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Abstract—We study the zero-error source coding problem in
which an encoder with Side Information (SI) g(Y ) transmits
source symbols X to a decoder. The decoder has SI Y and wants
to recover f(X,Y ) where f, g are deterministic. We exhibit a
condition on the source distribution and g that we call “pairwise
shared side information”, such that the optimal rate has a single-
letter expression. This condition is satisfied if every pair of source
symbols “share” at least one SI symbol for all output of g; in
the case f(X,Y ) = X , the PX,Y and g that satisfy it, induce the
worst optimal rate. More generally for all f , it has a practical
interpretation, as Y models a request made by the encoder on an
image X , and g(Y ) corresponds to the type of request. It also
has a graph-theoretical interpretation: under “pairwise shared
side information” the characteristic graph can be written as a
disjoint union of OR products. In the case where the source
distribution is full-support, we provide an analytic expression
for the optimal rate. We develop an example under “pairwise
shared side information”, and we show that the optimal coding
scheme outperforms several strategies from the literature.

I. INTRODUCTION

Consider the source coding scenario depicted in Figure 1
where two correlated sequences (Xn, Y n) of discrete i.i.d.
random source symbols are drawn with a distribution Pn

X,Y .
The encoder knows Xn, has (g(Yt))t≤n as side information,
and transmits information to the decoder through a perfect
channel of capacity R. The decoder has the side information
Y n and wants to reconstruct (f(Xt, Yt))t≤n, where f, g are
deterministic. What is the minimal R such that (f(Xt, Yt))t≤n

can be retrieved by the decoder with probability of error 0?
This coding problem appears in video compression [1], [2],

where Xn models a set of images known at the encoder.
The decoder does not always want to retrieve each image,
but has instead a sequence Y n of particular requests for each
image, e.g. detection: cat, dog, car, bike; or scene recognition:
street/city/mountain, etc... The encoder does not know the
decoder’s exact request but has prior information about it (e.g.
type of request), which is modeled by (g(Yt))t≤n.

The problem of Figure 1 relates to the “restricted inputs”
zero-error problem of Alon and Orlitsky [3], as it is obtained
as a special case by taking g constant and f(X,Y ) = X .
The optimal rate in “restricted inputs” is given by asymptotic
chromatic entropies of graph products. Koulgi et al. show in
[4] that this optimal rate is equal to the complementary graph

Encoder Decoder(
g(Yt)

)
t≤n Y n

(
f(Xt, Yt)

)
t≤nXn ⧸

R

Fig. 1: Zero-error coding for computing with side information
at the encoder.

entropy, introduced in [5] by Körner and Longo. No single-
letter expression for these quantities is known. In [6], Marton
shows that these quantities are closely related to the Shannon
capacity of a graph (see [7]), which is a wide open problem.

The similar “unrestricted inputs” zero-error setting of [3]
has a single-letter formula for the optimal rate, but its zero-
error constraint is much stronger than “restricted inputs” as
(Xn, Y n) can take values out of the support of Pn

X,Y .
Now the scheme of Figure 1 has been studied with different

coding constraints than zero-error “restricted inputs”, and
the optimal rate has been characterized in each case: the
lossless case by Orlitsky and Roche in [8], the lossy case by
Yamamoto in [9], and the zero-error “unrestricted inputs” case
by Shayevitz in [10]. These results can only be used as bounds
here: the zero-error “restricted inputs” problem depicted in
Figure 1 does not have a characterization of the optimal rate.

Numerous extensions of this problem have been studied re-
cently. The distributed context, for instance, has an additional
encoder which encodes Y before transmitting it to the decoder.
Achievability schemes have been proposed for this setting by
Krithivasan and Pradhan in [11] using abelian groups; by Basu
et al. in [12] using hypergraphs for the case with maximum
distortion criterion; and by Malak and Médard in [13] using
hyperplane separations for the continuous lossless case.

Another related context is the network setting, where the
function of source random variables from source nodes has
to be retrieved at the sink node of a given network. For tree
networks, the feasible rate region is characterized by Feizi and
Médard in [14] for networks of depth one; and by Sefidgaran
and Tchamkerten in [15] under a Markov source distribution
hypothesis. In [16], Ravi and Dey consider a bidirectional
relay with zero-error “unrestricted inputs” and characterize the
rate region for a specific class of functions. In [17], Guang et



al. study zero-error function computation on acyclic networks
with limited capacities, and give an inner bound based on
network cut-sets. For both distributed and network settings,
the “restricted inputs” zero-error problem remains open.

In this paper, we formulate an hypothesis on PX,Y and g
that we call “pairwise shared side information” that allows us
to derive a single-letter characterization of the optimal rate.
This hypothesis is satisfied if every pair of source symbols
“share” at least one side information symbol for all output
of g. It has graph-theoretic interpretations, as the single-letter
formula stems from the particular structure of the characteristic
graph of the problem: a disjoint union of OR products.
Moreover, this result is of practical interest as it covers the
cases with PX,Y full-support, without any assumption on f, g.

In Section II, we present formally the problem of Figure
1. In Section III, we build the characteristic graphs and give
an asymptotic formula for the general case. In Section IV,
we make the “pairwise shared side information” assumption
and give a single-letter characterization of the optimal rate,
along with a refinement for PX,Y full-support. We prove it in
Section VI and illustrate it in Section V with an example.

II. PROBLEM STATEMENT

We denote sequences by xn = (x1, ..., xn). The set of
probability distributions over X is denoted by ∆(X ). The
distribution of X is denoted by PX ∈ ∆(X ), its support is
denoted by supp PX . Given the sequence length n ∈ N⋆, we
denote by ∆n(X ) ⊂ ∆(X ) the set of empirical distributions
of sequences from Xn. We denote by {0, 1}∗ the set of binary
words. The setting of Fig. 1 is described by:

- Four finite sets X , Y , U , Z , a couple of random variables
(X,Y ) ∈ X ×Y drawn with the distribution PX,Y (with
PX and PY full-support), and deterministic functions

f : X × Y → U , (1)
g : Y → Z. (2)

For n iterated source uses, we denote by (Xn, Y n)
the sequence of n independent copies of (X,Y ), with
probability distribution Pn

X,Y ∈ ∆(Xn × Yn).
- The encoder observes the realizations of Xn, (g(Yt))t≤n

and sends information to the decoder over a noiseless
channel of capacity R ≥ 0.

- The decoder has to recover (f(Xt, Yt))t≤n based on the
encoder message and the side information Y n.

Definition II.1 (Zero-error source code, achievable rates)
Given n ∈ N⋆, a (n,Rn)-zero-error source code consists
of an encoding function ϕe : Xn × Zn → {0, 1}∗ and a
decoding function ϕd : Yn × {0, 1}∗ → Un such that:

1) the set ϕe(Xn ×Zn) is prefix-free,
2) Rn = 1

nE
[
l ◦ ϕe

(
Xn, (g(Yt))t≤n

)]
, where l(·) denotes

the length of a binary word,
3) the “restricted inputs” zero-error property is satisfied:

∀(xn, yn) ∈ suppPn
X,Y ,

ϕd

(
yn, ϕe

(
xn,

(
g(yt)

)
t≤n

))
=

(
f(xt, yt)

)
t≤n

. (3)

A rate R is achievable if there exists a sequence of (n,Rn)-
zero-error source codes such that limnRn = R. The optimal
rate is denoted by R∗ = inf{R ≥ 0 |R is achievable}.

The prefix-free hypothesis guarantees that the decoder
knows when the encoder’s message stops. A relaxation of this
hypothesis is considered in [3, Theorem 3], without influence
on the asymptotic optimal rate. Satisfying all three conditions
imply a correct decoding with probability one.

III. GENERAL SETTING

A probabilistic graph G is a tuple (V, E , PV ), where V is
the set of vertices, E is the set of edges, and PV ∈ ∆(V) is
an underlying probability distribution on the vertices.

We first build the characteristic graph G[n], which is a prob-
abilistic graph that captures the zero-error encoding constraints
on a given number n of source uses. It differs from the graphs
used in [10], as we do not need a cartesian representation of
these graphs to study the optimal rates. Furthermore, it has
a vertex for each possible realization of

(
Xn,

(
g(Yt)

)
t≤n

)
known at the encoder, instead of Xn, as in [18] and [3].

Definition III.1 (Characteristic graph G[n]) The character-
istic graph G[n] is defined by:

- Xn ×Zn as set of vertices with distribution Pn
X,g(Y ),

- (xn, zn)(x′n, z′n) are adjacent if zn = z′n and there
exists yn ∈ g−1(zn) such that:

∀t ≤ n, PX,Y (xt, yt)PX,Y (x
′
t, yt) > 0, (4)

and ∃t ≤ n, f(xt, yt) ̸= f(x′t, yt); (5)

where g−1(zn) =
{
yn ∈ Yn

∣∣ (g(yt))t≤n
= zn

}
.

The characteristic graph G[n] is designed with the same core
idea as in [18]: (xn, zn) and (x′n, zn) are adjacent if there
exists a side-information symbol yn compatible with the obser-
vation of the encoder (i.e. zn = z′n and yn ∈ g−1(zn)), such
that f(xn, yn) ̸= f(x′n, yn). In order to prevent erroneous
decodings, the encoder must map adjacent pairs of sequences
to different codewords; hence the use of graph colorings.

Definition III.2 (Coloring, independent subset) Let G =
(V, E , PV ) be a probabilistic graph. A subset S ⊆ V is
independent if xx′ /∈ E for all x, x′ ∈ S . Let C be a finite
set (the set of colors), a mapping c : V → C is a coloring if
c−1(i) is an independent subset for all i ∈ C.

The chromatic entropy of G[n] gives the best rate of n-shot
zero-error encoding functions, as in [3].

Definition III.3 (Chromatic entropy Hχ) The chromatic
entropy of a probabilistic graph G = (V, E , PV ) is defined by

Hχ(G) = inf
{
H
(
c(V )

) ∣∣ c is a coloring of G
}
. (6)

Theorem III.4 (Optimal rate) The optimal rate writes:

R∗ = lim
n→∞

1

n
Hχ(G[n]). (7)



Proof Outline. An encoding function ϕe is a coloring of G[n]

if and only if it satisfies (3) with some decoding function ϕd.
Thus the best achievable rate writes

R∗ = inf
n

inf
ϕe coloring of G[n]

H
(
ϕe

(
Xn,

(
g(Yt)

)
t≤n

))
(8)

= lim
n→∞

1

n
Hχ(G[n]). (9)

where (9) comes from Fekete’s lemma and (6).
A general single-letter expression for R∗ is missing, due

to the lack of intrinsic structure of G[n]. In Section IV, we
introduce a hypothesis that gives structure to G[n] and allows
us to derive a single-letter expression for R∗.

IV. PAIRWISE SHARED SIDE INFORMATION

Definition IV.1 The distribution PX,Y and the function g
satisfy the “pairwise shared side information” condition if

∀z ∈ Z,∀x, x′ ∈ X ,∃y ∈ g−1(z), PXY (x, y)PXY (x
′, y) > 0.

(10)

This means that for all z output of g, every pair (x, x′)
“shares” at least one side information symbol y ∈ g−1(z).

This condition is of great interest, because the pairs
(PX,Y , g) that satisfy the “pairwise shared side information”
hypothesis are the ones that induce the worst optimal rate
H(X|g(Y )) in the case f(X,Y ) = X . For instance, any full-
support distribution PX,Y satisfies the “pairwise shared side
information” hypothesis.

Definition IV.2 (AND, OR product) Let G1=(V1, E1, PV1
),

G2 = (V2, E2, PV2) be two probabilistic graphs; their AND
(resp. OR) product denoted by G1 ∧ G2 (resp. G1 ∨ G2) is
defined by: V1 × V2 as set of vertices, PV1

PV2
as probability

distribution on the vertices, and (v1v2), (v
′
1v

′
2) are adjacent if

v1v
′
1 ∈ E1 AND v2v

′
2 ∈ E2, (11)

resp. (v1v′1 ∈ E1 and v1 ̸= v′1) OR (v2v
′
2 ∈ E2 and v2 ̸= v′2);

with the convention that all vertices are self-adjacent. We
denote by G∧n

1 (resp. G∨n
1 ) the n-th AND (resp. OR) power.

For the “restricted inputs” source coding problem in [3], the
n-shot characteristic graph is the n-th AND product of the one-
shot characteristic graph, and the optimal rate in this problem
limn→∞

1
nHχ(G

∧n) does not have a single-letter expression.
However, for the “unrestricted inputs” setting there exists such
a formula: the Körner graph entropy introduced in [19], which
relates to the OR product as shown in Proposition IV.4.

Definition IV.3 (Körner graph entropy Hκ) For all G =
(V, E , PV ), let Γ(G) be the collection of independent sets of
vertices in G. The Körner graph entropy of G is defined by

Hκ(G) = min
V ∈W∈Γ(G)

I(W ;V ), (12)

where the minimum is taken over all distributions PW |V ∈
∆(W)V , with W = Γ(G) and the constraint that the random
vertex V belongs to the random set W with probability one.

Proposition IV.4 (Properties of Hκ) [3, Theorem 5] For all
probabilistic graphs G and G′,

Hκ(G) = lim
n→∞

1

n
Hχ(G

∨n), (13)

Hκ(G ∨G′) = Hκ(G) +Hκ(G
′). (14)

By using a convex combination of Körner graph entropies,
we provide a single-letter expression for the optimal rate R∗.

Definition IV.5 (Auxiliary graph Gf
z ) For all z ∈ Z , we

define the auxiliary graph Gf
z by

- X as set of vertices with distribution PX|g(Y )=z ,
- xx′ are adjacent if f(x, y) ̸= f(x′, y) for some y ∈
g−1(z) ∩ suppPY |X=x ∩ suppPY |X=x′ .

Theorem IV.6 (Pairwise shared side information) If PX,Y

and g satisfy (10), the optimal rate writes:

R∗ =
∑
z∈Z

Pg(Y )(z)Hκ(G
f
z ). (15)

The proof is in Section VI, the keypoint is the particular
structure of G[n]: a disjoint union of OR products.

Remark IV.7 The “pairwise shared side information” as-
sumption (10) implies that the adjacency condition (4) is
satisfied, which makes G[n] a disjoint union of OR products.
Moreover, Körner graph entropies appear in the final expres-
sion for R∗, even if G[n] is not an n-th OR power.

Now consider the case where PX,Y is full-support. This
is a sufficient condition to have (10). The optimal rate in
this setting is derived from Theorem IV.6, which leads to the
analytic expression in Theorem IV.8.

Theorem IV.8 (Optimal rate when PX,Y is full-support)
When PX,Y is full-support, the optimal rate writes:

R∗ =H
(
j(X, g(Y ))

∣∣g(Y )
)
, (16)

where the function j returns a word in U∗, defined by

j : X × Z → U∗ (17)

(x, z) 7→
(
f(x, y′)

)
y′∈g−1(z)

.

Proof Outline. By Theorem IV.6, R∗ =∑
z∈Z Pg(Y )(z)Hκ(G

f
z ). It can be shown that Gf

z is
complete multipartite for all z as PX,Y is full support; and it
satisfies Hκ(G

f
z ) = H

(
j(X, g(Y ))

∣∣g(Y ) = z
)
.

V. EXAMPLE

In this example, the “pairwise shared side information”
assumption is satisfied and R∗ is strictly less than a conditional
Huffman coding of X knowing g(Y ); and also strictly less
than the optimal rate without exploiting g(Y ) at the encoder.

Consider the probability distribution and function outcomes
depicted in Figure 2, with U = {a, b, c}, X = {0, ..., 3},
Y = {0, ..., 7}, and Z = {0, 1}. Let us show that the “pairwise
shared side information” assumption is satisfied. The source



PX,Y
Y

X

0 1 2 3 4 5 6 7

0

1

2

3

0.1 0.05 ∗ ∗
0.1 ∗ 0.05 ∗
0.1 ∗ ∗ 0.05

∗ 0.05 0.05 0.05

0.05 0.05 ∗ ∗
0.05 0.05 0.05 ∗
∗ 0.05 ∗ ∗
∗ 0.05 ∗ 0.05

g(Y ) = 0 g(Y ) = 1

f(·, ·) Y

X

0 1 2 3 4 5 6 7

0

1

2

3

a b ∗ ∗
a ∗ b ∗
b ∗ ∗ c

∗ c c c

b a ∗ ∗
a a b ∗
∗ b ∗ ∗
∗ c ∗ c

g(Y ) = 0 g(Y ) = 1

Fig. 2: An example of PX,Y and g that satisfy (10); along
with the outcomes f(X,Y ). The elements outside suppPX,Y

are denoted by ∗.

symbols 0, 1, 2 ∈ X share the SI symbol 0 (resp. 5) when
g(Y ) = 0 (resp. g(Y ) = 1). The source symbol 3 ∈ X
shares the SI symbols 1, 2, 3 with the source symbols 0, 1, 2,
respectively, when g(Y ) = 0; and the source symbol 3 shares
the SI symbol 5 with all other source symbols when g(Y ) = 1.

Since the “pairwise shared side information” assumption is
satisfied, we can use Theorem IV.6; the optimal rate writes

R∗ = Pg(Y )(0)Hκ(G
f
0 ) + Pg(Y )(1)Hκ(G

f
1 ). (18)

First we need to determine the probabilistic graphs Gf
0 and

Gf
1 . In Gf

0 , the vertex 0 is adjacent to 2 and 3, as f(0, 0) ̸=
f(2, 0) and f(0, 1) ̸= f(3, 1). The vertex 1 is also adjacent to 2
and 3 as f(1, 0) ̸= f(2, 0) and f(1, 2) ̸= f(3, 2). Furthermore
PX|g(Y )=0 is uniform, hence Gf

0 = (C4,Unif(X )) where C4

is the cycle graph with 4 vertices.
In Gf

1 , the vertices 1, 2, 3 are pairwise adjacent as f(1, 5),
f(2, 5) and f(3, 5) are pairwise different; and 0 is adjacent to
1, 2 and 3 because of the different function outputs generated
by Y = 4 and Y = 5. Thus, Gf

1 = (K4, PX|g(Y )=1) with
PX|g(Y )=1 = ( 14 ,

3
8 ,

1
8 ,

1
4 ) and K4 is the complete graph with

4 vertices. An illustration of C4 and K4 is given in Figure 3.
Now let us determine Hκ(G

f
0 ) and Hκ(G

f
1 ). On one hand,

Hκ(G
f
0 ) = H(V0)− max

V0∈W∈Γ(Gf
0 )
H(V0|W ) (19)

= 2− 1 = 1, (20)

with V0 ∼ PX|g(Y )=0 = Unif(X ); and where H(V0|W ) in
(19) is maximized by taking W = {0, 1} when V ∈ {0, 1},
and W = {2, 3} otherwise.

On the other hand,

Hκ(G
f
1 ) = min

V1∈W∈Γ(Gf
1 )
I(W ;V1) (21)

= H(V1) ≃ 1.906, (22)

0.05 0.20.05 0.2

0.05 0.20.05 0.2

Fig. 3: The graph G depicted here with its underlying
probability distribution satisfies G = (C4,Unif({1, ..., 4})) ⊔
(K4,Unif({1, ..., 4})); where C4 (resp. K4) is the cycle (resp.
complete) graph with 4 vertices.

with V1 ∼ PX|g(Y )=1; where (22) follows from Γ(Gf
1 ) =

{{0}, ..., {3}}, as Gf
1 is complete. Hence R∗ ≃ 1.362.

The rate that we would obtain by transmitting X knowing
g(Y ) at both encoder and decoder with a conditional Huffman
algorithm writes: RHuff = H(X|g(Y )) ≃ 1.962.

The rate that we would obtain without exploiting g(Y ) at the
encoder is RNo g = H(X) ≃ 1.985, because of the different
function outputs generated by Y = 4 and Y = 5.

Finally, H(f(X,Y )|Y ) ≃ 0.875.
In this example we have

H(X) = RNo g > RHuff > R∗ > H(f(X,Y )|Y ). (23)

This illustrates the impact of the side information at the
encoder in this setting, as we can observe a large gap between
the optimal rate R∗ and RNo g .

VI. PROOF OF THEOREM IV.6

A. Definitions

We will use the disjoint union of probabilistic graphs, which
generalizes the existing concept of a disjoint union of graphs
without underlying probability distribution [20, Section 1.4].
An example of disjoint union is depicted in Figure 3. We
also need to formalize the concept of isomorphic probabilistic
graphs, i.e. same structure and underlying distribution.

Definition VI.1 (Disjoint union of probabilistic graphs)
Let N ∈ N⋆; let G = (V, E , PV ) and for all i ≤ N , let
G̃i = (Vi, Ei, PVi). We say that G is the disjoint union of the
(G̃i), denoted by G =

⊔
i≤N G̃i, if the following is satisfied:

- V is the disjoint union of the sets (Vi)i≤N , i.e. V =
⋃

i Vi

and Vi ∩ Vi′ = ∅ for all i ̸= i′;
- For all v, v′ ∈ V , let i, i′ be the unique indexes such that
v ∈ Vi and v′ ∈ Vi′ . Then if i = i′, vv′ ∈ E ⇐⇒ vv′ ∈
Ei; if i ̸= i′, vv′ /∈ E;

- For all i ≤ n, PV |V ∈Vi
= PVi .

Definition VI.2 (Isomorphic probabilistic graphs) Let
G1 = (V1, E1, PV1

) and G2 = (V2, E2, PV2
). We say that G1

is isomorphic to G2 (denoted by G1 ≃ G2) if there exists an
isomorphism between them, i.e. a bijection ψ : V1 → V2 such
that:

- For all v1, v′1 ∈ V1, v1v′1 ∈ E1 ⇐⇒ ψ(v1)ψ(v
′
1) ∈ E2,

- For all v1 ∈ V1, PV1(v1) = PV2

(
ψ(v1)

)
.



B. Main proof

Let us specify the adjacency condition in G[n] under the
assumption (10). Two vertices are adjacent if they satisfy (4)
and (5); however (4) is always satisfied under (10). Thus
(xn, zn)(x′n, zn) are adjacent if zn = z′n and

∃yn ∈ g−1(zn),∃t ≤ n, f(xt, yt) ̸= f(x′t, yt). (24)

It can be observed that the condition (24) is the adjacency con-
dition of an OR product of adequate graphs; more precisely,

G[n] =
⊔

zn∈Zn

∨
t≤n

Gf
zt . (25)

Although G[n] cannot be expressed as an n-th OR power, we
will show that its chromatic entropy asymptotically coincide
with that of an appropriate OR power: we now search for an
asymptotic equivalent of Hχ(G[n]).

Definition VI.3 Sn is the set of colorings of G[n] that can
be written as (xn, zn) 7→ (Tzn , c̃(xn, zn)) for some mapping
c̃ : Xn ×Zn → C̃; where Tzn denotes the type of zn.

In the following, we define Zn .
=

(
g(Yt)

)
t≤n

. Now we need
several Lemmas. Lemma 1 states that the optimal coloring
c(xn, zn) of G[n] has the type of zn as a prefix at a negligible
rate cost. Lemma 2 is an adapted version for chromatic
entropies of the following observation: minimum colorings on
each connected component induce a minimum coloring of the
whole graph. Lemma 3 gives an asymptotic formula for the
minimal entropy of the colorings from Sn.

Lemma 1 The following asymptotic comparison holds:

Hχ(G[n]) = inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) +O(log n). (26)

Lemma 2 Let N ∈ N⋆; let G = (V, E , PV ) and for all i ≤ N ,
let G̃i = (Vi, Ei, PVi

) be probabilistic graphs such that G =⊔
i G̃i and G̃1 ≃ ... ≃ G̃N . Then we have Hχ(G) = Hχ(G̃1).

Lemma 3 The following asymptotic comparison holds:

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) = n
∑
z∈Z

Pg(Y )(z)Hκ(G
f
z ) + o(n).

(27)

An extended version with complete proofs of Lemmas 1, 2,
3 can be found at [21].

Lemma 2 is proved using the concavity of the entropy,
which implies the following: an optimal coloring colors all
the isomorphic connected components the same way.

The proof of Lemma 3 relies on the decomposition G[n] =⊔
Qn∈∆n(Z)G

Qn

[n] , where GQn

[n] is the subgraph induced by
the vertices (xn, zn) such that the type of zn is Qn. We
show that GQn

[n] is a disjoint union of isomorphic graphs
whose chromatic entropy is given by Lemma 2 and (14):∣∣Hχ(G

Qn

[n] )−n
∑

z∈Z Qn(z)Hκ(G
f
z )
∣∣ ≤ nϵn. Finally, uniform

convergence arguments enable us to conclude.

Now let us combine these results together:

R∗ =
1

n
Hχ(G[n]) + o(1) (28)

=
1

n
inf

c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) + o(1) (29)

=
∑
z∈Z

Pg(Y )(z)Hκ(G
f
z ) + o(1), (30)

where (28) comes from Theorem III.4, (29) comes from
Lemma 1, and (30) comes from Lemma 3. The proof of
Theorem IV.6 is complete.
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