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Synopsis
For the first time, non-Cartesian 3D-SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING) encoding scheme was used for task-

based fMRI (retinotopic mapping) at 7T.
Additionally, this new acquisition technique was compared with 3D-EPI, considered
as one of the reference

acquisition schemes in high-resolution fMRI. The experiment was performed on a single participant at 1mm isotropic and for a temporal resolution

of 2.4s. We found that both techniques yield similar statistically significant activation patterns in the visual cortex.

Introduction
In BOLD fMRI, higher
spatio-temporal resolution is key for an improved spatial
(sensitivity/specificity trade-off) and temporal (haemodynamic

response)
characterization of task-related brain activity. Parallel imaging , accelerated MRI techniques and higher magnetic
fields participated in

enhancing the resolution  in fMRI. However, state-of-the-art Cartesian encoding
schemes, such as Segmented 3D-EPI  and 2D SMS-EPI , remain

sub-optimal in terms of sampling efficiency (broader k-space coverage in a given amount of time) in the whole brain imaging setting. In contrast,

non-Cartesian readouts, such as spiral imaging ,
have gained popularity thanks to their higher sampling efficiency, hence their
shorter acquisition

times and improved spatio-temporal resolution. Recently,
non-Cartesian SPARKLING encoding scheme was developed, first for 2D 
then 3D

anatomical MRI. 3D-SPARKLING 
generates multi-shot sampling patterns in accordance with compressed sensing
theories . These patterns follow

a prescribed target sampling density while meeting the hardware constraints (maximum gradient and slew rate). Higher acceleration factors can be

achieved with 3D-SPARKLING by minimizing the number of shots and homogenizing full k-space coverage. As these properties are instrumental in

reaching high resolution in fMRI, we investigated how to extend 3D-SPARKLING to fMRI and compared it to state-of-the-art CAIPIRINHA

segmented 3D-EPI for whole brain fMRI at 7T and 1mm .

Methods
A single healthy volunteer was scanned with
a Siemens Magnetom 7T and a 1Tx-32Rx Nova head coil.
Task-based fMRI data was collected along two

consecutive runs that implemented
a classic retinotopic mapping paradigm with a rotating wedge (clockwise and
anti-clockwise) with a period of

32s. The code of the experimental paradigm is
available in .
FMRI data was acquired with 3D-SPARKLING (Fig.1-a) and CAIPIRINHA segmented 3D-

EPI (Fig.1-b), for the same sequence parameters, a total
acquisition time of 4min and 48s for each run and two runs per sequence. The
acquisition

parameters are reported in Fig.2. A
15s calibration was run once at the start of each EPI sequence (be it single or
multiple-repetition). A gradient

recalled echo (GRE) sequence with three
echoes was used (once during the session) to acquire both a  map and
external sensitivity maps for 3D-

SPARKLING data. Raw data of the first echo
from the GRE sequence was used to compute the sensitivity maps whereas the full
dataset (3 echoes)

was used to obtain an accurate estimate of the  map. The  and sensitivity maps were extrapolated to fit the spatial resolution and field-of-

view of the 3D-SPARKLING fMRI scans. An anatomical T1w scan was acquired
through an MP2RAGE sequence. Details of the sequences are given in

Fig.2.

Each scan based on 3D-SPARKLING data was
reconstructed independently using an externally calibrated multi-coil compressed sensing

reconstruction algorithm  and the above mentioned sensitivity maps. This reconstruction method involves a sparsity promoting
prior -norm in

the wavelet domain (Symlet-8) and the
Proximal Optimized Gradient Method (POGM) algorithm . This approach
is implemented in the pysap-mri

plugin of the pySAP package . Moreover, static  was
corrected during the reconstruction phase by including the acquired 
map in the

definition of the extended Fourier operator following the approach proposed in .
The 3D-EPI data was reconstructed with a GRAPPA-based

reconstruction and
corrected for  distortions using the TOPUP mechanism that relied on an
additional single-repetition A-P (Fig.2) acquisition .

Minimum preprocessing was applied to
3D-SPARKLING and 3D-EPI time-series: Motion correction was done with FSL . Anatomo-functional

coregistration was straightforward as the acquired scans share the same spatial resolution and field-of-view (Fig.2). No co-registration in a standard

space template was applied as we consider single participant data. No spatial
smoothing was applied to preserve the advantages of the native 1mm

isotropic
resolution. Retinotopic data was analyzed using a two-session first-level GLM
that includes 2 paradigm-related regressors (parametric,

continuous and
sinusoidal), 6 motion regressors, a drift regressor and the baseline. A
statistical test over the two sinusoidal regressors was used

and the entire
brain was thresholded at  (uncorrected for multiple
comparisons). The implementation was done through the Nilearn

package . The
comparison was performed after the statistical analysis of the functional data:
Visually and according to the z-score values and

distributions.

Results and Discussion
Fig.3-a
shows that, for both techniques, we found similar activation patterns in the visual cortex. However, the activations seem more significant
for

3D-SPARKLING. Fig.3-b confirms the
visually-observed similarity and the higher significance of 3D-SPARKLING
activations (maximum z-score value).

In Fig.4,
we observe larger spatial extent of activation clusters for 3D-SPARKLING in comparison to 3D-EPI. Interestingly, activation patterns in both

cases seem to closely fit the cortical surface. This indicates good spatial specificity for both techniques. Taking
into account the fact that we consider

single participant data, a more advanced statistical comparison can not be done. For this purpose, data from different individuals needs to be

further collected. The two techniques need to be compared for different spatio-temporal resolutions as well. As of now, we can conclude that

activation patterns are similar for the two techniques.

Conclusion
3D-SPARKLING
encoding has a real potential for fMRI applications. With all shots crossing the center of
k-space, 3D-SPARKLING encoding opens up

possibilities towards variable spatio-temporal resolution setups. It can also be extended to generate full-4D sampling patterns along with low rank

and sparse reconstruction methods.
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Fig.1: (a) Schematic example of seven color-coded shots from 3D-SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING). (b)

Schematic example of seven color-coded shots from 3D-EPI (Echo Planar Imaging). Shots duration is comparable for both encoding schemes:

T =26.88ms for 3D-SPARKLING, T =26.33ms for 3D-EPI. The advantage of 3D-SPARKLING is that each shot crosses the k-space center allowing

for robust motion and dynamic  fluctuations correction without requiring additional acquisitions.
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Fig.2: Details of the different acquisition sequences used in the experimental protocol.

Fig.3: (a) Retinotopic activations derived from a two-session first-level general linear model (GLM) applied on 3D-SPARKLING (top) and 3D-EPI -

(bottom) using a threshold computed over the entire brain at . Three orthogonal views of the slices with the maximum activations for

3D-SPARKLING and 3D-EPI are displayed. (b) Distributions of the activations  for 3D-SPARKLING and 3D-EPI.

Fig.4: Retinotopic activation patterns on three consecutive slices displayed according to the sagittal view for 3D-SPARKLING (top) and 3D-EPI

(bottom).
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