
HAL Id: hal-03901281
https://hal.science/hal-03901281v1

Submitted on 9 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Efficient Deep Learning for Graph Drawing
(DL4GD)

Loann Giovannangeli, Frederic Lalanne, David Auber, Romain Giot, Romain
Bourqui

To cite this version:
Loann Giovannangeli, Frederic Lalanne, David Auber, Romain Giot, Romain Bourqui. Toward Effi-
cient Deep Learning for Graph Drawing (DL4GD). IEEE Transactions on Visualization and Computer
Graphics, 2022, pp.1-16. �10.1109/TVCG.2022.3222186�. �hal-03901281�

https://hal.science/hal-03901281v1
https://hal.archives-ouvertes.fr

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 1

Toward efficient Deep Learning
for Graph Drawing (DL4GD)

Loann Giovannangeli, Frederic Lalanne, David Auber, Romain Giot and Romain Bourqui

Abstract—Due to their great performance in many challenges, Deep Learning (DL) techniques keep gaining popularity in many fields.
They have been adapted to process graph data structures to solve various complicated tasks such as graph classification and edge
prediction. Eventually, they reached the Graph Drawing (GD) task. This paper is an extended version of the previously published (DNN)2

and presents a framework to leverage DL techniques for graph drawing (DL4GD). We demonstrate how it is possible to train a Deep
Learning model to extract features from a graph and project them into a graph layout. The method proposes to leverage efficient
Convolutional Neural Networks, adapting them to graphs using Graph Convolutions. The graph layout projection is learned by optimizing
a cost function that does not require any ground truth layout, as opposed to prior work. This paper also proposes an implementation and
benchmark of the framework to study its sensitivity to certain deep learning-related conditions. As the field is novel, and many questions
remain to be answered, we do not focus on finding the most optimal implementation of the method, but rather contribute toward a better
understanding of the approach potential. More precisely, we study different learning strategies relative to the models training datasets.
Finally, we discuss the main advantages and limitations of DL4GD.

Index Terms—Graph drawing, Deep learning, Graph neural network, Graph convolution

✦

1 INTRODUCTION

GRAPHS are common discrete mathematical structures defining
relations between entities. Their applications are numerous as

many businesses use networks for modeling their technical needs
(e.g., traffic of any kind, social network, biology). This structure
has been studied for decades to find algorithms that solve a series of
tasks efficiently (e.g., search an element, find structure properties).
More than ever, with the democratization of IoT where every thing
is smart and communicates with other things, data become massive
and efficient algorithms are necessary to process them.

This paper focuses on the Graph Drawing task in a context
of Node-Link (NL) diagram representations. They consist in
representing entities (i.e., nodes) with geometric shapes (e.g., discs,
squares) and their relations (i.e., edges) as lines connecting them.
The challenge is to find an optimal layout (i.e., coordinate for
every node and/or edge) that emphasizes the graph structure. The
same graph can have different optimal layouts that emphasize (or
optimize) different aesthetic criteria, as shown in Figure 1.

Lately Deep Learning (DL) techniques gained popularity thanks
to their great performance in many application fields (e.g., Image
Processing [2], Natural Language Processing [3]). The main
advantages of DL techniques are their ability to learn by themselves
an efficient strategy to solve a given task, and their short execution
time. At the cost of an expensive training, a forward pass in a
DL model is fast with standard architectures since they apply
a polynomial transformation to their input with their learned
weights. These techniques were adapted to process graphs, but
mostly dedicated to classification and labeling on graphs, nodes or
edges [4], [5], [6].

This paper is an extended version of (DNN)2 [1] and presents
a framework for leveraging Deep Learning techniques for Graph

All authors are with the Univ. Bordeaux, CNRS, Bordeaux INP, INRIA, LaBRI,
UMR 5800, F-33400 Talence, France.
E-mail: {firstname}.{lastname}@u-bordeaux.fr
This paper is an extended version of [1] appeared in GD’21.

This is not a pipe.

Fig. 1: Two drawings of the same graph. On the left, it is laid
out to suggest the abstract concept of a “pipe”. On the right, it
shows that the graph is a mesh. These representations show that
drawings of the same graph can be designed to emphasize different
properties. This figure is inspired by R. Magritte surrealist painting
“La trahison des images” (1929) in which the artist wanted to
show that the representation of an object (here, a graph drawing) is
different from the actual object (here, a graph).

Drawing (DL4GD). Inspired by Convolutional Neural Networks
(CNN) for Image Processing, (DNN)2 proposes to process graphs
with state-of-the-art model architectures. Since these architectures
were designed to process images, some adjustments are made
to feed them with graph data structure, such as the replacement
of standard convolutions with graph convolutions. These model
architectures learn by themselves to extract features from their
input data through a feature extraction stage. Then, a series of
fully connected layers learns the model to synthesize these features
by regressing them into the desired dimension. By learning graph
feature representations by itself, the model can also be considered
as a Node Embedding technique, i.e., it produces a descriptor vector
of the desired dimension for every node. In this paper, we focus on
the projection into a 2D space to visualize graph layouts in static
images and we use (DNN)2 as a Graph Drawing technique.

The first contribution is an extensive presentation of the (DNN)2

framework, an unsupervised Deep Learning (DL) approach to
Graph Drawing. The motivation to find an unsupervised DL

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 2

framework comes from the numerous limitations of the supervised
approach in the context of Graph Drawing (see Section 2.3). The
second contribution corresponds to several evaluations to study the
model performance under various circumstances. These evaluations
do not focus on making the most optimal implementation of the
(DNN)2 framework. Instead, many DL-related design choices are
fixed and we compare the behavior of this model when trained
with various external parameters. More specifically, we study how
it is affected by heterogeneity in its training dataset in terms
of performance and capability to generalize to unseen data. We
also evaluate if the model is able to learn specific graph families
topology to generate better layouts dedicated to them. Finally, the
evaluation studies the benefits of transfer learning on the framework,
and compares (DNN)2 with other state-of-the-art related algorithms.
This paper extends the study of GD’21 [1] by considering more
specific cases of evaluation (e.g., specific graph families) with
different monitored properties. DL models learning being guided
by their training data enables a more fine-grained study of the
approach performance.

In this paper, all graphs are considered connected, undirected
and unweighted. Unconnected graphs can be handled by individ-
ually drawing their connected components. Though we do not
consider directed and weighted graphs, the framework design may
be extended to handle them as described in Section 3.4.

The remainder of the paper is organized as follows. Section 2
presents related work with a focus on Graph Drawing, structures for
learning from graphs, and learning techniques for graph drawing.
Section 3 presents the (DNN)2 framework and Section 4 presents
evaluations of an implementation. Finally, Section 5 discusses
design choices having a major impact on (DNN)2 and the main
limitations observed, while Section 6 draws conclusions and
presents leads for future works.

Notations
Let G = (V,E) be a graph where V = {v0,v1, ...,vN−1},N = |V | is
its set of nodes and E ⊆V ×V its set of edges. A graph layout is
defined as a vector X ∈RN×D where Xi is the node vi projection in
D dimensions (D = 2 in this paper). The euclidean distance (resp.
shortest path length) in the projected (resp. graph theoretical) space
between two nodes vi and v j is denoted ||Xi −X j|| (resp. δi j).

2 RELATED WORK

This section presents research work related to Graph Drawing,
structures and tools for learning from graphs, and learning
techniques to process and draw graphs.

2.1 Graph Drawing
Historically, there were three main approaches to Node-Link (NL)
diagrams designs. The first was to design algorithms dedicated to
graphs with certain properties (e.g., planar graph [7] or tree [8]).
This approach enables to offer guarantees about the resulting
layout, but cannot be adapted to general graph structures. The
second method is the force-directed approach [9], [10] which aims
at simulating a model of attraction-repulsion (e.g., springs) to
converge toward a layout where edge lengths are uniform. This
approach is computationally expensive and motivated research
around fast algorithms (e.g., [11]) to lay large graphs out. Finally,
the last approach is the adaptation to a graph context of multi-
dimensionality reduction algorithms (MDS) [12], [13] who were

originally designed to visualize the similarity between rows of data
tables with many columns.

All these methods aim at producing pleasing layouts, which is
measured with aesthetic metrics [14]. These metrics are cornerstone
to the Graph Drawing field as they enable the quantitative
evaluation of layouts, the comparison of layout techniques, and are
admitted to echo human perception [15], [16], [17].

Lately, Gradient Descent and Machine Learning (ML) models
were used to optimize these criteria. GD2 [18] used gradient descent
to optimize a combination of several aesthetic metrics whose
weights are given by the user. Its flexibility enables to tune the
aesthetics weights according to the desired aspects of the layout.
tsNET [19] also used gradient descent to optimize a Kullback-
Leibler based function that focuses on neighborhood preservation,
adapting t-SNE [20] to graph drawing. This function will be further
presented in Section 3.3 as our method optimizes it as well. Kwon et
al. [21] used a ML approach to estimate both a graph layout and
its corresponding aesthetics at the same time with a new design
of graph kernels. Finally, S GD2 [22] relies on stochastic gradient
descent to optimize stress modeled with constraints between pairs
of nodes. The approach is inspired by cloth behavior simulations
where clothes are modeled with a mesh of vertices. To avoid the
costly computation of the stress (O(N2) if we already know all
pairs shortest paths δ) on a whole mesh, they independently relax
constraints between pairs of nodes by moving them in opposite
directions.

In this paper, we propose another approach to produce graph
layouts by learning a Deep Neural Network to embed a theoretical
graph structure into an R2 scalar for every node which we interpret
as the graph layout.

2.2 Learning for Graph Processing

The democratization of Deep Learning techniques stimulated the
interest in learning techniques for many visualization tasks [23],
[24], including Graph Drawing. Since most learning techniques
work best with a significant amount of data to learn from, node
embedding techniques [25], [26], [27] have been proposed to create
descriptor vectors of a graph nodes. These techniques can be
used to preprocess graphs in learning frameworks by associating a
features vector to every node. The vectors are themselves designed
to encode node properties and give learning techniques enough
input data to learn from.

Neural network structures to learn from graph data emerged in
2008 with the original Graph Neural Network of Scarselli et al. [28].
Recently, they regained popularity with the Graph Convolutional
Network (GCN) proposed by Kipf and Welling [29] where they
adapt the concept of convolutions to a graph context by adding a
topological component to the operator. However, GCNs are unable
to differentiate nodes with the same local neighborhood [1], [30],
[31]. Since then, GCNs have been declined several times for various
needs and to overcome different limitations (e.g., FastGCN [32],
GraphSAGE [33], P-GNN [30]). Other structures, such as Graph
Attention Networks (GAT) [34] and Graph Isomorphism Network
(GIN) [31], were also proposed to learn from graph data and
overcome some of GCNs drawbacks. Tiezzi et al. [35] compared
the performance of three Shallow Neural Networks (one for GCN,
GAT and GIN). They conclude that GAT is the best performing
structure out of the three. In this paper, since we leverage a
Convolutional Neural Network architecture from the literature
(i.e., ResNet50 [36]), we focus on Graph Convolutions.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 3

The main tasks studied with these techniques are classification
and labeling for graphs, nodes or edges [4], [5], [6]. But recently,
they began drawing attention in the Graph Drawing community.
For instance, Tiezzi et al. [35] compared GCN, GAT and GIN
structures on the Graph Drawing task.

2.3 Learning for Graph Drawing

GND [35] and GraphTSNE [37] are two frameworks that use
Shallow Neural Networks to draw graphs. While each training
of GraphTSNE is done on one specific graph (fed to the model
as batches of nodes), GND is trained with batches of graphs
to generate layouts of any input graph. The model optimizes a
loss function either supervised or unsupervised and the authors
found that supervising the training with the result layout from an
existing algorithm leads to better performance than unsupervised
approaches. However, we argue supervised graph drawing is not
satisfactory and will detail why shortly. Another originality of GND
was to propose the use of a so-called Neural Aesthete model to
drive a Drawer model learning. Since aesthetic metrics can be very
expensive to compute (e.g., stress takes O(N2) if we know δ), the
idea is to train the Neural Aesthete neural network to estimate an
aesthetic metric on a graph layout. Then, it can be used in a Drawer
model loss function as a fast derivable component that estimates the
aesthetic metric. The concept is close to that of Haleem et al. [38]
who estimated aesthetics with a Convolutional Neural Network
working on images of graph layouts, but whose approach was
sensitive to graphical design choices (e.g., node radius) interfering
with the estimation.

DeepDrawing [39] is the first technique to leverage Deep Neural
Networks to train a model to project graphs into layouts. The
training of DeepDrawing is supervised with the layouts produced
by a groundtruth algorithm that should be reproduced. That is,
the model is trained to minimize the distance (i.e., Procrustes
statistic [40], [41]) between the layouts it predicts and the label
layout produced by the groundtruth algorithm. Espadoto et al. [42]
also studied this approach in their framework which could learn to
mimic any multidimensional projection algorithm thanks to Deep
Learning. Both works raised limitations to the supervised learning
of such models. Like most Deep Learning models, it has to be
trained on thousands of samples. However, with such a supervised
approach, the data generation requires to generate both the graphs
and their corresponding layout with the groundtruth algorithm.
As such a model is usually trained to reproduce layouts of an
efficient but expensive algorithm, computing thousands of label
layouts can be prohibitive. A second limitation is that the model
is very sensitive to diversity in the label layouts. If layouts of
similar graphs are not approximately the same, the model will
have difficulties to converge. Wang et al. [39] mentioned having
to manually tune some algorithm-specific parameters to obtain
desirable visual properties. Since DeepDrawing learns to mimic the
groundtruth algorithm, it cannot generate better layouts and also
learns to reproduce its defects. Finally, as the model is intrinsically
related to the groundtruth algorithm, its capability to generalize to
unseen graph topologies is uncertain.

(DNN)2 [1] and DeepGD [43] are the two first unsupervised
Deep Learning approaches to graph drawing. Both frameworks
were simultaneously published and are actually quite similar in
their behavior. The main differences between the two papers are
some design choices relative to data structures and deep learning
hyperparameters, and the focus of their method evaluation. DeepGD

(a) Standard convolution on an image

(b) Graph-oriented view of a convolution on an image

(c) Graph convolution

Fig. 2: Illustrations of (a) a standard convolution on an image; (b) a
standard convolution on an image from a graph perspective (pixels
are nodes, nodes are linked when adjacent in the grid); and (c) the
generalization of the convolution on a graph.

model architecture gets the graph topology as an adjacency matrix
and an edge feature matrix. In addition, DeepGD architecture
includes the idea of an Edge Feature Network that is local to every
graph convolution layer and is claimed to make the model able to
interpret the graph topology differently according to the depth of
the convolution layer. Finally, another distinction between DeepGD
and this paper is the focus of their evaluation. The different choices
of (DNN)2 will be detailed in the dedicated Section 3 for the design,
and Section 4 for the evaluation. The intuition of the method is that
as Graph Convolutions can be similar to standard convolutions on
images (as illustrated in Figure 2), we can leverage Deep Learning
advances of the Image Processing community and adapt them
to extract features from graph data. The advantage of such an
approach is that it does not require much information about the
graphs to train the model, since it learns by itself to extract features
(i.e., feature extraction stage) from the topology before projecting
them (i.e., regression stage). By exiting earlier in the network (e.g.,
at the end of the feature extraction stage), the framework can also
be considered as a Node Embedding technique. The approach
efficiency for Node Embedding was addressed by DeepGD [43]
and is not investigated in this paper as we focus on graph drawing.

3 FRAMEWORK (DNN)2

This section describes the (DNN)2 [1] framework and some design
choices made for the evaluation to come in further sections.

3.1 Architecture
Convolutional Neural Networks (CNNs) have proven to be efficient
techniques to solve many tasks in the Image Processing commu-
nity [2]. By design, they convolve pixels with their neighbors

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 4

Nodes Features

Output:

Output:

Output:

Output:

Chebyshev
Filters *

Mask of
fictive nodes *

Every Graph Convolution gets
 up to order

and as input

Graph. Conv.
LayerInput Layer

Node-wise
Fully Connected

Layer
Output Layer

Legend

ReLu activationAdd Linear activation

R
esidual block w

ith
regular shortcut

R
esidual block w

ith
C

onvolution shortcut

R
egression

Fig. 3: Schema of (DNN)2 architecture based on ResNet50. Only 2 out of 16 residual blocks are highlighted for illustration purposes.
Chebyshev filters are provided up to order K = 4 to all convolution layers except the last 10 (i.e., last 3 residual blocks) where they are
up to order K = 2. The maximum number of nodes during the training was set to Nmax = 128. At the end of each residual block, node
feature vectors are normalized and the mask of real-fictive nodes is applied.

(see Figure 2a). Hence, their adaptation to a graph context is
straightforward: pixels can be considered as nodes that are linked
with an edge if they are adjacent in the grid, as in Figure 2b. By
providing a data structure that encodes adjacency, can compute
convolutions on graph data directly, as illustrated in Figure 2c.
The idea of (DNN)2 is to leverage CNNs architectures to process
graph data and infer their layout. Their adaptation to a graph
structure is done by replacing the standard convolutions by Graph
Convolutions [29], [44].

In our experimentation, we used ResNet50 [36] as the basis
of our model architecture since it is well proven and reaches
great performance for various tasks. This architecture groups
convolutions in residual blocks, themselves grouped in stacks,
which sequence builds the feature extraction stage of the model.
A residual block (see Figure 3) is a pattern with two branches:
a main branch where the input features are convolved, and a
shortcut branch where they are (almost) not. At the end of the
block, the two branches are aggregated, making the model able
to work on different levels of abstraction of the data at the same
time. This pattern is the main success factor in ResNet architecture.
Once features are extracted, they undergo a regression stage: a
sequence of node-wise fully connected layers that learns to reduce

the features to the desired dimension (e.g., 2D or 3D). Each fully
connected layer is said node-wise because the full connection
is within each graph node features and not between different
nodes of a graph. The same kernel of learned weights is applied
independently to each node feature vector to produce its projection,
rather than making all-against-all connections between all the
feature vectors of all nodes. Having node-wise fully connected
layers also enables the architecture to be independent of the input
graph size.

Among the various implementations of Graph Convolutions
(e.g., spatial [45], spectral [29], position-aware [30]), we used the
Spectral Graph Convolutions. As shown in Figure 3, the model
inputs are the graph signal and its spectrum defined in the next
section. The signal is the input features for every node that will be
extracted and regressed into 2D positions, while the spectrum is the
topological structure used to convolve nodes with their neighbors.

3.2 Spectral Graph Convolutions

In this paper, we use edge-oriented graph convolutions where each
node is described by a feature vector and is convolved with its
neighbors to produce its new feature vector. Basically, a graph

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 5

(a)

Feature vectors

Adjacency Matrix

Rescaled symmetric
normalized Laplacian

Chebyshev filters
up to order

Stack features

(b)

.

Inputs

. . .

. . .

. . .

Learned kernel

Output

. . .

. . .

. . .

Fig. 4: Illustration of (a) the computation of inputs required to
compute a Graph Convolution; and (b) the Graph Convolution
operation. In (b), the input feature tensor X (l−1) is a generated
vector for the first Graph Convolution (see Section 3.4). For further
convolution layers, X (l−1) is the output of the previous layer.

convolution layer l transforms a node feature vector X (l−1)
i in a

new vector X (l)
i :

X (l)
i = X (l−1)

i ·Θ(l)+ ∑
j∈N (i)

Wi j ·X (l−1)
j ·Θ′(l) (1)

where X (l)
i is the feature vector of node vi at the layer l and N (i)

is vi set of neighbors. W ∈RN×N is a weight factor that encodes
how important should the features of node v j be for the update
of node vi features. This weight matrix is basically defined from
the graph topology. Θ and Θ′ are the graph convolution weights
learned during the training to optimize a cost function. Most Graph
Convolutions variants follow this formula and their originality
differ on their definition of node neighborhood N , of the weight
matrix W and of learnable weights Θ. For example, adjacency or
distance matrix can be used as W in spatial graph convolutions.

(DNN)2 derives Equation 1 using the Spectral Graph Convolu-
tions as defined by Kipf and Welling [29] and illustrated in Figure 4.
In this convolution, node features X are considered as the graph
signal and are convolved according to the graph spectrum (W in
(1)). The graph spectrum is defined as the eigendecomposion of the
rescaled symmetric normalized Laplacian matrix of the graph L̃:

L = D−A,

Lsym = IN −D− 1
2 L D− 1

2 ,

L̃ =
2

λmax
Lsym − IN

(2)

where D and A are respectively the degree and adjacency matrices,
IN is the identity matrix of size N = |V |, and λmax the highest
eigenvalue of Lsym.

Since the eigendecomposion of L̃ (i.e., the graph spectrum)
is expensive to compute, it is approximated with Chebyshev
polynomials [46] up to order K:

T0(x) = 1,

T1(x) = x,

Tk(x) = 2xTk−1(x)−Tk−2(x),∀k ≥ 2

(3)

The order K can thus be seen as the size of the convolution kernel.
Finally, the spectral graph convolution layer H l is defined as:

H l(X) =

(Kn

k=0

Tk
(
L̃
)
·X

)
·Θl (4)

where X ∈ RN×F is a stacked tensor of a graph node feature
vectors (i.e., graph signal) where each node has F features, Tk

(
L̃
)

is the edge weight factor for node neighborhood convolutions (i.e.,
Chebyshev filters) and Θl ∈ R(F(l−1)∗(K+1))×F(l)

is the matrix of
learned weights in the layer l where F(l) is the size of the desired
output feature vector for every node. The symbol

f
is used as a

concatenate operator on all the Tk(L̃) ·X tensors.

3.3 Unsupervised Probability-based Loss
Some approaches consider layout algorithms from the literature as
ground truths (e.g., DeepDrawing [39]), but this approach is not
satisfactory for multiple reasons (e.g., cost, defects reproduction,
see Section 2.3). In addition, there is no such thing as a ground
truth layout for a graph, since different layouts can optimize various
aesthetic metrics, each emphasizing different aspects of the graph
(e.g., neighborhood vs. distance preservation). Hence, the training
of (DNN)2 is unsupervised as we do not measure its performance
in regard of a ground truth layout. Basically, (DNN)2 can be trained
to optimize any smooth function that evaluates how a graph layout
is representative of the graph structure. For instance, Ahmed et
al. [18] proposed smooth expressions of most standard aesthetic
metrics to enable their optimization with gradient descent.

Here, we propose to optimize the Kullback-Leibler divergence
as proposed by Kruiger et al. [19] in tsNET. This approach
optimizes neighborhood preservation and is an adaptation of the
t-SNE [20] algorithm to a graph context defined as:

Ccomp =
1

2N ∑
i
||Xi||2,

Crep =
1

2N2 ∑
i, j∈V,i ̸= j

log(||Xi −X j||+ εr) ,

CtsNET = λKLCKL +λcCcomp −λrCrep

(5)

where CKL (6) is the main topology-related cost term (discussed
below). The second term Ccomp is a compression that minimizes the
scale of the drawing and is known to accelerate t-SNE convergence.
The third term Crep is a repulsion that counter-balances the
compression effects on the drawing. (λKL,λc,λr) are weights used
to tune the loss function during the optimization. εr =

1
20 is a

regularization constant.
In the first experimentations of (DNN)2 [1], we reproduced

tsNET protocol by setting a first stage training with lambda weights
(1, 1.2, 0) to compress the layout and a second stage training with
(1, 0.01, 0.6). However, we observed that the introduction of the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 6

compression term (and thus the repulsion that counter-balances it)
makes it harder for the model to optimize the main CKL term. The
original concern that motivated the addition of the compression
term was to make convergence faster. But since optimization is
done a priori in a Deep Learning context, we can afford a longer
training convergence as it will not impact the model performance
at inference time. Hence, the two additional terms are discarded by
setting the λ weights to (1, 0, 0).

The cost function to optimize is then only defined by
the Kullback-Leibler (KL) divergence which measures the
(dis)similarity between two sets of probabilities:

CKL = ∑
i, j∈V,i̸= j

pi j log
pi j

qi j
(6)

where pi j and qi j are sets of probabilities that every pair of nodes
(vi,v j) ∈V 2 in the graph are connected, based on their location in
the graph (i.e., dense or sparse region) and the distance between
them. The difference between them is that pi j is computed from
the graph distances (i.e., shortest path lengths) while qi j is built
upon the euclidean distances in the layout. Evaluating Equation 6
comes down to study if the “probabilities that all pairs of nodes
are neighbors according to their distances in the graph” are
similar to the “probabilities that all pairs of nodes are neighbors
according to their distances in the layout”. If so, the layout is a
good representation of the graph. The formal definition of pi j and
qi j are postponed to Section 5.1 where we discuss some drawbacks
observed during the framework evaluation in Section 4.

3.4 Model Inputs
During the model training, every input tensor is padded with fictive
nodes to a maximum graph size Nmax. This enables to have tensors
of equal size and greatly eases the model training. Such padding in
the model input is commonly used in Deep Learning since samples
rarely have the same size (e.g., number of words in sentences
for Natural Language Processing, image resolution for Image
Processing). The maximum graph size Nmax is only set during
the model training and is not necessary in the inference phase.
However, it means that fictive nodes features will be convolved
during the model training. To avoid that the model learns from
them, a mask of real-fictive nodes is applied after each residual
block. Finally, to avoid bias related to node ordering, the model
inputs are randomly permuted.

Hence, the first model input is the mask of real-fictive nodes
defined as Mask ∈ 1Nmax where Maski = 0 if vi is a fictive node, 1
otherwise. This tensor is never modified by the model, and is used
at different stages in the architecture.

As the model leverages Spectral Graph Convolutions, the
second input is the graph spectrum, approximated with Chebyshev
filters up to order K as presented in Section 3.2. This structure is
never modified by the model and is provided to graph convolution
layers to convolve node features according to the graph spectrum.

The last model input is a tensor that holds the initial node
features. That is, the tensor that contains information of each node
from which features will be extracted through the first stage of the
model and then regressed through the second stage (see Figure 3).
There already exist methods to extract features for every node in a
graph (i.e., Node Embedding techniques) dedicated to feeding Deep
Learning models [25], [26], [27]. But since most layout algorithms
from the literature work on the graph topology only (and sometimes
include some randomness), we do not use them. As mentioned

TABLE 1: Distributions of the number of nodes |V |, number of
edges |E|, densities D2 and distances in the datasets presented
in Section 4.1. Distances distribution is the summed count of all
distances between all pairs of nodes in all graphs of a dataset. |E|
plots X-axis have log scales. All plots of a column have the same
range on the X-axis.

Dataset |V| |E| Densities Distances

HoR

HeR

Tree

Grid

NN

Planar

Commu.

Rome

before, we do not aim at making the most optimal implementation
of (DNN)2 but rather try to keep some design choices simple to
limit black box effects and enable a proper model performance
interpretation. Hence, we create a short vector for every node
containing a unique id (ranging from 0 to |V |−1 for each graph,
in generation order) and a random metric. The intuition is that
giving a unique id to every node can help the model to differentiate
nodes having the same local neighborhood and thus avoid some
overplotting issues. The random metric provides the randomness
factor that is often included in layout algorithms from the literature
(e.g., GEM [10]) to avoid ending up in local minima. The node
features are then defined as X ∈ RN×2. We also tried a variant
of these node features where we added the 2D node positions
generated by PivotMDS [12] layout algorithm, as in tsNET ∗ [19],
to check if the model could lead to better results by having the
equivalent of a non-random initialization of the node positions.
Finally, all the node features from a graph are normalized across
that graph dataset to give them the same importance, regardless of
their original value domain or the graph size (e.g., nodes id feature
have higher values with larger graphs).

Graphs are considered unweighted in this study. However, the
framework should be able to handle them by encoding weights in
the model inputs. For example, node weights can be encoded in
the initial node feature representation. On the other hand, edge
weights can be provided to the model through the topological
structure. Here, we used Chebyshev filters, but other structures such
as weighted adjacency matrix could be experimented. Based on the
choice of that topological structure, directed graphs can be handled
as well. These ideas could be investigated in future works.

4 BENCHMARK

4.1 Datasets

This section presents the graph datasets used in the benchmarks.
Some of their properties are reported in Table 1. All of them are
randomly split into train and validation subsets for Deep Learning
validation purposes. All sets but Her and HoR are split once
more for evaluation (i.e., they have a test set). Basically, models
are trained on a train set and a validation set is regularly used
during training to avoid overfitting on this train set. The trained
model is then evaluated on unseen data that was set apart from

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 7

the beginning: the test set. All the graphs in these datasets are
connected, undirected, unweighted and have N ∈ [2,128] nodes.

HoR stands for Homogeneous Random Graphs which is the
set of random graphs used in [1]. This dataset is generated
with the following constraint: generate 1000 instances of random
connected graphs for each number of nodes between 2 and 128.
The density is randomly picked and the corresponding number of
edges computed following the formula: D1 = 2|E|

|V |∗(|V |−1) . We do
not remove isomorphic graphs which inevitably exist with smaller
graph sizes. Having lots of small isomorphic graphs can however
be interesting since larger graphs can be decomposed into subsets
of small ones, meaning that if the model learns well to draw small
graphs, it can help it drawing larger ones containing them.

HeR stands for Heterogeneous Random Graphs. It is generated
with the same constraints has HoR except for the graph densities
which are randomly taken following D2 =

√
2|E|

|V |∗(|V |−1) . The
densities randomness is also controlled to be more uniformly
distributed accross the dataset. This enables for more diverse graph
structures and leads to a more heterogeneous dataset.

Tree is made of 15245 tree graphs. Half are shallow with a
high maximum degree (see Figure 6b third row), while the other
half is deeper (see Figure 6b fourth row).

Grid is the enumeration of all the grids of degree 4, 6 and 8
with N ≤ 128, width ≥ 2 and height ≥ 2.

NN is made of 12700 Nearest Neighbor graphs generated with
the Tulip [47] Grid Approximation algorithm. Basically, nodes are
randomly projected on a 2D space, then close nodes (i.e., euclidean
distance less than a threshold) are linked with an edge.

Planar is made of 19050 random planar graphs.
Commu are 18161 gaussian random partition graphs. The

generator parameters were set as proposed by Brander et al. [48].
Rome is a dataset of 11531 connected undirected graphs

provided by the Graph Drawing symposium1. These graph are
diverse and of no specific family but are rather sparse (see the high
concentration of low densities in Table 1). As it is well-established
in the community, it is the main evaluation dataset in this paper
and will be used in Section 4.4 and 4.6.

Aside from Rome, all datasets were generated for this study.

4.2 Training Parameters
This section describes the selected hyperparameters to train the
models, and whose performances are evaluated later in this study.

Regarding the model, the first design choice is to use
ResNet50 [36] as the basis for the architecture. It is selected
because it is one of the most used standard architectures and
achieves great performance in many challenges. The maximum
graph size Nmax is set to 128 to be larger than the largest Rome
graph (see Section 4.1) and to provide a good trade-off between
graph size and graph variability. On one hand, Nmax has to be large
enough so that generating thousands of graphs leads to various
topologies. On the other hand, Nmax has to be kept reasonable since
the loss function requires to compute the distance matrix of every
graph to evaluate the generated layouts. The graph convolutions
kernel size (i.e., order of the Chebyshev filters) is set to K = 4
for all convolution layers except the last 10 (i.e., last 3 residual
blocks) where they are set to K = 2 (see Figure 3). Doing so gives
more weight to closer neighborhood preservation in the last Graph
Convolution layers of the architecture.

1Rome graphs: http://www.graphdrawing.org/data.html

For training on small datasets (e.g., Grid, see Section 4.1), the
whole train and validation sets are repeated until their size is at
least 8800 and 1760 respectively. It means the models will see the
same graph several times with various random node orders in the
train and validation sets. We repeat the entire dataset to preserve
their distribution (see Table 1). This data augmentation is designed
to give the models enough data to learn from. However, the very
consideration of a validation set can be questioned on such datasets:
what are the benefits of preventing overfitting if we can enumerate
and learn how to draw all the possible graphs? This paper does not
study this question, but it is an interesting lead of investigation for
future work.

Regarding the training hyper-parameters; the models were
trained with Adam optimizer [49] with a starting learning rate
of 10−3. The trainings were set to last at most 200 epochs, with
an early stop if the validation loss did not improve during 20
consecutive epochs. This choice was made after the experimental
verification that training the models for 1000 epochs straight did
not provide significant benefit. In practice, most of the (DNN)2

instances training early stopped in fewer than 100 epochs. Trainings
on the HoR and HeR datasets were made with a batch size set to
400 on a CPU cluster with 20 workers for a training time of several
hours each. On all others datasets, the batch size was set to 32
and trainings were conducted on a NVIDIA 2080 Super Max-Q
(Mobile) GPU for a training time of about one hour each. That is
to say, it does not require heavy resources. As for inference time, it
is not monitored since it is almost instantaneous compared to graph
pre-processing (e.g., loading, Chebyshev filters computation).

4.3 Evaluation Metrics and Protocol

The aesthetic metrics used to compare the graph layout techniques
are described in the following and formally defined in Table 2.
Those noted with a * have been inverted so that all are oriented
lower is better.

Aspect Ratio* [18] is defined as the worst ratio between the
drawing width and height after a series of rotations.

Angular resolution* [18] is the ratio between the minimum
angle formed by two edges on a node in the drawing and the
optimal angle that should be formed by the edges on the node with
the maximum degree.

Edge crossings number [14], [18] is the number of times
edges cross each other in the drawing.

Cluster overlap [50] corresponds to the normalized sum of
distances between nodes that are at a distance smaller than r and
not in the same cluster. The metric requires a neighborhood radius
r in the drawing and a clustering algorithm. Here, r = 0.2 and
the clustering algorithm is MCL [51], an efficient deterministic
clustering algorithm.

Neighborhood preservation* [19] is the sum, for each node,
of the size of the intersection over union between its k-hop-
neighborhood U in the graph and the set of its |U | nearest nodes in
the layout.

Stress [9], [18] measures how the euclidean distances in the
layout deviate from the distances in the theoretical space (i.e.,
shortest path lengths), with a weighting inversely proportional to
the theoretical distance. Here, stress is normalized to obtain an
average stress per node and fairly compare graphs of different sizes.

Statistical validation should support the results interpretation
as we work with thousands of graphs. To assert whether the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://www.graphdrawing.org/data.html

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 8

TABLE 2: Quality metrics definitions. Those noted with a * have been inverted so that all are oriented lower is better. Notations that are
not in the table were defined in Section 1.

Metric Definition Notations

Aspect ratio* 1−minθ
min(wθ ,hθ)
max(wθ ,hθ)

θ ∈ { 2πk
N ,k ∈ [0,1, ...,N −1]}

wθ and hθ layout width and height after rotation θ

Angular resolution* 1− min(i, j),(j,k)∈E θi jk
θG

θG = 2π

dmax
, optimal angle;

dmax, maximum degree

Edge crossings
number ∑

e1,e2∈E,e1̸=e2
1{hasCrossing(e1,e2)} hasCrossing, geometric function testing if two segments intersect

according to the source and target node positions of the edge parameters.

Cluster overlap ∑
i∈V

∑
u∈Ui

(1−||Xu−Xi ||)∗1{MCLi ̸=MCLu}

∑
u∈Ui

(1−||Xu−Xi ||)

r = 0.2;
Ui, set of nodes vu for which ||Xi −Xu||< r;
MCLi, the cluster of node i

Neighborhood
preservation* 1− 1

|V | ∑
i∈V

|Ui∩Yi |
|Ui∪Yi |

Ui, k-hop-neighborhood of vi in the theoretical space;
Yi set of |Ui| neareast nodes in the projected space.

Stress 1
N ∑

i, j∈V
wi j(||Xi −X j||−δi j)

2 wi j = δ
−2
i j

performance between layout techniques is significantly different,
we first conduct a Friedman test [52] to verify if changes in the
condition variable (i.e., layout technique) significantly affect the
metric results, with an acceptance threshold of α = 0.05. If so,
post-hoc pairwise comparison tests (Nemenyi [53]) are conducted,
also with α = 0.05. For every pair of layout techniques that passes
the test, we can safely assert that the difference between their
metric results is significant. Pairwise significant differences can
be observed even with close means and standard deviations if the
two techniques do not perform well on the same graphs. Since all
metrics are oriented lower is better, a significant difference is in
favor of the technique with the lowest mean value.

4.4 Dataset Heterogeneity and KL Optimization

The importance of training dataset heterogeneity is crucial in
Deep Learning techniques. Because the model learns to optimize
a cost function for a whole dataset, it may overfit if the dataset
is too homogeneous, and not be able to learn if the dataset is too
heterogeneous. It is then important to keep balance between enough
homogeneity so that the model can recognize patterns in the data
to learn the task, while keeping enough heterogeneity so that it can
still generalize to unseen data.

This section presents the comparison of (DNN)2 performance
trained on two different sets whose main difference is the hetero-
geneity: HoR and HeR (see Section 4.1). The models are then
evaluated on the Rome dataset since we want to compare their
performance and capability to generalize to other graph structures.
Table 1 shows the differences of these three sets regarding distances
and densities distribution. The two first (DNN)2 models in this
section optimize the CtsNET (5) loss with λ weights set according
to the original tsNET implementation [1], [19]. The goal is to
study how the models are affected by heterogeneity in their training
dataset. In addition, we compare them to a third (DNN)2 instance
trained to optimize CKL (6) on HeR. Since we do not need to speed
up the convergence of any gradient descent, we want to observe
how a model specifically dedicated to CKL optimization performs
compared to models that optimize CtsNET including additional
terms (i.e., compression and repulsion). We only do this second
comparison on the HeR dataset as we will see that it leads the
model toward significantly better performance.

HoR
C tsN

ET HeR
C tsN

ET HeR
CKL

0.0

0.1

0.2

0.3

0.4

Aspect ratio

HoR
C tsN

ET HeR
C tsN

ET HeR
CKL

0.7

0.8

0.9

1.0

Angular resolution

HoR
C tsN

ET HeR
C tsN

ET HeR
CKL

0

100

200

300

Edges crossings number

HoR
C tsN

ET HeR
C tsN

ET HeR
CKL

0.0

0.2

0.4

0.6

0.8

Cluster overlap

HoR
C tsN

ET HeR
C tsN

ET HeR
CKL

0.0

0.2

0.4

0.6

0.8

Neighborhood preservation

HoR
C tsN

ET HeR
C tsN

ET HeR
CKL

0.0

0.2

0.4

0.6

0.8

1.0
Stress

Fig. 5: Performance of (DNN)2 models trained on HeR or HoR
dataset and evaluated on Rome. The two first models optimize
CtsNET (5) while the last optimizes CKL (6). All statistical test
passed, meaning that the pairwise difference between the three
model performances on every metric is significant.

The performance of these three models on the Rome test set
is reported in Figure 5. All the statistical tests (see Section 4.3)
passed, meaning that all the models have significantly different
performances on every metric. First, we compare (DNN)2 trained
on HoR and HeR respectively. The HoR-CtsNET instance is only
better on Aspect Ratio and Angular Resolution (by a short margin).
On all other metrics, HeR-CtsNET is far better. This confirms that
having a more heterogeneous training dataset improves the model
performance and capability to generalize.

The two last bars of each plot in Figure 5 compare (DNN)2

models trained on HeR to optimize CtsNET and CKL. Except on
Angular Resolution, the model that optimizes CKL (i.e., HeR-CKL)
always performs better. In addition, we can be certain HeR-CKL
optimized neighborhood preservation, while it cannot be sure
with HeR-CtsNET since CtsNET requires to optimize two additional
terms. Optimizing CKL seems to make more sense with a Deep
Learning approach since we do not need to speed up the learning
convergence, the model reaches better performance and we
know exactly what it tries to optimize (which improves results

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 9

understanding and further re-design). Since explainability is a
major concern with Deep Learning techniques, the advantages of
the latter point cannot be neglected.

In the prior version of the study [1], it was claimed that
finetuning models improved their performance. This conclusion
was drawn after comparison with a generic model trained on HoR.
Yet, as we just saw, a model trained on HeR has a significantly
greater capability to generalize to unseen data. Hence, it is not
certain that finetuning models would be beneficial.

At the same time, it seems intuitive that no matter what a
model has been pretrained on, it will benefit from being finetuned
on specific datasets. In fact, graphs from a specific family (e.g.,
grids, trees) have common and typical internal structures we call
topological patterns. We believe that a model trained on a dataset
only made of graphs from a specific family can learn to leverage
these topological patterns to achieve better drawings.

These two hypotheses echo layout algorithm approaches from
the literature (see Section 2.1) where we can oppose algorithms
dedicated to specific graph families with generic ones. Dedicated
algorithms assume that the graph follows some properties and
leverages them to produce a layout. On the other hand, generic
methods generally aim at optimizing an energy function, whatever
the properties of the graph are. With the Deep Learning approach,
the models learn by themselves how to extract features from the
graph. Hence, the same architecture can learn either to layout
generic graphs (i.e., with no common graph topological pattern) or
graphs from the same family (i.e., that share topological patterns),
based on the dataset it is trained on. The next section investigates
how (DNN)2 Deep Learning approach fits to the two categories.

4.5 Specific Graph Families
This section presents the evaluation of three (DNN)2 training
approaches on specific graph families: Trees, Grids, Nearest-
Neighhbor (NN), Planars and Community (Commu.) graphs; each
being represented by a dataset presented in Section 4.1. These
graph families were selected as they cover a large variety of
topologies. The first hypothesis studied in this section is that
training (DNN)2 on a specific graph family leads to better layouts
of that family than training (DNN)2 on random graphs. This
hypothesis is motivated by the assumption that Deep Learning
models should learn to recognize and leverage topological patterns
to produce better layouts. This study will also clarify whether
(DNN)2 is more prone to fit in the category of generic algorithms
or those who are dedicated to specific topologies. Finally, it will
also extend the comparison of pretraining, finetuning or training
(DNN)2 fromscratch presented in [1].

The other question this section aims at answering is: does
(DNN)2 benefit from having an existing layout as input? Or more
generally, meaningful input node features? Many layout algorithms
initialize node positions with fast techniques rather than randomly
(e.g., tsNET [19]), before conducing their own optimization. Since
(DNN)2 directly infers graph layouts, there is no such thing as node
position initialization. Instead, we provide the 2D positions of a
fast layout technique, PivotMDS [12], to the model input node
features (see Section 3.4). That way, we can verify (i) that the
model benefits from having knowledge of another layout; and (ii)
that adding meaningful features to the input node feature vectors
improves the produced layouts quality.

Hence, for each graph family, the performances of 6 instances of
(DNN)2 that optimize CKL (6) are compared: the three approaches

pretrained, finetuned (Ftune) and fromscratch (Fscratch), each
trained twice: with and without PivotMDS (PMDS) input features.
For all the studied families, the Pretrained instance is the HeR-CKL
of Section 4.4 which was trained on the dataset of Heterogeneous
Random graphs (see Section 4.1). Fscratch instances of a family
are trained on their corresponding dataset with random learnable
weights initialization. Ftune instances are trained as Fscratch ones,
but learnable weights are initialized to Pretrained instance weights.

4.5.1 Results Reports
For each dataset and metric, the mean performance and correspond-
ing standard deviation of the 6 models are reported on one barplot
(see Section 4.3). Each barplot reports the mean and standard
deviation value of its corresponding metric for the 6 models. In
addition, 4 graphs (with N ≈ {10,50,75,100}) from the test set of
the graph family are drawn and presented.

Significance in barplots: For each barplot in the next sections,
the statistical validation protocol defined in Section 4.3 is applied.
At first, a Friedman test was conducted and rejected the null
hypothesis, meaning that the differences between the drawing
techniques performances were significant. Since the differences
are not due to randomness, further Nemenyi pairwise tests are
conducted. Originally, bars are colored blue and the significant
difference between two model instance performances is encoded
with an arc between their label. To alleviate plots, model instances
whose performance is different to all other ones are colored red and
their incident arcs are removed. For example, in Figure 6a Aspect
Ratio plot, both Pretrain and Pretrain PMDS instance performances
are significantly different to all others. On the other hand, Ftune
instance performance is only different from instances it has an
arc with (i.e., Ftune PMDS and Fscratch PMDS) and the red bars
(i.e., Pretrain and Pretrain PMDS). It means the difference is not
significant between Ftune and Fscratch on that metric.

4.5.2 Trees
The performances of Pretrain, Ftune and Fscratch model instances
with and without PMDS are reported in Figure 6a and visual
examples are proposed in Figure 6b. We can see that learning from
a Trees dataset (i.e., Ftune and Fscratch instances) leads the model
toward better Stress, Edge crossing number and Neighborhood
preservation, while it has a smaller effect on Angular resolution
and Cluster overlap. As there is almost no difference between
Ftune and Fscratch instances, using the prior knowledge of the
pretrained instance does not help to achieve better layouts. The
visual aspects of graph samples in Figure 6b confirms that it is
very beneficial for the model to be trained specifically on trees if it
aims at drawing them. To conclude, transfer learning from random
graphs knowledge only has very little interest.

As for having PMDS positions as input node features, we can
see it consistently improves the layout quality according to all the
metrics. Visually, PMDS seems to improve Angular Resolution and
avoid the overplot of some leaves.

4.5.3 Grids
Performance on Grid graphs is reported in Figure 7a with visual
examples in Figure 7b. Training the models on the specific Grids
dataset significantly improves its Neighborhood Preservation, Edge
crossing number and Stress aesthetics. Overall, the Ftune instance
underperforms, while Ftune PMDS is best in terms of aesthetics.
Visually, Pretrain is the only instance to draw the small grid well.
On the other hand, it folds larger ones on themselves if it does

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 10

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

0.8
Aspect ratio

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.8

0.9

1.0

Angular resolution

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

100

50

0

50

100

150 Edges crossings number

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

0.8
Cluster overlap

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4

0.5
Neighborhood preservation

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

Stress

(a) Comparison of Pretrain, Ftune and Fscratch models with and
without PMDS input feature on Tree graphs. Barplots report mean and
standard deviation of their respective aesthetic metric. Bars color and
arcs encode pairwise significance (see Section 4.5.1).

Pretrain Pretrain
PMDS

Ftune Ftune
PMDS

Fscratch Fscratch
PMDS

(b) Trees drawings examples with N ≈ {10,50,75,100}.

Fig. 6: Pretrain, Ftune and Fscratch instances (a) aesthetics and
(b) layout samples on Tree graphs with and without PMDS input
features.

not have PMDS input features. On the other hand, drawings of
instances trained on the Grid dataset are satisfactory on larger
graphs except for the Ftune instance. We can see that Fscratch
succeeds at laying out the grids even without PMDS input features.
Since Grid graphs have a very specific topology, we expected that
models trained on Grid would be more efficient than Pretrain.

Having PMDS as input features significantly improved Ftune
PMDS instance performance, but deteriorates Fscratch ones. Both
visually and in terms of aesthetics, Ftune PMDS is better than
Ftune, while Fscratch PMDS is worse than Fscratch. Having PMDS
features was expected to be beneficial for the models considering
that PivotMDS is a layout algorithm well suited to grids. Hence,
it probably means that the transfer learning helps Ftune PMDS
model to rely on the PMDS features, while it provides nothing to
the Ftune instance. As for Fscratch, there is not much difference
between having PMDS input features or not. The only significant
differences are a better Aspect Ratio with PMDS input features, but
a better Stress without them. Both Fscratch instances drawings on
larger grids are satisfactory and show that it could leverage grids
topological patterns to achieve better layouts than Pretrain.

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

0.8

1.0
Aspect ratio

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

0.8

1.0

Angular resolution

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0

100

200

300

Edges crossings number

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

0.8
Cluster overlap

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6
Neighborhood preservation

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.5

1.0

1.5

2.0

2.5 Stress

(a) Comparison of the 6 model instances on Grid graphs. Barplots are
detailed in Section 4.5.1).

Pretrain Pretrain
PMDS

Ftune Ftune
PMDS

Fscratch Fscratch
PMDS

(b) Grids drawings examples with N ≈ {10,50,75,100}.

Fig. 7: Pretrain, Ftune and Fscratch instances (a) aesthetic metrics
and (b) layout samples on Grid graphs.

4.5.4 Nearest Neighbor (NN) graphs
Figure 8a and 8b present respectively the models performance and
some visual examples of the models instances on the Nearest
Neighbor (NN) dataset. We can see that training the models
on specific NN graphs (i.e., Ftune and Fscratch instances) only
positively affects Neighborhood Preservation and Stress aesthetics.
Again, Ftune PMDS instance is the best performing overall and
Ftune instance is better than Pretrain and Fscratch. Visually, all the
Ftune and Fscratch layouts are satisfactory, while Pretrain instances
fail at laying out larger graphs.

Having PMDS as input features improves Aspect Ratio, Cluster
overlap, Neighborhood Preservation and Stress aesthetics. Yet, this
aesthetic gain is not visually relevant as we do not observe much
difference between layouts from instances with or without PMDS.

4.5.5 Planars
The models performance and visual examples on Planar graphs
are presented in Figure 9a and 9b respectively. As opposed to
planar drawing algorithms from the literature that are formally
proven to produce crossings-free layouts (e.g., [7]), (DNN)2 does
not guarantee that its produced layouts do not have edge crossings.

According to aesthetics, there is no strong benefits in learning
specifically from Planar graphs to lay them out well. In fact, Pretrain

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 11

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6
Aspect ratio

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.8

0.9

1.0

Angular resolution

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

-5k
-2k

0
2k
5k
7k

10k
12k Edges crossings number

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4 Cluster overlap

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3
Neighborhood preservation

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4
Stress

(a) Comparison of the 6 model instances on NN graphs. Barplots are
detailed in Section 4.5.1).

Pretrain Pretrain
PMDS

Ftune Ftune
PMDS

Fscratch Fscratch
PMDS

(b) NN graphs drawings examples with N ≈ {10,50,75,100}.

Fig. 8: Pretrain, Ftune and Fscratch instances (a) aesthetic metrics
and (b) layout samples on NN graphs.

layouts are visually similar to Ftune and Fscratch ones, if not better.
Hence, despite small improvements in the Edge crossing number,
the model was not able to learn topological patterns dedicated to
planar graphs to improve their layouts.

Adding PMDS input features slightly improves all aesthetics
but does not seem to improve layouts drawings that much.

4.5.6 Communities

Communities (Commu.) is the last specific dataset we study in
this Section. The performance and examples of layouts on this
dataset are reported in Figure 10a and 10b. In terms of aesthetics,
training on this specific family improves the layouts Aspect ratio,
Cluster overlap and Stress, but have almost no effect on other
metrics. However, Cluster overlap is probably the most meaningful
metric for Communities graphs. In fact, we can see on the visual
examples that all the methods are able to identify communities
and organize the layout in the same way. The main difference
between the Pretrain model that has only seen Random graphs
and the Ftune-Fscratch instances is their capability to represent
intra-cluster structures. While Pretrain almost completely overplots
nodes of the same community, Ftune and Fscratch better emphasize
the intra-community structures.

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4

0.5
Aspect ratio

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.8

0.9

1.0

Angular resolution

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0

100

200

300
Edges crossings number

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6

Cluster overlap

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4

Neighborhood preservation

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.00

0.05

0.10

0.15

0.20

0.25
Stress

(a) Comparison of the 6 model instances on Planar graphs. Barplots
are detailed in Section 4.5.1).

Pretrain Pretrain
PMDS

Ftune Ftune
PMDS

Fscratch Fscratch
PMDS

(b) Planar drawings examples with N ≈ {10,50,75,100}.

Fig. 9: Pretrain, Ftune and Fscratch instances (a) aesthetic metrics
and (b) layout samples on Planar graphs.

Having PMDS as input features improves Pretrain and Ftune
results, while it has a smaller positive effect on Fscratch. Visually,
the layouts of models with PMDS features are not much improved
compared to their without-PMDS counterparts.

To conclude, this section aimed at studying two hypotheses.
First, that training model instances on specific graph families
makes them better at laying out graphs of that family by learning
specific topological patterns. This hypothesis also studies whether
the framework is better at laying out generic graphs, or tuned for
specific graph topologies. Overall, training on a specific dataset
does improve the models capability to layout the graph family
it is trained on. On graph families with a very specific topology
(i.e., Trees, Grids), training the model on samples of that family is
almost mandatory to achieve good layouts. On the other families,
the difference is less pronounced. On one hand, we would like
to remind that the Pretrain and Pretrain PMDS instances used in
this section were the same accross all the datasets, and its results
are overall pleasing despite some problematic cases. On the other
hand, Ftune and Fscratch instances constantly achieve good layouts,
valuing the training on specific topologies. In the end, the Pretrain
model is not optimal in terms of pure aesthetics but it is a good
generic model.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 12

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.2

0.4

0.6
Aspect ratio

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.8

0.9

1.0

Angular resolution

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

-50k

-25k

0

25k

50k

75k

100k Edges crossings number

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.00

0.05

0.10

0.15

0.20
Cluster overlap

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4
Neighborhood preservation

Pretrain
Pretrain

PMDS Ftune
Ftune
PMDSFscra

tch
Fscra

tch

PMDS

0.0

0.1

0.2

0.3

0.4
Stress

(a) Comparison of the 6 model instances on Commu graphs. Barplots
are detailed in Section 4.5.1).

Pretrain Pretrain
PMDS

Ftune Ftune
PMDS

Fscratch Fscratch
PMDS

(b) Commu. drawings examples with N ≈ {10,50,75,100}.

Fig. 10: Pretrain, Ftune and Fscratch instances (a) aesthetic metrics
and (b) layout samples on Commu graphs.

The second hypothesis was that adding the 2D positions of an
algorithms from the literature as meaningful input node features
would help the model to achieve better layouts. Transfer learning
consistently leads to better results for instances with PMDS input
features, meaning that it improves the feature extraction stage of
the model architecture, while the regression is more sensitive to
the train dataset graph topologies. On the contrary, even though
Fscratch PMDS performs better than Fscratch on most families,
the difference is less significant. At the very least, as long as the
PivotMDS node positions are different (i.e., there is no overplot),
adding PMDS features helps the model to differentiate nodes that
have a local isomorphic neighborhood, thus overcoming a typical
flaw of Graph Convolutional Networks (as seen in Section 2.2).

4.6 Comparison to literature algorithms

In this section, we compare (DNN)2 with two methods from the
literature, S GD2 [22] and DeepGD [43]. S GD2 is an efficient
algorithm that leverages stochastic gradient descent for each graph
drawing to optimize stress modeled with independent constraints
between pairs of nodes. On the other hand, DeepGD is a Deep
Neural Network approach to Graph Drawing and probably the
closest framework to (DNN)2 (see Section 2.3).

Fscra
tch

Fscra
tch

PMDS S_GD2
DeepGD

DeepGD

PMDS

0.0

0.1

0.2

0.3

0.4

Aspect ratio

Fscra
tch

Fscra
tch

PMDS S_GD2
DeepGD

DeepGD

PMDS

0.0

0.2

0.4

0.6

0.8

1.0
Angular resolution

Fscra
tch

Fscra
tch

PMDS S_GD2
DeepGD

DeepGD

PMDS

0

20

40

60

Edges crossings number

Fscra
tch

Fscra
tch

PMDS S_GD2
DeepGD

DeepGD

PMDS

0.0

0.2

0.4

0.6

0.8
Cluster overlap

Fscra
tch

Fscra
tch

PMDS S_GD2
DeepGD

DeepGD

PMDS

0.0

0.2

0.4

0.6
Neighborhood preservation

Fscra
tch

Fscra
tch

PMDS S_GD2
DeepGD

DeepGD

PMDS

0.00

0.05

0.10

0.15

Stress

(a) Comparison of (DNN)2 Fscratch, S GD2 and DeepGD with and
without PMDS input feature on Rome graphs. Barplots report mean
and standard deviation of their respective aesthetic metric. Bars color
and arcs encode pairwise significance (see Section 4.5.1).

Fscratch Fscratch
PMDS

S_GD2 DeepGD DeepGD
PMDS

(b) Rome drawings examples with N ≈ {10,50,75,100}.

Fig. 11: (DNN)2 Fscratch, S GD2 and DeepGD (a) aesthetic metrics
and (b) layout samples on Rome graphs.

The performance and visual examples of the methods on the
Rome test graphs are presented in Figure 11a and 11b respectively.
Fscratch instances refer to the results of (DNN)2 trained on the
Rome train dataset to optimize CKL (6). DeepGD instances are
trained for 1000 epochs to optimize Stress with random weights
initialization on the Rome train graphs, with and without PivotMDS
node positions in their input.

Regarding aesthetic metrics, (DNN)2 Fscratch instances are
slightly better on Edges Crossing Number, Cluster Overlap and
Neighborhood Preservation. The better performance on the last
two can be explained by (DNN)2 cost function CKL that optimizes
neighborhood preservation whereas stress focuses on distance
preservation. On the other hand, (DNN)2 Fscratch is not as good
on Aspect Ratio, Angular Resolution and Stress (which is directly
optimized by both S GD2 and DeepGD).

In the visual examples, we can see that all layouts are
satisfactory, but the (DNN)2 Fscratch ones are less pleasing. Indeed,
the edge length between nodes of a sparse region is quite high,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 13

whereas it is very small in dense regions. In fact, the drawings
tend to emphasize inter-community structures representation at the
cost of the intra-community representation. Though CKL focuses
on neighborhood preservation, this is a problematic behavior we
observed several times. By design, CKL assumes that the distances
distribution around each node follows a Gaussian centered on
0. However, this assumption often leads to the deterioration
of close neighborhood preservation, as we will detail in Section 5.1.

To conclude, (DNN)2 and DeepGD Deep Learning (DL)
approaches do not produce better layouts than recent algorithms
from the literature yet. However, they are steps toward efficient
DL for Graph Drawing techniques that could soon outperform the
state-of-the-art, as DL already revolutionized other research fields.

5 DISCUSSION

This section addresses some limiting aspects that were observed in
the previous sections about (DNN)2 framework or its implementa-
tion. In a first part, we detail the limitations dedicated to the loss
function used in the evaluations, while the second part comes back
on several limitations relative to DL4GD in general.

5.1 KL optimization for Graph Drawing
In this section, we discuss the limitations of optimizing CKL, the
Kullback-Leibler divergence cost function defined by Kruiger et
al. [19]. The loss function design was described in Section 3.3, but
we detail all the formula in the following:

CKL = ∑
i, j∈V,i̸= j

pi j log
pi j

qi j
(6)

where pi j (7) and qi j (9) are probabilities that every pair of nodes
in the graph are connected. Basically, pi j is computed from shortest
path lengths in the graph, while qi j is computed from euclidean
distances in the projected space. Thus, a model that generates
layouts to optimize CKL will look for node positions which, once
turned into probabilities qi j, match the theoretical probabilities pi j.

pi j = p ji =
pi| j + p j|i

2N
, pii = 0 (7)

where p j|i is defined in Equation 8

p j|i = exp

(
−

δ 2
i j

2σ2
i

)
/ ∑

k∈V,k ̸=i
exp
(
−

δ 2
ik

2σ2
i

)
, pi|i = 0 (8)

where σi is found by binary search so that the perplexity

κi = 2
∑

j∈V
p j|i log2 p j|i

matches a given value.
Finally, qi j is defined as:

qi j = q ji =
(1+ ||Xi −X j||2)−1

∑
k,l∈V k ̸=l

(1+ ||Xk −Xl ||2)−1 ,qii = 0 (9)

The first concern about CKL optimization was raised by a
fisheye effect we observed in (DNN)2 drawings. The graphs central
parts are correctly drawn, while peripheral parts are flattened. This
can typically be observed in Figure 12a and in the Grid graphs
drawings (see Figure 7b) where the corners are contracted. This
fisheye distortion was already observed by Kruiger et al. [19] but
they did not really relate it with CKL. We believe this behavior
comes from the combination of two limitations of optimizing a

(a)

1 3 5 7

Dist. distribution
Dist. importance (Gi for pj|i)
Probability

j V
pij, ij = k

(b) Central node

1 3 5 7 9 11 13

Dist. distribution
Dist. importance (Gi for pj|i)
Probability

j V
pij, ij = k

(c) Eccentric node

Fig. 12: (a) NN graph drawing by (DNN)2 Ftune on NN graphs with
PMDS features. (b) (resp. (c)) presents the distances distribution
centered on a central node (resp. eccentric node) vi, the Gaussian Gi
of distances importance centered on vi (i.e., Equation 8 numerator)
and the resulting sum of probabilities pi j (7) around vi for each
distance k. The orange curve is an aggregation that represents
what a model optimizing CKL would converge toward in terms of
distance preservation around node vi. Y-scales are different for the
three curves and were adapted to emphasize trends.

t-SNE [20] based cost function for graph drawing. The second
concern regards Deep Learning model capabilities to optimize
such a function as we will see that it is intrinsically related with
each data sample. In the next, we detail why these concerns are
problematic in the context of DL4GD.

As defined by Kruiger et al. [19], CKL is an adaptation of the
t-SNE [20] algorithm to a graph context. t-SNE works by turning
highly-dimensional distances between datapoints into probabilities
modeling their (dis)similarities. The probability that two points
xi and x j are similar is picked assuming that xi probability to be
similar with any other point follows a Gaussian Gi centered on
xi. More specifically, the probability that xi andx j are neighbors is
relative to Gi(δi j) and G j(δi j) where δi j is the distance between xi
and x j in a high-dimensional space.

The adaptation to a graph context is done by considering nodes
instead of datapoints and setting di j to the shortest path length
between nodes vi and v j (i.e., δi j). For each node vi, the Graph
Drawing view of Gi(k) can be interpreted as “how well should the
k-hop-neighborhood of vi be preserved in the layout”. By centering

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 14

each Gaussian Gi on 0, the highest importance is given to distances
k = 1 and the importance of distances k > 1 decreases according
to the Gaussian slope (i.e., relative to the standard deviation), see
the blue curves in Figure 12b and 12c.

As mentioned earlier, we believe that the first concern (i.e.,
fisheye effect) is raised by two limitations related to the function
design. The first one comes from the way Gi standard deviation
σi is picked. As defined in Equation 8, σi is found by binary
search so that central (resp. eccentric) nodes get low (resp. high)
values. Overall, this tells the model that higher distances are more
important to preserve around eccentric nodes than around central
ones. However, around eccentric nodes, higher distances are also
more numerous (see the distances distribution in Figure 12c).
Hence, increasing σi comes down to giving more weight to
more numerous higher distances. In the end, the probability
p j|i (8) is a ratio of Gi(δi j) with ∑k∈V Gi(δik). Thus, increasing σi
reduces all the probabilities associated with all distances around
eccentric nodes. In the example provided in Figure 12, the sum
of probabilities pi j (i.e., sum of orange curve values) around the
central node is 0.014 against 0.007 around the eccentric node.
If we look back at the CKL (6) formula, pi j is also a weight
factor of the ratio between pi j and qi j logarithm. It means that the
preservation of distances around the eccentric node are globally
weighted two times less than around the central node. In an ideal
case, that importance should be 1

N for all nodes, i.e., 0.01 in the
Figure 12 graph example that has 100 nodes. In addition, giving
more importance to more numerous higher distances also breaks
the original will to make distances k = 1 the most important, and
distances k > 1 importance decrease according to the Gi slope.
For example, with the central node in Figure 12b, we can se that
although the most important distance should be k = 1 (cf., the blue
curve Gi), the probabilities associated with k = 2 and k = 3 are
higher (cf., orange curve). Eventually, pi j trends of both the central
and the eccentric nodes are affected by the distances distribution
centered on them, which leads us toward our second concern.

The second concern regards the capability of a Deep Learning
(DL) model to optimize CKL. As opposed to standard optimization
methods that work on a single sample at a time, a DL model is
trained to optimize the function on a dataset of samples. Hence
it has to find a strategy (i.e., combination of weights) that can be
applied to any input graph and that optimizes the cost function
overall. According to what we studied for the first concern, we
see at least two risks that a DL model would fail at correctly
laying out graphs by optimizing CKL. The first risk comes from the
different overall weight that is given to central vs. eccentric nodes.
As observed in Figure 12 example, the sum of pi j was 0.014 for
the central node against 0.007 for the eccentric one, making the
eccentric node weight less than the central one in the pi j matrix
of probabilities. In regards to DL techniques training behaviors,
there is a high chance that a DL model strategy to optimize CKL on
any graph would ignore most eccentred nodes since they weight
significantly less in the layout evaluation. This could explain the
fisheye effect observed, i.e., why central nodes are more correctly
drawn than eccentric ones. The second risk we identified was
also raised by the study of the first concern. As mentioned earlier,
the consequences of increasing σi as nodes get eccentric breaks
the initial assumption that importance of distance preservation
around a node vi follows a gaussian centered on 0 and makes pi j
probabilities sensitive to the distances distribution around vi. This
behavior makes the evaluation of every node position depend on the
distances distribution in the graph itself. Thus, it becomes arduous

for a DL model to find a generic strategy that produces layouts
optimizing the function on a dataset of various graphs, since each
sample is evaluated according to different criteria. In this regard,
we can oppose CKL with, for instance, the optimization of Stress
(see Table 2) which completely sets aside the notion of graph
and distances distribution to only evaluate the differences between
distances in two spaces (i.e., projected and high-dimension).

Visually, the mentioned concerns lead to overplots between
eccentric nodes as it is clearly observable in Figure 12a where the
center of the graph is correctly drawn, while the three eccentric
parts suffer from overplots. It can also be observed with Grid graph
drawings (see Figure 7b) where grids corners are contracted. This
effect is part of the causes of the fisheye distortion mentioned by
Kruiger et al. [19] and which they counter balance by adding a
repulsion post-process (see Equation 5).

5.2 Limitations

Our evaluation has shown that (DNN)2 is able to learn from
graph data to produce layouts without ground truth by optimizing
a Kullback-Leibler (KL) divergence based function. Though
some flaws of the approach have been discussed throughout the
evaluation, there remain some that we discuss in this section.

In the previous Section 5.1, we have seen that the node
overplots in (DNN)2 drawings are mainly due to the KL loss
design. However, we cannot ignore that (DNN)2 is also built with
Graph Convolutions which are known to produce overplots. As
mentioned in prior works [1], [30], [31] and in Section 2.2, they
hardly distinguish nodes that have the same local neighborhood
(i.e., locally isomorphic) and tend to produce the same embeddings
for them. Even though the loss function penalizes these overplots,
the model architecture does not have many tools to learn how
to differentiate locally isomorphic nodes. For instance, we set a
unique id to each node in its initial feature vector (see Section 3.4)
to guide the model toward an extraction of features that preserves
each node identity, but we cannot be certain it was sufficient.

Another limitation is that the measured performance of (DNN)2

is sensitive to their training setup. During the experimentation
phase, we fixed some design choices even though we expected
them to be suboptimal (e.g., using Graph Convolutions, KL loss,
minimalist input features) to limit black box effects and be able
to relate shifts in performance to specifically tuned properties.
Yet, some Deep Learning related hyperparameters were found by
a trial and error process, which led to a common problematic
in Deep Learning. Sometimes, tweaking hyperparameters (e.g.,
divide learning rate by 10) have more effects than changing
some structures that we could expect to strongly impact the
model behavior. Obviously, we presented (DNN)2 results with
the hyperparameters that led to the best results we explored, but
we cannot be certain that our setup is the most efficient. Though
Deep Learning is a promising approach to Graph Drawing, it also
comes with its own limits such as the difficult understanding of the
models behaviors. The good side of this limitation is that the tuning
of the model architecture with the selection of hyperparameters
is done a priori, before the model training. In a Deep Learning
approach, all the parametrization heavy-lifting is done by an expert
before the training, as opposed to many algorithms that require the
end-user to set various parameters (which optimal value depend on
the graph).

Finally, (DNN)2 capability to generalize to various graph sizes
is complicated. Execution time is a major advantage since Deep

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 15

Neural Networks architectures such as (DNN)2 sequentially apply
polynomial transformations in shape of matrices to their input,
which is almost instantaneous on a GPU. However, training the
model on graphs of significantly different sizes becomes a challenge
as it increases the possible variations of all other properties and
makes it harder for the model to find a generic strategy to optimize
a given aesthetic. That raises again the question of how to build a
train dataset that enables a model to produce layouts optimizing the
desired loss function while maintaining a good capacity to layout
unseen samples. On the other hand, the notion of train-validation-
test datasets split can be questioned for some graph families. For
example, with Cliques or Grids, since it is possible to enumerate
all the graphs up to a given size, the concept of generalization to
unseen samples (i.e., the need for validation) might not be suited.
Overall, this paper has studied some dataset properties effects on
(DNN)2 performance, but more research is necessary to understand
how to correctly build a dataset to train a Deep Neural Network to
layout general graphs.

6 CONCLUSION

This paper has presented (DNN)2, a Deep Learning approach
to graph drawing. It proposes to leverage efficient Deep Neural
Network architectures in a context of graphs through Graph Neural
Networks. In this paper, we evaluate the framework by adapting a
state-of-the-art Convolutional Neural Network to a graph context
through Graph Convolutions. The model learns by itself how to
extract features from the graph and then projects it into a layout.
The produced layout optimizes a loss function without any notion
of ground truth layout (i.e., unsupervised). Throughout several
evaluations, we demonstrated the strengths and limitations of Deep
Learning for Graph Drawing (DL4GD).

Research in the DL4GD thematic have already started with
the emergence of several papers during the 2021 summer and
future work leads to study are numerous. Regarding the (DNN)2

implementation that was used in our evaluations, the overall
setup can be improved. We fixed some potentially suboptimal
design choices to limit black box effects and enable to relate the
statistical performance shifts to monitored conditions. Hence, the
implementation can be improved by searching for more optimal
hyperparameters, using node embedding techniques for the input
node feature representation, changing the loss function, the model
architecture, the data structures, etc. The main concern with this
lead is to solve the generalizability issues of the model architecture
by making it less sensitive to topologies or graph size variations
outside the scope of its train dataset.

Finally, other leads for future work would be to design other
DL4GD frameworks. For example, since we have seen that the
model learned differently based on the graph topologies of its
train dataset, it would be interesting to design an aggregator
meta-model that learns to merge the drawings of drawer models,
themselves trained on a different graph family each. That way,
the framework would leverage the topology-dedicated feature
extraction of specialized models, while maintaining a good capacity
to adapt to unseen graphs.

ACKNOWLEDGMENTS

We would like to thank X. Wang from the Ohio State University for
sharing the original implementation of DeepGD framework [43].

REFERENCES

[1] Giovannangeli, Loann and Lalanne, Frederic and Auber, David and Giot,
Romain and Bourqui, Romain, “Deep Neural Network for DrawiNg
Networks, (DNN)2,” in International Symposium on Graph Drawing.
Springer, 2021.

[2] Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E, “Imagenet
classification with deep convolutional neural networks,” Advances in
neural information processing systems, vol. 25, pp. 1097–1105, 2012.

[3] Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit,
Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, Łukasz
and Polosukhin, Illia, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[4] Xie, Yu and Yao, Chuanyu and Gong, Maoguo and Chen, Cheng and
Qin, A Kai, “Graph convolutional networks with multi-level coarsening
for graph classification,” Knowledge-Based Systems, vol. 194, p. 105578,
2020.

[5] Abu-El-Haija, Sami and Kapoor, Amol and Perozzi, Bryan and Lee,
Joonseok, “N-gcn: Multi-scale graph convolution for semi-supervised
node classification,” in uncertainty in artificial intelligence. PMLR,
2020, pp. 841–851.

[6] Kim, Jongmin and Kim, Taesup and Kim, Sungwoong and Yoo, Chang D,
“Edge-labeling graph neural network for few-shot learning,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 11–20.

[7] Gutwenger, Carsten and Mutzel, Petra, “Planar polyline drawings with
good angular resolution,” in International Symposium on Graph Drawing.
Springer, 1998, pp. 167–182.

[8] Jankun-Kelly, TJ and Ma, Kwan-Liu, “MoireGraphs: Radial focus context
visualization and interaction for graphs with visual nodes,” in IEEE
Symposium on Information Visualization 2003 (IEEE Cat. No. 03TH8714).
IEEE, 2003, pp. 59–66.

[9] Kamada, Tomihisa and Kawai, Satoru and others, “An algorithm for
drawing general undirected graphs,” Information processing letters,
vol. 31, no. 1, pp. 7–15, 1989.

[10] Frick, Arne and Ludwig, Andreas and Mehldau, Heiko, “A fast adaptive
layout algorithm for undirected graphs (extended abstract and sys-
tem demonstration),” in International Symposium on Graph Drawing.
Springer, 1994, pp. 388–403.

[11] Meidiana, Amyra and Hong, Seok-Hee and Cai, Shijun and Torkel, Marni-
jati and Eades, Peter, “Sublinear-Time Attraction Force Computation for
Large Complex Graph Drawing,” in 2021 IEEE 14th Pacific Visualization
Symposium (PacificVis). IEEE, 2021, pp. 146–150.

[12] Brandes, Ulrik and Pich, Christian, “Eigensolver methods for progressive
multidimensional scaling of large data,” in International Symposium on
Graph Drawing. Springer, 2006, pp. 42–53.

[13] Klimenta, Mirza and Brandes, Ulrik, “Graph drawing by classical
multidimensional scaling: new perspectives,” in International Symposium
on Graph Drawing. Springer, 2012, pp. 55–66.

[14] Purchase, Helen C, “Metrics for graph drawing aesthetics,” Journal of
Visual Languages & Computing, vol. 13, no. 5, pp. 501–516, 2002.

[15] Purchase, Helen C and Cohen, Robert F and James, Murray, “Validating
graph drawing aesthetics,” in International Symposium on Graph Drawing.
Springer, 1995, pp. 435–446.

[16] Purchase, Helen, “Which aesthetic has the greatest effect on human un-
derstanding?” in International Symposium on Graph Drawing. Springer,
1997, pp. 248–261.

[17] Ware, Colin and Purchase, Helen and Colpoys, Linda and McGill,
Matthew, “Cognitive measurements of graph aesthetics,” Information
visualization, vol. 1, no. 2, pp. 103–110, 2002.

[18] R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, and M. Li, “Graph
Drawing via Gradient Descent, (GD)2,” arXiv preprint arXiv:2008.05584,
2020.

[19] Kruiger, Johannes F and Rauber, Paulo E and Martins, Rafael M and
Kerren, Andreas and Kobourov, Stephen and Telea, Alexandru C, “Graph
Layouts by t-SNE,” in Computer Graphics Forum, vol. 36, no. 3. Wiley
Online Library, 2017, pp. 283–294.

[20] Van der Maaten, Laurens and Hinton, Geoffrey, “Visualizing data using
t-SNE.” Journal of machine learning research, vol. 9, no. 11, 2008.

[21] Kwon, Oh-Hyun and Crnovrsanin, Tarik and Ma, Kwan-Liu, “What would
a graph look like in this layout? a machine learning approach to large
graph visualization,” IEEE transactions on visualization and computer
graphics, vol. 24, no. 1, pp. 478–488, 2017.

[22] Zheng, Jonathan X and Pawar, Samraat and Goodman, Dan FM, “Graph
drawing by stochastic gradient descent,” IEEE transactions on visualiza-
tion and computer graphics, vol. 25, no. 9, pp. 2738–2748, 2018.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

FINAL VERSION, IEEE TVCG, EXTENDED VERSION OF GD 2021 PAPER: (DNN)2 16

[23] Wang, Qianwen and Chen, Zhutian and Wang, Yong and Qu, Huamin,
“Applying Machine Learning Advances to Data Visualization: A Survey on
ML4VIS,” IEEE Transactions on Visualization and Computer Graphics,
2021.

[24] Wu, Aoyu and Wang, Yun and Shu, Xinhuan and Moritz, Dominik and
Cui, Weiwei and Zhang, Haidong and Zhang, Dongmei and Qu, Huamin,
“Survey on Artificial Intelligence Approaches for Visualization Data,”
IEEE Transactions on Visualization and Computer Graphics, 2021.

[25] Perozzi, Bryan and Al-Rfou, Rami and Skiena, Steven, “Deepwalk: Online
learning of social representations,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 701–710.

[26] Tang, Jian and Qu, Meng and Wang, Mingzhe and Zhang, Ming and
Yan, Jun and Mei, Qiaozhu, “Line: Large-scale information network
embedding,” in Proceedings of the 24th international conference on world
wide web, 2015, pp. 1067–1077.

[27] Grover, Aditya and Leskovec, Jure, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–864.

[28] Scarselli, Franco and Gori, Marco and Tsoi, Ah Chung and Hagenbuchner,
Markus and Monfardini, Gabriele, “The graph neural network model,”
IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.

[29] Kipf, Thomas N and Welling, Max, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[30] You, Jiaxuan and Ying, Rex and Leskovec, Jure, “Position-aware graph
neural networks,” in International Conference on Machine Learning.
PMLR, 2019, pp. 7134–7143.

[31] Keyulu Xu and Weihua Hu and Jure Leskovec and Stefanie Jegelka, “How
Powerful are Graph Neural Networks?” in International Conference on
Learning Representations, 2019.

[32] Jie Chen and Tengfei Ma and Cao Xiao, “FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling,” in International
Conference on Learning Representations, 2018.

[33] Hamilton, William L and Ying, Rex and Leskovec, Jure, “Inductive
representation learning on large graphs,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems,
2017, pp. 1025–1035.

[34] Petar Veličković and Guillem Cucurull and Arantxa Casanova and Adriana
Romero and Pietro Liò and Yoshua Bengio, “Graph Attention Networks,”
in International Conference on Learning Representations, 2018.

[35] Tiezzi, Matteo and Ciravegna, Gabriele and Gori, Marco, “Graph Neural
Networks for Graph Drawing,” IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[36] K. He and X. Zhang and S. Ren and J. Sun, “Deep Residual Learning for
Image Recognition,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016, pp. 770–778.

[37] Leow, Yao Yang and Laurent, Thomas and Bresson, Xavier, “GraphTSNE:
a visualization technique for graph-structured data,” arXiv preprint
arXiv:1904.06915, 2019.

[38] Haleem, Hammad and Wang, Yong and Puri, Abishek and Wadhwa,
Sahil and Qu, Huamin, “Evaluating the readability of force directed
graph layouts: A deep learning approach,” IEEE computer graphics and
applications, vol. 39, no. 4, pp. 40–53, 2019.

[39] Wang, Yong and Jin, Zhihua and Wang, Qianwen and Cui, Weiwei and
Ma, Tengfei and Qu, Huamin, “DeepDrawing: A deep learning approach
to graph drawing,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 1, pp. 676–686, 2019.

[40] Goodall, Colin, “Procrustes methods in the statistical analysis of shape,”
Journal of the Royal Statistical Society: Series B (Methodological), vol. 53,
no. 2, pp. 285–321, 1991.

[41] Hu, Yifan and Kobourov, Stephen G and Veeramoni, Sankar, “Embedding,
clustering and coloring for dynamic maps,” in 2012 IEEE Pacific
Visualization Symposium. IEEE, 2012, pp. 33–40.

[42] Espadoto, Mateus and Hirata, Nina Sumiko Tomita and Telea, Alexandru
C, “Deep learning multidimensional projections,” Information Visualiza-
tion, vol. 19, no. 3, pp. 247–269, 2020.

[43] Wang, Xiaoqi and Yen, Kevin and Hu, Yifan and Shen, Han-Wei,
“DeepGD: A Deep Learning Framework for Graph Drawing Using GNN,”
IEEE Computer Graphics and Applications, vol. 41, no. 5, pp. 32–44,
2021.

[44] Defferrard, Michaël and Bresson, Xavier and Vandergheynst, Pierre,
[45] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and

locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

“Convolutional neural networks on graphs with fast localized spectral
filtering,” arXiv preprint arXiv:1606.09375, 2016.

[46] Hammond, David K and Vandergheynst, Pierre and Gribonval, Rémi,
“Wavelets on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[47] Auber, David and Archambault, Daniel and Bourqui, Romain and Delest,
Maylis and Dubois, Jonathan and Lambert, Antoine and Mary, Patrick
and Mathiaut, Morgan and Melançon, Guy and Pinaud, Bruno and others,
“TULIP 5,” 2017.

[48] Brandes, Ulrik and Gaertler, Marco and Wagner, Dorothea, “Experiments
on graph clustering algorithms,” in European Symposium on Algorithms.
Springer, 2003, pp. 568–579.

[49] Kingma, Diederik P and Ba, Jimmy, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[50] Wang, Yong and Shen, Qiaomu and Archambault, Daniel and Zhou,
Zhiguang and Zhu, Min and Yang, Sixiao and Qu, Huamin, “Ambiguityvis:
Visualization of ambiguity in graph layouts,” IEEE Transactions on
Visualization and Computer Graphics, vol. 22, no. 1, pp. 359–368, 2015.

[51] S. V. Dongen, “Graph clustering by flow simulation,” Ph.D. dissertation,
University of Utrecht, 2000.

[52] Friedman, Milton, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the american statistical
association, vol. 32, no. 200, pp. 675–701, 1937.

[53] Nemenyi, Peter Bjorn, Distribution-free multiple comparisons. Princeton
University, 1963.

Loann Giovannangeli is a PhD. student at
the LaBRI, University of Bordeaux, France. He
worked one year as a research engineer in the
LaBRI. He obtained his Master of Science degree
in 2019 from the University of Bordeaux. His re-
search interest include Information Visualization,
Machine Learning and especially the applications
of Artificial Intelligence for visualizations genera-
tion and evaluation.

Frederic Lalanne was graduated from Enseirb-
Matmeca in 2013 and joined the LaBRI, Univer-
sity of Bordeaux in 2014 where he has been work-
ing mostly on large data analysis, visualization
and LaBRI’s large data platform.

David Auber received his PhD degree from the
University of Bordeaux I in 2003. He has been an
assistant professor in the University of Bordeaux
Department of Computer Science since 2004.
His current research interests include informa-
tion visualization, graph drawing, bioinformatics,
databases, and software engineering

Romain Giot received his Ph.D. degree in bio-
metric authentication at the University of Caen
in 2012 and is an associate professor at the
University of Bordeaux in a big-data visualization
team since 2013. His researches are dedicated to
visualization, machine learning and their junction
in eXplainable AI (XAI). He co-authored dozens
of peer-reviewed papers and is involved in several
Program Committees.

Romain Bourqui received his Master and PhD
degrees in Computer Science from the University
Bordeaux I in 2005 and 2008. He has been an
associate professor at the University of Bordeaux
since 2009. His research interests include Infor-
mation Visualization, Large Data Visualization,
Explainable Machine Learning.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3222186

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Related Work
	Graph Drawing
	Learning for Graph Processing
	Learning for Graph Drawing

	Framework (DNN)2
	Architecture
	Spectral Graph Convolutions
	Unsupervised Probability-based Loss
	Model Inputs

	Benchmark
	Datasets
	Training Parameters
	Evaluation Metrics and Protocol
	Dataset Heterogeneity and KL Optimization
	Specific Graph Families
	Results Reports
	Trees
	Grids
	Nearest Neighbor (NN) graphs
	Planars
	Communities

	Comparison to literature algorithms

	Discussion
	KL optimization for Graph Drawing
	Limitations

	Conclusion
	References
	Biographies
	Loann Giovannangeli
	Frederic Lalanne
	David Auber
	Romain Giot
	Romain Bourqui

