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Abstract

Engineer species, such as gorgonians, provide several ecosystem services and play a significant role in

the maintenance of biodiversity, which is why it is important to identify optimal strategies for their

conservation.  We  aimed  to  test  an  ecological  niche  modelling  approach  in  the  marine  shallow

environment and identify the ecological niche of various species of gorgonians in order to lay the

scientific foundation for future conservation actions. We analyzed a unique dataset of spatialized

inventories on a regular grid (< 800 m) along 450 km of coastline of five gorgonian species commonly

found in the Mediterranean shallow habitats (10-50 m deep). We replicated data collection in 2013

and 2020. Fourteen environmental predictors derived from the most advanced geomorphological

and hydrological data were tested to assess the ecological niche of the five species using maximum

entropy  (MaxENT).  We tested  the  sensitivity  of  the  model  fit  to  sampling  bias  by  reducing  the

number of occurrences and their geographic extent. Our results showed that there was a difference

in the spatial distribution of the five gorgonian species in the Gulf of Lion:  Eunicella singularis and

Leptogorgia  sarmentosa were  widely  distributed  while  the  occurrence  of  Paramuricea  clavata,

Corallium rubrum and  Eunicella  cavolini was  limited.  The model  confirmed that  depth,  rugosity,

slope,  sea  surface  temperature,  current  and  turbidity  can  be  significant  drivers  for  gorgonians



distribution, but in different associations, enabling one to differentiate the niche of four of the five

species.  Moreover,  the  model  did  not  always  identify  the  species  specific  drivers  suggested  in

previous studies. Despite the model identifying a similar niche for E. singularis and E. cavolini (based

on the environmental predictors tested),  the two species, in fact,  displayed very different spatial

distributions  in  the  area.   For  all  the  species,  except  E.  cavolini,  the  predicted  suitable  habitat

distribution from our model matched the observed spatial distribution. The reduction of the number

of  presence observations did not alter  the quality  of  the ecological  niche models as long as the

observation points were spread over the entire variability  range of  predictors.  The latter can be

achieved  by  only  including  presence  observations  from  highly  protected  zones  of  the  marine

protected areas of the region. Our results provide a greater understanding of the factors shaping the

distribution of five gorgonian species commonly found in Mediterranean shallow areas. This is an

essential step in the development of spatial planning for marine biodiversity conservation aimed at

these key engineering species and their resilience to climate change.
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Introduction

The maintenance of the ecosystem services provided by the ocean that contribute to human welfare

is  one  of  the  17  sustainable  development  goals  identified  by  the  IUCN  for  the  next  decade

(www.iucn.org). Such an objective is encompassed in the Marine Spatial Planning framework which

aims  to  take  into  account  the  interactions  between different  human  activities  at  sea,  including

biodiversity protection (DIRECTIVE 2014/89/UE). One step in marine spatial planning is mapping the

ocean biodiversity and the ecosystem services they deliver, together with understanding how they

function,  in  order  to  be  able  to  forecast  their  evolution under  different  development  scenarios

(Bailey, 2010).



During the last  20 years,  several  scientific programs focused on obtaining spatial information on

marine habitats and the distribution range of marine species in order to begin implementing marine

spatial planning. Marine species inventories, however, have generally been restricted to a limited

number  of  locations,  often  in  Marine  Protected  Areas  (MPAs),  although  recent  citizen  science

projects attempted to expand this spatial scale  (Lorenzo et al., 2011; Ponti et al., 2019). Ecological

niche modelling that requires a limited number of observations is a powerful complementary tool

which refines species habitat mapping and anticipates its dynamics in the face of global changes.

Ecological  niche  modelling  currently  relies  on  correlative  approaches  which  are  based  on  the

assumption  that  the  sustainable  environment  of  a  species  controls  its  range  and  allows  one  to

project species distribution range in the geographical space using environmental predictors (Sillero et

al., 2021). Among the ecological niche models (ENMs), the machine learning model MaxENT - based

on the principle of maximum entropy (MaxENT;  Phillips et al.,  2006) -  only uses  presence data,

outperforming  alternative statistical models such as GLMs that require presence-absence data, and

therefore an extended dataset  (Elith et al., 2006). Moreover, only using presence data avoids the

assumption that the absence of a species means habitat unsuitability, when in fact it could be the

result  of  either  disturbance  or  ineffective  dispersal  (Jarnevich  et  al.,  2015).  The  quality  of  the

occurrence  datasets  is  essential  to  establish  an  accurate  model.  The  most  commonly  reported

sampling  biases  are  geographic  biases  -  such as  partial  distributions and environmental  biases  -

leading  to  either  unreliable  results  or  to  niche  estimates  with  underrepresented  subsets  of  the

population environmental space (Sillero et al., 2021). The pressures on the habitats can also establish

a  bias  in  the  assessment  of  the  model.  Indeed,  the  absence  of  a  species  can  result  from

anthropogenic pressures irrespective of the characteristics of the habitat to support this species,

those being generally disregarded in niche modelling studies. Highly protected zones within MPAs

might therefore be preferred locations for presence observations in order to limit confusion between

predictors of  ecological  niche and habitats degraded by anthropogenic  pressures.  In the present

study, we aimed to develop an ecological niche model for the most common NW Mediterranean



gorgonian species using an extensive dataset of presence and absence observations covering a wide

range of environmental conditions in the NW Mediterranean Sea, including MPAs. 

Gorgonians (Alcyonacea) are among the most emblematic species of the Mediterranean Sea, playing

an essential role in shaping and structuring the biological diversity on the rocky temperate marine

habitats ( Gili & Coma, 1998; Bo et al., 2017). A high density of gorgonians visually forms underwater

forests (animal forests, sensu Rossi et al., 2017) which increase the biodiversity and the biomass of

the rocky bottom fauna inside their canopies (Ballesteros, 2006; Rossi et al., 2017).  Dense canopies

can reduce the impact of mucilaginous algae on understory communities, by trapping them in the

upper part of their three-dimensional structures (Piazzi et al., 2018), which also limits the presence of

invasive alien species  (Ponti et al., 2019). The underwater landscape formed by gorgonian forests

attracts  scuba  divers,  providing  significant  benefits  to  the  coastal  economy  (Ballesteros,  2006;

Bramanti  et  al.,  2011).  Most  gorgonians  have  a  pluri-decadal  life-span  with  slow  population

dynamics, slow growths and low recruitment rates. As a result, they are less resilient to frequent

disturbances compared to other species ( Linares et al., 2008; Garrabou et al., 2001; Sini et al., 2015;

Bo et al., 2017). The conservation of gorgonians is thus a major challenge for the maintenance of the

biodiversity  they shelter  and the economic  benefits  they provide.  In  the Mediterranean Sea,  20

species of gorgonians have been identified, two of which are endemic (Paramuricea macrospina and

Spinimuricea klavereni). At international level, four species are classified by the International Union

for Conservation of Nature (IUCN) as Critically Endangered (Isidella elongata), Endangered (Corallium

rubrum) and Vulnerable (Ellisella paraplexauroides and Paramuricea clavata) and only two (Ellisella

paraplexauroides and  Corallium  rubrum)  are  included  in  a  regional  legal  framework  (protocol

SPA/BD, Berne Convention and GFCM recommendation). At national level, among the 24 countries

and  territories  bordering  the  Mediterranean,  13  implemented  specific  national  laws  for  the

protection  of  gorgonians  but  they  only  protect  one  species  (C.  rubrum),  with  the  exception of



Montenegro and Croatia whose national laws also protect  Eunicella cavolini,  Eunicella stricta and

Eunicella verrucosa (Bo et al., 2017). 

Among the Mediterranean gorgonian species, five are common in the rocky communities of shallow

(0-50  m)  coastal  waters  (Weinberg,  1979a):  Eunicella  singularis (Esper,  1791),  Leptogorgia

sarmentosa (Esper,  1789),  Eunicella  cavolini (Koch,  1887),  Paramuricea clavata (Risso,  1826)  and

Corallium rubrum (Linnaeus, 1758). The five species have a wide Mediterranean distribution despite

the fact that they have been mainly studied in the northwestern area  (Charbonnier et al.,  1984;

Cocito et al., 2002; Gori et al., 2011; Bo et al., 2012 for deep observations but see Di Camillo et al.,

2018;  Sini  et  al.,  2015).  Those five species  are  strictly  associated with  hard substrates,  with  the

exception of L. sarmentosa. 

P. clavata, C. rubrum and E. cavolini have a wide bathymetric distribution from -10 m to >-100 m (Bo

et  al.,  2012;  Carugati  et  al.,  2022).  In  the  shallow area,  the  species  have  been  associated  with

different geomorphological preferences. C. rubrum is mainly found in overhangs or in caves (Cau et

al., 2016). P. clavata and E. cavolini are reported to dwell in steep rocky coralligenous bottoms, such

as drop-offs, and they are often found together (Carugati et al., 2021). L. sarmentosa is found in the

detritic-muddy  benthic  community,  characterized  by  boulders  and  organic  matter  (Carpine  &

Grasshoff, 1975; Mistri & Ceccherelli, 1993).  E. singularis, which is the only one of the five species

harbouring zooxanthellae  (Forcioli  et al.,  2011), is found on well-lit  horizontal and sub-horizontal

rocky bottoms (Gori et al., 2011; Weinberg & Weinberg, 1979). E. singularis and L. sarmentosa can be

associated with gently  sloping rocky bottoms as well  (Gori  et al.,  2011).  The five species release

planula larvae with dispersal distances of tens of kilometers (Guizien et al., 2020).

In this study, we analyzed the spatial distribution of E. singularis, L. sarmentosa, E. cavolini, P. clavata

and C. rubrum in their shallow bathymetric range (10-50 m) over a wide geographic area (450 km²),

along the French Mediterranean coasts (Toulon to Cerbère), using spatialized inventories performed

on a regular grid (< 800m) covering the rocky habitat. The ecological niche and distribution area of 



suitable  habitats  were  modelled  with  MaxENT  software  to  identify  the  main  environmental

predictors that influence the spatial distribution of the five species. We also assessed whether a

sampling restricted to the 5 highly protected zones of the MPAs within the study area (which can be

considered free from the main anthropogenic pressures impacting the gorgonians such as anchoring,

nets, scuba diving, etc.) would affect model predictions. We also tested the sensitivity of the model

fit to a reduced number of occurrences and their geographic position. As a result, we were able to

provide indications on sampling design for future studies aimed at predicting the range of gorgonian

suitable habitats.

Materials and methods

Study area

The study area is extended along 450 km of the French Mediterranean coastline, from Toulon to

Cerbère, and from the coast down to the 50 m isobath. Along this coastline, the benthic habitat

mainly consists of soft bottom with a few small patches of rocky habitat of less than 590 000 km². A

set  of  eight  sites  (National  Park  of  Port  Cros:  PNPC,  Parc  Marin  de  la  Côte  Bleue:  PMCB,

Aigues-Mortes: AGM, Aresquiers: ARES, Agde: AGD, Valras: VLR, Leucate: LEU, Côte Vermeille: CVM;

Figure 1) within this fragmented rocky habitat were investigated to assess the niche preferences of

the five erect  octorallia:  Eunicella  singularis,  Eunicella  cavolini,  Paramuricea clavata,  Leptogorgia

sarmentosa and Corallium rubrum. Of the eight sites, five include a high protection zone (according

to the classification of Horta e Costa et al., 2016: Fully protected) with different surface areas (PNPC:

1232 ha, AGM:100 ha; AGD: 310 ha, CVM: 69 ha; PMCB: 289 ha) (Figure S1). 

Data collection

Species presence

The population density of the five species was assessed between 2013 and 2021 in 696 evenly spaced

geo-referenced locations covering the hard bottom habitat in all sites except in PNPC where locations



were  selected  based  on  the  known  presence  of  the  species  P.  clavata (Guizien  et  al.,  2022;

https://cardobs.mnhn.fr/; Figure 1 and Figure S1). The spacing between sampling points varied from

100 m to 800 m, depending on the bathymetrical steepness of each zone. Using a regular grid in

order  to  avoid  the  bias  of  preferential  sampling  enabled  us  to  estimate  that  no  spatial  auto-

correlation was observed (Legendre et al., 2002; Merckx et al., 2011). For the five species, a strong

nugget effect (Carrasco, 2010) at eight meters distance was observed on empirical variograms (Figure

S2). In each georeferenced location, all individuals larger than 2 cm (i.e. older than one year) were

counted either by direct visual census of autonomous scuba divers or on photographs in four to nine

quadrats  of  1m2.  These surface areas  were larger  than the minimal  area of  2m2 established for

shallow water octocorallia communities (Weinberg, 1978).

The georeferenced database of the five species presence was implemented in GIS software (© QGIS).

Habitat suitability model

The Maxent model

MaxEnt  is  a  machine  learning  software  recognized  as  the  most  efficient  method  in  species

distribution  modelling  when  presence-only  species  records  are  available  (  Elith  et  al.,  2006;

Hernandez et al., 2006, 2008; Bargain et al., 2018). Natively, MaxEnt estimates Relative Occurrence

Rate (ROR) which is defined as the probability for an observed individual to be found in a set of

environmental conditions by maximising its entropy probability distribution (i.e., the most spread out

or closest to the uniform, Phillips et al., 2006). Hence, MaxEnt is a niche or habitat suitability model

whose predictions, although represented on a spatial grid, relate to environmental variables only,

disregarding spatial locations arrangements except if geographical variables are explicitly included in

the set of environmental descriptors (Elith et al., 2011) . The Maxent version 3.4.4 was used.

Setting up the MaxEnt model requires defining background data, features, regularization multipliers,

sampling  biases,  output  types,  and  diagnostics  outputs.  The  quality  of  Maxent  fits  is  primarily

assessed by the Area Under the ROR Curve (AUC).  The AUC ranges from 0 (fit worse than random) to



1 (perfect fit). Below 0.5 the prediction is not better than at random, and above 0.7 the prediction is

reliable (Zweig & Campbell, 1993).

Background data encompass the definition of  a  set  of  grid cells  where presence/absence of  the

species  is  unknown  (a  prior  with  uniform  species  prevalence  is  defined)  but  the  type  of

environmental predictors and their values are known (hereinafter called Maxent grid). As probability

distribution of environmental predictors in the Maxent grid is compared to probability distribution of

environmental  predictors  in  presence  locations  in  order  to  build  response  curves,  Maxent  grid

actually defines the range of environmental conditions on which features will be fitted in order to

maximize  the species  entropy probability  distribution,  resulting in  different features  and MaxEnt

predictions according to background extent.

Sampling bias was reduced by using a background grid targeting the hard bottom habitat where the

five octocoral species exclusively dwell. In the eight sites, a large part of the hard bottom habitat was

gridded  with  a  set  of  468  georeferenced  100m  x  100m  cells,  according  to  availability  of

environmental predictors data (Figure S1).  Among the recorded presence for each species in the

eight sites, however, only a subset was found in the Maxent grid.  C. rubrum was present in 16 grid

cells,  P. Clavata in 20 grid cells,  E. cavolini  in 32 grid cells, L.  Sarmentosa in 63 grid cells  and  E.

singularis in  264  grid  cells.  Data  on  marine  habitats  were  retrieved  from  CARTHAM  website

(https://geo.data.gouv.fr).  The implementation of  habitats and masks was carried out in © QGIS

software.

The environmental predictors were selected within all available geomorphological and hydrological

potential  predictors,  to  which  were  added latitude  and  longitude  as  explicit  predictors  in  some

modelling test.  Geomorphological predictors were calculated from raw bathymetrical dataset that

combined three-dimensional  point  seedlings from Airborne Laser  Imaging Detection and Ranging



System (LIDAR) for water depth less than 15 m (LITTO3D, www.diffusion.shom.fr) and multibeam

echosounder for water depth larger than 15 m, except in PNPC where LIDAR data extended down to

40m water depth. LIDAR data was collected between 2014-2015, except in the CVM zone where it

was obtained in 2011. Multibeam echosounder data was assembled from multiple collection periods

between 2005 and 2018 and from different operators (Seaview for AGM, ARES and VLR; CEFREM for

CVM; Semantic for AGD; Copethec and Mesuris for PMCB). Density of LIDAR data decreased from 10

points.m² to 0.1 points. m² when water depth increased. Density of multibeam echosounder data

decreased from 25 points.m² to 4 points. m².

Seven geomorphological metrics commonly used for habitat predictive modelling were computed for

each cell of the Maxent grid. These seven metrics describing the seafloor topography were: bottom

depth  (unit:  m),  slope  (unit:   angle  degrees),  roughness  (unit:  m),  rugosity  (no  unit),  terrain

ruggedness index (TRI; unit: m), eastness (no unit) and northness (no unit) orientation (Wilson et al.,

2007).  These metrics were calculated using all raw bathymetrical data within a 20 m x 20 m slab

located in the center of each cell of the Maxent grid. 

 Local bottom depth was the average of bathymetric data within the slab. 

 A local digital terrain model (DTM) was defined by interpolating all bathymetrical data within

the slab with a bivariate quadratic equation (1) (Evans, 1980): 

Z = aX2 + bY2 + c XY + dX + e Y + f   (1)

           with Z being the bottom depth deviation from the mean bottom depth and X,Y the 

cartesian distance to the center of the Maxent grid cell. 

 Slope was defined as the average slope of the local DTM: 

S = arctan (√ (d ²+e ² ) )

 Roughness was defined as the difference between the maximum and minimum depth in the

slab. 



 Rugosity was defined as the ratio between the surface of the local DTM and the slab surface.

By definition, rugosity is larger or equal to 1.

 Terrain ruggedness index was defined as the average of absolute deviation of the local DTM

with respect to the mean depth.

 Eastness and northness orientation were defined as the sinus and cosinus of the DTM aspect,

the latter being defined as:

Aspect = atan (d/e) 

Hydrological predictors included turbidity and temperature which were measured at the sea surface

by satellite imaging (Aquamodis - level-3 global browser :  https://oceancolor.gsfc.nasa.gov/l3/) and

simulated current speed at the sea surface by a coastal ocean circulation model (Briton et al., 2018). 

Satellite observations came from the Moderate Resolution Imaging Spectroradiometer (MODIS) on

board the AQUA satellite. Data was acquired in 36 spectral bands at three resolutions (250, 500 and

1000 m) and covered all the globe in one to two days. Sea Surface Temperature (SST, unit: °C, 4 μ

night time) and turbidity (unit: m-1, Diffuse attenuation coefficient at 490 nm) monthly averages at 4

km spatial resolution were extracted between 2003 and 2018 for Turbidity and 2006 and 2018 for

SST over the extent of the Maxent grid. For each variable (SST, Turbidity), the pluri-annual mean was

calculated  and  interpolated  at  the  Maxent  grid  resolution  of  100  m.  Although  Chlorophyll  a

concentration  is  one  of  the  MODIS  products  (Chla,  unit:  mg.m-3,  OCx  Algorithm),  it  was  not

considered  because  data  was  missing  in  the  PMCB  site.  However,  Chlorophyll  a  concentration

significantly correlated with turbidity in all other sites (Spearman correlation determination R² = 0.68,

p < 10e-4). The coastal ocean circulation simulated data in the NW Mediterranean sea came from

hourly output of a SYMPHONIE 2015 which ran from January 2010 to December 2012 (Briton et al.

2018). The simulation was performed on a 680 x 710 curvilinear horizontal grid and 29 vertical levels

of generalised sigma-coordinates covering an area between 3°E and 8°E, 40.5°N and 44°N and from

3m  to  3000m  water  depth  forced  by  the  three-hourly  regional  downscaled  climate  simulations



NM12-FREE  (Hamon et al., 2016). Monthly statistics (Umin = Q10 and Umax = Q90, unit: m.s-1) of

flow speed hourly values at the sea surface were computed. Those statistics were then interpolated

in each cell of the Maxent grid. Because flow speed predictions on the rocky habitat near the coast

were limited by the model vertical  resolution, the simulation grid did not cover the entire rocky

habitat and a zero flow value was assumed at the coast while interpolating.

Uncorrelated predictors were selected within the 13 environmental predictors, together with the

geographical  predictors,  to  avoid  confusion  in  predictor  identification  in  Maxent  as  a  result  of

predictor redundancy.  Correlations between all possible pairs of predictors were calculated using

Spearman’s  determination  coefficient  (Figure  S3),  together  with  Principal  Components  Analysis

(Figure S4). When the determination coefficient of a pair of predictors exceeded 0.7, and their first

and second components on the PCA plot were close, one of the two predictors was discarded (Sillero

et  al.,  2021) Figure  S4).  Among  the  13  potential  predictors,  10  were  not  correlated:  five

geomorphological predictors (Depth, Slope, Rugosity, Eastness and Northness),  three hydrological

predictors (Umax, SST and Turbidity) and the two geographical predictors (Latitude and Longitude).

For each of these 10 predictors, their range was assessed across the five species presence location

sets, across the entire Maxent grid. The Maxent grid was restricted to any of the eight sites and

sampling bias was assessed. All data processing was performed using in-house Matlab© routines. 

Features and regularization

Various feature classes can be combined in Maxent to build response curves from environmental

variables. Theoretically,  a niche model is expected to be unimodal,  pointing at species optimum,

which will be best represented by quadratic features. Sometimes the niche range, however, might be

truncated  in  the  presence  observations.  In  this  situation,  linear  or  hinge  features  will  be  more

appropriate  (Merow  et  al.,  2013).  Multiplying  feature  class  possibilities  may  lead  to  confusion

because  complex  features  created  by  MaxEnt  are  often  highly  correlated.  From  a  statistical



perspective,  when MaxEnt is  used to infer  environmental  drivers  of  species distribution,  feature

classes should be selected with parsimony. From a machine-learning perspective, testing as many

feature classes as possible will increase the predictive accuracy of the presences. In this study, we

adopted  an  in-between perspective,  selecting  the  default  "auto-features"  mode of  Maxent.  This

mode increases the tested feature classes to the number of presence observations with all feature

classes for more than 80 presence observations (Phillips & Dudık, 2008). This mode enabled Maxent

to accommodate the different number of presence observations, which varied from 39 for C. rubrum

to 479 for  E. singularis. Regularization dampens predictors coefficients when predictors variance is

high at the presence locations. Regularization multiplier was varied from 0.1 to 5 and the AUC of

model fit varied by less than 1%. Hence, it was set to its default value of 1. 

Output type

The  ROR is  the  relative  probability  that  a  cell  is  contained in  a  collection of  presence samples,

assuming  individuals  have  been  randomly  sampled  in  the  environmental  space.  A  logistic

transformation  of  ROR  enables  one  to  predict  the  probability  of  presence  only,  assuming  the

prevalence that is the probability of presence in the suitable habitat is 50% (Phillips & Dudık, 2008).

Due to the difficulty of checking this assumption, the safer interpretation of MaxEnt predictions was

using ROR as a habitat suitability index  (Merow et al.,  2013). As an alternative, the cloglog value

corresponding  to  a  ROR  value  of  r  is  1-exp(-c·r)  has  been  proposed  in  order  to  estimate  the

probability of presence  (Anderson et al., 2017). In the present study, however, model fit was not

sensitive to the species prevalence value in the background grid. The latter varied from 20 to 80%

and resulted in average AUC (Area Under the Curve) variation of 0.6%. Therefore, prevalence was

kept to its default value of 50% and the cloglog output type was selected.

Diagnostics of model fitting



Model best fit was the average of five replicated probability maps fitted using all predictors under the

cross-validate option. For each replicated fit, the presence data was partitioned randomly (random

seed option)  into a training dataset used to fit  the model  (75% of  presence data) and a testing

dataset (25% of presence data).  AUC on the training datasets and testing datasets and the relative

contribution of each predictor to the replicated fit were calculated to assess the quality of the fit. 

The contribution of each predictor in defining each of the five replicated fits was ranked using a

jackknife cross-validation procedure (Phillips et al., 2006). To do so, for each of the five presence data

partitions, replicated fits were constructed using either a predictor on its own or all predictors except

the one in question. Gains and losses of AUC compared to the AUC with all variables were calculated

with and without each predictor, respectively.

Another ranking of the contribution of each predictor to a model was performed using a permutation

procedure.  For each predictor  in turn,  the values  of  that predictor  in  the training presence and

background data were randomly permuted. The model was then re-evaluated on the permuted data,

and the resulting drop in training AUC indicated that the model depended heavily on that predictor.

Values were normalized to give percentages.

Predictor  response  curves  showed  how  the  predicted  probability  of  presence  varied  with  the

predictor, holding all other environmental variables at their mean sample value or using only the

corresponding variable.

Sensitivity of model fitting to potential sampling bias when reducing presence number and their

geographical extent

Sampling bias can appear when some environmental conditions are preferentially sampled without

respecting the proportion of their availability (Merow et al., 2013). Sampling bias can be the result of

geographical or temporal preference in presence exploration or limited presence exploration. Such

bias is evident for rare species whose niche is limited in space and requires intensive exploration to



be observed.  For  more widely  distributed species,  sampling bias  is  less evident.  Among the five

gorgonian species, we selected the two species with highest occurence: E. singularis  (264 presence

data) and L. sarmentosa (63 presence data), and assessed the sensitivity of the AUC when decreasing

the number of presence data in the training dataset (while still keeping the full presence dataset for

testing). To do so, we followed two procedures. In the first procedure, the model was fitted using

three training datasets, gradually reducing the number of presence data to an evenly distributed

selection of 50%, 20% and 10% of the initial training dataset. In the second procedure, the model was

fitted  using  a  reduced  number  of  presence  data  in  the  training  datasets,  corresponding  to

geographical restrictions to six sites for E. singularis (CVM, AGD, ARES, AGM, PMCB and PNPC) and

two sites  for  L.  sarmentosa (CVM and AGD).  For  both species,  a  training  dataset  including only

presence recorded within MPAs was tested as well. Finally, sampling bias was also tested by testing if

adding the geographical coordinates as predictors altered the model fitting.

Model performance assessment 

Performance  of  two  models,  one  using  the  full  presence  dataset  and  the  other  only  using  the

presence observed in MPAs, were compared. Model performance was assessed by contrasting the

habitat suitability predictions with observed presences and absences for each of the five species.

For each species, regional habitat suitability maps were built after binarizing the mean of the five

replicated probability  maps.  This  was done by  applying  a  threshold  probability  above which the

habitat was considered as suitable and below which it was considered as unsuitable. Due to varying

prevalence among the five species, the threshold probability was not set to a fixed value but instead

was determined using one of the 11 possible thresholding procedures advised in Maxent (Anderson

et  al.,  2017).  Deciding  which  threshold  to  use  is  a  major  consideration  when  minimizing  false

positives and false negatives.  his  choice,  however,  is  often arbitrary in studies  (Liu et  al.,  2005).

Among these threshold procedures, the 10percentile_training threshold (maximum error rate of 10%

on the presence points of the learning data) was arbitrarily selected because it displayed the highest



threshold values when compared to other thresholding procedures, resulting in the less extended

and hence more conservative habitat suitability maps (Figure S5). 

A  frequency  contingency  table  was  built  that  compared  observed  presence  and  absence  with

predicted ones in the 468 grid cells. Accuracy (the proportion of correctly predicted presence and

absence), sensitivity (the proportion of correctly predicted presences), specificity (the proportion of

correctly predicted absences) and true skill statistic (TSS, sensitivity + specifity -1) were calculated.

The latter scores the model performance between -1 and 1 with 0 indicating a random model and +1

the perfect agreement. This approach was favoured and used instead of  the kappa indicator  (Cohen

1960) which intrinsically depends on the prevalence (Allouche et al., 2006). The significant deviation

from a random contingency table was tested with a chi2 statistics (Pearson, 2007).

Results

Species presence observations and sampling bias assessment 

In the study area, the observed spatial distribution varied among the five species. Some species were

distributed in a limited number of clustered locations: C. rubrum with 39 presences in only two sites

(CVM and PMBC, Figure 2), P. clavata with 61 presences in three sites (CVM, PMBC and PNPC, Figure

2) and E. cavolini with 87 presences distributed in three sites (PNPC, PMCB and ARES, Figure 2). 

L. sarmentosa was detected everywhere except in PNPC and AGM (Figure 2). Finally, E. singularis was

the most widespread species with 479 presences, distributed in all eight sites (Figure 2). The most

frequent association was observed between E. singularis and L. sarmentosa (17.9%).

Boxplots that represented the environmental predictors range, showed marked differences among

the eight sites forming the background seascape (Figure 3). Depth range was doubled in four out of

the eight sites, extending down to 40 meters depth (CVM, AGD, PMCB and PNPC, Figure 3). Larger

slope  and  rugosity  were  found  in  two  (PNPC  and  CVM)  out  of  the  eight  sites,  while  seabed



orientation (eastness and northness) displayed a similar range of variability in all eight sites (Figure

3). Higher sea surface temperature (SST, Figure 3) and lower turbidity characterised three out of the

eight sites (CVM, PMCB and PNPC, Figure 3). Finally, larger maximum flow speed at the seabed was

frequently found in five out of the eight sites (LEU, VLR, AGD, ARES, AGM, Figure 3).

Boxplots that represented environmental predictors range at species presence locations, indicated

some differences between species as well.  Maximum flow speed at  the seabed was consistently

higher  at  presence  locations  of  C.  rubrum than  of  any  other  species  (Figure  3). Sea  surface

temperature  was  consistently  lower  at  presence  locations  of  C.  rubrum,  E.  singularis and  L.

sarmentosa than of P. clavata and E. cavolini (Figure 3). Turbidity was higher at presence locations of

E. singularis and  L. sarmentosa, while slope was slightly higher at presence locations of P. clavata

than at other species presence locations (Figure 3).

Environmental predictors contribution to habitat suitability prediction

Different  environmental  predictors  contributed  to  the  Maxent  model  best  fit  of  each  gorgonian

species in (when only using the presence locations found in the background data, Figure 2).

For C. rubrum, turbidity and maximum flow speed at the seabed (Umax) contributed more than 90%

to the suitable habitat prediction (both in percent contribution and permutation percentage, Table

1). Response curves for these two predictors indicated species preference for current speeds greater

than 0.23 m/s and turbidity lower than 508.8 m-1 (Figure S7), suggesting that the ecological niche of

C. rubrum extends beyond the variation range of those predictors within the background grid of the

study. Turbidity was the predictor that, when absent, most decreased the AUC in the model, while

maximum flow speed at the seabed contributed the most to the AUC in stand-alone mode, followed

by depth and rugosity (Jacknife's test, Figure S6). 



For P. clavata, depth and rugosity combined contributed to more than 60% of the suitable habitat

prediction (both in percent contribution and permutation percentage, Table 1). Slope had the third

greatest contribution when it  came to suitable habitat prediction, yielding about 15%.  Response

curves  of  the three predictors  indicated species  preference for  water  depth greater  than 21 m,

rugosity greater than 1 and slope greater than 3.3% (Figure S8).  All  response curves displayed a

plateau when they reached high values, suggesting the species can distribute beyond 50 m water

depth. Depth was the predictor that most decreased the AUC when it was not included in the model

and contributed the most to the AUC in stand-alone mode (Jacknife's test, Figure S6). 

For E. cavolini, rugosity, sea surface temperature and depth combined contributed more than 90% to

the suitable habitat prediction (both in percent contribution and permutation percentage, Table 1).

Response curves indicated that E. cavolini had a preference for sea surface temperature above 16°C,

water depth greater than 12 m and bed rugosity larger than 1 (Figure S9). None of these predictors

displayed a niche-like optimal range of values.  Rugosity and depth were the variables that most

reduced the AUC when removed from the model, while sea surface temperature contributed the

most to the AUC in stand-alone mode  (Jacknife's test, Figure S6). 

For E. singularis, rugosity, sea surface temperature, depth and rugosity when combined, contributed

to  about  80%  of  the  suitable  habitat  prediction (both  in  percent  contribution  and  permutation

percentage, Table 1).  Response curves indicated that E. singularis had a preference for sea surface

temperature ranging from 15.8 and 17.5°C, water depth ranging from 4 to 40 m, with a characteristic

niche-like optimal range of values and rugosity larger than 1 (Figure S10). Sea surface temperature

was the variable that most decreased the AUC when removed from the model and contributed the

most to the AUC in stand-alone mode  (Jacknife's test, Figure S6). 

For  L.  sarmentosa,  depth,  rugosity,  sea  surface  temperature  and  turbidity  when  combined,

contributed more than 90% to the suitable  habitat  prediction (both in percent  contribution and



permutation  percentage,  Table  1).  Response  curves  indicated  that  a  preferential  habitat  for  L.

sarmentosa would be in areas with a temperature below 17.1°c, and in terrain with rugosity between

1 and 5, and with a turbidity of between 215.7 and 603.4 m-1 (Figure S11).

Sea surface temperature and depth were the two predictors that most reduced the AUC when they

were  absent  from  the  model  and  they  contributed  the  most  to  the  AUC  in  stand-alone  mode

(Jacknife's test, Figure S6).

Overall,  sea  surface  temperature  was  identified  as  primary  environmental  predictors  for  three

species and turbidity was the primary predictor for two species out of five. Among geomorphological

predictors,  rugosity  and  depth  contributed  to  suitable  habitat  modelling,  while  no  orientation

predictors did. Despite rugosity being a significant predictor for all species, rugosity response curves

did not indicate much discrimination between the species,  when any rugosity larger  than 1 was

favourable. Minimum flow speed did not contribute to the suitable habitat modelling of any of the

five gorgonians. 

Model performance and assessment of the predictions

Average AUC varied from 0.799 to 0.971 across the five species, indicating good to very good fit

when learning and testing against replicated random partitions of the presence dataset (Table 1).

Maps of suitable habitats that were obtained after applying a thresholding occurrence probability to

model best  fit,  demonstrated correct predictions when compared to both presence and absence

observations for all species, with accuracy ranging from 66% for L. sarmentosa to 92% for P. clavata.

In  all  species,  true  skill  statistics  (TSS)  differed  significantly  from  a  random  contingency  table.

However, true skill statistics ranked the model performance differently to the AUC across species.

While  prediction for  E.  singularis displayed the lowest  AUC (0.799),  it  displayed the highest  TSS

(0.48), resulting from the highest sensitivity (0.72). Conversely, the AUC prediction for E. cavolini was

high (0.901) but TSS was the lowest (TSS: 0.17), due to a low sensitivity (error in predicted presence)



of 0.18 (Table 2). Predicted suitable habitat was larger than the actually observed one when looking

at presence and absence data for all species, except for E. singularis. This latter species was found in

about 5% of cells classified as unsuitable habitat. The predicted suitable habitat was 20% larger than

the observed one on average across all species, with higher values for L. sarmentosa (30%) and for E.

cavolini (27%). 

Moreover,  prediction  errors  differed  across  species.  For  two  species,  predictions  suggested  the

suitable habitat would extend more than the observed one within sites where the species presence

had been recorded (P. clavata, L. sarmentosa). For two other species, suitable habitat was predicted

in sites where the species presence was not detected (C. rubrum and E. cavolini). 

Assessing  the  influence  of  the  number  and  location  of  presence  observations  used  for  model

training on model fit goodness

Sensitivity  of  model  AUC to  the  number  and  location of  presence  observations  used  for  model

training was carried out on  E. singularis and  L. sarmentosa because these species have the widest

spatial coverage and the greatest number of presence. 

For  E. singularis and  L. sarmentosa, model AUC remained within the range of variation of the five

replicated model AUCs when the training dataset was reduced by 90% and 80%, respectively, as long

as the presence observations of the training dataset were spread in all sites where the species was

observed  (Figure  4).  In  contrast,  model  AUC  decreased  sharply  when  the  number  of  presence

observations was reduced by the same amount but restricted to a single site only (Figure 4). When

the number of presence observations was restricted to the highly protected zones of the area, model

AUC decreased to 0.7 for E. singularis and 0.85 for L. sarmentosa. This decrease was, however, less

than if the same number of presences had been taken from a single site, although slightly more than

if it was evenly distributed in all eight sites. Model AUC, when the number of presence observations

was restricted to the highly protected zones of the area, remained high as well or even increased for

C. rubrum, P. clavata and E. cavolini, with accuracy ranging from 0.66 to 0.92 (Table 2).



Adding latitude and longitude to the environmental predictors improved the average test AUC for all

species  except  for  C.  rubrum.  Suitable  habitat  maps,  however,  remained unchanged or  changed

slightly  when  adding  longitude  and  latitude  for  C.rubrum,  P.clavata and  E.  singularis. For L.

sarmentosa, adding geographical predictors altered predicted distributions, resulting in the loss of

two sites where the species has been observed (PMCB and ARES, Figure S12).

In contrast, the suitable habitat map for E. cavolini changed considerably, with an area that reduced

from 12.56% to 7.4%. The suitable habitat area was removed in CVM and partially reduced in AGD

with improvement of accuracy and TSS (to 0.96 and 0.62 respectively, Figure 2a). 

Discussion

The observations between 10 and 50m water depth across eight rocky sites spanning 450 kms along

the Gulf of Lion (NW Mediterranean sea) confirmed that between 2013 and 2020 the hierarchy in the

occurrence of the five gorgonian species was similar to the one previously reported in the same area

(Weinberg, 1979a; Weinberg & Weinberg, 1979; Linares et al., 2008; Gori et al., 2011).  E. singularis

was the most abundant of  the gorgonian species,  with a wide continuous spatial distribution.  L.

sarmentosa was the second most abundant gorgonian species, with scattered distribution. P. Clavata

and C. rubrum displayed highly patchy distributions and their presence was observed in three rocky

sites only. E. cavolini was the least abundant species, with marginal presence in a few spots in three

rocky sites. Occasional associations between the five gorgonian species were observed but were not

frequent, similar to what was previously reported for the shallow area (Gori et al., 2011).

Geomorphological (Depth, Slope, Rugosity, Eastness and Northness) and hydrological (Umax, SST and

Turbidity) predictors enabled an accurate projection of habitat suitability for all gorgonian species,

except for E. cavolini, for which the predicted suitable habitat was larger than what was observed,

and was considerably reduced when explicitly adding a geographical predictor. For the other four

gorgonian species,  we showed that  presence observations used in  the training dataset  could be



reduced to 14 without altering predicted suitable habitat, most likely due to the fact that the spatial

extent of the training dataset was large enough to encompass the range of variation of predictors in

the area. In the extended Gulf of Lion, a wide variability range could be achieved for each predictor,

with a sampling focused solely on the zones of high protection of the MPAs. The models showed that

currents (> 0.23 m/s) and turbidity (< 508.8 m-1 ) were the main predictors for C. rubrum , depth (> 21

m) and wall inclination (> 3.3%) for P. clavata, depth (4-40 m; > 16 m) and surface temperature (SST)

(15.8-17.5°C; > 16°C) for E. singularis and E. cavolini and turbidity (215.7 and 603.4 m-1 ) and rugosity

(1-5) for L. sarmentosa.

High resolution terrain mapping that combines airborne and satellite remote sensing has been an

essential data source for determining species habitats (when using predictive habitat modelling in

terrestrial environments, Wilson et al., 2007). In the ocean, bottom surface variability is expected to

be an essential structuring factor as well,  with variations in substrate altitude including at a very

small  spatial  scale (< 1mm) acting on colonization  (  Carleton & Sammarco, 1987; Nozawa, 2008;

Brandl et al., 2014; Sempere-Valverde et al., 2018). At sea, however, high resolution seabed mapping

is  relatively  new. Vessel-mounted multibeam acoustic  sounders  can provide terrain  maps with  a

vertical  resolution at  the cm scale and horizontal  resolution at the tens of  cms scale but over a

limited area  (Dolan et al.,  2008).  The cost of acquiring such data has limited its implementation,

which is why predictive habitat modelling studies have focused on specific environments such as

canyons ( Guinan et al., 2009; Bargain et al., 2018; Lo Iacono et al., 2018). The present study aims to

fill a gap in predictive habitat modelling for shallow environments by leveraging recent advances in

bathymetry remote sensing using airborne laser imaging, which enable mapping shallow areas along

the coastline, with spatial resolution similar to that of vessel mounted acoustic sounder.

Our results showed that among geomorphological predictors, depth was significant for all species,

except C. rubrum.  Depth is a primary factor that modulates both light availability and agitation at sea



(Perez, 1961). It has long been recognised as a proxy for the niche of benthic species, to such an

extent that it is used as a basis for the classification of marine benthic communities strata  (Odum,

1971). In the present study, depth was identified as a major predictor for all species distribution

except  C.  rubrum,  but with different responses.  For P.  clavata  and E.  cavolini,  model predictions

suggested a  preference for  deeper habitats  as  already mentioned in  the literature  (Rossi,  1959;

Boavida  et  al.,  2016;  Fourt  et  al.,  2017;).  By  contrast,  E.  singularis and  L.  sarmentosa model

predictions indicated a preference for shallow areas (between 10 and 40 m). Yet, both species have

been reported beyond 50m depth ( Weinberg, 1979a; Bo et al., 2012; Grinyó et al., 2016). Deep and

shallow populations of  E. singularis display different morphotypes with limited gene flow between

them at local scale  ( Gori et al., 2012; Costantini et al., 2016). While extending the depth range of

observations should improve habitat suitability delineation, species adaptation may reshape habitat

suitability boundaries. For C. rubrum, depth was not identified as a significant predictor, despite the

fact that the species preference for low light has been largely reported (Laborel, 1960;  Weinberg,

1979b; Bianconi et al., 1988).

Seabed orientation is another proxy for light availability that has been used in several studies at small

spatial scale (Glasby, 2000; Knott et al., 2004). However, in the present study, orientation was never

indicated as a significant predictor. This was, in all likelihood, due to the fact that orientation and

light availability are not correlated over a large spatial scale. 

The presence of  C. rubrum at shallow depth might, instead, be related to the smaller size of this

species, compared to the other four gorgonian species, which would allow for the colonization of

small crevices ( Laborel, 1961; Rossi et al., 2008). In any case, despite the fact that depth is easier to

measure than light,  direct  measurement or modelling of  light intensity should be undertaken to

improve the delineation of the species niche (Betti et al., 2018).



Surprisingly, rugosity, a measure of terrain irregularities which is expected to depict small crevices

favourable  to  C.  rubrum,  was  an  important  predictor  for  all  species  except  C.  rubrum.  Rugosity

estimates, in fact, vary with terrain sensing resolution (Wilson et al., 2007). In the current study, the

LIDAR resolution did not enable the detection of crevices smaller than 0.1 m in which  C. rubrum

colonies are often found ( True, 1970; Virgilio et al., 2006). Given the current LIDAR resolution, the

maximum detectable rugosity was seven, which was sufficient to differentiate the suitable habitat of

L. sarmentosa, which is mainly found at a moderate rugosity and that of the other three species (P.

clavata,  E. singularis and  E. cavolini)  which can be found on a wider range of rugosities. Slope is

another  parameter  often  assumed  to  explain  the  colonization  of  benthic  communities,  as  the

deposition  of  organic  matter  on  flat  surfaces  could  limit  the  recruitment  of  some  benthic

invertebrates (Laborel & Vacelet, 1961; Bianconi et al., 1988; Glasby, 2000). However, among the five

suspension feeders of the present study, only P. clavata preferentially colonized substrates steeper

than 3.3%. This finding is consistent with previous studies in the shallow environment ( Cocito et al.,

2002; Boavida et al., 2016; Ponti et al., 2019). Nevertheless, giant colonies of  P. clavata have been

observed in PMCB on deep horizontal rocks between 40 and 60m (https://theconversation.com/une-

plongee-dans-les-forets-animales-formees-par-les-gorgones-en-mediterranee-176399).  Just  as  we

found with depth, by extending the number of observations, the significance of slope in shaping P.

clavata suitable habitat  could  change,  suggesting that  the direct  measurement of  sedimentation

would better define species suitable habitat. 

Sea  water  turbidity  remotely  sensed  from  satellites  is  another  predictor  that  can  indicate

sedimentation due to river inputs or to sediment resuspension by waves (Liew et al., 2009; Gohin et

al., 2020). High sedimentation is sometimes considered a limiting factor for gorgonians  (Bo et al.,

2017). However, in our study, it was not identified as a major predictor of the suitable habitat for P.

clavata, E. singularis  or E. cavolini. An upper limit for tolerance to turbidity was only found for  C.

rubrum and L. sarmentosa. In addition, as suggested in previous studies, L. sarmentosa prefers some

https://theconversation.com/une-plongee-dans-les-forets-animales-formees-par-les-gorgones-en-mediterranee-176399
https://theconversation.com/une-plongee-dans-les-forets-animales-formees-par-les-gorgones-en-mediterranee-176399


minimum turbidity, unlike C. rubrum ( Weinberg, 1979a; Mistri, 1995). L. sarmentosa’s preference for

turbid  seawater  would  have  resulted  in  the  species  adapting  morphologically  with  higher  polyp

density per branch and finer branches to reduce the surface offered to sediment accumulation in

turbid environmental conditions, compared to the other four gorgonian species (Cocito et al., 2002;

Rossi et al., 2011). Preference for turbid environments can be expected in suspension feeders and

might be related to food requirements as this predictor was positively correlated with Chlorophyll a.

The diet of L. sarmentosa like that of P. clavata and to a less extent of E. singularis is primarily based

on small zooplankton (Rossi & Rizzo, 2021), whose abundance is tightly related to the abundance of

Chlorophyll a. When combining polyps density per branch  with the number of preys ingested per

polyp (Coma et al., 1995; Rossi & Rizzo, 2021), L. sarmentosa displayed a higher ingestion rate than P.

clavata and E. singularis, a trait that could be related to its preference for turbid habitat.

Sedimentation  can  be  locally  reduced  by  strong  current  (Hiscock,  1983)  and  current  has  been

suggested as structuring the distribution of gorgonians (Leversee, 1976; Weinberg, 1979a) and corals

(White et al., 2005). According to experts, the five gorgonian species have a preference for moderate

to strong current (La Riviere et al., 2021). The present study identified strong current as a structuring

predictor for C. rubrum only. In fact, current is not commonly used as a predictor in ecological niche

models and should be more systematically tested using hydrodynamical model outputs (see Bargain

et al., 2018).

Just as with current, sea surface temperature is not commonly used as a predictor for E. singularis

and for L. sarmentosa presence, probably due to their tolerance to environmental conditions, given

that these two species can be found even inside ports, where water temperature can reach 29°C

(Betti et al., 2018; S. Blouet comm pers,). However, mass mortalities in E. singularis and E. cavolini

have been related to temperature anomalies during heat waves (Coma et al., 2006; Ezzat et al., 2013;

Turicchia et al., 2018), as with P. Clavata populations which were infected by a thermo-dependent



bacterial pathogen whose virulence increased with elevated temperature  (Bally & Garrabou, 2007;

Garrabou et al., 2009). However, our results indicated that only the suitable habitat of E. singularis

and  L. sarmentosa is linked to mean annual sea surface temperature with a preference for lower

values (<  17.5°C).  It  is worth noting that during summer periods, below 20 m depth, the water

temperature can be very different from the sea surface temperature used in the present study. 

In summary, identifying the suitable habitat for marine species still faces limitations and will require

both increasing the number of presence observations to deeper areas and including more explicitly

factors such as temperature, light, turbidity, sedimentation, chlorophyll a and current. To this end,

the use of high-resolution simulations of circulation and primary production would be an invaluable

tool for contemporary ecological studies, as they allow one to project the distribution of the future

suitable habitat in climate change scenarios and test the deep refugia hypothesis  (Bongaerts et al.,

2010).

Nevertheless, despite the limitations mentioned above, model performance was high for all species

except  E. cavolini, with AUC values  and accuracies indicating good predictive quality of suitability

habitats  (Hanley  &  McNeil,  1982).  The  good  sensitivity  of  the  models  for  E.  singularis and L.

sarmentosa with few but regularly distributed observations of presence, confirms, on the one hand,

that spatial autocorrelation was avoided and that large AUC values could not be attributed to model

overfitting (Radosavljevic & Anderson, 2013) and, on the other hand, that a low number of presence

data  (14)  is  sufficient  enough  to  obtain  a  good  performance  of  the  models  as  long  as  a  wide

geographical area is encompassed to avoid local specificities in the training process. Moreover, in

shallow environments, characterised by a diversity of environmental conditions and limited human

impact, we advocate for the use of highly protected zones (such as the Gulf of Lion MPAs) as sentinel

sites,  to allow for the monitoring of the factors shaping the distribution of gorgonians in coastal

areas. Indeed, gorgonians are known to be sensitive to mechanical impacts such as mooring (Broad



et al., 2020), bottom fishing (Bavestrello et al., 1997; Betti et al., 2020), scuba diving (Coma & Zabala,

1994) and even direct exploitation (i.e.  C. rubrum for jewellery  (Tsounis et al., 2010, 2013).   The

limited presence observations taken from MPA species inventories, that were repeated over time,

was enough data for us to understand the habitat preferences of these species. In the present study,

true absence and presence data were defined based on repeated inventories obtained between 2013

and 2021 and used to assess model accuracy. Using absence data from observations over a limited

time frame should be avoided because transient population accidents may occur and absence data

does not necessarily mean unsuitable habitat. Specifically, some mortality impacted populations of E.

singularis,  as per the dataset used in the present study, the species was observed in 2013 but was

absent  in  2019  in  some  locations.   Given  the  slow  population  dynamics  of  gorgonian  species,

impacted populations may take a few years to recover  (Linares et al.,  2007).   The reiteration of

sampling  over  time is  thus  essential,  in  order  to  assess  the  ENMs performance.  In  addition,  an

observation  strategy  that  is  focused  on  a  limited  number  of  locations  would  improve  the

measurement  of  predictors  by  equipping  sentinel  sites  with  adequate  sensors  (e.g  seawater

temperature measurement networks such as T-MEDNet).

The  limited  number  of  observations  required  by  ecological  niche  modelling  algorithms  (such  as

Maxent) allows one to extend the projections of habitat suitability to mesophotic areas and to test

their capability to shelter healthy populations that can play a fundamental role in the resilience of

shallow ones by providing a source of larvae (Sanchez et al., 2019; Soares et al., 2020).  To achieve a

good  model  performance,  mesophotic  prospections,  which  are  limited  by  technological  and

economic constraints, would require a selection of sites sufficiently distant from each other in order

to avoid spatial auto-correlation  (Luoto et al.,  2005; Pearson et al.,  2006) and characterised by a

variety of environmental conditions (Merow et al., 2013).



For all species, the suitable habitat prediction area was greater than the original inventory range. As

explained  above,  suitable  habitat  is,  by  definition,  expected  to  extend  beyond  actual  presence

observations and repeated observations in time are key to the fine tuning of true absence data and

model accuracy. However,  in the present study, while  E. cavolini and  E. singularis displayed very

different  presence  distributions,  their  predicted  suitable  habitats  were  very  similar  and  were

identified by  close  predictors.  Shared  environmental  predictors  and  suitable  habitat  between  E.

cavolini and  E.  singularis is  congruent  with  the  results  of  a  phylogenetic  study  which  showed

evidence of hybridization or incomplete lineage sorting between the two morphologically different

species (Aurelle et al., 2017). The same phylogenetic study suggested that differentiation may have

resulted from isolation in different refugia during the last glaciation (Aurelle et al., 2017).  In such a

hypothesis, the absence of  E. cavolini from the Gulf of Lion (except one locality in ARES) could be

attributed to a quicker re-colonisation of the shallow suitable habitat by  E. singularis after the last

glaciation.  Beyond the  definition of  a  suitable  habitat  based  on  environmental  or  topographical

predictors  (potential  niche),  actual  species  distribution  (realized  niche)  ultimately  depends  on

efficient colonization. For sessile species, colonization can only happen during reproduction thanks to

larval  dispersal  (Scheltema,  1971).  Differences  in  demographic  connectivity  between  glaciation

refugia  locations and the  Gulf  of  Lion  shallow habitat  of  the two  Eunicella species  could  be an

explanation for the different species current distribution. However, demographic connectivity is a

complex  process  that  operates  at  multiple  spatial  and  temporal  scales,  resulting  from  species

demography (population size, structure, fecundity) and larval dispersal (larval release timing, ocean

currents, pelagic larval duration, larval behaviour).  Differences in larval traits such as buoyancy and

swimming behaviour were observed between  E. singularis,  P. clavata and  C. rubrum which would

explain different connectivity patterns in the same ocean currents background (Guizien et al., 2012,

2020). However, inferring connectivity patterns after the last glaciation remains speculative as larval

traits have likely evolved  (Wellington, 2001) and ocean currents have profoundly changed  (Lynch-

Stieglitz et al., 2007).



Conclusion

Accuracy and sensitivity of the suitable habitat models presented in the current study was high for

four of the five species. These models can be used to complement the delineation of  P. clavata,  C.

rubrum, E. singularis and L. sarmentosa suitable habitat in the shallow rocky bottoms along the entire

Mediterranean basin and guide marine spatial planning, including the establishment of new MPAs.

However, observations in the mesophotic and aphotic environments should be added to the models

developed here for the shallow rocky bottoms and should be updated to incorporate more direct

predictors (i.e. light, sedimentation rate, organic matter content, and sea bottom temperature) in

order to avoid the use of proxies such as depth, sea surface temperature and turbidity. 
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Appendices



Figure S1: Sampling location and bathymetry in each of the eight sites. A close up PNPC, B close up LEU, C close up CVM, D close up AGD, E close up AGM

and ARES, F closeup VLR, G close up PMCB.





Figure  S2:  Empirical  semivariograms  describing  the  spatial  variability  of  each  of  the  five
gorgonian species in the four sites (ARES, AGD, CVM, PMCB) where the species was present.
Semivariograms were computed using population spatial density measured in the 696 evenly
spaced  geo-referenced  locations  covering  the  hard  bottom  habitat  and  clustering  them  by
distance classes ranging from 500 meters to 10 kms, with a step of 500 meters increment. The
nugget of the semivariogram was computed using replicated measurements made at less than
20 meters distance, around each geo-referenced location (Guizien et al., 2022).



Figure  S3 :  Matrix  of  correlation  (Rho  spearman)  on  the  13  initials  variables  (geomorphologic,

environmental, and latitude / longitude)



Figure  S4 :  Analyse  of  principale  composante  on  the  13  initials  variables  geomorphologic,

environmental, and latitude / longitude).
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Figure  S5:  Threshold  by  index  for  the  5  species  (MAXENT model).  Modeling  with  all  predictors

without geographical predictors (Latitude / Longitude).  A:  C. rubrum,  B: P.clavata,  C: E. cavolini,  D:

E.singularis, E: L. sarmentosa
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Fig  S6:  Jackknife  of  AUC  (MaxENT  model)  Modeling  with all  predictors  without  geographical

predictors  (Latitude  /  Longitude).  A:  C.  rubrum,  B: P.clavata,  C: E.  cavolini,  D: E.singularis,  E:  L.

D

E



sarmentosa. Without variable (light blue), with only variable (blue), with all variables (red). Variable is

the same as predictor.
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Figure  S7 :  Response  curves  for  the  two  significant  predictors  in  the  Maxent  model  for  habitat

suitability of C. rubrum: A: Maximinum flow speed on the seabed (Umax) , B: Turbidity. The red lines

indicate the mean values,  while blue areas the standard deviation limits,  resulting from 5 cross-

validation model runs in cloglog output.
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Figure  S8:  Response curves  for  the three significant  predictors  in  the Maxent  model  for  habitat

suitability of P.clavata. A: Depth , B: Rugosity, C: Slope. The red lines indicate the mean values, while

blue areas  the standard deviation limits,  resulting from 5 cross-validation model  runs  in  cloglog

output.
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Figure  S9:  Response curves  for  the three significant  predictors  in  the Maxent  model  for  habitat

suitability  of  E.cavolini.  A:  Rugosity, B:  Sea  Surface  Temperature  (SST),  C:  Depth.  The  red  lines

indicate the mean values,  while blue areas the standard deviation limits,  resulting from 5 cross-

validation model runs in cloglog output.
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Figure S10: Response curves for the three significant predictors in the Maxent model for habitat

suitability  of  E.singularis.  A:  Rugosity, B:  Sea Surface Temperature (SST),  C:  Depth.  The red lines

indicate the mean values,  while blue areas the standard deviation limits,  resulting from 5 cross-

validation model runs in cloglog output.
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Figure  S11:  Response curves  for  the four  significant  predictors  in  the Maxent  model  for  habitat

suitability of  L. sarmentosa.  A: Rugosity, B: Sea Surface Temperature (SST),  C: Depth,  D: Turbidity.

The red lines indicate the mean values, while blue areas the standard deviation limits, resulting from

5 cross-validation model runs in cloglog output.

Table S1: Result of model for each species with all predictors with geographical predictors (Lat / Lon).
Percent contribution and permutation importance 

  AUC Variables Percent 
contribution (%)

Permutation 
importance (%)

C. rubrum 0.9628 Umax 58.5 14.3
  Latitude 25.1 0

Turbidity 10.8 81.9
P. clavata 0.9731 Depth 37.5 47.7
  Rugosity 32.2 15.5
  Slope 14.3 19
E. cavolini 0.9491 Longitude 34 0.2
  Rugosity 32.7 39.8

Depth 22.8 13.1
  Latitude 6.9 27
E. singularis 0.8133 Latitude 52.2 35.7
  Depth 11.1 23.5
  Longitude 10 11.8
L. sarmentosa 0.9731 Longitude 46.7 24.3
  Latitude 25.1 46.2
  Turbidity 8.1 15.5

D
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Figure S12: Presence location (blue cross) and a regional habitat suitability model maps predicted using maximum entropy (MaxEnt) with all predictors with

geographical predictors (Latitude / Longitude) (Grid red). The habitat suitability model map was calculated by applying a threshold value to obtain binary

maps (0-1) from Cloglog output. A close up PNPC, B close up LEU, C close up CVM, D close up AGD, E close up AGM and ARES, F close up VLR, G close up

PMCB. Maps for : (1) C.rubrum, (2) P. clavata, (3) E. singularis,(4) L. sarmentosa. 



Figures

Figure 1: Map displaying the number of  sampling locations in each of the eight sites of  the NW

Mediterranean Sea. Black rectangles highlight the sampled sites. The orange circles represent the

number of sampling points at each site.
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Figure 2: Presence location (Blue cross) and a regional habitat suitability model maps predicted using maximum entropy (MaxEnt) with all predictors without

geographical predictors (Latitude / Longitude) (Grid red). The habitat suitability model map was calculated by applying a threshold value to obtain binary

maps (0-1) from Cloglog output. A close up PNPC, B close up LEU, C close up CVM, D close up AGD, E close up AGM and ARES, F close up VLR, G close up

PMCB. Maps for : (1) C.rubrum, (2) P. clavata,(3) E. cavolini, (4) E. singularis,(5) L. sarmentosa. 





Figure 2a: Presence location (Blue cross) and a regional habitat suitability model maps predicted using maximum entropy (MaxEnt) for E. cavolini with all

predictors with geographical predictors (Latitude / Longitude) (Grid red). The habitat suitability model map was calculated by applying a threshold (0.2983)

to obtain binary maps (0-1) from Cloglog output. A close up PNPC, B close up LEU, C close up CVM, D close up AGD, E close up AGM and ARES, F close up

VLR, G close up PMCB.
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Figure 3: Boxplot of the 9 predictors no-correlated selected in the 8 sites (CVM, LEU, VLR, AGD, ARES,

AGM, PMCB, PNPC), for all species, in all sampling (sampling), and in the background: These data are

extracted in cells grid of 100 m * 100m; (A: Umax, B: SST, C: TURBIDITY, D: DEPTH, E: SLOPE, F:

RUGOSITY, G: NORTHNESS, H: EASTNESS)

Fig 4: Assessment of the AUC for  Eunicella singularis (white triangle) and  Leptogorgia sarmentosa

(dark cercle) varying the number of presence data (100 - 7%) where their location while keeping the

full presence data in the testing dataset.



Tables

Table 1: Result of model for each species  with all predictors without geographical predictors (Lat /

Lon). Percent contribution and permutation importance 

  Variables Percent 
contribution (%)

Permutation 
importance (%)

C. rubrum Umax 71.9 31.4
  Turbidity 23.1 62.6
P. clavata Depth 36.3 46.7
  Rugosity 31.1 21.2
  Slope 14.9 16.2
E. cavolini Rugosity 41.3 39.3
  SST 28.7 32.2
  Depth 239 20.5
E. singularis SST 44.5 36.8
  Rugosity 20.1 18.5
  Depth 14.4 26.7
L. sarmentosa Depth 37.8 21.8
  Rugosity 21.3 25
  SST 17.6 25.7
  Turbidity 13.5 20.4

Table  2:  Results  of  assessment  of  model  performance  with  all  predictors  without  geographical

predictors (Lat / Lon) (AUC, Accuracy, sensitivity: true positif , specificity: true absence; Italic: results

for the modelling with only sampling in AMPs)  (number of cells compared = 468)

  AUC test Accuracy Sensitivity Specificity TSS Chi²
C. rubrum 0.971(0.994) 0.87(0.94) 0.24(0.39) 1(0.98) 0.24(0.38) P<0.0001
P. clavata 0.964(0.931) 0.92(0.87) 0.34(0.22) 1(0.99) 0.34(0.22) P<0.0001
E. cavolini 0.907(0.975) 0.72(0.95) 0.18(1) 0.99(0.95) 0.17(0.95) P<0.0001
E. singularis 0.799(0.875) 0.73(0.65) 0.72(0.82) 0.76(0.53) 0.48(0.35) P<0.0001
L. sarmentosa 0.907(0.802) 0.66(0.66) 0.34(0.29) 0.93(0.88) 0.27(0.17) P<0.0001




