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Introduction

In fMRI, understanding the di erent sources of confounds and correcting them is important concern Magnetic eld uctuations alter the Larmor frequency, hence the nuclear spins phase which the spatial information in MRI. Dynamic eld perturbations cause changes the recorded NMR signal that are unrelated to neuro-vascular coupling and as such can be considered as confounds. Static but spatially varying eld distortions are not an issue for the data temporal stability, yet induce signal loss in tissue-air interfaces, especially in non-Cartesian settings and at higher magnetic elds (3T and higher). To address this issue, one can account for static and dynamic perturbations retrospectively in the signal model during image reconstruction . More speci cally, additional measurements can be acquired and used in the extended signal model. The static contribution is usually measured with a map. The dynamic uctuations can be monitored using navigators but a new method that uses NMR probes to monitor the eld dynamics concurrently to the imaging process was explored in literature for anatomical and functional MRI . Hereafter, we use this NMR probes system, namely the Skope Clip-on Camera, to measure eld uctuations and the actual k-space trajectories to assess the potential bene t of correcting pertubations on 3D-SPARKLING fMRI-like data at 7T (Fig. 1-a).

Theory

In a 3D framework, the extended received signal model can be written according to the equation below where is the density source at the 3D spatial position and is the 3D k-space position at time . re ects the static o -resonance at . re ects the global, slowly varying order contribution of the dynamic eld uctuations and is considered constant during a shot. is the dynamic rstorder deviation from the nominal position de ned by . Given measurements of , and , we can include them in the reconstruction algorithm and have a model that better re ects the actual acquisition process. In a parallel imaging framework, this model is considered for all shots and channels.

Methods

Acquisition Functional-like data was collected on a single healthy volunteer at 7T (Siemens Magnetom) using a 1Tx-32Rx Nova head coil with 3D-SPARKLING for the acquisition parameters reported in Fig. 1-b. Due to constraints related to the eld monitoring system (Skope's Clip-on Camera), the shortest unitary TR we could choose was 150ms. This impacted the volumetric TR. A gradient recalled echo 2D (GRE 2D) sequence with two echoes (Fig. 1-b) was used to estimate the map. External sensitivity maps were acquired using a gradient recalled echo (GRE) sequence (Fig. 1-b).

Common reconstruction strategy: 3D-SPARKLING volumes were reconstructed independently from each other using a nonlinear multi-coil compressed sensing reconstruction that promotes sparsity in the wavelet domain . The reconstruction was calibrated using the external sensitvity maps. Implementation and details can be found in .

Additional corrections: To correct for the dynamic uctuations at the order, the raw NMR data needs to be demodulated by prior to the reconstruction. The eld camera, allows us to measure at each time point , thus, we used those measurements for the demodulation. To account for the rst-order dynamic eld uctuations, the non-uniform Fourier operator was de ned over the measured k-space trajectories (Fig. 2). Unlike the Skope system, the scanner applies an Eddy currents compensation phase (ECCPhase) on the recorded signal upon reception. This means that or accounts for Eddy currents-induced uctuations whereas they are already corrected by the scanner. To be consistent, we retrospectively decompensated the correction applied by the scanner using a simulation of the ECCPhase. Finally, static was corrected by including the acquired map in the de nition of the extended Fourier operator (see "Theory"), implemeting the method proposed in . Fig. 2 summarizes the data processing pipeline and details the di erent combinations of corrections that were applied.

Evaluation: The comparisons were based on the impact on image quality (assessed visually) and on the tSNR (an objective and relevant criterion for fMRI).

Results and Discussion

Fig. 3-a shows the e ect of the di erent corrections on image quality: The main di erence comes from Fig. 3-b shows that smoothes the mean di erence image slightly. Fig. 4 and Fig. 5-a show, that in terms of tSNR, the highest bene t is achieved when correcting for both dynamic and static contributions (up to 26 gain in median tSNR for the best scenario). Additionally, the gain brought by is modest when compared to and . However, Fig. 5-b shows that an increase in the median tSNR comes with an increase in the standard deviation as well: this needs to be considered carefully. A Mood test between the corrected and uncorrected data proved that the gain in median tSNR is statistically signi cant. 

Conclusion

Correcting for enhances image quality greatly, pairing it with correction signi cantly boosts the tSNR. The gain in tSNR when including in the reconstruction is lesser. We also highlight the limitations : 1)The external map constitutes a limitation since patient movement will cause misalignement with the fMRI scans and consequently impact the correction.

2)The current volumetric TR used is long for a real fMRI application. This proof concept will be extended for a better temporal resolution. is the extended Fourier transform de ned over the pattern de ned along the measured trajectories and that takes into account the prior map. 
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Fig. 2 :

 2 Fig.2: An explanatory scheme of the di erent steps of the corrections and the di erent measurements combinations used the extended signal model.is the extended Fourier transform de ned over the pattern de ned along the measured trajectories and that takes into account the prior map.

Fig. 3 :

 3 Fig.3: (a) The mean image computed from the time-series for each correction setup. The arrows show how induced artifacts are reduced. The mean image computed from the time-series reconstructed with the three setups involving correction and the ampli ed di erence images computed as indicated in the gure. The arrows show the e ect of on the mean di erence image quality.

Fig. 4 :

 4 Fig.4: Temporal SNR maps for the di erent corrections: Observe how including the dynamic contributions improves the gain in tSNR along the edges of the brain, this means that motion-related uctuations are corrected. Correcting for the static contribution, on the other hand, improves the point spread function (a better resolved image) and reduces signal loss in critical regions with air-tissue interfaces.

Fig. 5 :

 5 Fig.5: (a) A table summarizing the gain in median tSNR (in ) for the di erent correction setups. (b) Boxplot of the relative change in tSNR in compared to the native (no correction) tSNR computed over the 3D masked brain. A Mood test proved that the native (no correction) median tSNR is signi cantly improved (at a statistical level of signi cance of ) with the ve di erent corrections implemented. % %
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