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Stability of the global weak axisymmetric

solution to the quantum Euler system with

vorticity in dimension d = 2

Boris Haspot∗ and Marc-Antoine Vassenet †

Abstract

We consider the stability of the global weak solution of the Quantum
Euler system in two space dimensions. More precisely, we establish the
compactness of global finite energy weak solution for large initial data
provided that the initial data are axisymmetric. The main novelty is that
the initial velocity is not necessary irrotational, our main argument is
based on a generalization of the Madelung transform which enables to
prove new Kato estimates on the irrotational part of the velocity.
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1 Introduction

The quantum Euler system that we are considering is described by the following
system:

∂tρ+ div(ρu) = 0,

ρ∂tu+ ρu.∇u+∇P (ρ) = κρ∇
(
∆
√
ρ

√
ρ

)
, (x, t) ∈ Rd × R+.

(ρ, u)|t=0 = (ρ0, u0), x ∈ Rd.

(1.1)

Here u = u(t, x) ∈ Rd with d ≥ 2 stands for the velocity field, ρ = ρ(t, x) ∈ R+

is the density, κ ≥ 0 is the capillary coefficient and P the pressure. This
system appears as a relevant model in various areas of physics: superfluids
theory (see e.g. [20, 13]), weakly interacting Bose gases (see e.g. [15]), quantum
semiconductors ( see e.g. [14])... We would like also to point out that the
above system belongs to a wider class of fluid dynamic equations, the so called
Euler-Korteweg systems modeling in particular liquid-vapor mixture. In order
to describe the behavior of the mixture at the interface between the fluid and
the vapor, the system is endowed with an internal capillarity κ(ρ) and it reads
as follows:

∂tρ+ div(ρu) = 0, (x, t) ∈ Rd × I

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = divK, (x, t) ∈ Rd × I

(ρ, u)/t=0 = (ρ0, u0), x ∈ Rd.

(1.2)

The general Korteweg tensor can be written as follows:

divK = div

((
ρκ(ρ)∆ρ+

1

2
(κ(ρ) + ρκ

′
(ρ))|∇ρ|2

)
Id− κ(ρ)∇ρ⊗∇ρ

)
. (1.3)

The capillary coefficient κ is a smooth function R+ → R+∗. We can notice that
the quantum Euler system (1.1) corresponds to the Euler-Korteweg system (1.2)
with κ(ρ) = κ

2ρ with κ > 0.
One can recall now the physical energy bounds associated to the Euler-Korteweg
system. Let ρ̄ > 0 be a constant reference density, and let Π be defined by:

Π(s) = s

(∫ s

ρ̄

P (z)

z2
dz − P (ρ̄)

ρ̄

)
,

so that P (s) = sΠ
′
(s)−Π(s) , Π

′
(ρ̄) = 0 and:

∂tΠ(ρ) + div(uΠ(ρ)) + P (ρ)div(u) = 0 in D
′
((0, T )× Rd).

Notice that Π is convex as far as P is non decreasing (since P
′
(s) = sΠ

′′
(s)),

which is the case for γ-type pressure laws. Multiplying the equation of momen-
tum conservation in the system (1.2) by u and integrating by parts over Rd, we
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obtain at least formally:∫
Rd

(1
2
ρ|u|2 + (Π(ρ)−Π(ρ̄)) +

1

2
κ(ρ)|∇ρ|2

)
(t)dx

≤
∫

Rd

(1
2
ρ0|u0|2 + (Π(ρ0)−Π(ρ̄)) +

κ(ρ0)

2
|∇ρ0|2

)
dx.

(1.4)

It follows that assuming that the initial total energy is finite:

E0 =

∫
Rd

(
ρ0

|u0|2

2
+ (Π(ρ0)−Π(ρ̄)) +

κ(ρ0)

2
|∇ρ0|2

)
dx < +∞ ,

then we have the a priori following bounds:

Π(ρ)−Π(ρ̄), ρ|u|2 ∈ L∞(0,∞, L1(Rd)),

and κ(ρ)|∇ρ|2 ∈ L∞(0,∞, L1(Rd)).
(1.5)

Before stating our main result, we propose for the convenience of the reader
a short review on the results concerning both the existence of strong solution
for the Euler-Korteweg system and the existence of global weak solution with
large initial data. The system (1.2) can be recasted as a quasilinear degenerate

Schrödinger equation by using the classical effective velocity v = u+ i
√

κ(ρ)
ρ ∇ρ,

the momentum equation takes then the following form:

∂tv + u · ∇v + i(∇v) · w + i∇(a(ρ)divv) +∇F (ρ) = 0, (1.6)

with F ′(ρ) = P ′(ρ)
ρ , w =

√
κ(ρ)
ρ ∇ρ and a(ρ) =

√
ρκ(ρ). In other words we

can expect dispersive estimates on the solutions of the Euler Korteweg system
provided that we consider an irrotational velocity, indeed in this framework
∇(a(ρ)divv) is strongly elliptic. By working on the equation (1.6) Benzoni,
Danchin and Descombes in [8] have proved the local existence for the Euler Ko-
rteweg system of strong solutions for large data provided that the initial data
(ρ0 − 1, u0) belong to Hs+1(Rd) ×Hs(Rd) with s > d

2 + 1 and the initial den-
sity is far away from the vacuum ρ0 ≥ c > 0. The proof is based on tricky
energy estimates in Hs Sobolev space combined with a gauge method in order
to overcome some difficulties related to a loss of derivative on some convective
terms, however in [8] the authors do not exhibit any dispersive estimates on the
solution. As mentioned before, it seems reasonable to think that the existence
of global strong solution can only be deduced by obtaining dispersive estimates
on the solution. In particular in [7, 6] the authors prove the existence of global
strong solution which scatter in dimension d ≥ 3, for small initial data with
irrotational flow by using the theory of non space time resonance. It is rele-
vant to mention that the case d ≤ 2 seems less favorable, indeed in [4] Audiard
showed in dimension d = 2 the existence of travelling wave of arbitrary small
energy (see [9] for the one-dimensional case). In particular since these solutions
do not scatter, it may prevent some result of global strong scattering solution
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for small initial data for d ≦ 2 (See also [5] for the existence of multi-soliton of
the Euler-Korteweg system in dimension one).
The question of the existence of global weak solution with large initial data for
the Euler-Korteweg system remains actually largely open in dimension d ≥ 1, we
would like to explain what are the main difficulties related to the proof of such
result. Classically the method for showing the existence of global weak solution
consist in constructing in a first step a sequence of global approximate regular
solution (ρn, un)n∈N (via a Fadeo-Galerkin argument) satisfying uniformly in n
the energy estimate (1.4). The second step is to prove that we can extract a
subsequence (ρφ(n), uφ(n))n∈N which converges weakly to a global weak solution
(ρ, u) of the Euler-Korteweg system (1.1). It corresponds to the notion of sta-
bility of the global weak solution, however it requires in general to have enough
compactness informations on the sequel (ρn, un)n∈N in order to pass to the limit
in the nonlinear terms involved in the system (1.2). One can then easily notice
that in the case of the Euler-Korteweg system the main difficulty consists in
passing to the limit in the quadratic terms κ(ρn)∇ρn ⊗ ∇ρn and ρnun ⊗ un
which are only bounded uniformly in n in L∞(L1(Rd)). It implies that these
terms converges up to extraction only to some measure ν and ν1, the natural
question which arises is to prove that ν = κ(ρ)∇ρ⊗∇ρ and ν1 = ρu⊗ u where
ρ and

√
ρu are strong limit of the sequences (ρφ(n))n∈N and (

√
ρφ(n)uφ(n))n∈N

in appropriate functional space.
In the case of the quantum Euler system (1.1) , Antonelli and Marcati in [1, 2]
have obtained the existence of global weak solution in dimension d = 2, 3 for
”well-prepared” initial data (ρ0,

√
ρ0u0) in the sense that there exists some wave

function ψ0 ∈ H1 such that ρ0 = |ψ0|2 and ρ0u0 = Im(ψ̄0∇ψ0). It is important
to point out that these conditions impose that the initial velocity is irrotational.
Indeed in this case there exists a correspondance between the system (1.1) and
the nonlinear Schrödinger equation via the notion of polar factorization where
we have ρ = |ψ|2 and ρu = Im(Ψ̄∇Ψ) (see [1, 2]) with Ψ solution of the following
(NLS) equation:

i∂tΨ+
1

2
∆Ψ = g

(
|Ψ|2)Ψ, Ψ(0, ·) = Ψ0. (NLS)

It is of course reminiscent of the so called Madelung transform which ensures
that when u = ∇ϕ is irrotational we have:(

ρ,∇ϕ
)
7→ Ψ :=

√
ρeiϕ. (1.7)

In [1, 2] the authors begin by constructing a sequence of exact solutions (ρn,
√
ρnun)n∈N

of the system (1.1) using polar factorization associated to Ψn solution of the
equation (NLS) provided that the sequence (Ψ0,n)n∈N of initial data belong
to Hs Sobolev space with s > 0 sufficiently large (in addition this sequence
converges strongly to Ψ0 in H1). We should however point out that this pro-
cedure must be realized carefully since ψn can vanish, and so that

√
ρnun =

Im(ψn∇ψn/|ψn|) is only defined for |ψn| ≠ 0 and
√
ρnun = 0 otherwise using a

Sard theorem. The key point of the proof is now the strong L2
loc convergence
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of the nonlinear terms
√
ρnun ⊗√

ρnun and |∇√
ρn|2, this is a consequence of

standard stability estimates (based on Strichartz inequalities) which claim that
Ψn converges to Ψ in L∞

T (H1) and of the fact that via the formula of polar fac-
torization we have |∇Ψn|2 = |∇√

ρn|2+ |√ρnun|2. It suffices then now to prove
the strong L2 convergence by combining weak L2 convergence and convergence
of the L2 norms ∥√ρnun∥L2 and ∥∇√

ρn∥L2 . Concerning the existence of global
weak solution in one dimension for the system (1.1), we mention also the work
of Antonelli et al [3] where the authors give in particular some sufficient and
necessary condition for an initial data (ρ0,

√
ρ0u0) to admit an associated wave

function Ψ0 in H1 and even in H2. It allows then to construct more regular
global weak solution (ρ,

√
ρu) provided that the initial associated wave function

is in H2, in addition they obtain also dispersive estimates on these solutions by
adapting standard dispersive estimates issue of the NLS equation.
To finish this short review, we mention also the global existence of dissipative
solutions for the Euler-Korteweg system (1.2)which are even weaker than the
weak solutions (see [10]). We also would like to refer to [11] for a very interesting
survey on the well-posedness of the Euler-Korteweg system and Gross-Pitaevskii
equations.
In the sequel, we aim at solving the problem of the stability of the global weak
solution of the quantum Euler system (1.1) in dimension d = 2 for an initial
velocity which is not necessary irrotational. In other words, if we assume that
there exists a sequence of global smooth approximate solutions (ρn, un)n∈N of
system (1.1) satisfying uniformly in n the bounds (1.5) issue of the energy es-
timate (1.4), we wish to prove that up to a subsequence the sequel (ρn, un)n∈N

converges weakly to a global weak solution (ρ, u) of the system (1.1).

Remark 1.1. Naturally a result of stability of weak solutions does not imply
the global existence of weak solutions. Indeed, it remains to prove the global ex-
istence of approximate solutions satisfying uniformly in n all the required energy
estimates. This work is in general very delicate.

Dividing now the momentum equation of (1.1) by ρ, applying the operator
curl in dimension d = 2 (with curlu = ∂1u2−∂2u1) and using the mass equation,
we get at least formally the following equation:

∂t

(
curlu

ρ

)
+ u · ∇

(
curlu

ρ

)
= 0. (1.8)

This remarkable relation on curlu
ρ has been identified in particular by Serre in

[21] for the compressible Euler system in dimension d = 2. It implies at least
formally that we can bound the L∞(R2) and L1(R2) norm of respectively curlu

ρ
and curlu all along the time by using a maximum principle. That is why in the
sequel we shall work with initial data verifying:

1

ρ0
∈ L∞(R2) and curlu0 ∈ L1(R2) ∩ L∞(R2). (1.9)

In addition the initial data have finite energy , it implies from the estimate (1.4)
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that:

∇√
ρ0 ∈ L2(R2),

√
ρ0u0 ∈ L2(R2) and (ρ0 − 1) ∈ L2

γ(R
2), (1.10)

Lγ2(R
2) is here an Orlicz space (we refer to the Section 2.1 for the definition). We

assume now that there exists a sequence (ρn, un)n∈N of global regular solutions
of (1.1) satisfying the following properties:

∥(ρn − 1, un)∥C(R+,Hs) ≤ Csn, withC
s
n −→
n→+∞

+∞,∀s ≥ 0,∥∥∥∥ 1

ρn

∥∥∥∥
L∞(R+×Rn)

≤ Cn, withCn −→
n→+∞

+∞.
(1.11)

We expect also that (ρn, un)n∈N verify for C > 0 independently on n and
any n ∈ N the energy estimates (1.4) and the maximum principle issue of the
equation (1.8):

∥∇√
ρn∥L∞(R+,L2(R2)) ≤ C, ∥ρn − 1∥L∞(R+,Lγ

2 (R
2)) ≤ C,

∥√ρnun∥L∞(R+,L2(R2)) ≤ C, ∥curlun∥L∞(R+,L1(R2)) ≤ C,∥∥∥∥curlunρn

∥∥∥∥
L∞(R+,L∞(R2))

≤ C.

(1.12)

Furthermore the initial data (ρ0n, u
0
n)n∈N verify for C > 0 independent on n:{

∥∇
√
ρ0n∥L2(R2) ≤ C, ∥

√
ρ0nu

0
n∥L2(R2) ≤ C, ∥(ρ0n − 1)∥L2

γ(R
2) ≤ C,

∥curlu0n∥L1(R2) ≤ C,
∥∥curlu0n∥∥L∞(R2)

≤ C,

(1.13)
and

∥(ρ0n − 1, u0n)∥Hs(R2) ≤ Csn, withC
s
n −→
n→+∞

+∞,∀s ≥ 0,∥∥∥∥ 1

ρ0n

∥∥∥∥
L∞(R2)

≤ C.
(1.14)

To finish we assume that :ρ
0
n −→
n→+∞

ρ0 strongly in L1
loc(R

2),

ρ0nu
0
n −→
n→+∞

ρ0u0 strongly in L1
loc(R

2),
(1.15)

and 
ρ0n − 1 −→

n→+∞
ρ0 − 1 strongly in Lγ2(R

2),

∇
√
ρ0n −→

n→+∞
∇√

ρ0 strongly in L2(R2),√
ρ0nu

0
n −→
n→+∞

√
ρ0u0 strongly in L2(R2).

(1.16)
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Remark 1.2. It is important to mention again that the question of the exis-
tence of global solution with large initial data for the Quantum Euler system in
dimension d = 2 remains actually an open problem. That is why the sequence
of global solution (ρn, un)n∈N must be understood as a sequence of global regular
solution of an approximate system of the Quantum Euler system which satisfies
uniformly in n all the estimates issue of the energy inequality (1.4). A classical
method for getting such sequence of solution is to use a Fadeo-Galerkine method,
we will explain however why in our framework this type of construction seems
particularly delicate.

In order to distinguish in a simple way the irrotational and the rotational
part of the convective term u ·∇u in (1.1) we are going to consider axisymmetric
initial data, more precisely the initial data satisfy the following relation 1:{

ρ0(x) = ρ0(|x|),
u0(x) = ∇θ0(|x|) +∇⊥(θ1)0(|x|),

(1.17)

with ρ0, θ0 and (θ1)0 radial functions.In the sequel, we assume now that the
initial data satisfy (1.17), (1.9) and (1.10). Since we are interested in looking
at solutions of the form :

ρ(t, x) = ρ1(t, |x|), u(t, x) = ∇θ(t, |x|) +∇⊥θ1(t, |x|) = u1(t, x) + u2(t, x),
(1.18)

with x ∈ R2\{0}, we can then rewrite the system (1.1) at least formally as
follows:

∂tρ+ div(ρu1) = 0,

ρ∂tu
1 + ρu1 · ∇u1 + ρu2 · ∇u2 +∇P (ρ) = κρ∇

(
∆
√
ρ

√
ρ

)
,

ρ∂tu
2 + ρu1 · ∇u2 + ρu2 · ∇u1 = 0.

(1.19)

Due to the assumption (1.18) on the initial data, we will assume that the initial
data (ρ0n, u

0
n)n∈N are also axisymetric and verify:{

ρ0n(x) = ρn(0, |x|),
u0n(x) = ∇θn0 (|x|) +∇⊥(θ1)

n
0 (|x|).

(1.20)

We can observe now that the rotationnal part of the velocity u1 satisfies es-
sentially the momentum equation of the Euler-Korteweg system (1.2) except
that this equation is coupling with the convective term ρu2 · ∇u2. It is then
tempting at this level to consider this term as a source term and to apply a
Madelung transformation to the equation on u1 by considering the new un-
known Ψ1 =

√
ρeicθ1 with c ∈ R a constant well chosen. We will see later that

this is possible and that the unknown Ψ1 satisfies the following equation:

∂tΨ1 + ic1∆Ψ1 + ic2Ψ1(F (|Ψ1|2)− F (1) +G) = 0, (1.21)

1We will note in dimension d = 2, x⊥ = (−x2, x1)t for x = (x1, x2)t and ∇⊥ = (−∂2, ∂1).
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with c1, c2 ∈ R, F a regular function depending on the pressure P and G a
source term depending on the convective term ρu2 · ∇u2.

Our main feature now consists in proving that up to a subsequence the
sequence (ρn, un)n∈N converges strongly to a global weak solution (ρ, u) of the
the Quantum Euler system. As we mentioned previously the main difficulty
consists in proving that the nonlinear terms ρnun ⊗ un and ∇√

ρn ⊗ ∇√
ρn

converge in the sense of the distribution respectively to ρu⊗u and ∇√
ρ⊗∇√

ρ
where ρ and u are strong limit of the sequences (ρn)n∈N and (un)n∈N. Since
curlun should satisfy the equation (1.8), it is natural to think that curlun verifies
the estimates (1.12). It implies in particular that the rotational part Pun must
belongs to Sobolev spaces W 1,p(R2) with p > 2 via Sobolev embedding, using
now compact embedding it is sufficient to show that the term ρnPun ⊗ Pun
converges strongly to ρPu⊗Pu. The term the most delicate to treat is then the
convective term ρnQun ⊗ Qun. At this level the use of axisymmetric solution
is crucial since it enables to write a momentum equation on Qun as in the
system (1.19) where u1 takes the place of Qun. We can then extend the so
called Madelung transform by considering the unknown Ψn =

√
ρne

icθn with
Qun = ∇θn and c ∈ R. Since Ψn satisfies a nonlinear Schrödinger equation, we
can use the Kato local smoothing effects on

∇Ψn = (∇√
ρn − i

2c2
(Qun)

√
ρn)e

icθn ,

provided that we estimate Gn in (1.21)) in a suitable way. Then we use now
the Aubin-Lions lemma to prove that the sequence ρnQun ⊗ Qun converges to
ρQu⊗Qu. We recall now what is a global weak solution for the Quantum Euler
system.

Definition 1.1. We say that (ρ,Λ,Λ1) with ρ ≥ 0 is said to be a global
weak solution of the Quantum Euler system (1.1) with initial data (ρ0, u0) with
Λ0 =

√
ρ0Qu0, (Λ1)0 = Pu0 satisfying (1.9), (1.17), and (1.10) if:

(1) Integrability conditions:

ρ− 1 ∈ L∞(R+, Lγ2(R
2)), ∇√

ρ ∈ L∞(R+, L2(R2)),

Λ ∈ L∞(R+, L2(R2)),
√
ρΛ1 ∈ L∞(R+, L2(R2)).

(1.22)

(2) Kato’s effect: For any T > 0 we have:

∇√
ρ ∈ L2

T (H
1
2

loc), Λ ∈ L2
T (H

1
2

loc). (1.23)

(3) Mass equation:

−
∫

R2

ρ0φ(0, .)dx+

∫
R+×R2

ρ∂tφdtdx+

∫
R+×R2

√
ρΛ · ∇φdtdx = 0, (1.24)
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for any φ ∈ C∞
c (R+ × R2).

(4) Momentum equation:

−
∫

R2

ρ0u0 · φ(0, .)dx+

∫
R+×R2

(ρΛ1 +
√
ρΛ) · ∂tφdxdt

+

∫
R+×R2

(Λ⊗ Λ +
√
ρΛ1 ⊗ Λ + Λ⊗√

ρΛ1 + ρΛ1 ⊗ Λ1) : ∇φdxdt

+

∫
R+×R2

P (ρ)div(φ)dxdt− κ

2

∫
R+×R2

∇ρ.∇(div(φ))dxdt

− 2κ

∫
R+×R2

(∇√
ρ⊗∇√

ρ) : ∇φdxdt = 0,

(1.25)

holds for any test function φ ∈ C∞
c (R+ × R2)2.

(5) Energy inequality: if

E(t) =

∫
R2

(
1

2
ρ|u|2(t, x) + κ|∇√

ρ(t, x)|2 + jγ(ρ(t, x))

)
dx,

then the following energy inequality is satisfied for any t > 0:

E(t) ≤ E(0).

Remark 1.3. It is important to point out that heuristically Λ takes the role of√
ρQu whereas Λ1 is the rotational part Pu.

We can now state our main result.

Theorem 1. Let (ρ0, u0) satisfying (1.9) (1.10), (1.17) and under the hypothe-
ses (1.13), (1.14) , (1.15), (1.16), (1.20) the sequence (ρn, un)n∈N of global reg-
ular solution of the system (1.1) satisfying (1.11), (1.12) converges in the sense
of distribution, up to a subsequence, to a global weak solution (ρ, u) of system
(1.1) in the sense specified in Definition 1.1, for initial data

ρ(0, .) = ρ0, Λ(0, .) =
√
ρ0Qu0 and (Λ1)0 = Pu0.

Remark 1.4. This result of stability of global weak solution generalizes the
works of Antonelli-Marcati [1, 2] to the case of initial data not necessarily irro-
tational.

Organization of the article First of all in section 2.1 we present the a priori
estimates. In section 2.2 we show that the geometry of the solutions is conserved
all along the time. In section 2.3 we use an extended version of the Madelung
transform in order to use in 2.4 Kato’s local smoothing effect on the rotational
part of the solution. In section 2.5 we pass to the limit in the different nonlinear
terms of the equations by using Aubin Lions lemma. Finally, in the last section
we prove the Theorem 1.
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2 Proof of the Theorem 1

We assume now that (ρn, un)n∈N is a sequence of global regular solution of the
system (1.1) satisfying (1.11), (1.12) with initial data verifying (1.13), (1.14) ,
(1.15), (1.16) and (1.20). Our aim is to prove that this sequence converges up
to a subsequence to a global solution (ρ, u) of the Quantum Euler system with
initial data (ρ0, u0) satisfying the assumption of Theorem 1. We are going to
start by proving uniform estimate.

2.1 Uniform Estimate

This section is devoted to the proof of the following propositions which give
uniform estimates in n on the sequence (ρn, un)n∈N.

Proposition 2.1. There exist some positive constant C > 0, not depending on
n, such that for all t ≥ 0

∥∇√
ρn(t, ·)∥L2 ≤ C, ∥√ρnun(t, ·)∥L2 ≤ C, (2.1)

∥ρn(t, ·)− 1∥Lγ
2
≤ C, (2.2)

∥curlun(t, ·)∥L1 ≤ C, ∥ curlun

ρn
(t, ·)∥L∞ ≤ C. (2.3)

Next we deduce the following Corollary.

Corollary 2.1. There exists some constant Cp > 0 depending only on p, such
that for all t ≥ 0

∥√ρn(t, ·)− 1∥H1 ≤ C, (2.4)

∥ρn(t, .)− 1∥Lp ≤ Cp, ∀p ∈ [2,+∞[, (2.5)

∥curlun(t, ·)∥Lp ≤ Cp, ∀p ∈ [1,+∞[, (2.6)

∥∇Pun(t, ·)∥Lp ≤ Cp, ∀p ∈]1,+∞[, (2.7)

∥Pun(t, ·)∥W 1,p ≤ Cp, ∀p ∈]2,+∞[. (2.8)

Proof of Proposition 2.1 and Corollary 2.1: Multiplying the momentum
equation of (1.1) by un and integrating by parts on (0, t) × R2 with t > 0 we
obtain easily:∫

R2

(1
2
ρn|un|2(t, x) + κ|∇√

ρn(t, x)|2
)
dx+

∫ t

0

∫
R2

∇P (ρn)(s, x) · un(s, x)dsdx

= κ

∫
R2

(1
2
ρn|un|2(0, x) + κ|∇√

ρn(0, x)|2
)
dx.

(2.9)
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Using now the same computation as in [19], we can show that for a pressure
P (ρ) = ργ we get:∫

R2

∇P (ρn(t, x)) ·un(t, x)dx =
1

γ − 1

∫
R2

∂t
(
ργn− 1−γ(ρn− 1)

)
(t, x)dx. (2.10)

In the sequel we denote by jγ(ρ) =
1

γ−1

(
ργ − 1− γ(ρ− 1)

)
, from the convexity

of the function x → xγ we can observe that jγ(ρ) ≥ 0 for ρ ≥ 0. Combining
(2.9) and (2.10) we have:∫

R2

(
1

2
ρn|un|2(t, x) + κ|∇√

ρn(t, x)|2 + jγ(ρn(t, x))

)
dx

=

∫
R2

(
1

2
ρn|un|2(0, x) + κ|∇√

ρn(0, x)|2 + jγ(ρn(0, x))

)
dx.

(2.11)
According to [19] it is well known that the L1 norm of jγ(ρn) is equivalent to
Lγ2

2 norm of (ρn − 1), we deduce then from (2.11) and (1.13) that there exists
C > 0 such that we have ∀t ∈ R and any n ∈ N:

∥∇√
ρn(t, .)∥L2(R2) ≤ C, ∥√ρnun(t, .)∥L2(R2) ≤ C,

∥(ρn − 1)(t, .)∥L2
γ(R

2) ≤ C.
(2.12)

For γ ≥ 2 according to (2.12) it yields that (ρn − 1)1{|ρn−1|≥1} is uniformly
bounded in n in L∞(R+, Lγ(R2)) and that |{|ρn(t, ·) − 1| ≥ 1}| is uniformly
bounded in n in L∞(R+). It implies in particular that (ρn − 1)1{|ρn−1|≥1}
is uniformly bounded in n in L∞(R+, L2(R2)), using now the fact that (ρn −
1)1{|ρn−1|≤1} is in L∞(R+, L2) from (2.12) and the definition of Orlicz space we
deduce that there exist C > 0 such that for any t ∈ R+ and any n ∈ N:∫

R2

(ρn(t, x)− 1)2dx ≤ C. (2.13)

Writing
√
ρn − 1 = ρn−1√

ρn+1 , we have using (2.13) and (2.12) for any t ∈ R+ and

any n ∈ N:
∥√ρn(t, ·)− 1∥H1(R2) ≤ C. (2.14)

For 1 < γ < 2, we have also:

∥√ρn − 1∥L2(R2) ≤ C. (2.15)

Indeed from the definition of Orlicz space and (2.12), we know that ρn − 1 =
fn + gn with fn and gn are respectively uniformly bounded in L∞(R+, Lγ(R2))
and L∞(R+, L2(R2)), now since

√
ρn − 1 = ρn−1√

ρn+1 it implies in a similar way

that
√
ρn − 1 = f ′n + g′n with f ′n and g′n respectively uniformly bounded in

L∞(R+, Lγ(R2)) and L∞(R+, L2(R2)). From the Plancherel Theorem it suffices

2We refer to [19] for the definition of Lγ
2 .
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to bounded the L∞(R+, L2(R2)) norm of
√̂
ρn − 1 = f̂ ′n+ ĝ

′
n to prove that

√
ρn−

1 is uniformly bounded in L∞(R+, L2(R2)). Using Riesz-Thorin, Plancherel
Theorem and (2.12) we have for C,C1, C2 > 0 independent on n and t > 0

∥f̂ ′n(t, ·)1{|.|≤1}∥L2(R2) ≤ C, ∥f ′n(t, ·)∥Lγ(R2) ≤ C1, ∥ρn(t, ·)− 1∥Lγ
2
≤ C2,

∥ĝ′n(t, ·)1{|.|≤1}∥L2(R2) ≤ C, ∥g′n(t, ·)∥L2(R2) ≤ C1.
(2.16)

Moreover using (2.12) and Plancherel Theorem there exists C > 0 such that for
any n ∈ N and t > 0:

∥F(
√
ρn(t, ·)− 1)1{|.|≥1}∥L2(R2) ≤ ∥∇

√
ρn(t, ·)∥L2(R2) ≤ C, (2.17)

where F(f) = f̂ . Using (2.16) and (2.17), we obtain when 1 < γ < 2 that for
any n ∈ N and t > 0:

∥(√ρn − 1)(t, .)∥H1(R2) ≤ C. (2.18)

Combining (2.18) and (2.14), we have for all γ > 1

∥√ρn − 1∥L∞(R+,H1(R2) ≤ C. (2.19)

Finally using Sobolev embedding, we have

∥√ρn − 1∥L∞(R+,Lp(R2)) ≤ Cp, ∀p ≥ 2. (2.20)

Now since there exist M > 0 independent on n such that

|ρn − 1|1|ρn−1|≤1 ≤M |√ρn − 1|, |ρn − 1|1|ρn−1|≥1 ≤M |√ρn − 1|2,

then using (2.20), we have:

∥ρn − 1∥L∞(R+,Lp(R2)) ≤ Cp, ∀p ≥ 2. (2.21)

We wish now to prove the estimates on curlun in Proposition 2.1 and in Corol-
lary 2.1.

Curl estimate: We have seen that curlun satisfies the two following equa-
tions:

∂tcurlun + div(curlun un) = 0, (2.22)

and:

∂t

(
curlun
ρn

)
+ un · ∇

(
curlun
ρn

)
= 0. (2.23)

According to the transport equation (2.23) and the conditions on the initial
data 1.13 we obtain using classical maximum principle that:∣∣∣∣∣∣∣∣curlunρn

∣∣∣∣∣∣∣∣
L∞(R+,L∞(R2))

≤ C. (2.24)
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Now using (2.22) we have

∂tcurlun + un · ∇curlun + curlundivun = 0, (2.25)

Setting the function φk(x) =
x2√
x2+ 1

k

with k ∈ N∗ which approximate the abso-

lute value and multiplying (2.23) by φ′
k(curlun) we obtain:

∂tφk(curlun) + un · ∇φk(curlun) + φ′
k(curlun)divun curlun = 0. (2.26)

Let f : R+ → R satisfy

f(s) =

 1, s ∈ [0, 12 ]
non-negative polynomial, s ∈ [ 12 , 1]
0, s ∈ [1,∞[

such that f ∈ C2. We observe that

||f ||∞ + ||f ′||∞ <∞,

and we define, for any R > 0, fR(x) = f
(

|x|
R

)
. Multiplying (2.26) by fR we

obtain

∂tφk(curlun)fR + un · ∇φk(curlun)fR + φ′
k(curlun)divun curlunfR = 0.

(2.27)

Integrating this equation we have :∫
R2

(
∂tφk(curlun)fR + un · ∇φk(curlun)fR + φ′

k(curlun)divun curlunfR
)
dx = 0.

After integrating by parts and using (1.11) we have∫
R2

un · ∇φk(curlun)fRdx = −
∫

R2

divunφk(curlun)fRdx−
∫

R2

un · ∇fR φk(curlun)dx.

So we have∫
R2

∂tφk(curlun)fRdx+

∫
R2

divunfR(−φk(curlun) + φ′
k(curlun)curlun)dx

−
∫

R2

un · ∇fR φk(curlun)dx = 0.

(2.28)
We have then obtained by integrating the previous estimate on (0, t):∫

R2

(
(curlun)

2√
(curlun)2 +

1
k

)
(t, x)fR(x)dx+

1

k

∫ t

0

∫
R2

divunfR
curl2un

(curl2un + 1
k )

3
2

dxdt

−
∫ t

0

∫
R2

un · ∇fR
(

(curlun)
2√

(curlun)2 +
1
k

)
dxdt =

∫
R2

(
(curlun)

2√
(curlun)2 +

1
k

)
(0, x)fR(x)dx.

(2.29)
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Using Lebesgue theorem and since fR is in L1(R2), we observe that

lim
k→∞

∫
R2

(
(curlun)

2√
(curlun)2 +

1
k

)
(t, x)fR(x)dx =

∫
R2

|curlun|(t, x)fR(x)dx, (2.30)

Now since 1
k

curl2un

(curl2un+
1
k )

3
2
≤ 1√

k
and divunfR is in L1([0, t]×R2) using (1.11)and

the fact that fR is in L1(R2), we deduce that:

1

k

∫ t

0

∫
R2

divunfR
curl2un

(curl2un + 1
k )

3
2

dxdt −→
k→+∞

0. (2.31)

Similarly since |curlun|√
(curlun)2+

1
k

≤ 1 and un · ∇fR curlun ∈ L1([0, t] × R2) from

(1.11) and because ∇fR ∈ L1(R2), we have by Lebesgue theorem∫ t

0

∫
R2

un · ∇fR
(

(curlun)
2√

(curlun)2 +
1
k

)
dxdt −→

k→+∞

∫ t

0

∫
R2

un · ∇fR|curlun|dxdt.

(2.32)
Since |curlun|(0, .)fR(.) ∈ L1(R2) from Lebesgue Theorem, we have∫

R2

(
(curlun)

2√
(curlun)2 +

1
k

)
(0, x)fR(x)dx −→

k→+∞

∫
R2

|curlun|(0, x)fR(x)dx. (2.33)

Thus passing to the limit when k → ∞ in (2.29) we have∫
R2

|curlun|(t, x)fR(x)dx =

∫
R2

|curlun|(0, x)fR(x)dx

+

∫ t

0

∫
R2

un · ∇fR|curlun|dxdt.
(2.34)

Then since there exists a constant C > 0 independent onR such that ∥∇fR∥L∞(R2) ≤
C
R and from (1.11) we deduce that:

lim
R→+∞

∫ t

0

∫
R2

un · ∇fR|curlun|dxdt = 0. (2.35)

Passing to the limit when R → ∞ in (2.34) and using the Fatou Lemma and
the fact that |curlun|(0, .) ∈ L1(R2) we obtain:∫

R2

|curlun|(t, x)dx ≤
∫

R2

|curlun|(0, x)dx.

We obtain using (1.13) that there exists C > 0 such that for any t > 0 and
n ∈ N: ∫

R2

|(curlun)|(t, .)dx ≤ C.
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So it implies that:
∥curlun∥L∞(R+,L1(R2)) ≤ C. (2.36)

Now, we can prove that for any t > 0 we have:

∀ p ≥ 1, ∥curlun(t, ·)∥Lp ≤ Cp. (2.37)

Indeed we have for p ≥ 1∫
R2

|curlun(t, x)|pdx ≤
∫

R2

|curlun(t, x)|1{|curlun(t,x)|≤1}dx

+

∫
{|curlun(t,y)|≥1}

|curlun(t, x)|p

ρn(t, x)p−
1
2

ρn(t, x)
p− 1

2 dx.

(2.38)

From (2.24), (2.36) and by interpolation it yields that curlun

ρ
p−1
p

n

is uniformly bounded

in L∞(R+, Lp(R2)) for any p ≥ 1. It implies that there exists C > 0 such that
for any t > 0 we have: ∥∥∥∥∥ |curlun|pρ

p− 1
2

n

∥∥∥∥∥
L∞(R+,L2(R2))

≤ C. (2.39)

Now we observe again that for p > 3
2 there exists Mp ∈ R+ independent on n

such that :
|ρp−

1
2

n − 1| ≤Mp|ρn − 1|+Mp|ρn − 1|p− 1
2 . (2.40)

Combining (2.40) and (2.21), we deduce that for p > 3
2 , (ρ

p− 1
2

n − 1)n∈N is
uniformly bounded in n in L∞(R+, L2(R2)). From (2.39) and the fact that
|{|curlun(t, ·)| ≥ 1}| is uniformly bounded in n in L∞(R+) using (2.36), it
implies that for p > 3

2 and any t > 0:∫
{|curlun(t,y)|≥1}

|curlun(t, x)|p

ρn(t, x)p−
1
2

ρn(t, x)
p− 1

2 dx

≤

∥∥∥∥∥ |curlun|pρ
p− 1

2
n

∥∥∥∥∥
L∞(R+,L2(R2))

∥ρp−
1
2

n − 1∥L∞(R+,L2(R2))

+

∫
{|curlun(t,y)|≥1}

|curlun(t, x)|p

ρn(t, x)p−
1
2

dx

≤ C.
(2.41)

So we have, using (2.36), (2.38), (2.41) and by interpolation for any t > 0

∀ p ≥ 1, ∥curlun(·, ·)∥L∞(Lp) ≤ Cp. (2.42)

Moreover, we have
∇Pun = ∇∆−1∇⊥curlun, (2.43)
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then using (2.42) and the continuity of the Riez transform in Lp for p > 1 we
have:

∥∇Pun∥L∞(R+,Lp(R2)) ≤ Cp, ∀p ∈]1,+∞[. (2.44)

Finally using Sobolev embedding we deduce from (2.44) that:

∥Pun∥L∞(R+,W 1,p) ≤ Cp, ∀p ∈]2,+∞[. (2.45)

2.2 Symmetry of the solutions

We wish now to prove that for any n ∈ N, (ρn, un) have the form{
ρn(t, x) = ρn(t, |x|),
un(t, x) = ∇θn(t, |x|) +∇⊥θ1,n(t, |x|), t ∈ R+.

(2.46)

We can verify that for any rotation matrix A satisfying AAt = AtA = I and
detA = 1, we have since (ρn, un) satisfies (1.1):

∂tρn(t, A
tx) + div(ρn(t, A

tx)Aun(t, A
tx)) = 0,

ρn(t, A
tx)∂tAun(t, A

tx) + ρn(t, A
tx)(Aun(t, A

tx)) · ∇Aun(t, Atx)

+∇P (ρn(t, Atx)) = κρn(t, A
tx)∇

(
∆
√
ρn(t, Atx)√
ρn(t, Atx)

)
.

(2.47)

From (1.20), we can observe that:{
ρn(0, x) = ρn(0, A

tx),

un(0, x) = Aun(0, A
tx).

(2.48)

then since (ρn, un) are strong solution of an approximate system of (1.1) we get
by uniqueness that for all t ∈ R+ we have:{

ρn(t, x) = ρn(t, A
tx),

un(t, x) = Aun(t, A
tx).

(2.49)

Remark 2.1. We recall that for the Euler-Korteweg system we have uniqueness
of the solution (ρn, un) in C

(
[0, T ];Hs+1(R2)×Hs(R2)

)
∩C1

(
[0, T ];Hs−1(R2)×

Hs−2(R2)
)
for any T > 0 and with s > d

2 + 1 (see [8]) .

From (2.49) we deduce that ρn is radial or that for any t ≥ 0:

ρn(t, x) = ρn(t, |x|). (2.50)

Let x ∈ R2 \ {0} we write un(t, x) in the basis ( x|x| ,
x⊥

|x| ) and we have:

un(t, x) = f1,n(t, x)
x

|x|
+ f2,n(t, x)

x⊥

|x|
.
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Then using (2.49), we have (see [16] section 3)

f1,n(t, x)
x

|x|
+ f2,n(t, x)

x⊥

|x|
= f1,n(t, Atx)

AAtx

|Atx|
+ f2,n(t, Atx)

AtAx⊥

|Atx|
.

Since A is a rotation we deduce that f1,n(t, x) = f1,n(t, Atx) and f2,n(t, x) =
f2,n(t, Atx). So, we have

un(t, x) = f1,n(t, |x|) x
|x|

+ f2,n(t, |x|)x
⊥

|x|
. (2.51)

Since for any n ∈ N, un(t, ·) is continuous for any t ≥ 0, we can prove that
un(t, 0) = 0. Indeed it suffices to consider the sequences xk =t ( 1k , 0) and
yk =t (− 1

k , 0) for k ∈ N∗, and using (2.51), we deduce that:

t(f1,n(t,
1

k
), f2,n(t,

1

k
)) →k→+∞ un(t, 0)

and t(−f1,n(t, 1
k
),−f2,n(t, 1

k
)) →k→+∞ un(t, 0).

We deduce that un(t, 0) = 0 for any n ∈ N and t ≥ 0. It implies also that
f1,n(t, ·) and f2,n(t, ·) have zero for limit when x goes to 0 and in addition we
can prove that f1,n(t, ·) and f2,n(t, ·) are continuous for any r > 0 (to see this
we simple use the following formula

f1,n(t, r) = ⟨un(t, x),
x

|x|
⟩, f2,n(t, r) = ⟨un(t, x),

x⊥

|x|
⟩ (2.52)

for x ∈ R2 \ {0} such that |x| = r). We have finally prove that f1,n(t, ·) and
f2,n(t, ·) are continuous on R+. We have then proved that (ρn, un) have the
form (2.46) for t ∈ R+ with:

θn(t, r) =

∫ r

0

f1,n(t, r′)dr′ and θ1,n(t, r) =

∫ r

0

f2,n(t, r′)dr′. (2.53)

In addition since f1,n(t, |x|) = ⟨un(t, x), x|x| ⟩ = ψn(t, x) for x ∈ R2 \ {0} is C∞

on R2 \ {0} by using the fact that un(t, ·) is C∞ on R2, we deduce that f1,n is
C∞ on R+∗. We have in particular for r > 0:

(f1,n)′(t, r) = lim
h→0

ψn(t, (r + h)e1)− ψn(t, re1)

h
= ∂1ψn(t, re1).

We deduce then that θn(t, ·) and θ1,n(t, ·) are C∞ on R+∗ for any t ≥ 0.

2.3 New Madelung Transform

In this section we forget the subscript n to simplify the notations. We set c2 =√
κ
2 and considering as in [7, 6, 8] the following effective velocity z = u+ic2∇ ln ρ

we can rewrite the momentum equation in (1.1) as follows

ρ∂tz + ρu · ∇z +∇P (ρ) + ic2ρ∇divz + ic2∇ρ ·t ∇z = 0.
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Dividing by ρ (which has sense from the estimate (1.11)) we obtain with F ′(ρ) =
P ′(ρ)
ρ :

∂tz + u · ∇z +∇F (ρ) + ic2∇divz + z ·t ∇z − u ·t ∇z = 0.

Let z2 = (z1)
2+(z2)

2 with z = (z1, z2)
t and curlu = ∂1u2−∂2u1 we can rewrite

the previous equation as follows:

∂tz + u⊥curlu+
1

2
∇z2 +∇F (ρ) + ic2∇divz = 0. (2.54)

We wish now to apply the operator Q to the equation (2.54), to do this we need
to know what is Q(u⊥curlu). We are going to take advantage of the fact that
the solutions are axisymmetric, indeed using (2.46) we have for any t ≥ 0 and
x ∈ R2 \ {0}: 

ρ(t, x) = ρ(t, |x|),
u(t, x) = ∇θ(t, |x|) +∇⊥θ1(t, |x|),
z(t, x) = ∇ψ(t, |x|) +∇⊥θ1(t, |x|),

with ψ(t, |x|) = θ(t, |x|) + ic2 ln ρ(t, |x|). We can observe now that:

u⊥curlu = (∇⊥θ −∇θ1)∆θ1.

Using again (2.46) we have for any t ≥ 0, x ∈ R2 \ {0}:

Q(u⊥curlu) = −∆θ1∇θ1 = curlu(Pu)⊥ = ∇θ2(t, |x|). (2.55)

Indeed we have simply used the fact that ∆θ1θ
′
1 admits a primitive on R+∗. In

particular we have:
θ2 = (∆)−1div(curlu(Pu)⊥). (2.56)

Moreover, we have using the fact that ψ and θ1 are radial, we have for x ∈
R2 \ {0}:

z2 = (∇ψ)2 + (∇θ1)2 + 2∂2ψ∂1θ1 − 2∂1ψ∂2θ1

= (∇ψ)2 + (∇θ1)2.
(2.57)

Applying Q to the equation (2.54) and using (2.55), (2.57), we have in R2 \ {0}:

∇
(
∂tψ + θ2 +

1

2
(∇ψ)2 + 1

2
(∇θ1)2 + F (ρ)− F (1) + ic2∆ψ

)
= 0. (2.58)

Thus, there exists a function B, such that for any t ≥ 0 we have:(
∂tψ + θ2 +

1

2
(∇ψ)2 + 1

2
(∇θ1)2 + F (ρ)− F (1) + ic2∆ψ

)
(t, ·) = B(t). (2.59)

At this level since ρ, Pu and Qu are regular solutions which satisfy:

lim
|x|→+∞

ρ(t, x) = 1, lim
|x|→+∞

∂αPu(t, x) = lim
|x|→+∞

∂αQu(t, x) = lim
|x|→+∞

∂βρ(t, x) = 0,

18



for any α ∈ N3 and β ∈ N3 with |β| ≥ 1 where the first derivative of ∂α1 ,
∂β1 are derivative on time. To see this it suffices to observe that Qu(t, x) =
⟨u(t, x), x|x| ⟩,

x
|x| when x ̸= 0 and to use the mass and the momentum equation

of (1.1). In particular it implies that:

lim
|x|→+∞

(
1

2
(∇θ1)2 +

1

2
(∇ψ)2 + F (ρ)− F (1) + ic2∆ψ

)
(t, x) = 0,

lim
|x|→+∞

Im(∂tψ + θ2)(t, x) = lim
|x|→+∞

Im(∂tψ)(t, x) = lim
|x|→+∞

c2 ln ρ(t, |x|) = 0.

We deduce then that B(t) is a real. Let us observe that B is continuous. Indeed
with (1.14) we have that (ρn, un − 1) is in C([0, T ], Ck(R2)), for all k ∈ N and
1
ρn

is bounded for any t ≥ 0. Thus ∂tψ(·, x) is continuous for all x ∈ R2 \ {0}
using (2.53) ,the momentum and the mass equation. Similarly (∇ψ(., x))2 +
F (ρ(·, x))−F (1)+ic2∆ψ(·, x) is continuous for all x ∈ R2\{0}. Using (2.52) for
x = (1, 0)t we see that 1

2 (∇θ1)
2(·, (1, 0)t) is continuous. Since θ1 is in C0(R, Ck)

and since θ2 is a primitive of ∆θ1θ
′
1 we have θ2(·, x) is continuous for all x ∈

R2 \ {0}. Finally B is continuous and we can set ψ1(t) = ψ(t) − a(t) with
a′(t) = B(t), then for x ∈ R2 \ {0}

∂tψ1 + θ2 +
1

2
(∇ψ1)

2 +
1

2
(∇θ1)2 + F (ρ)− F (1) + ic2∆ψ1 = 0. (2.60)

Using Cole-Hopf Transform, we obtain, multiplying the previous equation by
f ′(ψ1) with f a function that we will chose later:

∂tf(ψ1) + ic2∆f(ψ1) +

(
1

2
f ′(ψ1)− ic2f

′′(ψ1)

)
(∇ψ1)

2 +
1

2
f ′(ψ1)(∇θ1)2

+ (F (ρ)− F (1) + θ2)f
′(ψ1) = 0.

We set now w = f(ψ1) = e−
i

2c2
ψ1 = e−

i
2c2

θ+ 1
2 ln ρ+ i

2c2
a(t) =

√
ρe−

i
2c2

θ+ i
2c2

a, and
we obtain:

∂tw + ic2∆w − i

4c2
w|∇θ1|2 − (F (|w|2)− F (1) + θ2)

i

2c2
w = 0.

Finally we have a modified Gross-Pitaevskii equation using that ∇⊥θ1 = Pu for
x ∈ R2 \ {0}:

∂tw + ic2∆w − i

2c2
w(F (|w|2)− F (1) +

1

2
|Pu|2 + θ2) = 0, (2.61)

with
θ2 = (∆)−1div(curlu(Pu)⊥).

2.4 Kato’s local smoothing effect

In this section we are going to use Kato’s local smoothing effect. It will be
the key point to prove strong convergence of the sequence (∇√

ρn,
√
ρnun)n∈N

up to a subsequence in L2
loc(R

+ × R2). More precisely, we prove the following
Proposition.
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Proposition 2.2. let χ ∈ C∞
c (R2) and T > 0 then there exists a constant CT

not depending on n, such that ∀n ∈ N and for any j ∈ {1, 2}:

∥χ∂jwn∥L2
T (H1/2) ≤ CT . (2.62)

First we need to prove the following lemma:

Lemma 2.1. Let χ ∈ C∞
c (R2), there exists C > 0 such that for all f ∈ L2(R2)

∥χeit∆f∥
L2

T (H
1
2 )

≤ C∥f∥L2 . (2.63)

Moreover for any T > 0 then there exists CT > 0 such that for all f ∈
Lp

′

T (L
q′(R2)) with (p, q) an admissible Strichartz pair ( i.e 1

p + 1
q = 1

2 and

2 ≤ q < +∞) we have:∥∥∥∥∫ t

0

χei(t−s)∆f(s)ds

∥∥∥∥
L2

T (H1/2)

≤ CT ∥f∥Lp′
T (Lq′ (R2))

. (2.64)

Proof of lemma 2.1. Let χ ∈ C∞
c (R2) and T > 0 using [18] corollary 4.2 there

exists C > 0 such that∫ ∞

0

∫
B(0,R)

|D1/2
x eit∆f |2dxdt ≤ CR∥f∥2L2(R2),∀f ∈ L2(R2), (2.65)

with FD
1
2
x f(ξ) = |ξ| 12Ff(ξ). Thus∫

R

∫
R2

|χD1/2
x eit∆f |2dxdt ≤ C∥f∥2L2(R2),∀f ∈ L2(R2). (2.66)

Then we have from (2.65) and Strichartz estimates∫
R

∫
R2

∣∣∣∣∫
R
χD1/2

x ei(t−s)∆f(s)ds

∣∣∣∣2 dxdt ≤ ∫
R

∫
R2

∣∣∣∣χD1/2
x eit∆

∫
R
e−is∆f(s)ds

∣∣∣∣2 dxdt
≤ C

∥∥∥∥∫
R
e−is∆f(s)ds

∥∥∥∥2
L2

from (2.65)

≤ C1∥f∥2Lp′ (R,Lq′ (R2))
,

(2.67)
with (p, q) an admissible Strichartz pair i.e 1

p +
1
q = 1

2 and 2 ≤ q < +∞.

Theorem 2 (Christ-Kiselev, [12]). Consider a bounded operator

T : Lp(R;B1) → Lq(R;B2),

given by a locally integrable kernel K(t, s) i.e.

Tf(t) =

∫
R
K(t, s)f(s)ds. (2.68)
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K(t, s) with values in bounded operators from B1 to B2, where B1 and B2 are
Banach spaces. Suppose that p < q. Then the operator∫ t

−∞
K(t, s)f(s),

is bounded from Lp(R;B1) to L
q(R;B2).

Let K(t, s) = χD
1
2
x ei(t−s)∆ and we take p = p′, B1 = Lq

′
, q = 2, B2 = L2.

In the proof of Theorem 2, the fact that K(t, s) is a bounded operator from
B1 to B2 is only a technical point in order to ensure that the quantities which
are estimates are defined and finite. If we take f ∈ C∞

c (R × R2) we can apply
Christ-Kiselev’s proof as it is and we obtain∫

R

∫
R2

∣∣∣∣∫ t

−∞
χD1/2

x ei(t−s)∆f(s)ds

∣∣∣∣2 dxdt ≤ C∥f∥2
Lp′ (R,Lq′ (R2))

.

Let f = g1[0,T ] we obtain then for t ∈ [0, T ]∫
R

∫
R2

∣∣∣∣∫ t

0

χD1/2
x ei(t−s)∆g(s)ds

∣∣∣∣2 dxdt ≤ ∫
R

∫
R2

∣∣∣∣∫ t

−∞
χD1/2

x ei(t−s)∆f(s)ds

∣∣∣∣2 dxdt
≤ C∥f∥2

Lp′ (R,Lq′ (R2))

≤ C∥g∥2
Lp′

T (Lq′ )
,

with (p, q) an admissible Strichartz pair ( i.e 1
p+

1
q = 1

2 and 2 ≤ q < +∞). Thus

for all f ∈ Lp
′

T (L
q′(R2)) and T > 0 with (p, q) an admissible Strichartz pair ( i.e

1
p +

1
q = 1

2 and 2 ≤ q < +∞) we have for t ∈ [0, T ]:

∫
R

∫
R2

∣∣∣∣∫ t

0

χD1/2
x ei(t−s)∆f(s)ds

∣∣∣∣2 dxdt ≤ C∥f∥2
Lp′

T (Lq′ (R2))
. (2.69)

Now we compute∣∣∣F(χD
1
2
x f −D

1
2
x (χf))

∣∣∣ (ξ) = ∣∣∣∣∫
R2

(χ̂(η)(|ξ − η| 12 − |ξ| 12 )f̂(ξ − η)dη

∣∣∣∣ .
Observing that ||ξ − η| 12 − |ξ| 12 | ≤ 2 + |η| (indeed when |ξ − η| ≥ 1 or |ξ| ≥ 1

we have ||ξ − η| 12 − |ξ| 12 | = ||ξ−η|−|ξ||
|ξ−η|

1
2 +|ξ|

1
2

≤ |η|) and combining with Hölder’s

inequality and Plancherel theorem we have

∥F(χD
1
2
x f −D

1
2
x χf)∥L2(R2) ≤ ∥χ̂(η)(2 + |η|)∥L1(R2)∥f∥L2(R2) ≤ C∥f∥L2(R2).

Thus
∥χD 1

2 f −D
1
2χf∥L2(R2) ≤ C∥f∥L2(R2). (2.70)
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Thus using (2.66) , (2.70) and Strichartz estimate we deduce that there exists
C > 0 depending on χ and T such that:

∥χeit∆f∥
L2

T (H
1
2 )

≤ C∥f∥L2 . (2.71)

Finally we have∥∥∥∥∫ t

0

χei(t−s)∆f(s)ds

∥∥∥∥2
L2

T (Ḣ1/2)

≤ 2

∫ T

0

∫
R2

∣∣∣∣∫ t

0

χD1/2
x ei(t−s)∆f(s)ds

∣∣∣∣2 dxdt
+ 2

∫ T

0

∫
R2

∣∣∣∣∫ t

0

(χD
1
2
x f −D

1
2
x χ)e

i(t−s)∆f(s)ds

∣∣∣∣2 dxdt.
(2.72)

Using (2.70) and Strichartz estimates we have∫ T

0

∫
R2

∣∣∣∣∫ t

0

(χD
1
2
x −D

1
2
x χ)e

i(t−s)∆f(s)ds

∣∣∣∣2 dxdt ≤ C

∫ T

0

∫
R2

∣∣∣∣∫ t

0

ei(t−s)∆f(s)ds

∣∣∣∣2 dxdt
≤ CT∥f∥2

Lp′
T (Lq′ (R2))

.

Thus using (2.69) and (2.72) we have∥∥∥∥∫ t

0

χei(t−s)∆f(s)ds

∥∥∥∥
L2

T (Ḣ1/2)

≤ C∥f∥
Lp′

T (Lq′ (R2))
,

with C depending on χ and T . Moreover using Strichartz again∥∥∥∥∫ t

0

χei(t−s)∆f(s)ds

∥∥∥∥
L2

T (L2(R2))

=

(∫ T

0

∫
R2

∣∣∣∣∫ t

0

χei(t−s)∆f(s)ds

∣∣∣∣2 dxdt) 1
2

≤ C
√
T∥f∥

Lp′
T (Lq′ (R2))

.

Thus we have obtained (2.64) by density of C∞
c (R × R2) in Lp

′

T (L
q′(R2)) for a

Strichartz pair (p, q) such that 1
p +

1
q = 1

2 and 2 ≤ q < +∞. This completes the
proof of lemma 2.1.

We must also prove the following lemma.

Lemma 2.2. There exists C > 0, not depending on n, such that for j ∈ {1, 2}

∥√ρnPun∥2L∞(R+,L2(R2)) + ∥√ρnQun∥2L∞(R+,L2(R2)) ≤ C, (2.73)

∥∂jwn∥L∞(R+,L2(R2)) ≤ C. (2.74)

Furthermore for any p ≥ 2 there exists Cp > 0 such that

||F (ρn)− F (1)||L∞(R+,Lp(R2)) ≤ C. (2.75)
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Proof. For (2.73) we have from (2.46):

||√ρnun||2L2 = ||√ρn∇θn +
√
ρn∇⊥θn1 ||2L2 = ||√ρn∇θn||2L2 + ||√ρn∇⊥θn1 ||2L2

+ 2

∫
R2

⟨√ρn∇θn,
√
ρn∇⊥θn1 ⟩dx.

(2.76)

Using again (2.46) we can observe that
√
ρn∇θn and

√
ρn∇⊥θn1 are orthogonal

on R2 \ {0} then it implies that:

∥√ρnun∥2L2 = ∥√ρnPun∥2L2 + ∥√ρnQun∥2L2 . (2.77)

Finally using (2.1) we have (2.73).
We recall now that:

wn =
√
ρne

− i
2c2

θn+
i

2c2
an , (2.78)

and

∂jwn = ∂j
√
ρne

− i
2c2

θn+
i

2c2
an − i

(2c2)
∂jθn

√
ρne

−i
2c2

θn+
i

2c2
an ,

so since ∂jθn = (Qun)j we have:

∂jwn = ∂j
√
ρne

− i
2c2

θn+
i

2c2
an − i

(2c2)
(Qun)j

√
ρne

−i
2c2

θn+
i

2c2
an .

Using the previous formula, estimate (2.74) follows from (2.1) and (2.73). For
the estimate (2.75) we recall that F (ρ) = γ

γ−1ρ
γ−1 so that:∫

R2

|F (ρn)− F (1)|pdx =

∫
R2

|F (ρn)− F (1)|p1{|ρn−1|< 1
2}dx

+

∫
R2

|F (ρn)− F (1)|p1{|ρn−1|≥ 1
2}dx.

There exists now Cp > 0 such that:

|F (ρn)− F (1)|p1{|ρn−1|< 1
2} ≤ Cp|ρn − 1|p,

and

|F (ρn)− F (1)|p1{|ρn−1|≥ 1
2}| ≤ Cp|ρn − 1|p(γ−1)1{|ρn−1|≥ 1

2}.

Estimate (2.75) follows from (2.5). This ends the proof of Lemma 2.2.

Proof of Proposition 2.2: Using (2.61) we have

∂t∂jwn + ic2∆∂jwn =
i

2c2
∂jwn

(
F (|wn|2)− F (1) +

1

2
|Pun|2 + (∆)−1div(curlun (Pun)

⊥)
)

+
i

2c2
wn(2F

′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn)

+ ∂jPun · Pun + ∂j(∆)−1div(curlun (Pun)
⊥).

(2.79)
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Then by Duhamel principle, using the (2.79) we can express χ∂jwn(t) for t ≥ 0
as follows with χ ∈ C∞

c (R2):

χ∂jwn(t) =χe
−itc2∆∂jwn(0) +

∫ t

0

χe−ic2(t−t
′)∆

[
i

2c2
∂jwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 )

+
i

2c2
wn(2F

′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn) + ∂jPun · Pun+

∂j(∆)−1div(curlun (Pun)
⊥)

]
(t′) dt′.

(2.80)

The proof of (2.62) consists now in applying to the expression (2.80) the Propo-
sition 2.1, to do this we will need the uniform estimates obtained in the Section
2.1. First of all, using (2.63) and (2.74), there exists C > 0 independent on n
such that:

∥χe−ic2t∆∂jwn(0)∥L2
T (H1/2) ≤ C∥∂jwn(0)∥L2

≤ C.
(2.81)

Then we obtain similarly for CT > 0 large enough:∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆ i

2c2
∂jwn(F (|wn|2)− F (1))dt′

∥∥∥∥
L2

T (H1/2)

≤ CT . (2.82)

Indeed using the admissible Strichartz pairs (4, 4), Proposition 2.1 and (2.74),
(2.75) we have∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆ i

2c2
∂jwn(F (|wn|2)− F (1))dt′

∥∥∥∥
L2

T (H1/2)

≤ C∥∂jwn(F (|wn|2)− F (1))|2∥
L

4/3
T (L4/3)

≤ CT 3/4∥∂jwn (F (ρn)− F (1))∥L∞
T (L4/3)

≤ T 3/4C∥∂jwn∥L∞
T (L2)∥F (ρn)− F (1)∥L∞

T (L4)

≤ CT .

Next, we observe that we have∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆ i

2c2
∂jwn(

1

2
|Pun|2)dt′

∥∥∥∥
L2

T (H1/2)

≤ CT . (2.83)

Again using proposition 2.1 with the admissible Strichartz pairs (4, 4), estimates
(2.8) and (2.74) we have∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆ i

2c2
∂jwn(

1

2
|Pun|2)dt′

∥∥∥∥
L2

T (H1/2)

≤ C∥∂jwn |Pun|2∥L4/3
T (L4/3)

≤ CT 3/4∥∂jwn∥L∞(R+,L2(R2))∥|Pun|2∥L∞(R+,L4(R2))

≤ CT .
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Now we want to show that:∥∥∥∥∫ t

0

χei(t−t
′)∆ i

2c2
∂jwn(θ

n
2 )dt

′
∥∥∥∥
L2

T (H1/2)

≤ CT , (2.84)

with θn2 = (∆)−1div(curlun(Pun)⊥). We have, in view of (2.8) and (2.6),

∥curlun(t, )(Pun)⊥(t, .)∥L∞(R+,L4/3(R2)) ≤ C.

By continuity of the Riesz operator in L4/3(R2), we deduce that:

∥∇(∆)−1div(curlun(t, )(Pun)
⊥(t, .))∥L∞(R+,L4/3(R2)) ≤ C.

By Sobolev embedding we get that:

∥(∆)−1div(curlun(Pun)
⊥)∥L∞(R+,L4(R2)) ≤ C. (2.85)

Using proposition 2.1 with the admissible Strichartz pairs (4, 4), (2.85) and
(2.74), we have:∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆ i

2c2
∂jwn(θ

n
2 )dt

′
∥∥∥∥
L2

T (H1/2)

≤ C∥∂jwn θn2 ∥L4/3
T (L4/3)

≤ T 3/4C∥∂jwn∥L∞(R+,L2(R2))∥θn2 ∥L∞(R+,L4(R2))

≤ CT ,

which gives (2.84). Next, we claim that:∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆wnF

′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn)dt
′
∥∥∥∥
L2

T (H1/2)

≤ CT .

(2.86)

We first observe that

wnF
′(|wn|2)(Rewn∂jRewn)

= (ρnF
′(ρn)− F ′(1))e−

i
2c2

θn+
i

2c2
an cos

(
− 1

2c2
θn +

1

2c2
an

)
∂jRewn

+ e−
i

2c2
θn+

i
2c2

an cos

(
− 1

2c2
θn +

1

2c2
an

)
F ′(1)∂jRewn.

(2.87)
In view of (2.74), we have∥∥∥∥e− i

2c2
θn+

i
2c2

an cos

(
− 1

2c2
θn +

1

2c2
an

)
F ′(1)∂jRewn

∥∥∥∥
L∞(R+,L2(R2))

≤ C.

(2.88)
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Invoking propositon (2.1) with Strichartz pair (∞, 2), we deduce from (2.88)
that∥∥∥∥ ∫ t

0

χe−ic2(t−t
′)∆e−

i
2c2

θn+
i

2c2
an cos

(
− 1

2c2
θn +

1

2c2
an

)
2F ′(1)∂jRewndt

′
∥∥∥∥
L2

T (H1/2)

≤ C∥e−
i

2c2
θn+

i
2c2

an cos

(
− 1

2c2
θn +

1

2c2
an

)
2F ′(1)∂jRewn∥L1

T (L2)

≤ CT∥∂jRewn∥L∞(R+,L2(R2))

≤ CT .

(2.89)

We observe now that

(ρnF
′(ρn)− F ′(1)) = (γ − 1)(F (ρn)− F (1)), (2.90)

so that, in view of (2.75) and (2.74) we get:

∥(ρnF ′(ρn)−F ′(1))e−
i

2c2
θn+

i
2c2

an cos

(
− 1

2c2
θn+

1

2c2
an

)
∂jRewn∥L∞(R+,L3/2(R2)) ≤ C.

(2.91)
Invoking Propositon 2.1 with Strichartz pair (6, 3), we deduce from (2.91) that∥∥∥∥ ∫ t

0

χe−ic2(t−t
′)∆(ρnF

′(ρn)− F ′(1))e−
i

2c2
(θn−an) cos

(
− 1

2c2
(θn − an)

)
∂jRewndt

′
∥∥∥∥
L2

T (H1/2)

≤ C∥(ρnF ′(ρn)− F ′(1))e−
i

2c2
θn+

i
2c2

an cos
(
− 1

2c2
θn +

1

2c2
an

)
∂jRewn∥L6/5

T (L3/2)

≤ CT .

(2.92)

We deduce from (2.87), (2.89) and (2.92) that∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆2w2F

′(|wn|2)(Rewn∂jRewn)dt′
∥∥∥∥
L2

T (H1/2)

≤ CT .

(2.93)

Similarly we have∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆2wnF

′(|wn|2)Imwn∂jImwn)dt′
∥∥∥∥
L2

T (H1/2)

≤ CT .

(2.94)

So that (2.86) holds. We now claim that∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆wn∂jPun · Pundt

′
∥∥∥∥
L2

T (H1/2)

≤ CT . (2.95)
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Indeed applying Propositon 2.1 with Strichartz pair (4, 4), in view of estimates
(2.7) and (2.73), we have∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆wn∂jPun · Pundt

′
∥∥∥∥
L2

T (H1/2)

≤ C∥wn∂jPun · Pun∥L4/3
T (L4/3)

≤ CT 3/4∥wn∂jPun · Pun∥L∞(R+,L4/3(R2))

≤ CT 3/4∥wnPun∥L∞(R+,L2(R2))∥∂jPun∥L∞(R+,L4(R2))

≤ CT ,

which is estimate (2.86). Now let us demonstrate that for j ∈ {1, 2}:∥∥∥∥∫ t

0

χe−ic2(t−t
′)∆wn∂j(∆)−1div(curlun (Pun)

⊥)dt′
∥∥∥∥
L2

T (H1/2)

≤ CT . (2.96)

We first observe that

wn∂j(∆)−1div(curlun (Pun)
⊥) = e−

iθn
2c2

+ ian
2c2 ∂j(∆)−1div(curlun (Pun)

⊥)

+ (
√
ρn − 1)e−

iθn
2c2

+ ian
2c2 ∂j(∆)−1div(curlun (Pun)

⊥).

For thesecond term in view of Proposition 2.1 with Strichartz pair (4, 4) and via
the continuity of the Riesz operator in L4, estimates (2.8), (2.4) and (2.6) give:∥∥∥∥ ∫ t

0

χe−ic2(t−t
′)∆χ(

√
ρn − 1)e−

i(θn−an)
2c2 ∂j(∆)−1div(curlun (Pun)

⊥)dt′
∥∥∥∥
L2

T (H1/2)

≤ C∥(√ρn − 1)e−
i(θn−an)

2c2 ∂j(∆)−1div(curlun (Pun)
⊥)||

L
4/3
T (L4/3)

≤ CT 3/4∥(√ρn − 1)||L∞(R+,L2(R2))∥curlun (Pun)⊥∥L∞(R+,L4(R2))

≤ CT .

We operate in a similar manner for e−
i(θn−an)

2c2 (∂j(∆)−1div(curlun (Pun)⊥), and
we obtain (2.96). Finally, in view of (2.81),(2.82),(2.83),(2.84), (2.86), (2.95),
(2.96), we have obtained the desired estimates (2.62). This complete the proof
of proposition 2.2.

2.5 Strong convergence of the sequence (∇√
ρn,

√
ρnQun)n∈N

First of all, we wish to prove the strong convergence up to a subsequence of the
sequence (ρn)n∈N to a limit ρ in L∞(Lqloc(R

2)) for any q ≥ 1. The key argument
will be the use of the Aubin Lions Lemma that we recall briefly.

Aubin-Lions lemma Let X0, X and X1 be three Banach spaces. Suppose
that X0 is compactly embedded in X and that X is continuously embedded in
X1. For 1 ≤ p, q ≤ ∞, let

W = {u ∈ Lp([0, T ];X0)| ∂tu ∈ Lq([0, T ];X1)}.
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• If p <∞ then the embedding of W into Lp([0, T ];X) is compact.

• If p = +∞ and q > 1, then the embedding of W into C([0, T ], X) is
compact.

Proposition 2.3. There exist ρ ∈ L∞
loc(R+, L

q
loc(R

2)) for any 1 ≤ q <∞, such
that, up to a subsequence,

ρn → ρ in L∞
loc(R+, L

q
loc(R

2)), as n→ ∞. (2.97)

Proof. Using Hölder inequality, (2.20),(2.21) and (2.12) we have for all 1 ≤ p < 2
and any compact K

∥∇ρn∥L∞(R+,Lp(K)) ≤ 2∥√ρn∥L∞(R+,Lq(K))∥∇
√
ρn∥L∞(R+,L2(R2))

≤ Cp,K ,
(2.98)

where 1
p = 1

2 + 1
q . We deduce immediately from (2.98) and (2.5) that for any

1 ≤ p < 2:
∥ρn∥L∞(W 1,p(K)) ≤ Cp,K . (2.99)

In order to apply Aubin-Lions Lemma, we need a information on the time
derivative of ρn. Observing that

ρnun =
√
ρnun(

√
ρn − 1) +

√
ρnun,

we obtain, using (2.12) and (2.20) that for any 1 ≤ p < 2:

∥ρnun∥L∞(R+,Lp(K)) ≤ Cp,K .

We deduce via the mass equation that:

∥∂t(ρn)∥L∞(R+,W−1,p(K)) ≤ Cp,K .

We fix now p ∈]1, 2[, using that W 1,p(K) is compactly embedded in Lp(K) and
Lp(K) is continuously embedded in W−1,p(K), we deduce using Aubin Lions
Lemma and the diagonal extraction procedure that up to a subsequence we have
for all T > 0 and for all R > 0:

ρn → ρ in L∞
T (Lp(B(0, R))), as n→ ∞. (2.100)

From (2.100), (2.5) and by interpolation we can prove that (2.97) is verified for
any p ∈ [1,+∞[.

Corollary 2.2. Again up to a subsequence, we have:

P (ρn) → P (ρ) in Lqloc(R+ × Rn), as n→ ∞, (2.101)

for any 1 ≤ q <∞ and:

√
ρn → √

ρ in L2
loc(R+ × Rn), as n→ ∞. (2.102)
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Proof. In view of proposition 2.3, we have, up to a subsequence

ρn → ρ in Lqloc(R+ × Rn), as n→ ∞, (2.103)

for any 1 ≤ q <∞. Since we have:

|P (ρn)− P (ρ)| = |ργn − ργ | ≤ γ|ρn − ρ|(|ρn|γ−1 + |ρ|γ−1),

we deduce from (2.103) and (2.5) that (2.101) is satisfied. Let η > 0, we have

|√ρn −√
ρ|21{|√ρn+√

ρ|≥η} ≤ |ρn − ρ|2

|√ρn +
√
ρ|2

1{|√ρn+√
ρ|≥η}

≤ 1

η2
|ρn − ρ|2,

and since ρn ≥ 0 and ρ ≥ 0 (indeed up to a subsequence ρn converges almost
everywhere to ρ)

|√ρn −√
ρ|21{|√ρn+√

ρ|≤η} ≤ η2.

Then, we deduce that for any compact set Ω in R+ ×R2 we have for any η > 0:

∥√ρn −√
ρ∥2L2(Ω) ≤

1

η2
∥ρn − ρ∥2L2(Ω) + η2|Ω|. (2.104)

Combining (2.104) and (2.103) completes the proof.

We are now going to prove the main part of this section on the strong conver-
gence of the sequence (∇√

ρn,
√
ρnQun)n∈N in L2

loc(R
+×R2). Using the Propo-

sition (2.2) and the estimate (2.74), we have obtained that for any χ ∈ C∞
c (R2):

∥χ∂jwn∥L2
T (H1/2) ≤ C. (2.105)

We have:

∂t(χ∂jwn) + ic2χ∆∂jwn = χ

(
i

2c
∂jwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 )

+ wn(2F
′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn)

+ ∂jPun · Pun + ∂j(∆)−1div(curlun (Pun)
⊥)

)
.

(2.106)

We have seen in the Section 2.4 that:∥∥∥∥χ( i

2c
∂jwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 )

+ wn(2F
′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn)

+ ∂jPun · Pun + ∂j(∆)−1div(curlun (Pun)
⊥)

∥∥∥∥
L∞

T (L4/3(R2))

≤ CT .

(2.107)
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So, we have using Sobolev embedding:∥∥∥∥χ( i

2c
∂jwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 )

+ wn(2F
′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn)

+ ∂jPun · Pun + ∂j(∆)−1div(curlun (Pun)
⊥)

∥∥∥∥
L∞

T (H− 1
2 )

≤ CT .

(2.108)

Using now that the following embedding are continuous H− 1
2 (R2) ↪→ H−2(R2),

we get:∥∥∥∥χ( i

2c
∂jwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 )

+ wn(2F
′(|wn|2)(Rewn∂jRewn + Imwn∂jImwn)

+ ∂jPun · Pun + ∂j(∆)−1div(curlun (Pun)
⊥)

∥∥∥∥
L2

T (H−2)

≤ C.

(2.109)

Moreover using the fact that multiplication by a function of S(Rd) is a contin-
uous map from Hs(Rd) into itself and using (2.62) we have

∥ic2χ∆∂jwn∥L2
T (H−2(R2)) ≤ C. (2.110)

So we have using (2.109) and (2.110):

∥∂t(χ∂jwn)∥L2
T (H−2(R2)) ≤ CT . (2.111)

Let K a compact, we define by H
1
2

K the distributions which belongs to H
1
2 and

are supported in K. We know that H
1/2
K (R2) is compactly embedded in L2(R2)

and L2(R2) is continuously embedded in H−2(R2) then from the Aubin Lions
Lemma and applying the diagonal extraction procedure we deduce the following
proposition.

Proposition 2.4. Up to a subsequence there exists some map f j ∈ L2
loc(R

+ ×
R2) with j ∈ {1, 2} such that for all T > 0 and all R > 0 we have:

∂jwn → f j inL2
T (L

2(B(0, R)), as n→ ∞. (2.112)

We recall now that

∇wn = ∇√
ρne

− i
2c2

θn+
i

2c2
an − i

2c2
∇θn

√
ρne

−i
2c2

θn+
i

2c2
an ,

where ∂jθn = (Qun)j . It implies that:

∇wn = (∇√
ρn − i

2c2
(Qun)

√
ρn)ϕn,
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with ϕn = e−
i

2c2
θn+

i
2c2

an . In other word, we have:

∥ϕn∥L∞(R+×R2) ≤ 1,

∇√
ρn = Re(ϕn∇wn) and

√
ρnQun = Im(ϕn∇wn),

|∇√
ρn|2 +

1

4c22
|√ρnQun|2 = |∇wn|2.

(2.113)

Since (ϕn)n∈N is bounded by 1, it converges up to extraction in L∞(R+ × R2)
weak * to some function ϕ such that ∥ϕ∥L∞(R+×R2) ≤ 1. In addition according
to proposition 2.4, we know that ∇wn converges strongly to f = (f1, f2)t in
L2(K) for any compact K of R+ × R2, this implies that:

ϕn∇wn ⇀ ϕf in L2(K). (2.114)

From (2.102) and (2.113) we deduce up to a subsequence and for any compact
K of R+ × R2 that:

∇√
ρ = Re(ϕf) and ∇√

ρn ⇀ ∇√
ρ in L2(K). (2.115)

Similarly up to an extraction we have for any K compact set of R+ × R2:

−1

2c2

√
ρnQun ⇀

−1

2c2
Λ = Im(ϕf) in L2(K). (2.116)

We have seen that up to a subsequence
√
ρnQun and ∇√

ρn converge weakly in
L2(K) for any compact K of R+ × R2 to some function Λ and ∇√

ρ. We wish
now to prove that these convergence are strong, it suffices then to show that:

∥∇√
ρn∥L2(K) −→

n→+∞
∥∇√

ρ∥L2(K) and ∥√ρnQun∥L2(K) −→
n→+∞

∥Λ∥L2(K).

(2.117)
The weak convergence implies that:

∥∇√
ρ∥L2(K) ≤ lim inf

n→∞
∥∇√

ρn∥L2(K) and ∥Λ∥L2(K) ≤ lim inf
n→∞

∥√ρnQun∥L2(K).

(2.118)
From Proposition (2.4) and (2.113) we have:

lim inf
n→∞

∥∇√
ρn∥2L2(K) +

1

4c22
lim inf
n→∞

∥ρnQun∥2L2(K)

≤ lim
n→∞

(∥∇√
ρn∥2L2(K) +

1

4c22
∥√ρnQun∥2L2(K)) = lim

n→∞
∥∇wn∥2L2(K) = ∥f∥2L2(K).

(2.119)
It remains now to prove that:

∥f∥2L2(K) =

∫
K

|ϕ|2(|∇√
ρ|2 + 1

4c22
|Λ|2)dtdx = ∥∇√

ρ∥2L2(K) +
1

4c22
∥Λ∥2L2(K).

(2.120)
To do this we will use the Aubin-Lions lemma on χwn. First of all using (2.105)
and (2.20) we have

∥χwn∥L2
T (L2) ≤ C. (2.121)
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Combining with (2.20) we have

∥∇(χwn)∥L2
T (H1) ≤ C.

We have using (2.61)

∂tχwn + ic2χ∆wn − i

2c2
χwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 ) = 0.

(2.122)
Thus using Hölder’s inequality and (2.75), (2.8), (2.85) we have∥∥∥∥ i

2c2
χwn(F (|wn|2)− F (1) +

1

2
|Pun|2 + θn2 )

∥∥∥∥
L2

T (L2)

≤ C.

Using χ∆wn = ∆(χwn)−∆(χ)wn− 2∇χ · ∇wn and (2.20) , (2.62) , (2.121) we
have

∥∂t(χwn)∥L2
T (H−2) ≤ C.

For any compact K, we know that H1
K(R2) is compactly embedded in L2(R2)

and L2(R2) is continuously embedded in H−2(R2) then from the Aubin Lions
Lemma and applying the diagonal extraction procedure we deduce the following
proposition.

Proposition 2.5. Up to a subsequence there exists some map w ∈ L2
loc(R

+×R2)
such that for all T > 0 and all R > 0 we have:

wn → w in L2
T(L

2(B(0,R)), as n → ∞. (2.123)

From propositions 2.5 and 2.4 we deduce that ∇w = f. In addition up to a
subsequence we get

wn → w a.e. as n→ ∞

We have using (1.11) that |wn(t, x)| > 0 everywhere thus

ϕn(t, x) =
wn(t, x)

|wn(t, x)|
.

Then
wn(t, x)1{|w(t,x)|>0} → w(t, x)1{|w(t,x)|>0} a.e., as n→ ∞.

Then

ϕn(t, x)1{|w(t,x)|>0} =
wn(t, x)

|wn(t, x)|
1{|w(t,x)|>0}

−→
n→+∞

w(t, x)

|w(t, x)|
1{|w(t,x)|>0} a.e. .

32



Thus for any φ ∈ L1(R+ × R2) using Lebesgue’s theorem and the definition of
the L∞ weak * limit we have∫

R×R2

ϕnφ =

∫
R×R2

ϕnφ

=

∫
R×R2

ϕnφ1{|w(t,x)|>0} +

∫
R×R2

ϕnφ1{|w(t,x)|=0}

−→
n→+∞

∫
R×R2

w(t, x)

|w(t, x)|
1{|w(t,x)|>0}φ+

∫
R×R2

ϕ1{|w(t,x)|=0}φ.

Then we have

ϕ(t, x) =
w(t, x)

|w(t, x)|
1{|w(t,x)|>0} + ϕ(t, x)1{|w(t,x)|=0}.

Recall (see e.g. Theorem 6.19 in [17]) that

∇w = 0 a.e. on w−1({0}),

whenever w is locally in W 1,1. Thus we have

|ϕ(t, x)f(t, x)| = |ϕ(t, x)||∇w(t, x)|

=

∣∣∣∣ w(t, x)|w(t, x)|
1{|w(t,x)|>0}

∣∣∣∣ |∇w(t, x)|
= 1{|w(t,x)|>0}|∇w(t, x)| a.e.

= |∇w(t, x)| a.e.

= |f(t, x)| a.e..

Thus we can prove (2.120). Indeed we have

∥f∥2L2(K) = ∥ϕf∥2L2(K) =

∫
K

(|∇√
ρ|2 + 1

4c22
|Λ|2)dtdx

= ∥∇√
ρ∥2L2(K) +

1

4c22
∥Λ∥2L2(K).

Combining now (2.119), (2.120) and (2.118) we deduce (2.117). We have finally
proved that: √

ρn(Qun) → Λ in L2
loc(R+ × Rn), as n → ∞, (2.124)

and
∇√

ρn → ∇√
ρ in L2

loc(R+ × Rn), as n → ∞. (2.125)

Proposition 2.6. There exists Λ1 ∈ L∞
loc(R+, L

q
loc(R

2)) for all 1 ≤ q <∞, such
that, up to a subsequence,

Pun → Λ1 inL
∞
loc(R+, L

q
loc(R

2)), as n → ∞. (2.126)
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Proof. For any compact K in R2 we deduce from (2.8) that for any p ∈ [1, 2[:

∥Pun∥L∞(W 1,p(K)) ≤ Cp,K . (2.127)

We have, using (2.25)

∂tcurlun = −div(uncurl(un)). (2.128)

Observing that

curl(un)un =
curl(un)

ρn

√
ρnun(

√
ρn − 1) +

curlun
ρn

√
ρnun.

We have using Hölder’s inequality and (2.12), (2.24), (2.4) that:∥∥∥∥curl(un)ρn

√
ρnun(

√
ρn − 1)

∥∥∥∥
L∞(Lp(R2))

≤ Cp, (∀p ∈ [1, 2[),

and ∥∥∥∥curl(un)ρn

√
ρnun

∥∥∥∥
L∞(L2(R2))

≤ C.

Then using the continuity of the Riesz operator in Lp with 1 < p < +∞ and
the identity

∂tPun = −(∆)−1∇⊥div(uncurlun).

We deduce that (∂tPun)n∈N is uniformly bounded in L∞(R+, Lp(K)) for p ∈
[1, 2[. So using that W 1,p(K) is compactly embedded in Lp(K) and apply-
ing Aubin Lions Lemma and the diagonal extraction procedure we deduce the
Proposition 2.6 for q = p. The other case are obtained by interpolation.

2.6 Convergence of the sequence (ρn, un)n∈N to a global
weak solution

We have for all n ∈ N∫
R2

(ρnφ)(0, .)dx+

∫
R+×R2

ρn∂tφdtdx

+

∫
R+×R2

(ρnPun +
√
ρn(

√
ρnQun)).∇φdtdx = 0,

(2.129)

∫
R2

((ρnPun +
√
ρn(

√
ρnQun)φ)(0, .)dx+

∫
R+×R2

(ρnPun +
√
ρn(

√
ρnQun))∂tφdxdt

+

∫
R+×R2

(
√
ρnQun ⊗√

ρnQun + 2
√
ρnPun ⊗√

ρnQun + ρnPun ⊗ Pun) : ∇φdxdt

+

∫
R+×R2

P (ρn)div(φ)dxdt = −κ
2

∫
R+×R2

∇ρn.∇(div(φ))dxdt

− 2κ

∫
R+×R2

(∇√
ρn ⊗∇√

ρn) : ∇φdxdt.

(2.130)
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Then passing to the limit in n we have

−
∫

R2

(ρ0φ0)(.)dx+

∫
R+×R2

ρ∂tφdtdx+

∫
R+×R2

(ρΛ1 +
√
ρΛ).∇φdtdx = 0,

(2.131)
and ∫

R2

((ρ0Pu0 + ρ0Qu0)φ0)(.)dx+

∫
R+×R2

(ρΛ1 +
√
ρΛ)∂tφ

+

∫
R+×R2

(Λ⊗ Λ + 2
√
ρPu⊗ Λ + ρΛ1 ⊗ Λ1) : ∇φdxdt

+

∫
R+×R2

P (ρ)div(φ)dxdt = −κ
2

∫
R+×R2

∇ρ.∇(div(φ))dxdt

− 2κ

∫
R+×R2

(∇√
ρ⊗∇√

ρ) : ∇φdxdt.

(2.132)

Moreover we have using (1.16)∫
R2

(
1

2
ρ0n|u0n|2(x) + κ|∇

√
ρ0n(x)|2 + jγ(ρ

0
n(x))

)
dx

−→
n→∞

∫
R2

(
1

2
ρ0|u0|2(x) + κ|∇

√
ρ0(x)|2 + jγ(ρ

0(x))

)
dx.

Using the convergences almost everywhere obtained previously, we have

ρn|un|2 + κ|∇√
ρn|2 + jγ(ρn) −→

n→∞
ρ|Λ1|2 + |Λ|2 + κ|∇√

ρ(x)|2 + jγ(ρ(x)) a.e.

Thus passing to the limit inf in (2.11) using (2.125), and using Fatou’s lemma
we have

E(t) ≤ E(0). (2.133)
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