23, 24, 39]. There are at least two popular ways to construct an uncertainty set for the
distribution of the uncertain parameters. The first one is based on the partial information
on moments of the true distribution and the second one is based on the statistical distance
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between the true distribution and a nominal distribution. The moments-based uncertainty
sets assume certain conditions on the first two moments [8, 10, 31]. The statistical distance-
based uncertainty sets contain all the distributions which lie inside a ball of small radius and
center at a nominal distribution which is usually considered to be an empirical distribution
or a normal distribution [13, 23]. To define a distance between the distributions, either a
q−divergence [3, 23] or Wasserstein distance metric is used [13, 15, 51].

In this paper, we consider an infinite horizon MDP with discounted payoff criterion
defined in Section 1where the reward vector is a randomvector and the transition probabilities
are known. The distribution of the reward vector is not completely known and it is assumed
to belong to a given uncertainty set. We formulate the random discounted reward with a
distributionally robust chance constraint which guarantees the maximum reward for a given
policy with at least a given level of confidence.We call this class ofMDP as a distributionally
robust chance-constrainedMarkov decision process (DRCCMDP). The random reward vector
has either a full support or a nonnegative support. We consider both moments and statistical
distance based uncertainty sets. The main contributions of the paper are as follows.

1. We consider three different types of moments based uncertainty sets based on the
full/partial information on the first two moments of the random reward vector. For
the case of full support and nonnegative support, a DRCCMDP problem is equivalent to
an SOCP problem and a copositive optimization problem, respectively.

2. We consider four different types of q-divergences to construct statistical distance based
uncertainty sets. We show that a DRCCMDP problem is equivalent to an SOCP problem
when the nominal distribution is a normal distribution.

3. We consider the nominal distribution to be an empirical distribution when statistical
distance based uncertainty set is defined with Wasserstein distance metric. For the case
of full support and nonnegative support, we show that aDRCCMDPproblem is equivalent
to a mixed integer second-order cone programming (MISOCP) problem and a biconvex
optimization problem, respectively.

4. We illustrate our theoretical results on a machine replacement problem [9].

The paper is organized as follows. In Section 2, we define a DRCCMDP under a dis-
counted payoff criterion. Section 3 contains a DRCCMDP under moments based uncertainty
sets and their equivalent reformulations for the case of full and nonnegative supports. A
DRCCMDP under statistical distance based uncertainty sets defined using q-divergence
metric and Wasserstein distance metric and their equivalent reformulations are presented in
Section 4. The numerical results on a machine replacement problem is given in Section 5.
We conclude the paper in Section 6.

2 Distributionally robust chance constrained Markov decision process

We consider an infinite horizon MDP defined in Section 1 where the transition probabilities
are exactly known and the running reward vector is a random vector defined on a probability
space (Ω, F , P) which is denoted as '̂. Therefore, for each realization l ∈ Ω, '̂(B, 0, l)
represents a real valued reward received at state B when an action 0 is taken. We assume
that the random vector '̂ does not vary with time. Since '̂ is a random vector, for a given
policy 5 ℎ and initial distribution W, the expected discounted reward defined by (1) becomes
a random variable. We consider the case where the controller is interested in a maximum
discounted reward which can be obtained with at least a given confidence level (1−n), where
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n ∈ (0, 1). This leads to the following CCMDP problem

sup
H∈R, 5 ℎ ∈���

H

s.t. P
(
+U (B, 5 ℎ) ≥ H

)
≥ 1 − n . (3)

Since the transition probabilities are exactly known, it follows from the discussion given in
Section 1 that we can represent the CCMDP problem (3) equivalently in terms of decision
vector (H, d) as follows

sup H

s.t. (i) P
(
dT '̂ ≥ H

)
≥ 1 − n,

(ii) d ∈ QU (W). (4)

If then vector '̂ follows a multivariate normal distribution, the optimization problem (4)
is equivalent to an SOCP problem [9]. The above result can be generalized for elliptically
symmetric distributions because the linear chance constraint (i) present in (4) is equivalent
to a second order cone constraint [20].

However, in most of the practical situations, we only have partial information about the
underlying probability distributions. Such situations can be handled with the distributionally
robust optimization approach, i.e., we assume that the distribution of '̂ belongs to an
uncertainty set. This leads to the following DRCCMDP problem

sup H

s.t. (i) inf
� ∈D
P�

(
dT '̂ ≥ H

)
≥ 1 − n,

(ii) d ∈ QU (W), (5)

where � is the distribution of '̂ and D is a given uncertainty set. The first constraint of (5)
can be written as

sup
� ∈D
P�

(
dT '̂ < H

)
≤ n .

Note that P� (dT '̂ ≤ H − \) ≤ P� (dT '̂ < H) ≤ P� (dT '̂ ≤ H) for every \ > 0. Therefore,
we can replace sup� ∈D P�

(
dT '̂ < H

)
by sup� ∈D P�

(
dT '̂ ≤ H

)
. Then, the problem (5) is

equivalent to the following problem

sup H

s.t. (i) sup
� ∈D
P�

(
dT '̂ ≤ H

)
≤ n,

(ii) d ∈ QU (W). (6)

In the following sections, we study different types of uncertainty sets of '̂ which are defined
using i) partial information of moments of '̂, ii) q-divergence distance, and iii) Wasserstein
distance. For each uncertainty set, we consider the cases of full and nonnegative supports of
'̂. We derive equivalent reformulations of DRCCMDP problem (5) (or (6) equivalently) for
each uncertainty set.
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3 Moments based uncertainty sets

Let ` ∈ R |K | the mean vector and Σ � 0 a |K | × |K| positive definite matrix. We consider 3
types of moments based uncertainty sets of the distribution of '̂ defined as follows:
1. Uncertainty set with known mean and known covariance matrix: The uncertainty

set of the distribution of '̂ in this case is defined by

D1 (i, `,Σ) =
� ∈ M+

������
E(1{'̂∈i}) = 1,
E('̂) = `,
E[('̂ − `) ('̂ − `)T] = Σ.

 , (7)

2. Uncertainty set with known mean and unknown covariance matrix: The uncertainty
set of the distribution of '̂ in this case is defined by

D2 (i, `,Σ, X0) =
� ∈ M+

������
E(1{'̂∈i}) = 1,
E('̂) = `,
E[('̂ − `) ('̂ − `)T] � X0Σ.

 , (8)

3. Uncertainty set with unknown mean and unknown covariance matrix: The uncer-
tainty set of the distribution of '̂ in this case is defined by

D3 (i, `,Σ, X1, X2) =
� ∈ M+

������
E(1{'̂∈i}) = 1,
[E('̂) − `]TΣ−1 [E('̂) − `] ≤ X1,
E[('̂ − `) ('̂ − `)T] � X2Σ.

 , (9)

where i ⊂ R |K | is the support of '̂ which we assume to be a convex set, M+ is the set
of all probability measures on R |K | with Borel f−algebra, X1 ≥ 0, X2, X0 ≥ 1, ` ∈ RI(i);
RI(i) denotes the relative interior of i. The notation � � � implies that � − � is a positive
semidefinite matrix and 1{·} denotes the indicator function.

3.1 DRCCMDP with moments based uncertainty sets under full support

We consider the case when the random vector '̂ has full support, i.e., i = R |K | . We show
that the DRCCMDP problem is equivalent to an SOCP problem.

Theorem 1 Consider the DRCCMDP problem (5) where the distribution of '̂ belongs to
the uncertainty sets defined by (7), (8), (9), and the support i = R |K | . Then, the DRCCMDP
(5) can be reformulated equivalently as the following SOCP

max H

s.t. (i) `Td − ^‖Σ 12 d‖2 ≥ H,
(ii) d ∈ QU (W), (10)

where | | · | |2 denotes the Euclidean norm and ^ is a real number whose value for each
uncertainty set is given in Table 1.

Proof The proof follows from the fact that for each uncertainty set the distributionally robust
chance constraint (i) of (5) is equivalent to a second-order cone constraint. The uncertainty
set (7) has been widely studied in the literature [7, 16]. For the uncertainty sets (8) and (9),
it can be proved using similar arguments used in Lemma 3.1 and Lemma 3.2 of [27] which
are based on the one-sided Chebyshev inequality [24].
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Table 1 Value of ^ for moments based uncertainty set

Uncertainty set D = D1 (i, `, Σ) D = D2 (i, `, Σ, X0) D = D3 (i, `, Σ, X1, X2)

^

√
1−n
n

√
(1−n ) X0
n

√
(1−n ) X2
n

+
√
X1

3.2 DRCCMDP with moments based uncertainty sets under nonnegative support

We consider the case where the support of the random vector '̂ is a nonnegative orthant of
|K |-dimensional Euclidean space, i.e., i = R |K |+ . We show that the DRCCMDP problem (6)
is equivalent to a copositive optimization problem.

Theorem 2 Consider a DRCCMDP problem (6) with i = R |K |+ . Then, the following results
hold.

1. If the distribution of '̂ belongs to the uncertainty set defined by (7), the DRCCMDP
problem (6) is equivalent to the following copositive optimization problem

max H

s.t. (i) − C −& ◦ Σ − @T` ≤ n,

(ii)
(

−& − 12@ +&`
− 12@

T + `T& −C − `T&`

)
∈ COP |K |+1,

(iii)
(

−& − 12@ +&` + _d
− 12@

T + `T& + _dT −C − `T&` − 1 − _H

)
∈ COP |K |+1,

(iv) & ∈ S |K | , _ ≥ 0,
(v) d ∈ QU (W). (11)

2. If the distribution of '̂ belongs to the uncertainty set defined by (8), the DRCCMDP
problem (6) is equivalent to the following copositive optimization problem

max H

s.t. (i) − C − `T@ − `T&` + X0Σ ◦& ≤ n,

(ii)
(

& − 12@ −&`
− 12@

T − `T& −C

)
∈ COP |K |+1,

(iii)
(

& 1
2 (−@ + _d) −&`

1
2 (−@ + _d)

T − `T& −C − 1 − _H

)
∈ COP |K |+1,

(iv) & ∈ S |K |+ , _ ≥ 0,
(v) d ∈ QU (W). (12)
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3. If the distribution of '̂ belongs to the uncertainty set defined by (9), the DRCCMDP
problem (6) is equivalent to the following copositive optimization problem

max H

s.t. (i) A + C ≤ n,

(ii)
(
& 1

2@
1
2@

T A

)
∈ COP |K |+1,

(iii) C ≥ (X2Σ + `dT) ◦& + dT@ +
√
X1 | |Σ

1
2 (@ + 2&`) | |2,

(iv)
(

& 1
2 (@ + _d)

1
2 (@ + _d)

T A − 1 − _H

)
∈ COP |K |+1,

(v) & ∈ S |K |+ , _ ≥ 0,
(vi) d ∈ QU (W), (13)

where COP |K |+1 =
{
" ∈ S |K |+1 | GT"G ≥ 0, ∀ G ∈ R |K |+1+

}
, S= is the set of all real

symmetric matrix of size =×=, S=+ is the set of positive semidefinite matrices of size =×=,

◦ denotes the Frobenius inner product and
( )

denotes a block matrix (or a partitioned

matrix).

In order to prove the first result of Theorem 2, we need the following lemma.

Lemma 1 Consider an optimization problem

sup
� ∈D1 (i,`,Σ)

P� (dT '̂ ≤ H), (14)

where i = R |K |+ . If the feasible set of (14) is non-empty, the dual of (14) is given by

inf −C −& ◦ Σ − @T`

s.t. (i) 1{dT b ≤H} + @
Tb + bT&b − 2bT&` + `T&` + C ≤ 0, ∀ b ∈ R |K |+ ,

(ii) & ∈ S |K | ,

such that strong duality holds.

The proof is given in Appendix A.

Proof (Proof of Theorem 2)

1. Let the distribution of '̂ belongs to the uncertainty setD1 (q, `,Σ). Using Lemma 1, the
optimization problem (6) is equivalent to the following problem

sup H

s.t. (i) − C −& ◦ Σ − @T` ≤ n,

(ii) @Tb + bT&b − 2bT&` + `T&` + C ≤ 0, ∀ b ∈ R |K |+ ,

(iii) 1 + @Tb + bT&b − 2bT&` + `T&` + C ≤ 0, ∀ b ∈ R |K |+ , dTb ≤ H,
(iv) & ∈ S |K | , d ∈ QU (W).

(15)
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The constraint (ii) of (15) is equivalent to:

(bT, 1)* (bT, 1)T ≥ 0, ∀ b ∈ R |K |+ ,

where* ∈ S |K |+1 such that

* =

(
−& − 12@ +&`

− 12@
T + `T& −C − `T&`

)
.

Here, (bT, 1) denotes the row vector of size 1× (|K| + 1) with the last component equals
1 and the first |K | components are the components of b. The above inequality can be
rewritten as

GT*G ≥ 0, ∀ G ∈ R |K |+1+ , | |G | |2 = 1.

Using Proposition 5.1 in [21], we deduce that the constraint (ii) of (15) is equivalent to
* ∈ COP |K |+1. The constraint (iii) of (15) is equivalent to:

−1 + (bT, 1)* (bT, 1)T ≥ 0, ∀ b ∈ R |K |+ , dTb ≤ H. (16)

Define, 
BP = min

b ∈R|K |+
max
_≥0

L(_, b,*, d, H).

BD = max
_≥0

min
b ∈R|K |+

L(_, b,*, d, H).
(17)

where L(_, b,*, d, H) = −1 + (bT, 1)* (bT, 1)T + _(dTb − H). In [8], the authors use the
Sion’s minimax theorem [40] to interchange the minimum and the maximum. However,
since i is not compact, we cannot apply the Sion’s minimax theorem directly in this
case. We show that i can be restricted to a compact set without loss of optimality. For a
given* and d, we have

BP ≤ max
_≥0
L(_, 0,*, d, H)

= max
_≥0
(−C − `T&` − _H − 1) = −C − `T&` − 1 < ∞ (18)

Therefore, using the min-max inequality BD ≤ BP < ∞. Let *8 = * + 1
28 I |K |+1 and

d8 = d + 128 1, for every 8 ∈ N, where I |K |+1 denotes the identity matrix of size |K | + 1, 1
denotes the vector with all components equal to 1. It is clear from the construction that
d8 > 0 componentwise. Since, L is a continuous function w.r.t* and d, we have

L(_, b,*8 , d8 , H)
8→∞−−−−→ L(_, b,*, d, H), ∀ b ∈ R |K |+ , _ ≥ 0.

Since, the min and max operators preserve the continuity, we have

min
b ∈R|K |+

max
_≥0

L(_, b,*8 , d8 , H)
8→∞−−−−→ min

b ∈R|K |+
max
_≥0

L(_, b,*, d, H).

max
_≥0

min
b ∈R|K |+

L(_, b,*8 , d8 , H)
8→∞−−−−→ max

_≥0
min
b ∈R|K |+

L(_, b,*, d, H).

This implies that, if BP = BD holds for any *8 , d8 , 8 ∈ N, it also holds for *, d. For an
arbitrary *8 and d8 , let the the optimal solutions of minimax and maximin problems
defined by (17) are (bP, _P) and (bD, _D), respectively. We prove that bP and bD are
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bounded, i.e., there exists ΥP > 0 and ΥD > 0 depending on *8 , d8 and H such that
| |bP | |2 ≤ ΥP and | |bD | |2 ≤ ΥD. It is clear that _P = 0 and dT8 bP − H ≤ 0. Hence, we have

BP = −1 + (bTP , 1)*8 (b
T
P , 1)

T,

= −1 + (bTP , 1)* (b
T
P , 1)

T + 1
28
| |bP | |22 +

1
28
.

From constraint (ii) of (15), it follows that (bTP , 1)* (b
T
P , 1)

T ≥ 0. Therefore, if | |bP | |2 →
∞, BP → ∞. Therefore, | |bP | |2 is bounded by some real number Υ% > 0 which depends
on*8 , d8 and H. As b ∈ R |K |+ and d8 > 0, componentwise, we have

lim inf
| |b | |2→∞

_(b) (dT8 b − H) ≥ 0,

for any _(b) ≥ 0. Then,

BD = −1 + (bTD, 1)*8 (b
T
D, 1)

T + _D (dT8 bD − H),

= −1 + (bTD, 1)* (b
T
D, 1)

T + 1
28
| |bD | |22 +

1
28
+ _D (dT8 bD − H).

It is clear that 128 | |bD | |
2
2 →∞ and the other terms are lower bounded by some nonnegative

number. Therefore, BD →∞ when | |bD | |2 →∞. Hence, | |bD | |2 is bounded by some real
number Υ� > 0 which depends on *8 , d8 and H. Let Υ = max(ΥP,ΥD). Then, (17) is
equivalent to

BP = min
b ∈R|K |+ , | |b | |2≤Υ

max
_≥0

L(_, b,*8 , d8 , H).

BD = max
_≥0

min
b ∈R|K |+ , | |b | |2≤Υ

L(_, b,*8 , d8 , H).

Note that the set
{
b | b ∈ R |K |+ , | |b | |2 ≤ Υ

}
is compact. Therefore, from Sion’s minimax

theorem BP = BD for every *8 , d8 , 8 ∈ N. For any b such that dTb > H, it is easy to see
that

max
_≥0

L(_, b,*, d, H) = ∞

The condition BP < ∞ gives dTb ≤ H and _ = 0 which in turn implies that

BP = min
dT b ≤H

L(0, b,*, d, H) ≥ 0.

Therefore, (16) is equivalent to BD ≥ 0. Then, there exists a sequence of nonnegative
numbers _ 9 ≥ 0 and a decreasing sequence of positive numbers \ 9 > 0, such that \ 9 → 0
as 9 →∞, for which the following condition holds{

− 1 + (bT, 1)* (bT, 1)T + _ 9 (dTb − H) ≥ −\ 9 , ∀ b ∈ R |K |+ , 9 ∈ N,
_ 9 ≥ 0, ∀ 9 ∈ N.

(19)

For each 9 ∈ N, define

�40(\ 9 ) = {(*, d, H, _) | −1 + (bT, 1)* (bT, 1)T + _(dTb − H) ≥ −\ 9 , _ ≥ 0}.
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The feasible region defined by (19) is equivalent to
⋂
9∈N

�40(\ 9 ). For any 8 < 9 ,

�40(\ 9 ) ⊂ �40(\8). Therefore, �40(\ 9 ) ↓
⋂
8∈N

�40(\8) as 9 → ∞. The feasible set

�40(\ 9 ) as 9 →∞ is given by{
(bT, 1)/ (bT, 1)T ≥ 0, ∀ b ∈ R |K |+ ,

_ ≥ 0,
(20)

where / ∈ S |K |+1 and

/ =

(
−& − 12@ +&` + _d

− 12@
T + `T& + _dT −C − `T&` − 1 − _H

)
.

Using similar arguments as above, the constraint (20) is equivalent to

/ ∈ COP |K |+1, _ ≥ 0. (21)

This implies that the constraint (iii) of (15) is equivalent to (21). Hence, DRCCMDP
problem (6) is equivalent to (11).

2. Let the distribution of '̂ belongs to the uncertainty set D2 (i, `,Σ, X0). From Theorem
3.4 [8], the dual of the optimization problem sup� ∈D P�

(
dT '̂ ≤ H

)
can be written as

inf (−C − `T@ − `T&` + X0Σ ◦&)

s.t. (i) 1{dT b ≤H} + C + @
Tb − bT&b + 2`T&b ≤ 0, ∀ b ∈ R |K |+ ,

(ii) & ∈ S |K |+ ,

and the strong duality holds. The rest of the proof follows from the similar arguments
used for the case of the uncertainty set D1 (i, `,Σ).

3. If the distribution of '̂ belongs to the uncertainty set D3 (i, `,Σ, X1, X2), using Lemma
1 of [10] the dual of the problem sup� ∈D P�

(
dT '̂ ≤ H

)
is given by

inf (A + C)

s.t. (i) A ≥ 1{dT b ≤H} − b
T&b − bT@, ∀ b ∈ R |K |+ ,

(ii) C ≥ (X2Σ + `dT) ◦& + dT@ +
√
X1 | |Σ

1
2 (@ + 2&`) | |2,

(iii) & ∈ S |K |+ ,

and strong duality holds. Again, the rest of the proof follows using similar arguments
used in the case of D1 (i, `,Σ).

Remark 1 Copositive optimization has been studied in the literature. In practical applica-
tions, the copositive constraints can be approximated conservatively by SDP (semidefinite
programming) constraints. We refer to [5, 6, 48] for some recent researches about SDP
approximations.
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4 Statistical distance based uncertainty sets

In this section, we consider uncertainty sets defined using statistical distance metric known
as q-divergence and Wasserstein distance. For each uncertainty set, we propose equivalent
reformulation of DRCCMDP problem (5) (or (6)).

4.1 Uncertainty set with q -divergence distance

We consider an uncertainty set defined using statistical distance metric called q-divergence.
In such uncertainty set, a nominal distribution is known to the decision maker based on the
available estimated data. The decision maker believes that the true distribution of '̂ belongs
to a ball of radius \q and centered at a nominal distribution a and the distance between the
true distribution and a is given by a q-divergence. We show that the DRCCMDP problem
(5) is equivalent to an SOCP problem for various q-divergences.

Definition 1 The q−divergence distance between two probability measures a1 and a2 with
densities 5a1 and 5a2 , respectively, and full support R |K | is given by

�q (a1, a2) =
∫
R|K |

q

(
5a1 (b)
5a2 (b)

)
5a2 (b)3b.

For different choices of q, we refer to [3] and [29]. Let a ∈ M+ be a nominal distribution
with a density function 5a . The uncertainty set of the distribution of '̂ based on q-divergence
is defined by

D4 (a, \q) =
{
� ∈ M+ | �q (�, a) ≤ \q

}
, (22)

where \q > 0.

Definition 2 The conjugate of q is a function q∗ : R→ R ∪∞ such that

q∗ (A) = sup
C≥0
{AC − q(C)} , ∀ A ∈ R.

Lemma 2 Consider an optimization problem

inf
� ∈D4 (a,\q)

P� (dT '̂ ≥ H). (23)

Then, the dual problem of (23) is given by

sup
_>0,V∈R

{
V − _\q − _q∗

(
−1 + V
_

)
Pa ($) − _q∗

(
V

_

)
(1 − Pa ($))

}
,

where $ =
{
b ∈ R |K | | dTb ≥ H

}
, such that the strong duality holds.

Proof We rewrite the primal problem (23) as a following semi-infinite programming problem

EP = inf
� ≥0

∫
R|K |

1$ (b)� (b)db

s.t. (i)
∫
R|K |

5a (b)q
(
� (b)
5a (b)

)
db ≤ \q ,

(ii)
∫
R|K |

� (b)db = 1. (24)
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The dual problem of (24) is given by

ED =

sup
_≥0,V∈R

{
V − _\q + inf

� ( b ) ≥0

{∫
R|K |

(
1$ (b)� (b) − V� (b) + _ 5a (b)q

(
� (b)
5a (b)

))
db

}}
,

where _ is the dual variable of the constraint (i) of (24) and V is the dual variable of the
constraint (ii) of (24). Since \q > 0, the Slater’s condition holds which implies that the
strong duality holds, i.e., EP = ED. The rest of the proof follows from Theorem 1 of [23].

We study 4 cases of q−divergences whose conjugates are given in Table 2. Using Lemma

Table 2 List of selected q−divergences with their conjugate

Divergence q (C) , C ≥ 0 q∗ (A )
Kullback-Leibler C log(C) − C + 1. eA − 1

Variation distance |C − 1 |.
−1, A ≤ −1,
A , −1 ≤ A ≤ 1,
∞, A > 1.

Modified j2 - distance (C − 1)2.
−1, A ≤ −2,

A + A24 , A > −2.

Hellinger distance (
√
C − 1)2.

A
1−A , A < 1,
∞, A ≥ 1.

2, the following result holds.

Theorem 3 Consider the DRCCMDP problem (5) under the uncertainty set defined by (22)
for the q-divergences listed in Table 3. If the reference distribution a is a normal distribution
with mean vector `a and positive definite covariance matrix Σa , the DRCCMDP problem
(5) is equivalent to the following SOCP problem

max H

s.t. (i) dT`a −Φ(−1) [ 5 (\q , n)] ‖Σ
1
2
a d‖2 ≥ H,

(ii) d ∈ QU (W), (25)

where Φ(−1) is the quantile of the standard normal distribution and the values of \q , n and
5 (\q , n) for different q-divergences are given in Table 3.

Proof Using Lemma 2, we prove that the constraint (i) of (5) is equivalent to the following
constraint

Pa (dT '̂ ≥ H) ≥ 5 (\q , n). (26)

Since a is a normal distribution with mean vector `a and covariance matrix Σa , it is well
known that (26) is equivalent to the constraint (i) of (25). The details of the proof for the
Hellinger distance case is given in Appendix B. The proofs for Kullback-Leibler, Variation
distance and Modified j2 - distance follow from Propositions 2, 3 and 4 of [23].
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Table 3 The function 5 for selected q−divergences

Divergence 5 (\q , n ) \q , n
Kullback-Leibler infG∈(0,1) e−\q G1−n −1

G−1 \q > 0, 0 < n < 1
Variation distance 1 − n + \q2 \q > 0, 0 < n < 1

Modified j2 - distance 1 − n +
√
\2
q
+4\q (n−n 2 )−(1−2n ) \q

2\q+2
\q > 0, 0 < n < 1

2

Hellinger distance

−�+
√
Δ

2 ,

where � = −(2 − (2 − \q)2) n −
(2−\q )2
2 ,

� =

(
(2−\q )2
4 − n

)2
,

Δ = �2 − 4� = (2 − \q)2
[
4 − (2 − \q)2

]
n (1 − n ) .

0 < \q < 2 −
√
2, 0 < n < 1

4.2 Uncertainty set with Wasserstein distance

We consider an uncertainty set defined using statistical distance metric called Wasserstein
distance. We show that the DRCCMDP problem (6) is tractable if the reference distribution
a follows a discrete distribution whose scenarios are taken from historical data. We refer to
Villani [43, 44] for more details of the Wasserstein distance metric.

Let i be a closed, convex subset of R |K | and ? ∈ [1,∞). Let B(i) denotes the Borel f−
algebra on i. Let P(i) be the set of all probability measures defined on B(i) and P? (i)
denote the subset of P(i) with finite ?− moment and it is defined as

P? (i) =
{
` ∈ P(i) |

∫
b ∈i
| |b − b0 | |?2 `(db) < ∞ for some b0 ∈ i

}
.

It follows from the triangle inequality that the above definition of P? (i) does not depend
on b0.

Definition 3 (Wasserstein distance) The Wasserstein distance ,? (`, a) between a1, a2 ∈
P? (i) is defined by

,? (a1, a2) =
(

inf
W∈Pa1 ,a2 (i×i)

∫
i×i
| |G − I | |?2 W(3G, 3I)

) 1
?

,

where Pa1 ,a2 (i × i) denotes the set of all probability measures defined on B(i × i) such
that the marginal laws are a1 and a2.

The uncertainty set using Wasserstein distance is defined by

D5 (i, a, ?, \, ) =
{
� ∈ P? (i) | ,? (�, a) ≤ \,

}
, (27)

where a ∈ P? (i) and \, > 0.

Lemma 3 Consider an optimization problem

sup
� ∈D5 (i,a, ?, \, )

P� (dT '̂ ≤ H). (28)

Then, the dual problem of (28) is given by

inf
_≥0

{
_\

?

,
−

∫
i

inf
I∈i

[
_ | |G − I | |?2 − 1{dTI≤H}

]
a(dG)

}
, (29)

such that the strong duality holds and the optimal values of the primal and the dual problems
are finite.
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Proof Let Ξ be a Polish space with metric 3, P(Ξ) be the set of Borel probability measures
on Ξ, a ∈ P(Ξ) and Ψ ∈ !1 (a), where !1 (a) represents the !1 space of a - measurable
functions. It follows from Theorem 1 of [15] that the following strong duality holds

sup
`∈P(Ξ)

{∫
Ξ

Ψ(b)`(3b) | ,? (`, a) ≤ \,
}

= inf
_∈R,_≥0

{
_\

?

,
−

∫
Ξ

inf
b ∈Ξ
[_3 ? (b, Z) −Ψ(b)] a(dZ)

}
< ∞, (30)

provided the growth factor given by Definition 4 of [15] is finite. We apply this result in our
case by choosing Ξ = i, 3 as an Euclidean metric and Ψ(b) = 1{dT b ≤H} for all b ∈ i. For
this choice of Ψ(b), it is easy to see from Definition 4 of [15] that the growth factor is zero.
Since

{
b ∈ i | dTb ≤ H

}
is a closed set, it is a Borel measurable set. Hence, it is clear that

Ψ ∈ !1 (a) for all a ∈ P(i). Then, (30) reduces to

sup
� ∈D5 (i,a, ?, \, )

P�

(
dT '̂ ≤ H

)
= inf
_≥0

{
_\

?

,
−

∫
i

inf
b ∈i

[
_ | |Z − b | |?2 − 1{dT b ≤H}

]
a(dZ)

}
.

We consider the case when ? = 1 and a is a data-driven reference distribution, i.e., it is
a discrete distribution with � scenarios b̃1, . . . , b̃� , where b̃8 ∈ i, for every 8 = 1, . . . , �.
Using Lemma 3, we propose a deterministic reformulation of the DRCCMDP problem (6).

Lemma 4 If the distribution of '̂ belongs to the uncertainty set defined by (27), the DRC-
CMDP (6) can be reformulated equivalently as the following deterministic problem

sup H

s.t. (i) \, −
1
�

�∑
8=1

68 ≤ ;n ,

(ii) inf
I∈i,dTI≤H

| |b̃8 − I | |2 ≥ ; + 68 , ∀ 8 = 1, . . . , �,

(iii) ; > 0, d ∈ QU (W), 68 ≤ 0, ∀ 8 = 1, . . . , �. (31)

Proof Using Lemma 3, since a is a discrete distribution with � scenarios b̃1, ..., ˜b� , the
constraint (i) of (6) can be equivalently written as

_\, −
1
�

�∑
8=1
inf
I∈i

[
_ | |b̃8 − I | |2 − 1{dTI≤H}

]
≤ n, _ ≥ 0.

By introducing auxiliary variables C8 , 8 = 1, ..., �, the above constraint can be rewritten as{
(i) _\, − 1

�

∑�
8=1 C8 ≤ n, _ ≥ 0

(ii) infI∈i
[
_ | |b̃8 − I | |2 − 1{dTI≤H}

]
≥ C8 , ∀ 8 = 1, . . . , �.

(32)

The constraint (ii) of (32) is equivalent to the following two constraints{
(i) infI∈i _ | |b̃8 − I | |2 ≥ C8 , ∀ 8 = 1, . . . , �,
(ii) infI∈i,dTI≤H _ | |b̃8 − I | |2 − 1 ≥ C8 , ∀ 8 = 1, . . . , �.

(33)

Since _ ≥ 0, infI∈i _ | |b̃8 − I | |2 = 0. Then, the constraint (i) of (33) is equivalent to C8 ≤ 0,
for every 8 = 1, . . . , �. Moreover, if _ = 0, from the constraint (ii) of (33), C8 ≤ −1, for every
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8 = 1, . . . , �, which in turn implies − 1
�

∑�
8=1 C8 ≥ 1. This violates the constraint (i) of (32).

Hence, _ > 0. Let ; = 1
_
and 68 = C8

_
, for every 8 = 1, . . . , �. Therefore, the constraint (i) of

(6) is equivalent to the following constraints
(i) \, − 1

�

∑�
8=1 68 ≤ ;n ,

(ii) infI∈i,dTI≤H | |b̃8 − I | |2 ≥ ; + 68 , ∀ 8 = 1, . . . , �,
(iii) ; > 0, 68 ≤ 0, ∀ 8 = 1, . . . , �.

(34)

This implies that the DRCCMDP (6) is equivalent to (31).

The constraint (ii) of (31) includes inf term which makes it difficult to solve the problem
directly. We show that the optimization problem (31) is equivalent to a MISOCP problem
and a biconvex optimization problem for the case of full support and nonnegative support,
respectively.

4.2.1 DRCCMDP under Wasserstein distance based uncertainty set with full support

Lemma 5 If i = R |K | ,

inf
dTI≤H

| |b̃8 − I | |2 = max
(
0,
dTb̃8 − H
| |d | |2

)
, ∀ 8 = 1, . . . , �.

The proof is given in Appendix C. Using Lemma 5, we have the following result.

Lemma 6 The optimization problem (31) is equivalent to the following optimization problem

sup H

s.t. (i) V\, −
1
�

�∑
8=1

18 ≤ Cn ,

(ii) max
(
0, dTb̃8 − H

)
≥ 18 + C, ∀ 8 = 1, . . . , �,

(iii) | |d | |2 ≤ V, C ≥ 0, V > 0, d ∈ QU (W), 18 ≤ 0, ∀ 8 = 1, . . . , �. (35)

Proof Using Lemma 5, the constraint (ii) of problem (31) can be written as

max
(
0,
dTb̃8 − H
| |d | |2

)
≥ ; + 68 , ∀ 8 = 1, ..., �.

Let V > 0 be an auxiliary variable. Then, under the transformations C = V;, 18 = V68 , for
every 8 = 1, ..., �, it is easy to see that (31) is equivalent to (35).

It is clear that a vector (H, d, V, (18)�8=1, C) such that d ∈ QU (W), V = | |d | |2, 18 = 0, for every
8 = 1, . . . , �, C = \,

n
| |d | |2 and H = min8=1,...,� (dTb̃8) − \,

n
| |d | |2 is a feasible solution of

(35). Therefore, the optimal solutions of (35) and the following optimization problem are
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the same

sup H

s.t. (i) V\, −
1
�

�∑
8=1

18 ≤ Cn ,

(ii) max
(
0, dTb̃8 − H

)
≥ 18 + C, ∀ 8 = 1, . . . , �,

(iii) H ≥ min
8=1,...,�

(dTb̃8) −
\,

n
| |d | |2,

(iv) | |d | |2 ≤ V, C ≥ 0, V > 0, d ∈ QU (W), 18 ≤ 0, ∀ 8 = 1, . . . , �. (36)

We reformulate the problem (36) as an MISOCP problem. In order to do that, we define a
constant " =

(
\,
n
+ 2max8=1,...,� | |b̃8 | |2

)
for which the following result holds.

Lemma 7 For every feasible solution of (36), " ≥ |H − dTb̃8 | for all 8 = 1, . . . , �.

The proof is given in Appendix D.

Theorem 4 Consider the DRCCMDP problem (6). We assume that the distribution of '̂
belongs to the uncertainty set defined by (27) and i = R |K | . Then, the DRCCMDP (6) can
be reformulated equivalently as the following MISOCP

max H

s.t. (i) V\, −
1
�

�∑
8=1

18 ≤ Cn ,

(ii) "[8 ≥ 18 + C, ∀ 8 = 1, . . . , �,
(iii) " (1 − [8) + dTb̃8 − H ≥ 18 + C, ∀ 8 = 1, . . . , �,
(iv) [8 ∈ {0, 1} , ∀ 8 = 1, . . . , �,
(v) | |d | |2 ≤ V, C ≥ 0, V > 0, d ∈ QU (W), 18 ≤ 0, ∀ 8 = 1, . . . , �. (37)

Notice that the parameter M is the well known big-M constant.

Proof Since, the distribution of '̂ belongs to the uncertainty set defined by (27), the DR-
CCMDP problem is equivalent to (36). We show that (36) and (37) are equivalent. It is
clear that a vector (H, d, V, (18)�8=1, ([8)

�
8=1, C) such that d ∈ QU (W), V = | |d | |2, 18 = 0,

C =
\,
n
| |d | |2, [8 = 1, for every 8 = 1, . . . , �, and H = min8=1,...,� (dTb̃8) − \,

n
| |d | |2 is a

feasible solution of (37). Therefore, the optimal solution of (37) does not change if we add
constraint (38) given below

H ≥ min
8=1,...,�

(dTb̃8) −
\,

n
| |d | |2, (38)

to the feasible region of (37). Now, it is enough to show that the constraint (ii) of (36) is
equivalent to (ii) − (iv) of (37). Let the constraint (ii) of (36) be satisfied, i.e.,

max
(
0, dTb̃8 − H

)
≥ 18 + C, ∀ 8 = 1, . . . , �. (39)

For each 8 = 1, . . . , �, we consider two cases as follows:
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Case 1: If max
(
0, dTb̃8 − H

)
= 0, by choosing [8 = 0, (39) is equivalent to the constraint (ii)

of (37). Moreover, using Lemma 7, we have

" ≥ |H − dTb̃8 |.

Therefore,
" (1 − [8) + dTb̃8 − H ≥ " − |H − dTb̃8 | ≥ 0 ≥ 18 + C.

Case 2: If max
(
0, dTb̃8 − H

)
= dTb̃8 − H, by choosing [8 = 1, (39) is equivalent to the

constraint (iii) of (37). Moreover, using Lemma 7, we have

"[8 = " ≥ dTb̃8 − H ≥ 18 + C.

This implies that there exists [8 ∈ {0, 1} such that (ii) − (iv) of (37) are satisifed. Conversely,
suppose (ii) − (iv) of (37) has a feasible solution. If [8 = 1, the constraint (iii) of (37) implies
the constraint (ii) of (36). If [8 = 0, the constraint (ii) of (37) implies the constraint (ii) of
(36).

Remark 2 An MISOCP problem can be solved efficiently with BONMIN, PAJARITO or
BARON solvers.

4.2.2 DRCCMDP under Wasserstein distance based uncertainty set with nonnegative
support

Lemma 8 Let i = R |K |+ and consider an optimization problem

inf
I∈i,dTI≤H

| |b̃8 − I | |2. (40)

The dual problem of (40) is given by

max _8 (dTb̃8 − H) − ZT8 b̃8
s.t. | |Z8 − _8d | |2 ≤ 1, Z8 ∈ R |K |+ , _8 ≥ 0,

such that the strong duality holds.

The proof is given in Appendix E.

Theorem 5 Consider the DRCCMDP problem (6). We assume that the distribution of '̂
belongs to the uncertainty set defined by (27) and i = R |K |+ . Then, the DRCCMDP (6) can
be reformulated equivalently as the following biconvex optimization problem

max H

s.t. (i) \, −
1
�

�∑
8=1

68 ≤ ;n ,

(ii) _8 (dTb̃8 − H) − ZT8 b̃8 ≥ ; + 68 , ∀ 8 = 1, . . . , �,
(iii) | |Z8 − _8d | |2 ≤ 1, ∀ 8 = 1, . . . , �,

(iv) _8 ≥ 0, Z8 ∈ R |K |+ , ; > 0, 68 ≤ 0, d ∈ QU (W), ∀ 8 = 1, . . . , �. (41)

The proof follows directly from Lemma 4 and Lemma 8.

Remark 3 The optimization problem (41) is a non-convex reformulation with biconvex
terms. It can be solved by DMCP solver in CVXPY or nonlinear nonconvex optimization
solvers, e.g., IPOPT without any guarantee of running time.
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5 Machine replacement problem

In this section, we consider a machine replacement problem where a machine in a factory
has a life-time of # years. At every stage a maintenance of the machine is scheduled but a
factory owner can decide whether to repair or do not repair the machine. There is a high
probability that the machine behaves like a new one if it is being repaired and its life gets
reduced by a year if it is not being repaired. The factory owner incurs maintenance cost if
he decides to repair the machine. It can be modelled as an MDP problem where the life of
a machine represents the state of underlying Markov chain, i.e., there are # + 1 states. The
first state represents a brand new machine. At each state there are two actions: i) "repair", ii)
"do not repair". The transition probabilities of the Markov chain with respect to each action
is given by Figure 5, where the solid lines and dotted lines correspond to action "repair" and
"do not repair", respectively. The maintenance cost corresponding to every state-action pair
is not exactly known and is realised after the decision is made. Therefore, it is modelled with
a random variable. We assume that for every state action pair (B, 0), the maintenance cost is
defined as 2̂(B, 0) =  + /̂ (B, 0), where  represents the fixed cost and /̂ (B, 0) represents
a variable cost which is a random variable. The machine generates a revenue ! (B, 0) at
state-action pair (B, 0) and the profit for each (B, 0) ∈ K is given by

'̂(B, 0) = ! (B, 0) −  − /̂ (B, 0). (42)

The factory owner is interested in maximizing the expected discounted profit. We assume
that the factory owner has a finite number of the same machines which are modelled using
the same Markov chain. Therefore, we compute the optimal repair policy with respect to a
single machine and the same repair policy can be applied for all other machines.

Fig. 1 Machine replacement MDP with two actions: "repair" (with solid lines) and "do not repair" (with
dashed lines)

All the numerical results below are performed using Python 3.8.8 on an Intel Core
i5-1135G7, Processor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We
compare the performance of DRCCMDP for each uncertainty set with the CCMDP model
(4) where the distribution of '̂ is assumed to be a normal distribution. In our numerical
experiments, we set the number of states to 10, the threshold value n = 0.1, the discount
parameter U = 0.85 and the initial distribution of states W to be uniformly distributed. For
the above instance, |K | = 20 and '̂ is a 20 × 1 random vector with mean vector ` given by

`(B, 0) = ! (B, 0) −  − `/̂ (B, 0), (43)
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where `/̂ is the mean vector of the random cost vector /̂ . We take  = 10, the functio L
and the mean cost `/̂ corresponding to each state-action pair are summarized in Table 4.
For example, at state 1, if the "repair" action is taken, the factory owner has to pay a random
cost with mean `/̂ (1, 1) = 10. If the action "do not repair" is taken, the mean value of the
random cost is `/̂ (1, 2) = 0. The last state is considered to be risky and not repairing may
lead to the machine breakdown. This is the reason we take the mean cost equal to 5 if "do
not repair" action is taken at state 10. The covariance matrix Σ of '̂ is randomly generated
using the following formula

Σ =
��T

20
+ �20, (44)

where � is a 20 × 20 random matrix whose all the entries are real numbers belonging
to [0, 1] generated by the command "A=numpy.random.random(size=(20, 20))", �20 is a
20 × 20 diagonal matrix with �20 (10, 10) = 4, �20 (20, 20) = 9, �20 (8, 8) = 1, for every
8 ≠ 10, 20 and all other entries equal to zero. For the above instance, Σ is diagonally dominant
with high values at entries (10, 10) and (20, 20) which is due to the fact that action at risky
state can have large variance corresponding to both actions. We use the above ` and Σ for
all the moments based uncertainty sets. For q-divergence based uncertainty set, we take the

Table 4 Random cost /̂ and Revenue !

State(s)
Action(a) "Repair"

`/̂ (B, 1)
"Do not
repair"
`/̂ (B, 2)

"Repair"
! (B, 1)

"Do not
repair"
! (B, 2)

1 10 0 30 30
2 10.1 0 30 29.9
3 10.2 0 30 29.8
4 10.3 0 30 29.7
5 10.4 0 30 29.6
6 10.5 0 30 29.5
7 10.6 0 30 29.4
8 10.7 0 30 29.3
9 10.8 0 30 29.2
10 10.9 5 30 29.1

Table 5 Other parameters

Known mean
unknown covariance X0 = 0.9

Unknown mean
unknown covariance X1 = X2 = 1

q−divergence \q = 0.01

Wasserstein distance \, = 0.01
� = 1000

nominal distribution a as a normal distribution with mean `a = ` and covariance matrix
Σa = Σ where ` and Σ are defined by (43) and (44), respectively. For Wasserstein distance
based uncertainty set, we take the number of observations � = 1000. The scenarios (b̃8)�8=1
are randomly generated by the reference distribution a. We generate a standard Gaussian
vector by the command "x=numpy.random.normal(0,1,20)". Using vector G, we generate a
Gaussian vector with `a and Σa by using b̃8 = �G + `a , where `a and Σa are the mean vector
and the covariance matrix defined by (43) and (44), respectively, and � is the Cholesky
factorization of Σa . To get the Cholesky factorization of a matrix, we use the command
"numpy.linalg.cholesky". We summarize the other parameters related to all the uncertainty
sets in Table 5.

We compute an optimal policy of the CCMDP problem (4), where '̂ follows a normal
distribution with mean vector and covariance matrix defined by (43) and (44), by solving an
equivalent SOCP problem [9]. The optimal policies of the DRCCMDP problem for all the
uncertainty sets are computed by solving the proposed equivalent optimization problems.We
present the optimal policies of CCMDP and DRCCMDP with full support and nonnegative
support in Tables 6 and 7, where ? is the probability of "repair" action and 1 − ? is the
probability of "do not repair" action. It is clear from Tables 6 and 7 that the optimal repair
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Table 6 Optimal policies of CCMDP and DRCCMDP with full and nonnegative supports

State(s)

Optimal
policies

CCMDP
Gaussian
(p,1-p)

Full support
known mean

known covariance
(p,1-p)

Full support
known mean

unknown covariance
(p,1-p)

Full support
unknown mean

unknown covariance
(p,1-p)

q−divergence
(Modified j2)

(p,1-p)

q−divergence
(variation)
(p,1-p)

1 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
2 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
3 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
4 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
5 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
6 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
7 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
8 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
9 (0, 1) (0.64, 0.36) (0.64, 0.36) (0.6, 0.4) (0.27, 0.73) (0.05, 0.95)
10 (0.9, 0.1) (0.91, 0.09) (0.91, 0.09) (0.91, 0.09) (0.9, 0.1) (0.9, 0.1)

Table 7 Optimal policies of CCMDP and DRCCMDP with full and nonnegative supports (continued)

q−divergence
(Kullbach-Leibler)

(p,1-p)

q−divergence
(Hellinger )
(p,1-p)

Full support
Wasserstein
(p,1-p)

Nonnegative
known mean

known covariance
(p,1-p)

Nonnegative
known mean

unknown covariance
(p,1-p)

Nonnegative
unknown mean

unknown covariance
(p,1-p)

Nonnegative
Wasserstein
(p,1-p)

(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
(0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(0.25, 0.75) (0.28, 0.72) (0.02, 0.98) (0.62, 0.38) (0.62, 0.38) (0.59, 0.41) (0.01, 0.99)
(0.9, 0.1) (0.9, 0.1) (0.9, 0.1) (0.91, 0.09) (0.91, 0.09) (0.91, 0.09) (0.9, 0.1)

policy corresponding to all the uncertainty sets for first eight states is same. At state 9 the
probability of repair is greater than the probability of do not repair for moments based
uncertainty sets whereas for statistical distance based uncertainty sets the probability of
repair is less than the probability of do not repair. This shows that the statistical distance
based uncertainty sets give better optimal policy as compared to moments based uncertainty
sets. At the last state, the optimal policy is to choose repair action with a very high probability
for all the uncertainty sets.

We present the time analysis by considering the number of states for all uncertainty sets
between 1000 and 10000. All the parameters are taken similar to the case of 10 states. The
results are presented in Figure 5 which shows that the CPU time is almost always the same
to solve SOCP (10) with ^ =

√
1−n
n

and the MISOCP (37) while additional CPU time is
required to solve the SDP relaxations of the copositive optimization problem (11) and the
biconvex optimization problem (41).

6 Conclusions

We study a DRCCMDP problem under various moments and statistical distance based
uncertainty sets defined using q-divergence and Wasserstein distance metric. We propose
equivalent SOCP, MISOCP, copositive optimization problem and biconvex optimization
problem, depending on the choice of the uncertainty set, for the DRCCMDP problem. All
these optimization problems except biconvex optimization problems and copositive opti-
mization problems can be solved efficiently using known optimization solvers. We perform
numerical experiments, using the optimization solvers in python, on a machine replacement
problem using randomly generated data. The numerical experiments are performed on the
DRCCMDP problem up to 10000 states and it is very clear from our time analysis that these
problems can be solved very efficiently.



22 Hoang Nam Nguyen et al.

Fig. 2 CPU time (in seconds) to solve SOCP (10) with ^ =
√
1−n
n

, MISOCP (37), copositive optimization
problem (11) and biconvex optimization problem (41) with different number of states.
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A Proof of Lemma 1

Consider the optimization problem

EP (`, Σ) = sup
�∈C+

∫
i

1{dT '̂≤H}d� ('̂)

s.t.. (i)
∫
i

d� ('̂) = 1,

(ii)
∫
i

('̂ − `) ('̂ − `)Td� ('̂) = Σ,

(iii)
∫
i

'̂d� ('̂) = `, (45)

where C+ is the set of all positive measures on R|K |+ . The dual problem of (45) is given by

ED (`, Σ) = inf −C −& ◦ Σ − @T`

s.t.. (i) 1{dT b≤H} + @
T b + bT&b − 2bT&` + `T&` + C ≤ 0, ∀ b ∈ R|K |+ ,

(ii) & ∈ S |K | , (46)

where C , @, and& are the dual variables associated with the constraints (i) , (ii) and (iii) of (45), respectively.
In Theorem 3.4 of [8], under the assumption ` ∈ RI(i) , the authors show that the Dirac distribution X`
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lies in the relative interior of the distributional uncertainty set which implies that the weaker condition of
Proposition 3.4 of [37] holds. However, it is not trivial to find a strictly feasible point inside our distributional
uncertainty set. Let (C∗

9
, &∗

9
, @∗
9
) 9∈N be a sequence of feasible solutions of (46) such that

−C∗9 −&
∗
9 ◦ Σ − @

∗T
9 ` → ED (`, Σ) , as 9 →∞. (47)

For each 9 ∈ N, let A∗
9
= max(0, @∗

9
) − @∗

9
, where max(0, @∗

9
) denotes a |K |-dimensional vector with 8th

component equal to the maximum value between 0 and the 8th component of @∗
9
, for every 8 = 1, . . . , |K |. Let

n 9 be a strictly positive decreasing sequence such that n 9A∗9 → 0 componentwise and n 9 → 0, when 9 →∞.
Let G 9 = n 91, where 1 denotes the vector with all components equal to 1. Then, A∗T

9
G 9 → 0 as 9 → ∞. For

each 9 ∈ N, consider the following conic optimization problem

E
9

P (`, Σ) = sup
�∈C+

∫
i

1{dT'≤H}d� (')

s.t. (i)
∫
i

d� (') = 1,

(ii)
∫
i

(' − `) (' − `)Td� (') = Σ,

(iii) ` ≤
∫
i

'd� (') ≤ ` + G 9 . (48)

The dual problem of (48) is given by

E
9

D (`, Σ) = inf −C −& ◦ Σ + (A − ℎ)T` + A) G 9

s.t. (i) 1{dT b≤H} + (ℎ − A )
T b + bT&b − 2bT&` + `T&` + C ≤ 0, ∀ b ∈ R|K |+ ,

(ii) ℎ, A ∈ R|K |+ , & ∈ S |K | , (49)

where C , &, A and ℎ are the dual variables of the constraint (i) , (ii) and (iii) of (48), respectively. The vector
(C , &, ℎ, A ) such that C = C∗

9
, & = &∗

9
, ℎ = max(0, @∗

9
) , A = A∗

9
is a feasible solution of (49). Hence,

E
9

D (`, Σ) ≤ −C
∗
9 −&

∗
9 ◦ Σ − @

∗T
9 ` + A

∗T
9 G 9 , ∀ 9 ∈ N. (50)

Since the feasibility set of (14) is non-empty, there exists a nonnegative distribution �∗ such that E(�∗) = `
and Cov(�∗) = Σ. Let �9 be a distribution with support i 9 :=

{
b ‖ b ∈ RK+ , b ≥

G 9
2 , componentwise

}
,

defined by

�∗ ( b ) = �9 ( b +
G 9

2
) , ∀ b ∈ RK+ .

It is clear that �9 is a feasible solution of (48) and i 9 ⊂ RI(i) . Hence, �9 belongs to the relative interior
of the distributional uncertainty set which implies that strong duality holds, i.e., E 9P (`, Σ) = E

9

D (`, Σ) for
all 9 ∈ N. Since the objective function of (48) is a continuous function of � and G 9 → 0 as 9 → ∞, then
E
9

P (`, Σ) → EP (`, Σ) as 9 → ∞. Therefore, it is sufficient to prove that E 9D (`, Σ) → ED (`, Σ) as 9 → ∞.
It is clear that the feasible sets of (49) and (46) are equivalent and objective function of (49) has additional
positive term. Therefore,

E
9

D (`, Σ) ≥ ED (`, Σ) , ∀ 9 ∈ N. (51)

Using (47), (50) and (51) and the fact that A∗)
9
G 9 → 0 as 9 →∞, we have E 9D (`, Σ) → ED (`, Σ) as 9 →∞.

B Proof of Theorem 3 - Case Hellinger distance

From Table 2, the conjugate of q has the following form

q∗ (A ) =
{

A
1−A , if A < 1,
∞, if A ≥ 1.

(52)
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Let

! = sup
_>0,V∈R

{
V − _\q − _q∗

(
−1 + V
_

)
Pa ($) − _q∗

(
V

_

)
(1 − Pa ($))

}
. (53)

The constraint (i) of (5) is equivalent to

! ≥ 1 − n . (54)

We consider two cases as follows:
Case 1: Let V

_
< 1. Since _ > 0, the following inequality holds

V − 1
_

<
V

_
< 1.

From (52), we have

q∗
(
V

_

)
=

V

_ − V , q
∗
(
V − 1
_

)
=

V − 1
_ + 1 − V .

Consequently, it follows from (53) that

! = sup
_>0,V<_

{
Pa ($)

_2

(_ − V) (_ − V + 1) −
V2

_ − V − _\q
}
.

Let [ = _ − V. Then, we can write

! = sup
_>0,[>0

{
_2

(
Pa ($)
[ ([ + 1) −

1
[

)
+ _(2 − \q) − [

}
.

Let 6 (_, [) = _2
(
Pa ($)
[ ([+1) −

1
[

)
+ _(2− \q) − [. It is a second-order polynomial of _ and the coefficient of

_2 is negative because 0 ≤ Pa ($) ≤ 1 and [ > 0. It is well known that the maximum value of a second order
polynomial 5 (G) = 0G2 + 1G + 2 with 0 < 0 is 2 − 1240 and it holds at G = −120 . Hence, the maximum value

of 6 (_, [) holds at _∗ = [ ([+1) (2−\q )
2(1+[−Pa ($) ) . Since \q < 2, _

∗ > 0. Therefore, for a given [ > 0, the optimal

value ! holds at _∗ and ! = 2 − 1240 , where 2 = −[, 1 = 2 − \q , 0 =
Pa ($)
[ ([+1) −

1
[
, which implies that

! = sup
[>0

{
−[ +

(2 − \q)2[ ([ + 1)
4([ + 1 − Pa ($))

}
. (55)

Let D = [ + 1 − Pa ($) , then [ > 0 is equivalent to D > 1 − Pa ($) and we can write

! = sup
D>1−Pa ($)

{ (
(2 − \q)2

4
− 1

)
D +
(2 − \q)2Pa ($) (Pa ($) − 1)

4
1
D

+ 1 − Pa ($) +
(2 − \q)2 (2Pa ($) − 1)

4

}
,

= sup
D>1−Pa ($)

� (D) ,

where � (D) = 01D + 11D + 21 such that

01 =
(2 − \q)2

4
− 1, 11 =

(2 − \q)2Pa ($) (Pa ($) − 1)
4

,

21 = 1 − Pa ($) +
(2 − \q)2 (2Pa ($) − 1)

4
.
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Since 0 < \q < 2 and 0 ≤ Pa ($) ≤ 1, 01 < 0 and 11 ≤ 0. It is clear that � is decreasing on (D∗,∞) ,
increasing on (−D∗, D∗) and decreasing on (−∞, −D∗) , where

D∗ =

√
11
01

=

√
(2 − \q)2

4 − (2 − \q)2
Pa ($) (1 − Pa ($)) , (56)

� (D∗) = 01D∗ +
11
D∗
+ 21 = −2

√
0111 + 21.

If D∗ ≤ 1−Pa ($) , we deduce that (1−Pa ($) ,∞) ⊂ (D∗,∞) . Since� is decreasing on (D∗,∞) , it implies
that � is decreasing on (1 − Pa ($) ,∞) . Hence, the optimal value of � is attained when D = 1 − Pa ($) ,
i.e, [ = 0. From (55), ! = 0 which violates the constraint (54). Therefore, D∗ > 1 − Pa ($) > 0. Since, � is
decreasing on (D∗,∞) and increasing on (1 − Pa ($) , D∗) , then D = D∗ is the optimal solution of � (D) and
! = −2

√
0111 + 21. Therefore,

! =−2

√
(2 − \q)2
4

(
1 −
(2 − \q)2
4

)
Pa ($) (1 − Pa ($))

+ 1 − Pa ($) +
(2 − \q)2 (2Pa ($) − 1)

4
.

Then, (54) is rewritten equivalently as follows

−2

√
(2 − \q)2
4

(
1 −
(2 − \q)2
4

)
Pa ($) (1 − Pa ($))

≥
(
1 −
(2 − \q)2

2

)
Pa ($) +

(2 − \q)2

4
− n . (57)

By taking the square on both side of (57), we get

(2 − \q)2
(
1 −
(2 − \q)2

4

)
Pa ($) (1 − Pa ($))

≤
[ (
1 −
(2 − \q)2

2

)
Pa ($) +

(2 − \q)2

4
− n

]2
. (58)

By rewriting (58), we get the following second-order inequality in Pa ($)(
Pa ($)

)2 + � Pa ($) +� ≥ 0,
which is equivalent to (

Pa ($) − Gmax
) (
Pa ($) − Gmin

)
≥ 0, (59)

where Gmax =
−�+

√
Δ

2 , Gmin =
−�−

√
Δ

2 and �, �, Δ are given in Table 3. It is clear that (57) is equivalent
to either Pa ($) ≥ Gmax or Pa ($) ≤ Gmin. Moreover, Gmax and Gmin are solutions of the following two
equalities

−2

√
(2 − \q)2
4

(
1 −
(2 − \q)2
4

)
G (1 − G) =

(
1 −
(2 − \q)2

2

)
G +
(2 − \q)2

4
− n , (60)

and

2

√
(2 − \q)2
4

(
1 −
(2 − \q)2
4

)
G (1 − G) =

(
1 −
(2 − \q)2

2

)
G +
(2 − \q)2

4
− n . (61)

Since \q < 2 −
√
2, we deduce that 1 − (2−\q )

2

2 < 0. Therefore, we have(
1 −
(2 − \q)2

2

)
Gmin +

(2 − \q)2

4
− n >

(
1 −
(2 − \q)2

2

)
Gmax +

(2 − \q)2

4
− n ,
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which implies that Gmax is a solution of (60) and Gmin is a solution of (61). Hence, the condition Pa ($) ≤ Gmin
implies that(

1 −
(2 − \q)2

2

)
Pa ($) +

(2 − \q)2

4
− n ≥

(
1 −
(2 − \q)2

2

)
Gmin +

(2 − \q)2

4
− n > 0,

which violates the constraint (57). Then, (57) is equivalent to Pa ($) ≥ Gmax, i.e., the constraint (i) of (5) is
equivalent to

Pa (d) '̂ ≥ H) ≥
−� +

√
Δ

2
.

Case 2: Let 1 ≤ V

_
. From (52), q∗

(
V

_

)
= ∞, which in turn implies that ! = −∞ and it violates the constraint

(54).

C Proof of Lemma 5

For each 8 = 1, . . . , � , we consider two cases as follows:
Case 1: Let dT b̃8 ≤ H. In this case, it is clear that infdTI≤H | | b̃8 − I | |2 = 0 and the optimal value holds at
I = b̃8 .
Case 2: Let dT b̃8 > H. Geometrically, the term infdTI≤H | | b̃8 − I | |2 can be interpreted as the distance
between b̃8 and the hyper plane

{
I | dTI = H

}
. Assume that the optimal value of infdTI≤H | | b̃8 − I | |2 holds

at I = I∗. If dTI∗ < H, since dT b̃8 > H, we deduce that there exists I0 on Seg(I∗, b̃8) such that dTI0 = H,
where Seg(I∗, b̃8) :=

{
I | I = I∗ + C ( b̃8 − I∗) , 0 < C < 1

}
. It is clear that | | b̃8 − I∗ | |2 > | | b̃8 − I0 | |2.

However, | | b̃8 − I∗ | |2 = infdTI≤H | | b̃8 − I | |2, which gives a contradiction. Therefore, dTI∗ = H. We can
write infdTI≤H | | b̃8 − I | |2 equivalently as

inf | | b̃8 − I | |2
s.t. dTI = H. (62)

Using the KKT conditions, the optimal solution of (62) satisfies

2( b̃8 − I∗) − _d = 0, (63)

where _ is the Lagrange multiplier associated with the equality constraint. By taking the inner product of (63)
with d, we have

2( b̃8 − I∗)) d − _ | |d | |22 = 0,

which implies that

_ =
2( b̃8 − I∗)) d
| |d | |22

. (64)

On the other hand, by taking inner product of (63) with b̃8 − I∗, we get

2 | | b̃8 − I∗) | |22 − _d
) ( b̃8 − I∗) = 0. (65)

Using (64), (65) and d) I∗ = H, we have

| | b̃8 − I∗) | |2 =
d) b̃8 − H
| |d | |2

.
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D Proof of Lemma 7

Let (H, d) be a feasible solution of (36) which implies that the constraint (i) of (6) holds. Since, reference
distribution a always belongs to uncertainty set (27), we have

1
�

�∑
8=1

1{dT b̃8≤H} = Pa
(
dT'̂ ≤ H

)
≤ n . (66)

It follows from (66) that there exists b̃8 such that dT b̃8 > H which in turn implies that

H < max
8=1,...,�

(dT b̃8) < max
8=1,...,�

|dT b̃8 | +
\,

n
| |d | |2. (67)

Moreover, from the constraint (iii) of (36), we have

H ≥ min
8=1,...,�

(dT b̃8) −
\,

n
| |d | |2 ≥ − max

8=1,...,�
|dT b̃8 | −

\,

n
| |d | |2. (68)

Using (68) and (67), we get the following inequality

|H | + |dT b̃8 | ≤ 2 max
8=1,...,�

|dT b̃8 | +
\,

n
| |d | |2, ∀ 8 = 1, . . . , � . (69)

Using (69), Cauchy-Schwartz inequality, and the fact that d is a probability measure, we have

|H − dT b̃8 | ≤ ".

E Proof of Lemma 8

The optimization problem inf
I∈R|K |+ ,dTI≤H | | b̃8 − I | |2 can be reformulated as following SOCP problem

min C

s.t. (i) dTI ≤ H,
(ii) C ≥ | | b̃8 − I | |2,

(iii) I ∈ R|K |+ . (70)

The Lagrangian dual problem of (70) is given by

max
_8≥0,Z8∈R

|K |
+ ,V≥0

min
C∈R,I∈R|K |

L(C , d, I, _8 , V, Z8) ,

where L(C , I, _8 , V, Z8) = C +_8 (dTI− H) − Z T8 I +V ( | | b̃8 − I | |2− C) such that _8 , V and Z8 are the Lagrange
multipliers associated with constraints (i) , (ii) and (iii) of (70), respectively. The inner minimization problem
can be written as

� (_8 , Z8 , V) = min
C∈R,I∈R|K |

{
C (1 − V) + V | | b̃8 − I | |2 + _8dTI − Z T8 I − _8H

}
. (71)

It is easy to see that � (_8 , Z8 , V) = −∞ if V ≠ 1 and it implies that the dual objective function value is −∞.
By using the strong duality of a primal-dual pair of SOCPs, the objective function value of primal problem is
−∞, i.e., inf

I∈R|K |+ ,dTI≤H | | b̃8 − I | |2 = −∞ which is a contradiction. Therefore, V = 1 and the dual problem
of (70) is given by

max
_8≥0,Z8∈R

|K |
+

� (_8 , Z8 , 1) .
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Using a change of variable I1 = b̃8 − I, we have

� (_8 , Z8 , 1) = min
I1∈R|K |

{
| |I1 | |2 + (Z8 − _8d)TI1

}
+ _8 (dT b̃8 − H) − Z T8 b̃8 .

The above minimization problem is unbounded unless | |Z8 − _8d | |2 ≤ 1 and it leads to the following dual
problem of (70).

max _8 (dT b̃8 − H) − Z T8 b̃8
s.t. (i) | |Z8 − _8d | |2 ≤ 1,

(ii) _8 ≥ 0, Z8 ∈ R|K |+ . (72)
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