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Abstract 

The relaxation volume (rel), here determined per extra-atom or vacant site, of common crystalline 

defects in bcc iron (Fe) was calculated from molecular dynamics simulation (MD) cells containing defects 

of varying size and/or density. To this end, we used both real and reciprocal space data: for the former, 

the change in the MD cell volume was calculated, while for the latter, we computed X-ray diffraction 

reciprocal space maps to evaluate the change in the lattice parameter. We show that <110> dumbbell 

self-interstitial atoms have the largest rel, ~1.5 atomic volume (~1.5 0). C15 clusters of size 12 and 48 

atoms show rel of ~0.91 0 and ~0.98 0, respectively, and similar values are found for ½<111> and 

<100> interstitial dislocation loops, with rel~0.905 0 and rel~0.873 0, respectively. Single vacancies 

are characterized by a negative rel, ~-0.11 0. For cavities, rel rapidly increases to approach zero as the 

clusters grow. Using these values, we managed to predict (with an accuracy better than 2 %) the lattice 

strain in MD cells containing several types of defects, which indicates that the relaxation volumes can be 

summed up to estimate the microscopic (i.e., lattice) volume change. 
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1. Introduction 

Crystalline materials frequently lose part of their perfect atomic arrangement upon exposure to, 

e.g., temperature, stress or irradiation. The progressive loss of long-range order usually proceeds from 

the formation of crystalline defects, which are objects that locally introduce potentially large lattice 

distortions. These defects generally lead to a change in the physical properties of the materials, including 

thermal, electrical, electronic or mechanical properties. In all cases, defects affect the material behavior, 

the new response being wanted (as when semiconductors are doped or when steels are strengthened by 

shot peeing), or undesired (as for materials exposed to solar winds or radioactive decay for instance).  

Defects in crystals are usually classified in two categories: (i) intrinsic defects, namely vacancy-

type (V) and interstitial-type (I) defects and (ii) extrinsic defects, like impurities and dopants; we will not 

consider hereafter this latter type of defects. Among the first category, the smallest defects are the (0D) 

point defects, i.e., the single vacancy and the self-interstitial atom (SIA) and their associated very small 

clusters. Characteristic energy properties of the intrinsic point defects, such as the migration and 

formation energies, can be adequately determined using electronic level simulations, as they are mainly 

determined by the very local defect neighborhood [1]. In contrast, these defects also generate long-range 

distortions of the lattice (see [2] and references therein) that can hardly be captured by electronic level 

calculations because of simulation-system size limitations. These perturbations lead to complex 

interactions with other defects that are subtle driving forces for the defects to migrate and cluster. 2D 

defects, such as dislocation loops, or 3D defects like cavities can then result from this defect clustering, 

and it is usually at this stage that the changes in the material properties are the most pronounced.  

Another potential consequence of defect formation in crystalline materials is the development, 

when defects generate correlated atomic displacements (see [3] and references therein), of a lattice 

strain, i.e., a change in the lattice parameter that leads to a microscopic volume change [4,5]. A 

macroscopic dimensional change can also take place, as it is for instance the case when large cavities 

form because interstitials agglomerate at dislocation loops, unbalancing the mobile V and SIA defect 

concentration [6,7]. These two volume changes can be accompanied by large-scale mechanical stresses 

[4], thereby compromising the material integrity. It is thus of utmost importance to predict them, which 

requires basic data such as, in particular for the lattice strain, the relaxation volume of the defects. This 

quantity can be described as the change in volume due to the relaxation of the crystal lattice around the 

defect site [4,5]. A dataset of relaxation volumes can be highly useful: it can be the principal ingredient 

in estimating the strains and stresses on a macroscopic scale [8], at least to some extent (see  [9] for more 

details); it can also help exploiting experimental data, principally X-ray diffraction peak shifts related to 

elastic strain [10–12]. Relaxation volumes can be derived, for instance, from the elastic dipole tensor 

[4,13–18]. But in the present work, as explained hereafter, we present an alternative approach.  
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Iron-based materials are nowadays key materials for many structural components, and their 

presence in current and future (fission and fusion) nuclear power plants confirms this statement [19]. In 

such environments, materials are inherently subjected to extreme conditions, the most crucial one being 

the irradiation by energetic particles (neutrons, fission fragments, recoils…). Those particles are 

projectiles whose interactions with solid targets quasi-inevitably lead to defect creation. In the case of 

iron (Fe), an exhaustive literature exists regarding the defect panoply that can be found in this material 

submitted to irradiation (the reader can refer for instance to [20,21] and references therein). We shall 

here only recall the most important ones, which are listed considering a time evolution, i.e., a progressive 

increase in irradiation dose. For interstitial-type defects, first, <110> dumbbell SIAs form, then C15 

clusters, followed by ½<111> dislocation loops that are predominant at temperatures below ~670 K or 

<100> loops at higher temperatures [22,23]. Note that C15 clusters have been, so far, only predicted and 

not observed experimentally [24]. For vacancy-type defects, single vacancies can exist, as well as spherical 

clusters of these (so-called cavities) when the point defects can cluster; vacancy-type dislocation loops 

have been shown to be metastable [25].  

Radiation-induced microstructural changes and associated physical property modifications are 

processes that intrinsically encompass orders of magnitudes in terms of time and space scales. A 

thorough understanding of these processes not only requires a broad range of experiments, but also a 

comprehensive multiscale modelling [26,27]. To feed the models step by step, one needs basic, atomic-

scale data, the availability of which remains the cornerstone aspect of the current intense effort in the 

development of the multiscale modelling of materials. In the current paper, we precisely address this 

matter, i.e., we provide basic defect characteristics. Indeed, we propose an in silico method that 

combines large-scale Molecular Dynamics (MD) simulations with computational diffraction for a dual, i.e., 

in both real and reciprocal spaces, determination of the relaxation volume of the most important defects 

in iron, chosen as a test-case material. We performed a systematic, parametric study in which broad 

defect concentrations, as well as various defect configurations were investigated. Results not only 

provide quantitative data on the relaxation volumes, but they also show that this quantity can be 

summed up when several defects, of the same type or of different nature, are simultaneously considered. 
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2. Methodology 

2.1. Generation of MD cells containing defects 

Model molecular dynamics cells were created by generating in a controlled manner defects in 

perfect single-crystal-like bcc iron cells of 80x80x80 unit cells (u.c.) in dimension, i.e., cubic cells 

containing 1 024 000 atoms and with a side length of 22.8 nm (except for cells with C15 clusters whose 

size was 90x90x90 unit cells – 1 458 000 atoms - and a side length of 25.7 nm). The lattice parameter of 

the pristine cells was a0 = 0.28557 nm at 0 K, according to the M10 interatomic potential used here [28]. 

The suitability of this EAM potential regarding the reproduction of the elastic properties of different 

crystalline defects was validated by comparison with DFT data [28]. Defects of both interstitial and 

vacancy nature were created, but only one defect type was introduced, in a first time, in each cell (in a 

second time, cells with mixed defects were created, see sect. 4). For both Is and Vs, several defect 

structures were studied. The corresponding MD cell characteristics are given in sections 2.1.1 and 2.1.2. 

Note that those characteristics were chosen to cover the largest defect concentration and size ranges 

while taking into consideration the computational capabilities. Therefore, not all characteristics are 

consistent from one set of cells to another. Note also that, in order to limit the forces acting on the atoms 

constituting or surrounding a defect (particularly interstitial ones), and hence to facilitate the relaxation 

process (details of which can be found in section 2.1.3), we imposed a separation distance between the 

defects. This latter varied according to the defect type, nature, size and density, but was typically in the 

range of a few nm. To finish, it is important to mention that imposing a separation distance between the 

defects during the defect injection step does not imply that those defects do not interact during the 

relaxation step, particularly at high defect density (see for instance results for dumbbells in Fig. 5a).   

2.1.1. Interstitial-type defects 

For interstitial defects, three configurations were examined: <110> dumbbell SIAs, C15 clusters 

and dislocation loops (of both <100> and ½<111> types). As for these MD cells, Fe atoms were injected 

to form the defects, we will talk about extra-atoms in the cells, and their corresponding number Nextra 

and concentration Cextra are given in Table 1; also provided in Table 1 are the defect number (NI), radius 

(RI) and density (I).  

Let us start with <110> dumbbell SIAs. Those defects were added into pristine MD cells with a 

concentration of up to 1.4 % (for these defects, NI=Nextra). For this purpose, a two-step procedure was 

implement0ed. First, one cell was created, containing a few dumbbells in the form of two atoms oriented 

along the chosen <110> direction and separated by a reasonable distance (viz. 1/2 of the <110> diagonal 

of a unit cell, i.e., 0.202 nm). This cell was then relaxed (see sect. 2.1.3), and the coordinates of the two 

atoms constituting each dumbbell was used to calculate the average characteristic separation distance 
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between both atoms. This characteristic distance, found to be 0.2156 nm, was used to facilitate the 

relaxation process of the cells containing a large dumbbell concentration for which this distance was 

chosen as the initial separation length. Note that a value of 0.1905 nm was found by DFT [29]. In a second 

step, a given number of atoms of the perfect crystal was randomly selected and replaced by <110>-type 

di-atomic dumbbells, each precise direction being randomly chosen among the 6 equivalent directions. 

The net number of SIAs after the generation of a <110> dumbbell SIA is hence 1 (2 added atoms – 1 

removed atom per dumbbell). Fig. 1a shows a picture, generated with the OVITO software [30], of a 

relaxed cell with 0.02 % of <110> dumbbell SIAs. 

The structure of C15 clusters is more complex than that of dumbbells. Their geometry 

corresponds to a Z16 Frank-Kasper polyhedron with (at least) 12 interstitial atoms and (at least) 10 

vacancies in a bcc structure. Hence, atoms in a C15 cluster exhibit an icosahedral coordination.  Cells with 

C15 clusters were generated with a net extra-atom concentration of up to 0.41 %. Two C15 cluster sizes 

were considered, 12 and 48 atoms (hereafter denoted as C1512 and C1548, respectively); note that the 

critical size of 51 atoms, where C15 clusters tend to transform into dislocation loops [31], was not 

exceeded. The generation of the cells containing those clusters was carried out by (i) randomly selecting 

the central C15 atom, then (ii) removing 10 (38) closest atoms and finally (iii) adding 12 (48) atoms with 

the previously explained polyhedron geometry, illustrated in [31], with a net number of 2 (10) SIAs in the 

C1512 (C1548) defects, respectively. Fig. 1b shows a relaxed cell containing C1548 clusters; C1512 and C1548 

cluster structures are illustrated in Fig. 1c. 

Both <100> and ½<111> interstitial dislocation loops (referred to as L100 and L111, respectively) were 

here studied, with a net extra-atom concentration reaching 1.5 % for some MD cells. For each orientation, 

three sets of defective cells were generated. The Babel code [32] was used to introduce the dislocation 

loops in the pristine cells. All dislocation loops were prismatic and of circular shape. Relaxed cells with 

<100> and ½<111> dislocation loops are shown in Fig. 2a-b, respectively; dislocation loops were detected 

using the dedicated DXA algorithm [33] of the OVITO software [30]. The various cells containing 

dislocation loops are listed hereafter: 

- In a first set of cells, a single prismatic dislocation loop was introduced in each cell, with a radius 

varying from 3 up to 35 u.c.; the loop center and the specific Burgers vector were randomly 

selected. 

- In a second set of cells, 20 dislocation loops with random positions were introduced; all 20 loops 

had the same radius in a given cell, and this radius was varied from 1.2 to 12 u.c. 

- In a third set of cells, dislocation loops with a radius of 6 u.c. were randomly inserted in cells in a 

number from 4 up to 40.  
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Fig. 1. MD cells containing a) <110> dumbbell SIAs, b) C15 clusters composed of 48 atoms (C1548), c) 
C1512 and C1548 clusters (the orange sphere represents the central bcc atom). Concentration of extra-

atoms in the cells is ~0.02 %. 

 

Fig. 2. MD cells containing 12 prismatic a) <100>, b) ½<111> dislocation loops with randomly oriented 
Burgers vector. 

 

Table 1. Characteristics of the MD cells with interstitial-type defects. Nextra is the number of extra-atoms 

in an MD cell while Cextra is their concentration; NI, RI and I refer to the number, radius and density of 
the different interstitial-type defects, respectively. 

<110> dumbbells  
 

Nextra Cextra (%) ρI (nm-3)   

≤ 14336 ≤ 1.4 ≤ 1.18   

C15 clusters 

Size NI Nextra Cextra (%) ρI (nm-3) 

12 ≤ 3012 ≤ 6024 ≤ 0.41 ≤ 0.18 

48 ≤ 598 ≤ 5980 ≤ 0.41 ≤ 0.035 

Dislocation loops 

NI RI (u. c.) Nextra Cextra (%) ρI (nm-3) 

1 ≤ 35 ≤ 7562 ≤ 0.74 8.4x10-5 

20 ≤ 12 ≤ 15408 ≤ 1.5 1.7x10-3 

≤ 40 6 ≤ 8010 ≤ 0.78 ≤ 3.3x10-3 
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2.1.2. Vacancy-type defects 

For vacancy-type defects, two configurations were examined: single vacancies, and vacancy 

clusters in the form of spherical cavities. To form these defects, Fe atoms were removed, which we refer 

to as vacant sites whose number Nvacant and concentration Cvacant are given in Table 2; also provided in 

this table are the defect number (NV), radius (RV) and density (V). 

Regarding single vacancies, MD cells with a concentration up to 1.4 % were generated by removing 

randomly selected atoms from a pristine cell. To generate a cavity, all atoms inside a sphere of a given 

radius, and whose center was randomly selected, were removed. Fig. 3 shows an image of a cell with 

spherical cavities. Three sets of simulation cells with spherical cavities were produced: 

- In a first set of cells, a single cavity was introduced in each cell, with different radii ranging from 

0.25 up to 3 nm. 

- In a second set of cells, 10 cavities of fixed radius were added in each cell; the radius spanned a 

range from 0.2 to 1.5 nm in the different cells. 

- In a third set of cells, cavities of radius fixed at 1 nm were produced, and their number varied 

from 1 to up to 30 in the different cells. 

 

Fig. 3. MD cell containing 10 spherical cavities of radius 1 nm. 

Table 2. Characteristics of the MD cells with vacancy-type defects. Nvacant is the number of vacant sites in 

an MD cell while Cvacant is their concentration; NV, RV and V refer to the number, radius and density of 
the different vacancy-type defects, respectively. 

Single vacancies   

Nvacant Cvacant (%) ρV (nm-3)   

≤ 14336 ≤ 1.4 ≤ 1.18   

Cavities 

(NV) RV (nm) Nvacant Cvacant (%) ρV (nm-3) 

1 ≤ 3 ≤ 9713 ≤ 0.95 ≤ 8.4x10-5 

10 ≤ 1.5 ≤ 12191 ≤ 1.19 8.4x10-4 

≤ 30 1 ≤ 10836 ≤ 1.06 ≤ 2.5x10-3 
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2.1.3. Cell relaxation procedure 

A relaxation of the defective (i.e., containing defects) MD cells was required to drive them to a 

more stable configuration by letting the atoms reach their equilibrium position. Several MD methods 

have been developed to this end, among which one finds the fast quenching and the conjugate gradient 

methods [34]. In the present work, a Fortran-based code was used to relax the defective cells by means 

of the conjugate gradient method. This latter consists in two steps (that can be required or not, 

depending on the actual cell state): (i) atoms are relocated and (ii) the cell shape is modified. These steps 

are repeated, according to an iterative process, until both the maximum force Fmax and stress σmax 

components converge to pre-defined value. Those values were 1 eV/nm for cells containing Is or Vs, and 

0.02 (or 10-4) kbar for cells with Is (or Vs). A lower stress limit was used for cells with Vs so that the cell-

shape relaxation process can occur when these defects only were present. Relaxation of the cells was 

performed under PBCs along the three vectors defining the cell.  

2.2. X-ray diffraction simulations 

As explained in the next section, to compute the defect relaxation volumes from reciprocal space 

data, we need to determine the lattice parameter change (hence, the elastic lattice strain) in the defective 

cells containing. But evaluating, in MD cells, those long-range variations in the crystal periodicity is not a 

task straightforwardly performed by a direct analysis of the cells, as shown in [3]. To this end, we make 

use of computational diffraction that allows to carry out this task in the reciprocal space (for details, see 

[3], [35]). In short, we compute reciprocal space maps (RSMs), that is the diffracted intensity around 

selected HKL reflections; here, we used the 002 reflection. Two examples of such RSMs are presented in 

figure 4: Fig. 4a corresponds to a cell containing 36 randomly oriented <100> loops of radius of 6 u.c., 

and Fig. 4b was calculated from a cell containing 20 ½<111> loops of radius 12 u.c. The monitoring of the 

position of the reciprocal lattice point (RLP) in the (H,L) planes (i.e., the coordinates of the maximum 

intensity) allows determining the lattice strain (), as this latter reads:   

 𝜀 =
𝐿0 − 𝐿

𝐿0
 Eq. ( 1 ) 

where L0 and L are the RLP positions, expressed in reciprocal lattice units (r.l.u.), in pristine and defective 

cells, respectively. To exclude diffuse scattering that is related to short-range lattice distortions [10,36], 

only a narrow region around the RLP of a pristine cell was calculated (typically ± 0.02 r.l.u.). To find the 

accurate position of the RLP, we used a 2D fitting algorithm [3] because simply searching for the pixel of 

maximum intensity led, in many cases, to inaccurate values. To finish, owing to the finite, relatively small 

size of the cells (as compared to some defect dimensions), some features in the XRD patterns may arise 
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because of a pseudo-anisotropy in the defect spatial distribution. To circumvent this issue, RLP positions 

were averaged over the six different equivalent 002 reflections [3].  

 

Fig. 4. Computed 002 XRD-RSM of a MD cell containing a) 36 <100> dislocation loops of radius 6 u.c., b) 
20 1/2<111> dislocation loops of radius 12 u.c. 

2.3. Relaxation volume 

In the current work, we used both real and reciprocal space data to determine the relaxation 

volumes, as explained below. 

The volume change related to the creation of a defect in a real crystal involves two distinct 

contributions: the relaxation volume, Vrel and the formation volume, Vf. The reader can refer to [37] for 

a theoretical description of those, and to [38] for a more schematic explanation. Let’s here simply recall 

that, conveniently, one usually considers that the formation of a vacancy implies the displacement of an 

atom from inside the crystal to the surface, leading to an increase in the crystal volume of one atomic 

volume (0). At the same time, in metals, a lattice contraction takes place near the vacancy due to a 

system equilibration around it. Note that in ionic compounds, where electrostatic interactions can be 

involved, lattice expansion can take place, but these materials are not the subject of the present paper. 

This microscopic or lattice volume change is known as the relaxation volume and it may induce the 

development of a lattice strain, negative in this case. Likewise, the formation of an interstitial defect can 

be seen as the migration of an atom from the surface to the bulk of the crystal, implying a decrease in 

volume of 0, while around the interstitial defect a lattice swelling develops, resulting finally in a positive 

relaxation volume, and hence, possibly, to a tensile lattice strain. The formation volume is then the total 

volume change resulting from both the volume change at the surface and the relaxation volume around 

the point defect. The mathematical relationship between Vrel and Vf is given, for a defect involving N 

lattice sites, by the following equation: 
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 Vf = Vrel ± NΩ0 Eq. ( 2 ) 

where the - sign holds for Is and the + sign for Vs. The change in the lattice parameter of a crystal (a) is 

connected to Vrel while the change in the macroscopic volume (i.e., the crystal volume) is related to Vf. 

Comparing the relative volume and lattice parameter changes can provide meaningful information on 

the predominance and concentration of a given (I or V) defect, as demonstrated already in the 1960’s 

[39]. 

In our simulation cells, there is no surface per se, and the defects were generated by injecting or 

removing atoms at specific locations to produce the desired defect configuration. As the number of lattice 

sites varies between a pristine cell and one containing defects, the formation volume has no meaning [9]. 

Therefore, if a change in the MD cell volume occurs, it is entirely related to the relaxation volume that 

necessarily exists (if the MD cells are relaxed), and both are linked through Eq. ( 3 ). Note that in the 

current work, we will discuss rel, which corresponds to the relaxation volume expressed in atomic 

volume unit 0, per extra-atom or per vacant site, as this value is easier to discuss because it can be 

directly compared with 0. 

 
0

0 , ,

/rel
rel

extra vacant extra vacant

V VV

N C


 = =


 Eq. ( 3 ) 

 

with ΔV = V − V0, where V0 and V are the volumes of the relaxed pristine and defective cells, 

respectively, and Cextra,vacant is the concentration of extra-atoms or vacant sites, respectively, as explained 

in section 2; the atomic volume in Fe is Ω0 = 0.0233 nm3 with our interatomic potential. 

It must be emphasized that in experiments or for some MD simulation methods of irradiation 

effects (e.g. when defects form upon Frenkel pair or collision cascade accumulation), Vf can be defined, 

and in that case, it is usually different from and Vrel [40]; for a recent and more detailed discussion about 

this point, the reader should refer to [9]. So, in many cases, the study of the change in sample or MD cell 

volume does not allow determining the relaxation volume, but only the formation volume [14]. To 

circumvent this issue, one can switch from the real space to the reciprocal space, and calculate the lattice 

strain () from XRD-RSMs of defective cells (or crystals), as explained in section 2.2. Indeed, in that case, 

the following equation can be applied [10]: 

 
0

3

, ,

rel
rel

extra vacant extra vacant

V

N C


 = =


 Eq. ( 4 ) 
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Note that, strictly speaking, the strain is a 3x3 tensor,  . But, as the relaxation volume is related to the 

diagonal components of this tensor, we are here using a scalar that is 1

3
( )Tr = , the average coming 

from the fact that we calculated the average of the strain values between the 00L  directions, as 

mentioned in the previous section. 

It is important to emphasize that the relaxation volumes obtained in the current work correspond 

to a unique sort of defects, as the cells contain only one defect type at a time (except those in section 4). 

In addition, as the defect density is varied over a broad range, for many cases, individual strain fields 

interact, and the corresponding relaxation volume values do integrate these interactions; therefore, 

there is no need to rely on the usually assumed superposition principle. Consequently, the relaxation 

volumes determined here can be considered as averaged values over both the different defect spatial 

configurations and the various defect interactions. To finish, one can mention that Fe is elastically 

anisotropic. Nonetheless, we used MD cells containing randomly distributed defects with no preferential 

orientation (except for cells with only one dislocation loop); this situation is more than likely to occur 

upon irradiation where the defect creation process is usually stochastic. Therefore, the relaxation 

volumes we obtained can be assumed isotropic (but we did not cancel the elastic anisotropy that is 

reproduced by the interatomic potential). To support this statement, we verified that the change in the 

MD cell dimensions consecutive to the injection of defects is the same along the three main directions, 

which is indeed the case (except when only one defect is present). Note also that we calculated a few 

RSMs around the 222 reflection (not shown here), and we obtained identical values as for the 002 

reflection, again supporting the statement of (apparent) isotropy of the relaxation volumes we derived. 
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3. Results and discussion 

3.1. Defect formation energy 

As a preliminary step in the study of the defect relaxation volumes, we start with the analysis of 

the defect formation energy (Ef) to provide confidence on the methodology we implemented to generate 

the MD cells containing the defects. Hence, as shown hereafter, we found not only the correct formation 

energies, but also the expected defect transformation sequence (with increasing defect concentration) 

previously reported in the literature [31,41], and mentioned in the Introduction. The definition of the 

formation energy of a defect that we used is the one commonly employed [41], i.e., the difference 

between the total energy of a cell containing the said defect and the energy of a pristine cell weighted 

by the relative number of atoms in the two cells:  

 
prist extraI

f def prist

prist

N N
E E E

N

+
= −  Eq. ( 5a ) 

 

 
prist vacantV

f def prist

prist

N N
E E E

N

−
= −  Eq. ( 5b ) 

where 
I
fE  and 

V
fE  are the formation energies of interstitial and vacancy-type defects, respectively, and 

Nprist is the number of atoms in a pristine MD cell (Nextra and Nvacant were defined in sect. 2.1). 
I
fE  and 

V
fE  

are here defined for one defect, irrespective of the number of point defects it is composed of. In the 

following, as for the relaxation volume, we shall present and discuss the formation energies per extra-

atom or per vacant site. However, to facilitate the comparison of these energy values with those available 

in the literature, and to provide additional comments on those, we also give, in Appendix, Ef as a function 

of the defect size (i.e., Nextra/NI or Nvacant/NV).  

Fig. 5a shows the formation energy per extra-atom, Ef
I Nextra⁄ , as a function of the extra-atom 

concentration for the different interstitial-type defects studied. We note that this energy for <110> 

dumbbell SIAs is the largest one (~3.7 eV) at any extra-atom concentration. This value is slightly lower 

than the one computed with another interatomic potential (4.3 eV) [42], but similar to those obtained 

with DFT simulations performed by Domain et al. (3.4 eV) [29] and Chen et al. (3.8 eV) [43]. It is interesting 

to note that this formation energy for the dumbbells decreases as the extra-atom concentration 

increases; this feature can most likely be ascribed to defect interactions at high concentration. Yet, this 

energy remains high, explaining why, above a threshold concentration, dumbbell SIAs agglomerate to 

form C15 defects, as already reported in [24,44]. Indeed, Ef
I Nextra⁄  for these clusters is less than for the 

dumbbells, and it is approximately constant throughout the entire investigated concentration range (and 
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hence, number of defects) for both C1512 and C1548 clusters. C1512 clusters exhibit a larger Ef
I Nextra⁄  

(3.28 eV) than C1548 clusters (1.90 eV), demonstrating that bigger C15 clusters are more stable, in 

agreement with Zhang et al. results [45]. Besides, Ef
I Nextra⁄  for large C15 clusters can be lower than for 

dislocation loops, as illustrated in Fig. 5a, where is visible a crossover between the formation energy for 

½ <111> dislocation loops and C1548 clusters (here, below 0.1 % in extra-atom concentration, but this 

value depends on the defect size). This result confirms that C15 clusters may be more stable than 

dislocation loops when composed of a few tens of SIAs [31,45], but it is also known that this larger stability 

of C15 clusters rapidly disappears as the clusters grow further (more than 50 SIAs) [45,46]. To finish, 

Ef
I Nextra⁄  for dislocation loops is the lowest of all the common I-type defects in Fe. This energy, in 

dislocation loops of fixed size, is constant with Cextra, indicating that it does not change with increasing 

the number of loops of same size. In contrast, it decreases for loops of increasing size, which means that 

larger loops are more stable. This latter trend is modelled and commented in the Appendix A. 

Fig. 5b shows the formation energy per vacant site, Ef
V Nvacant⁄ , as a function of the vacant site 

concentration for the different studied vacancy-type defects. Single vacancies exhibit an Ef
V Nvacant⁄  

value of around 2.11 eV. Ma et al. [41] and Sivak et al. [42] found very similar values, 2.19 and 1.92 eV, 

respectively. Domain et al. [29] obtained Ef
V Nvacant⁄  of 1.95 eV by DFT calculations, while Soisson et al. 

[47] reported a value of around 2.2 eV by DFT simulations as well. As expected, Ef
V Nvacant⁄  is lower for 

cavities than it is for single vacancies at any vacant site concentration. For instance, Ef
V Nvacant⁄  for 

cavities of radius 1 nm is only ~0.46 eV, and it is constant regardless of the number of cavities in the cell. 

Larger cavities exhibit a lower Ef
V Nvacant⁄ , as it can be seen in the crossover between Ef

V Nvacant⁄  for 

cavities of increasing size (red line in Fig. 5b) and for cavities of fixed radius 1 nm (green line in Fig. 5b). 

This last observation confirms that large cavities are more effective at absorbing vacancies as the rate of 

increase of the formation energy decreases with cavity size, in agreement with [25]. This trend is 

modelled and commented in the Appendix A. 

In conclusion, all energetic characteristics of the model defects we created do compare well with 

previously reported results in the literature. In addition, we show that the defect formation energies can 

be summed up when the number of these defects, of fixed size, increases; indeed, the formation energy 

per extra-atom is (almost) constant over the investigated concentration range (with Cextra exceeding 

~0.8 % for most of the studied defects). We can now proceed to the determination of the relaxation 

volume of the various defect types we generated. This is the focus of the next section.  
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Fig. 5. Defect formation energies. a) Energy of interstitial-type defects per extra-atom (Ef
I/Nextra) as a 

function of the concentration of extra-atoms (Cextra). b) Energy of vacancy-type defects per vacant site 

(Ef
V/Nvacant) as a function of the concentration of the vacant sites. Defect types are explicitly mentioned in 

the figure captions, with L100 and L111 referring to <100> and ½<111> dislocation loops, respectively. r is 

the defect radius. 

3.2. Relaxation volume of interstitial-type defects 

In this section, results concerning the relaxation volume of interstitial-type defects are presented. 

The different figures display the relaxation volume as a function of both extra-atom concentration and 

defect radius or density, whether the defects are in fixed number or fixed size, respectively. For instance, 

Fig. 6a shows the evolution of rel as a function of Cextra and of the density of dumbbell SIAs (I). We can 

first notice that values obtained through both the XRD calculations and the relative cell volume change 

(RCVC) are very similar, which was anticipated (see sect. 2.3). At the lowest studied defect density, the 

relaxation volume of the dumbbell SIA is 1.53 0. This value slightly decreases down to 1.48 0 at Cextra 

~0.5 % (density of 0.43 nm-3), where it stabilizes up to a concentration of ~1 %. Then, between 1 and 1.4 

%, rel seems to follow a trend of slight increase, which might be due to complex strain field overlapping 

at such high defect density. But overall, the relaxation volume of the dumbbell SIA does not vary much 

throughout the broad defect density range that we studied, and it remains at values close to 1.5 0. Sivak 

et al. [42] obtained a rel of 1.48 0 using another EAM potential, while Ma et al. [41] performed DFT 

simulations and calculated rel to be 1.62 0. This excellent agreement with other computational 

approaches supports the validity of our methodology. Regarding C15 clusters (see Fig. 6. b-c), rel values 

obtained from both XRD and RCVC are practically identical. For the C1512 clusters, rel slightly varies 

between 0.90 0 and 0.95 0 at very low defect density 7x10-3 nm-3 (or Cextra ~0.03 %) and then remains 

constant at 0.91 0. For the C1548 clusters, above 0.1 %, rel is also constant at ~0.98 0.  
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Now let us examine the relaxation volume for <100> (referred to as L100) and ½<111> (labeled 

L111) dislocation loops in cells containing one single defect of varying size; the results are plotted in Fig. 

7a and Fig. 8a, respectively. It must be mentioned that the appearance of several pseudo-peaks in the 

corresponding RSMs prevented a reliable RLP position determination (see sect. 2.2). Therefore, for this 

very case of a single dislocation loop, rel values were determined with the RCVC method only. It can be 

readily observed that rel exhibits a similar behavior in analogous cells for both loop orientations. A value 

around 0.95 0 is obtained for both L100 and L111 defects. rel is here below the expected 1 0 value, but 

a similar result was observed in tungsten MD cells, which is due to the use of an EAM potential [34]. The 

convergence to 0 per extra-atom in dislocation loops is expected since this object is simply a 2D inclusion 

of extra-atoms in the crystal. The asymptotic trend towards this value is in fact observed in our simulation 

results (see blue dashed line in inset in Fig. 7a). Besides, rel in L100 defects was fitted to the commonly 

used equation that relies on the isotropic and anisotropic theory of elasticity to calculate the elastic 

contribution of the loop to the defect formation energy (see e.g. [31]): 

 Ω𝑟𝑒𝑙 Ω0⁄ = 1 + 𝑏0
𝑙𝑛𝑁𝑒𝑥𝑡𝑟𝑎

√𝑁𝑒𝑥𝑡𝑟𝑎
+ 𝑏1

1

√𝑁𝑒𝑥𝑡𝑟𝑎
+

𝑏2
𝑁𝑒𝑥𝑡𝑟𝑎

 Eq. ( 6 ) 

where b0, b1 and b2 are the fitting parameters. An excellent fit is obtained for a concentration of extra-

atoms of up to ~0.5 % (corresponding to defects of up to ~5000 atoms), as shown in the inset of Fig. 7a 

where computed rel (dots) and corresponding fitting curve (dashed line) are plotted. Fitting parameters 

are given in Table 3.  

Table 3. Fitting parameters of the relaxation volume for <100> interstitial dislocation loops (L100) fitted 

by linear regression to 𝛺𝑟𝑒𝑙 𝛺0⁄ = 1 + 𝑏0
𝑙𝑛𝑁𝑒𝑥𝑡𝑟𝑎

√𝑁𝑒𝑥𝑡𝑟𝑎
+ 𝑏1

1

√𝑁𝑒𝑥𝑡𝑟𝑎
+

𝑏2

𝑁𝑒𝑥𝑡𝑟𝑎
, i.e., Eq. ( 6 ). R2 is the coefficient 

of determination of the fit. 

Dislocation-loop type 
Fitting parameters 

R2 
b0 b1 b2 

L100 -1.108 ± 0.068 4.554 ± 0.57 -2.07 ± 2.51 0.971 

 

We now consider cells with 20 loops of a varying size, this latter changing from one cell to the 

other. Since multiple dislocation loops with randomly oriented Burgers vector were introduced in the 

cells, the XRD approach exhibits a better reliability as compared to the case of cells with a single loop for 

which interference fringes in the XRD signal developed because of the anisotropic and non-random strain 

field around dislocations. These fringes are smoothed out in cells with several defects due to the 

superposition of the different strain fields from the randomly distributed dislocations. Hence, as shown 

in Fig. 7b and Fig. 8b, XRD and RCVC provide comparable relaxation volumes. These latter are found 
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similar to those obtained for cells with only one loop, i.e., ~0.85 0 and ~0.92 0 for <100> and ½<111> 

dislocation loops, respectively. This result also holds for cells with loops of fixed size (namely 6 u.c. or 1.7 

nm) but with a varying number of loops (see Fig. 7c and Fig. 8c), for which relaxation volumes are found 

also very similar: 0.86 0 and 0.89 0 for L100 and L111, respectively. It is interesting to compare two 

equivalent (in terms of Cextra) simulation cells (per dislocation orientation) generated and relaxed under 

the same conditions, with (i) a fixed number of loops (see black arrows in Fig. 7b and 8b) on the one side, 

and (ii) a fixed size (see grey arrows in 7c and 8c) on the other side: the relaxation volumes for the two 

sets of cells (fixed number vs fixed size) are found to be equal (~0.87 0 as determined with the RCVC 

method), which is comforting as the cells were generated and analyzed independently. 

 

Fig. 6. Relaxation volume per extra-atom for 

a) dumbbell SIAs, b) C1512 and c) C1548 

clusters as a function of extra-atom 

concentration (Cextra) and density of defects 

(I). Ωrel is given in atomic volume unit (Ω0). 
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Fig. 7. Relaxation volume per extra-atom for 

a) one <100> dislocation loop of varying 

radius, b) 20 <100> loops of varying radius, c) 

varying number of <100> loops of radius 6 

u.c., as a function of extra-atom 

concentration (Cextra) and either radius (RI) or 

density (I) of loops. Ωrel is given in atomic 

volume unit. Dashed line in inset in Fig. 7a 

shows Ωrel fitted with Eq. ( 6 ). Black arrows 

point to dots corresponding to two, 

independent cells with the same defect 

characteristics (20 <100> dislocation loops of 

radius 6 u. c.) 
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3.3. Relaxation volume of vacancy-type defects 

The relaxation volume of vacancies in the form of point defects and clusters (spherical cavities) 

is studied hereafter. As for interstitial defects, rel is presented (in Fig. 9) as a function of the 

concentration of vacant sites (Cvacant) and of either the cavity radius or density. For instance, for single 

vacancies (Fig. 9a), rel is found to be around -0.11 0 up to the maximum tested concentration of 1.4 %; 

both methods (XRD and RCVC) provide identical values. As expected, a vacancy in iron leads to a small 

lattice contraction, contrary to interstitials that lead to a significant lattice swelling. The current 

calculated value is half that determined by DFT simulations in bcc iron, i.e., -0.22 0 [41], but it remains 

negative and very small. Regarding the cavities, a good agreement is also observed between the 

relaxation volume values determined from the real space and from the reciprocal space data (i.e., RCVC 

and XRD, respectively), as shown in Fig. 9b-d. rel values for all cavities are negative. Starting with cells 

containing a single cavity (see Fig. 9b), rel exhibits a relatively large increase (from -0.09 0 to ~ -0.015 

0 for the studied cavity sizes) for Cvacant lower than 0.1 %, then it slightly increases and asymptotically 

Fig. 8. Relaxation volume per extra-atom for 

a) one ½<111> dislocation loop of varying 

radius, b) 20 ½<111> loops of varying radius, 

c) varying number of loops of radius 6 u.c., as 

a function of extra-atoms concentration 

(Cextra) and either radius (RI) or number (NI) of 

loops. Ωrel is given in atomic volume unit (0). 

Grey arrows point to dots corresponding to 

two, independent cells with the same defect 

characteristics (20 <100> dislocation loops of 

radius 6 u. c.) 
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approaches 0 when the cavity grows. This result implies that, as the cavity expands by absorbing 

vacancies, its capacity (per vacant site) to induce a lattice contraction decreases. A same statement holds 

when there are several cavities, for instance 10, as shown in  Fig. 9c. Besides, Fig. 9d indicates that for a 

fixed radius, rel does not change with varying the defect density. As a consequence, when combining  

Fig. 9b and  Fig. 9c, we get  Fig. 9e where data point of rel for one cavity of varying size coincide with 

those for 10 cavities (of varying size). Therefore, overall, for vacancy-type defects, rel is much more 

impacted by the defect size than by the defect number.  

From these results, we can expect that the relaxation volume tends to 0 for large cavities and to 

-0.11 0 (i.e., rel computed for single vacancies) for very small cavities. In fact, the relaxation volume of 

spherical cavities has been shown to be proportional to NVacant
-1/3 (which is usually referred to the 

“capillary” model), a behavior consistent with our expectations. rel (for a cavity of increasing size) was 

hence calculated using the following equation: 

 Ωrel Ω0⁄ = −sNvacant
−1/3 Eq. ( 7 ) 

where s is a stress parameter [34] assumed to be 0.11, in order to match, at very small sizes, the relaxation 

volume we obtained for single vacancies (Nvacant = 1). The fitted curve (dashed line in Fig. 9b) shows a very 

good agreement with the data computed from XRD or RCVC methods (symbols in Fig. 9b). Eq. ( 7 ) was 

also used to successfully fit the rel data for cells with 10 cavities (of varying size); results are plotted in 

Fig. 9c. The agreement between the fitted curves obtained with Eq. ( 7 ) and the computed data for the 

two cases (Fig. 9b and Fig. 9c) demonstrates that the whole relaxation volumes we determined 

constitutes a consistent set of results; otherwise, using another value for the s parameter would have not 

led to an agreement at all. To finish, one must mention that if cavities lead to nearly no change in the 

lattice volume (and hence, in the lattice parameter), they are at the origin of the so-called “void swelling” 

that can occur in irradiated metals [9], [48]; both should not be mixed up. 
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Fig. 9. Relaxation volume per vacant site for a) 

single vacancies, b) 1 cavity of varying radius, c) 

10 cavities of varying radius, d) varying number of 

cavities of radius 1 nm, e) both 1 and 10 cavities 

of varying radius as a function of vacant site 

concentration (Cvacant) and either radius (Rv) or 

density (V) of cavities. Dashed lines correspond to 

the predicted relaxation volume computed with 

Eq. ( 7 ). Ωrel is given in atomic volume unit (0). 
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3.4. Additivity of the relaxation volumes 

In the previous section, we showed that the relaxation volumes for individual defects can be 

added when the defect size and/or number increases. Indeed, except for very small cavities or when a 

single defect is considered, rel is independent of defect radius and density. Now the question that 

naturally arises is the following: do these quantities also simply add-up when several defects co-exist and 

potentially interact? To answer this question, we created MD cells containing several defect types; the 

corresponding defect combinations correspond to microstructures than can be observed in irradiated Fe 

samples (below 400°C). The detailed cell characteristics are provided in Table 4. Below is given a brief 

description of these cells:  

- A cell with a concentration of 0.28 % of both dumbbell SIAs and monovacancies, labelled I&V. 

- A cell with 40 1/2<111> dislocation loops of radius 6 u.c. and 0.7 % of single vacancies, labelled 

L111&V. 

- A cell with 40 1/2<111> dislocation loops of radius 6 u.c. and 5 <100> dislocation loops of radius 

6 u.c.; this cell is referred to as L111&L100. 

- A cell with 40 1/2<111> dislocation loops of radius 6 u.c., 5 <100> dislocation loops of radius 6 

u.c. and 0.7 % of single vacancies; this cell is named L&V, and it is illustrated in Fig. 10. 

Table 4. Characteristics of the MD cells with different types of defects. The ‘&’ symbol stands for ‘and’, 
and the ‘/’ symbol is used to separate the characteristics of the ½<111> dislocation loops (L111) from 
those of the <100> loops (L100), that is, left side for L111 and right side for L100. 

 
NI & NV 

RI & RV  
(u. c.) 

Nextra & Nvacant Cextra & Cvacant (%) ρI & ρV (nm-3) 

I&V 2895 & 2895 - 2895 & 2895 0.28 & 0.28 0.242 & 0.24 

L111&V 40 & 7168 6 & - 7694 & 7168 0.75 & 0.70 3.3x10-3 & 0.60 

L111&L100 40 & 5 6 & 6 7694 & 1113 0.75 & 0.11 3.3x10-3 & 4.2x10-4 

L&V 40 / 5 & 7168 6 / 6 & - 
7694 / 1113  

& 7168 
0.75 / 0.11  

& 0.70 
3.3x10-3 / 4.2x10-4  

& 0.60 

 

After relaxation of the MD cells, we used the Wigner-Seitz [49] analysis proposed in the Ovito software 

[30] to count the effective numbers of Is and Vs in the cells, and we found the nominal values. Note that 

we previously verified that this analysis provides correct values in our model cells, i.e., in those containing 

only one type of defects (but it does not work for C15 clusters). Knowing the concentration of extra-atoms 

and vacant sites, and using the appropriate relaxation volumes, we calculated the predicted changes in 

lattice parameter using the following relationship:  
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3
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,

rel
predicted extra vacant I V

Is Vs

c =   Eq. ( 8 ) 

We then compared these values with those ( −MD XRD ) we actually determined from computational XRD 

performed on the MD cells listed in Table 4. Results are given in Table 5. It readily appears that there is 

an excellent agreement between predicted and XRD computed values, the difference between the two 

being less than 2 %, which is typically the standard deviation we have on the relaxation volume values. 

This agreement also holds for the change in the cell volume (not shown here), with an even better 

accuracy as the standard deviation is lower for the corresponding rel values. Consequently, it can be 

safely assumed that summing the different relaxation volumes provides reasonable estimates of the 

overall change in the lattice parameter, and also, when applicable [9], in the macroscopic volume change. 

This additivity can hence be safely used in mesoscale models such as object kinetic Monte Carlo or cluster 

dynamics simulations, and also to derive defect concentrations from experimental strain measurements 

in actual irradiated crystals. This result also confirms, if it were necessary, that using elasticity theory to 

characterize and describe defects through their elastic dipole tensor is a valid approach.  

Table 5: Predicted strain level (predicted) using the relaxation volumes (Ωrel) found in this work and the 
defect concentrations given in Table 4, and the actual strain (MD-XRD) as determined by computational 
XRD on the MD cells presented in Table 4; the difference between the two strain values is also provided. 
The ‘&’ symbol stands for ‘and’, and the ‘/’ symbol is used to separate the characteristics of the ½<111> 
dislocation loops (L111) from those of the <100> loops (L100), that is, left side for L111 and right side for 
L100. 

 I&V L111&V L111&L100 Ls&V 

rel (0) 1.5 & -0.11 0.905 & -0.11 0.905 & 0.873 0.905 / 0.873 & -0.11 

predicted (%) 0.131 0.201 0.258 0.232 

MD-XRD (%) 0.129 0.198 0.259 0.237 

difference (%) 1.5 1.5 0.4 2 

 

 

Fig. 10. MD cell containing prismatic <100> (pink) and ½<111> (green) dislocation loops with randomly 
oriented Burgers vector. 
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4. Conclusion 

To summarize, in this work, we developed an in silico approach to determine the relaxation 

volume (per extra-atom or vacant site), here called rel, of crystalline defects commonly observed in bcc 

Fe. We first created MD cells containing a unique type of defects, the size and density of which were 

perfectly controlled, and we verified that the defect formation energies exhibited consistent values and 

evolution with respect to experimental and computed results available in the literature. Second, we 

performed a dual calculation of the relaxation volumes, using both real space and reciprocal space data. 

More precisely, for the former, we computed the change in the MD cell dimensions. For the latter, we 

implemented a computational diffraction method to generate 2D-XRD maps of the scattered intensity 

arising from the MD cells; rel values were then computed from the (elastic) lattice strain derived from 

the analysis of the XRD signals. Our main results put forward that <110> dumbbell SIAs have the largest 

rel (~1.5 0). C15 clusters showed a lower rel than the dumbbell SIAs, and slightly different values for 

the two studied cluster sizes were found: ~0.91 0 for C1512 and ~0.98 0 for C1548. Both ½<111> and 

<100> interstitial dislocation loops exhibit a relaxation volume per extra-atom close to one atomic 

volume, ~0.905 0 and ~0.873 0, respectively; although both values appear to be very close, one should 

prefer to discriminate the two, because predicted lattice strain using these rel values can have a higher 

accuracy than this difference between the two dislocation orientations. Regarding vacancy-type defects, 

single vacancies are characterized by the smallest rel (~-0.11 0). This latter exhibit, for cavities, an 

asymptotic behavior with increasing defect size and hence tends to zero for large clusters.  

Using these rel values, we predicted the lattice strain in MD cells containing several types of 

defects. We showed that the relaxation volumes can be summed up to precisely (within 2 %) estimate 

the change in the lattice parameter. The relaxation volumes that we here provide can finally be used to 

feed larger-scale simulation models such as cluster dynamics. Moreover, the proposed methodology can 

be applied to any other single or multi-elemental material, providing the defect creation process is well 

controlled. One can cite in particular concentrated solid solution and high-entropy alloys which are 

currently attracting a lot of interest and for which multi-scale modelling and experimental data are 

required [50,51].   
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Appendix A 

To provide a more complete data set of the defect characteristics, we modelled the trends in the 

defect energetics we observed applying commonly used equations to fit the formation energies. For 

interstitial dislocation loops, we applied the following analytical relationship that relies on the isotropic 

and anisotropic theory of elasticity to calculate the elastic contribution of the loop to Ef
I (see e.g. [31]): 

 𝐸𝑓
𝐼 = 𝑎0√𝑁𝑒𝑥𝑡𝑟𝑎𝑙𝑛𝑁𝑒𝑥𝑡𝑟𝑎 + 𝑎1√𝑁𝑒𝑥𝑡𝑟𝑎 + 𝑎2 Eq. ( A1 ) 

where Nextra is the number of interstitials, and a0, a1 and a2 are the fitting parameters. The fitted curves 

for <100> and ½<111> dislocation loops are presented in Fig. A1-a and Fig. A1-b, respectively, and the 

fitting parameters are given in Table A1. An excellent agreement is obtained up to ~6000 interstitials for 

both types of dislocation loops. Regarding the formation energy of a single cavity, it was fitted to the 

popular “capillary” model [52]: 

 𝐸𝑓
𝑉 = 𝑎0𝑁𝑣𝑎𝑐𝑎𝑛𝑡

2 3⁄ + 𝑎1 Eq. ( A2 ) 

The resulting fitted curve is shown in Fig. A1-c, and the fitting parameters are given in Table A2. A good 

agreement is obtained over the whole studied defect concentration range.  
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Table A1. Fitting parameters of the formation energy of a single loop fitted by linear regression to 𝐸𝑓
𝐼 =

𝑎0√𝑁𝑒𝑥𝑡𝑟𝑎𝑙𝑛𝑁𝑒𝑥𝑡𝑟𝑎 + 𝑎1√𝑁𝑒𝑥𝑡𝑟𝑎 + 𝑎2. R2 is the coefficient of determination of the fit. 

 

Table A2. Fitting parameters of the formation energy of a single cavity fitted by linear regression to 

𝐸𝑓
𝑉 = 𝑎0𝑁𝑣𝑎𝑐𝑎𝑛𝑡

2 3⁄ + 𝑎1 . R2 is the coefficient of determination of the fit. 

Fitting parameters 
R2 

a0 a1 

3.32 ± 0.004 -1.774 ± 0.978 0.999 

 

Showing the formation energy as a function of the concentration of extra-atoms or vacant sites 

(Fig.5) could lead to the misleading conclusion that changes in Ef are exclusively due to changes in the 

defect concentration. But in fact, the most important factor is the defect size. To show more conveniently 

the effect of this parameter on the defect formation energy, in Fig. A2 is plotted Ef per extra-atom or 

vacant site and per defect number, that is, Nextra/NI or Nvacant/NV, respectively (in other words, Ef is plotted 

as a function of the defect size expressed by the number of point defects they contain). The hierarchy in 

Dislocation-loop type 
Fitting parameters 

R2 
a0 a1 a2 

<100> 1.290 ± 0.097 4.599 ± 0.731 0.112 ± 1.817 0.998 

½<111> 0.737 ± 0.209 8.335 ± 1.687 -11.416 ± 5.977 0.999 

Fig. A1. Formation energy per extra-atom, 
fitted to Eq. ( A1 ), of a) a <100> loop and b) a 
½<111> loop; c) formation energy per vacant 
site, fitted to Eq. ( A2 ), of a cavity. Fitting 
parameters for the <100> and ½<111> loops 
are given in Table A1 and for the cavity in Table 
A2. 



30 

 

defect formation energy observed in Fig.5 is obviously maintained. More importantly, for interstitials, we 

can see that Ef coincides for dislocation loops of fixed radius (6 u.c.) in MD cells containing 4 loops (upside 

down triangle dots in Fig. A2a) and 20 loops (solid lines in Fig. A2a); this result indicates that the defect 

size is the most important parameter regarding the formation energy (except for dumbbells at high 

concentration, as explained in section 3.1). This statement holds for the vacancy-type defects, as it can 

clearly be observed in Fig. A2b that the energy curves and data points coincide when the defects have 

the same size, irrespective of their number (at least, in this concentration range). 

 

Fig. A2. Defect formation energies, Ef. a) Energy of interstitial-type defects per extra-atom (Ef
I/Nextra) as a 

function of the defect size (Nextra/NI). b) Energy of vacancy-type defects per vacant site (Ef
V/Nvacant) as a 

function of defect size (Nextra/NV). Defect types are explicitly mentioned in the figure captions, with L100 

and L111 referring to <100> and ½<111> dislocation loops, respectively. r is the defect radius. Cells with 

dislocation loops of fixed radius (upside down triangle dots) contain 4 loops.  

 


