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Abstract

In this work, we study some aspects of the solvability of the minimiza-
tion of a non-convex least-squares criterion involved in dipolar source
recovery issues, using boundary values of a solution to a Poisson problem
in a domain of dimension 3. This Poisson problem arises in particular
from the quasi-static approximation of Maxwell equations with localized
sources modeled as dipoles. We establish the uniqueness of the mini-
mizer of the criterion for general geometries and the uniqueness of its
critical point for the Euclidean geometry, that is when the boundary
is a plane. This has consequences on the numerical approach, for the
convergence of the computed solution to the global minimizer. Related
inverse potential problems have applications in bio medical imaging
issues pertaining to neurosciences, and in paleomagnetism issues per-
taining to geosciences. There, solutions to such inverse problems are
used to recover electric currents in the brain, or rock magnetizations,
from measurements of the induced electric potential or magnetic field.

Keywords: Inverse problems, Poisson PDE, dipolar sources, optimization,
critical points.
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1 Introduction

1.1 General framework

In this work, we study the inverse problem of recovering vector-valued point-
wise sources in a domain Ω ⊂ Rn from measurement of the emitted potential
on its boundary ∂Ω. In particular, we investigate the uniqueness of the critical
points of the least-squares criterion linked to this source recovery inverse prob-
lem. As the criterion is not convex, uniqueness of local minimizer is needed to
ensure the convergence of classical optimization schemes to a global minimizer.

Such inverse problems have applications in medical imaging (electroen-
cephalography (EEG)) as in [1] and in geosciences (rock magnetization) as in
[2]. In these applications, the sources are either electric currents due to brain
activity or magnetizations due to remanent rock magnetization. In both cases,
the model comes from Maxwell equations in the quasi-static approximation [3,
Sec. 5.3]. This approximation leads to a Poisson equation with a source term
in divergence form: {

∆u = ∇ · µ inRn,
lim

|z|→∞
|u(z)| = 0. (1)

for some measure µ ∈ [M(Rn)]
n
with compact support included in Ω ⊂ Rn a

smooth domain and a solution u ∈ D′(Rn).
In this work, we study the setting where Ω is the lower half-space and ∂Ω

the horizontal plane. This configuration is more adapted to the geometry a
Scanning Magnetic Microscopy used in particular paleontology studies about
rock magnetization where we typically have data on a horizontal plane above
the rock. For EEG, the measurements are considered on the scalp of a patient
usually modeled as a sphere.

1.2 Main Problem

This inverse problem of source recovery is strongly ill-posed. A classical pos-
sible regularization is to restrict the space of sources to finite sums of a fixed
number nd ≥ 1 of dipoles:

Snd
=

{
nd∑
i=1

piδxi , xi ∈ Ω, pi ∈ Rn,∀i ∈ {1, ..., nd}

}
,

where a dipole pδx is parameterized by its location x ∈ Ω and its moment
p ∈ R3. The measure δx is the Dirac delta distribution supported at x ∈ Ω
and nd ∈ N plays the role of the regularization parameter. This model is
well adapted for localized dipolar sources such as epileptic foci in EEG. This
regularization is enough to guarantee the uniqueness of the solution to the
inverse problem [4, Thm 1] when dealing with both Dirichlet and Neumann
data. Nevertheless, because of the non-convexity of the least-squares criterion,
still exists the question of the multiple local minima of the objective function
hence of the numerical solvability of the problem even when the data are
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noiseless and the original source term µ actually belongs to the approximation
space Snd

.

In this work, we deal with the dimension 3 (n = 3), with a single dipole
µ = p0δx0

(nd = 1) where p0 ∈ R3 and x0 ∈ Ω. In this case, (1) becomes:{
∆u0 = 4π∇ · (p0δx0

) inR3,
lim

|z|→∞
|u0(z)| = 0. (2)

As in (1), the partial differential equation in (2) is to be understood in the
distributional sense, with the Dirac delta distribution δx0

supported at x0 ∈ Ω
and the divergence ∇ · (p0δx0

) being defined by:

⟨δx0
, φ⟩ = φ(x0),

⟨∇ · (p0δx0
), φ⟩ = −p0 · ∇φ(x0),

for all test functions φ ∈ D(R3), the set of infinitely differentiable functions
with compact support in R3. The solution to (2) in the dual space D′(R3)
of D(R3) is unique as the difference of two solutions would be a bounded
harmonic function in R3 hence zero according to Liouville’s Theorem (see [5,
Thm 2.1]). This solution is given by:

u0(z) =
p0 · (x0 − z)

|x0 − z|3
, ∀z ∈ R3 \ {x0}.

Let from now on Ω ⊂ R3 be an open connected domain such that Ωc =
R3 \ Ω contains a non-empty open set and ∂Ω be its boundary assumed to
be Lipschitz. We will make use of the notation x = (x1, x2, x3)

T for all vector
x ∈ R3 and 0R3 = (0, 0, 0)T for the null vector of R3. We are interested in
retrieving the location x0 ∈ Ω and the moment p0 ∈ R3 using measurements
(assumed to be noiseless) of the solution u0 on the boundary ∂Ω by minimizing
the least-square criterion J∂Ω:

J∂Ω : Ω× R3 −→ R+

(x, p) 7−→
∫
∂Ω

(
p · (x− z)

|x− z|3
− p0 · (x0 − z)

|x0 − z|3

)2

dσ(z),
(3)

for all (x0, p0) ∈ Ω× R3 and where σ is the Lebesgue measure on ∂Ω.

To ascertain that we actually find p0 and x0 when numerically minimiz-
ing (3), we prove that the least-squares criterion has only one critical point
(xc, pc) = (x0, p0) when Ω is the lower half-space in R3. Analogous results were
given by [6] for similar problems in two-dimensional domains.
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1.3 Overview

In Section 2, we state our main results. Then, Theorem 2 is proven in Section
3. In Section 4, we provide numerical illustrations. We finally provide some
concluding remarks and further possible developments of the present work in
Section 5.

2 Main results

A preliminary result is given by Proposition 1 for general geometric situations.

Proposition 1 For each (x0, p0) ∈ Ω×R3 with p0 ̸= 0R3 , the criterion J∂Ω admits
a unique global minimizer (x∗, p∗) ∈ Ω × R3. It coincides with the original source:
x∗ = x0 and p∗ = p0.

If p0 = 0R3 , the minimizers of J∂Ω are all the (x, 0R3) with x ∈ Ω.

Proof As J∂Ω is non-negative and J∂Ω(x0, p0) = 0, J∂Ω admits 0 as a global mini-
mum. Let (x∗, p∗) ∈ Ω×R3 be a global minimizer of J∂Ω, we have J∂Ω(x

∗, p∗) = 0.
Let us define on Ωc the difference:

∀z ∈ Ωc, h(z) =
p∗ · (x∗ − z)

|x∗ − z|3
− p0 · (x0 − z)

|x0 − z|3
.

such that
∫
∂Ω h2dσ = J∂Ω(x

∗, p∗) = 0. Clearly, h is a continuous bounded function
in Ωc, is harmonic in Ωc \ ∂Ω and, if Ωc is unbounded:

h(z) →
|z|→∞

0.

As h is 0 on ∂Ω according to the strict positivity of the integral, h is 0 on Ωc according
to [7, Vol. 1, Chap. II, Par. 4, Prop. 1 and 9]. Hence, we have:

∀z ∈ Ωc, Q(z) =
(
p∗ ·

(
x∗ − z

))2|x0 − z|6− (p0 · (x0 − z))2|x∗ − z|6= 0

As Q is a polynomial that is null on Ωc which contains a non-empty open set in R3,
it is null in R3. However, as |z| goes to infinity, we have the following asymptotic
expansion for Q:

Q(z)

|z|6
=

|z|→∞
−
[
(p0 · z)2 − (p∗ · z)2

]
+ 2

[
(p0 · x0)(p0 · z)− (p∗ · x∗)(p∗ · z) + 3(x∗ · z) (p0 · z)2

|z|2
− 3(x0 · z) (p

∗ · z)2

|z|2

]
+O(1).

By identifying the first coefficient with 0 we see that p∗ = ± p0. Then if p0 ̸= 0R3 ,
by identifying the second term with 0, we sequentially find that p0 · x∗ = p0 · x0 by
looking in the direction p0 and finally x∗ = x0. Furthermore, because h is null on
∂Ω, we have p∗ = p0. Hence, if p0 ̸= 0R3 , there is a unique global minimizer to J∂Ω:
(x∗, p∗) = (x0, p0). If p0 = 0R3 , then for all x ∈ Ω, (x, 0R3) is a global minimizer of
J∂Ω. □
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Remark 1 This proof could have been done in any dimension n ≥ 3 with minimal
changes. Hence, the Proposition 1 remains true for all n ≥ 3.

The main result of this work is given by Theorem 2 below related to the
Euclidean geometry. Let Ω = R3

− be the lower half-space, R3
+ be the upper

half-space and ∂Ω = Π be the horizontal plane of height z = 0 in R3. Let
x0 = (x01, x02, x03)

T
be a point in R3

− and p0 a vector in R3 (the situation
is summarized on Figure 1). We are interested in estimating x0 and p0 using
measurements of u0 on Π by solving the least-squares inverse problem:

(x∗, p∗) = argmin
(x,p)∈R3

−×R3

JΠ(x, p),

with the criterion JΠ being given by:

JΠ : R3
− × R3 −→ R+

(x, p) 7−→
∫
Π

(
p · (x− z)

|x− z|3
− p0 · (x0 − z)

|x0 − z|3

)2

dσ(z),
(4)

where σ is the Lebesgue measure on Π: dσ(z) = dz1dz2, z = (z1, z2, 0) ∈ Π.

Π

R3
−

R3
+

0R3

•
e1

e2

e3

x•

x0•

pp0

Fig. 1 Schematic geometry of the study in the half-space

Our main result is the following:

Theorem 2 For each (x0, p0) ∈ R3
− × R3 with p0 ̸= 0R3 , the criterion JΠ admits a

unique critical point (xc, pc) ∈ R3
− × R3 such that ∇xJΠ(xc, pc) = ∇pJΠ(xc, pc) =

0R3 . It coincides with the global minimizer: xc = x0 and pc = p0.

If p0 = 0R3 , the critical points are all the (x, 0R3) with x ∈ R3
−.
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This result ensures that classical optimization schemes will converge to the
global minimizer, hence to the original source (and not to a local minimizer
with no physical meaning).
Section 3 is devoted to the proof of Theorem 2.

3 Proof

Let us fix (x0, p0) ∈ R3
− ×R3. In this section, we want to compute the critical

points of the criterion JΠ. To do so, in Section 3.1, we eliminate p in order to
reduce the dimension of the problem which can be done linearly. In Section 3.2,
we express (4) by computing certain integrals. In Section 3.3, we characterize
(x0, p0) as being the unique critical point of (4) by first proving that any critical
point (xc, pc) ∈ R3

− ×R3 is such that xc and x0 belong to the same horizontal
plane, using the homogeneity of the criterion; then, we appropriately combine
its derivatives to show uniqueness of a critical point with positivity arguments.

3.1 Gradient in p

By developing the square in (4), we have, for all (x, p) ∈ R3
− × R3:

JΠ(x, p) = pTM(x, x)p+ pT0 M(x0, x0)p0 − 2pT0 M(x, x0)p, (5)

where the 3× 3 matrix M(x, x0) is defined by:

M(x, x0) =

∫
Π

(
x0 − z

|x0 − z|3

) (
x− z

|x− z|3

)T

dσ(z).

Therefore, the gradient of JΠ with respect to p is given by:

∇pJΠ(x, p) = 2M(x, x)p− 2M(x, x0)
T p0.

One can see that M(x, x) is symmetric and positive definite for each x ∈ R3
−,

as for all v ∈ R3, v ̸= 0R3 :

vTM(x, x)v =

∫
Π

(
v · (x− z)

|x− z|3

)2

dσ(z) > 0,

which leads to M(x, x) being invertible. Therefore, if (xc, pc) ∈ R3
− × R3 is a

critical point then necessarily:

pc = p(xc) = M(xc, xc)
−1M(xc, x0)

T p0. (6)

One can see from (6) that in this case:

pTc M(xc, xc)pc − pT0 M(xc, x0)pc = 0. (7)
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Furthermore, if p0 = 0R3 , then the critical points of JΠ consist in the pairs
(x, 0R3) for any x ∈ R3

−. Indeed, for all (pc, xc) ∈ R3
− ×R3 critical point of JΠ,

(7) leads to pc = 0R3 and as JΠ(·, 0R3) identically vanishes in this case, for all
x ∈ R3

−, (x, 0R3) is a critical point of JΠ. So, we will suppose in the following
that:

p0 ̸= 0R3 . (8)

3.2 Computation of the criterion

Our goal in this section is to compute the matrices M(x, x) and M(x, x0)
whose elements are defined for x and x0 in R3

− by:

M(x, x0)i,j =

∫
Π

xj − zj

|x− z|3
x0i − zi

|x0 − z|3
dσ(z), (9)

for all (i, j) ∈ {1, 2, 3}2. In order not to carry heavy notation, we will drop the
dependency in x and x0 of M = M(x, x0) and all the related derived quantities
at least when there is no ambiguity.

3.2.1 Some terms computed using Clifford analysis

In order to compute the integrals in (9), we make use of Clifford analytic
calculus. For an introduction to Clifford algebras, see [8]. Let Cℓ0,3(R) be the
unital associative algebra generated on R by (e1, e2, e3) with the relations:

∀(i, j) ∈ {1, 2, 3}2, ei ⊙ ej =

{
−1 i = j,

−ej ⊙ ei i ̸= j,

where we denote by ⊙ the product in this algebra and 1 is the multiplicative
identity of the algebra. Cℓ0,3(R) is a 8-dimensional R-vector space with the
canonical base: (1, e1, e2, e3, e1⊙e2, e2⊙e3, e3⊙e1, e1⊙e2⊙e3). Elements of
span(e1, e2, e3) are called vectors and are identified with their R3 counterpart.
The set Cℓ0,3(R) is a normed vector space when endowed with the Euclidean
norm |·|.

A function f ∈ L1
loc(Ω,Cℓ0,3(R)) is said to be left Clifford analytic if D ⊙

f = 0 where D =
∑3

j=1 ej
∂

∂xj
is the Dirac operator. Such functions actually

belong to C∞(Ω,Cℓ0,3(R)) and satisfy a Cauchy formula (see [9, Thm 1.8]).
It states that for all V bounded, 3-dimensional, Lipschitz open domain in Ω,
all f ∈ L1

loc(V,Cℓ0,3(R)) left Clifford analytic and all x ∈ R3:

1

4π

∫
∂V

x− z

|x− z|3
⊙ ν(z)⊙ f(z)dσ(z) =

{
f(x) x ∈ V,

0 x ̸∈ V ,
(10)

where ν(z) is the unitary outward vector normal to ∂V at z. This formula
can be extended to unbounded domains for specific classes of functions as in
Lemma 1 which is proven in Appendix A.
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Lemma 1 For all x ∈ R3 and all f ∈ L1
loc(R

3
−,Cℓ0,3(R)) left Clifford analytic such

that there exists φ : R+ → R+ which converge to 0 at +∞ and:

|f(z)| ≤ φ(|z|),

the Cauchy formula (10) holds true on R3
−:

1

4π

∫
Π

x− z

|x− z|3
⊙ e3 ⊙ f(z)dσ(z) =

{
f(x) x ∈ R3

−,

0 x ∈ R3
+.

Vector-valued left Clifford analytic functions are actually gradient of harmonic
functions. Hence, the prototype of such a function is, for all x ∈ R3:

∀z ∈ R3 \ {x}, fx(z) =
x− z

|x− z|3
,

which is left Clifford analytic in R3\{x} [9, Eq. (1.9)] and satisfy the hypotheses
of Lemma 1.

Let us call M1, M2 and M3 the columns of M = M(x, x0) and identify them
with their corresponding vectors in Cℓ0,3(R):

M1 = M1,1 e1 +M2,1 e2 +M3,1 e3,

M2 = M1,2 e1 +M2,2 e2 +M3,2 e3,

M3 = M1,3 e1 +M2,3 e2 +M3,3 e3.

Upon defining x+ ∈ R3
+ as the symmetric of x with respect to Π and identifying

x, x+, x0 and all z ∈ Π with their corresponding vectors in Cℓ0,3(R), we have:

M1 ⊙ e1 +M2 ⊙ e2 +M3 ⊙ e3 =

∫
Π

x0 − z

|x0 − z|3
⊙ x− z

|x− z|3
dσ(z)

= −
∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙ e3 ⊙

x− z

|x− z|3
dσ(z)

=

∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙

x+ − z

|x+ − z|3
dσ(z)⊙ e3

= 4π
x+ − x0

|x+ − x0|3
⊙ e3, (11)

where we used the relations:

e3 ⊙ e3 = −1,

e3 ⊙ (x− z) = −(x+ − z)⊙ e3,
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and Lemma 1 as z 7→ x+−z
|x+−z|3 is left Clifford analytic in R3

− since x+ ∈ R3
+.

Applying Lemma 1 again, we also have:

(−M1 ⊙ e1 −M2 ⊙ e2 +M3 ⊙ e3)⊙ e3 =

∫
Π

x0 − z

|x0 − z|3
⊙ e3 ⊙

x− z

|x− z|3
dσ(z)

= 0, (12)

because z 7→ x−z
|x−z|3 is left Clifford analytic in R3

+ since x ∈ R3
−. Using these

equations, we get the following relations between terms:

M1,1 +M2,2 = M3,3 = −2π
x3 + x03

|x+ − x0|3
= −2π

xa3

|xa|3
, (13)

M3,1 = −M1,3 = −2π
x1 − x01

|x+ − x0|3
= 2π

xa1

|xa|3
, (14)

M3,2 = −M2,3 = −2π
x2 − x02

|x+ − x0|3
= 2π

xa2

|xa|3
, (15)

M2,1 = M1,2, (16)

where we defined xa ∈ R3
− by xa = x0−x+. Indeed, equation (13) comes from

the 1 coordinate of (11) and the e3 coordinate of (12). Equation (14) comes
from the e3 ⊙ e1 coordinate of (11) and the e1 coordinate of (12). Equation
(15) comes from the e2 ⊙ e3 coordinate of (11) and the e2 coordinate of (12).
Equation (16) comes from the e1 ⊙ e2 coordinate of (11) or the e1 ⊙ e2 ⊙ e3
coordinate of (12).

3.2.2 Computation of the remaining terms

We want to compute:

M1,1 =

∫
Π

x1 − z1

|x− z|3
x01 − z1

|x0 − z|3
dσ(z),

M2,2 =

∫
Π

x2 − z2

|x− z|3
x02 − z2

|x0 − z|3
dσ(z),

M2,1 = M1,2 =

∫
Π

x1 − z1

|x− z|3
x02 − z2

|x0 − z|3
dσ(z).

To do so, we use the previously computed quantity M3,3 in (13) and define:

m3,3(xa1, xa2, xa3) = M3,3(x, x0)

=

∫
Π

x3

|x− z|3
x03

|x0 − z|3
dσ(z)

= −2π
xa3

[x2
a1 + x2

a2 + x2
a3]

3/2
.
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By integration and differentiation, we can transform the integrand of M3,3

into those of M1,1, M2,2, M2,1 and M1,2. Indeed it is easily checked that for
i ∈ {1, 2} and all z ∈ Π:

xi − zi

|x− z|3
=

∫ x3

−∞
∂xi

y

[(x1 − z1)2 + (x2 − z2)2 + y2]
3/2

dy,

x0i − zi

|x0 − z|3
=

∫ x03

−∞
∂x0i

y

[(x01 − z1)2 + (x02 − z2)2 + y2]
3/2

dy.

So, by applying Fubini’s theorem then differentiating under the integral sign,
we get for i ∈ {1, 2}:∫ x03

−∞

∫ x3

−∞
∂xi

∂x0i
m3,3(xa1, xa2, y1 + y2)dy1dy2 = Mi,i,∫ x03

−∞

∫ x3

−∞
∂x1∂x02m3,3(xa1, xa2, y1 + y2)dy1dy2 = M2,1 = M1,2.

Since m3,3 is a function of xa1 = x01 − x1, xa2 = x02 − x2 and xa3 = x03 + x3,
we can simplify the differentiations and for i, j ∈ {1, 2}:

∂xi∂x0jm3,3 = −∂xai∂xajm3,3.

Then, using known antiderivatives, we compute M1,1, M2,2, M2,1 and M1,2,
for all i, j ∈ {1, 2}:

Mi,j = 2π

∫ x3

y1=−∞
∂xai

∂xaj

∫ x03

y2=−∞

y1 + y2

[x2
a1 + x2

a2 + (y1 + y2)2]
3/2

dy1dy2

= −2π

∫ xa3

−∞
∂xai

∂xaj

1

[x2
a1 + x2

a2 + y2]
1/2

dy

= −2π

∫ xa3

−∞

[
− δij

[x2
a1 + x2

a2 + y2]
3/2

+ 3
xaixaj

[x2
a1 + x2

a2 + y2]
5/2

]
dy

=
2π

(x2
a1 + x2

a2)

[
δij

|xa|+ xa3

|xa|
− xaixaj

2|xa|3 + 3xa3|xa|2 − x3
a3

|xa|3 (x2
a1 + x2

a2)

]
. (17)

where δij is the Kronecker delta symbol.

Remark 2 We can see that all the expressions Mi,j for (i, j) ∈ {1, 2, 3}2 are
homogeneous of degree −2 in all their variables x1, x01, x2, x02, x3 and x03.
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By taking the limits of the previously computed terms as x0 goes to x, we find
for that all x ∈ R3

−:

M(x, x) =
π

4x2
3

1 0 0
0 1 0
0 0 2

 .

One can see thatM(x, x0) is also invertible for x ̸= x0 as for (xa1, xa2) ̸= (0, 0):

det(M(x, x0)) =
8π3

(x2
a1 + x2

a2)
2 |xa|4

(|xa|+ xa3)
2
> 0.

3.3 Computation of the critical points

3.3.1 Gradient in x

For all x ∈ R3
−, let p = p(x) be defined as in (6) and IΠ(x) = JΠ(x, p(x)).

Then, by definition of p(x), the critical points of JΠ are all the (xc,p(xc))
where xc ∈ R3

− is a critical point of IΠ. For all x ∈ R3
−, in view of (5) and (6)

and because of (7), we have:

IΠ(x) = p(x)TM(x, x)p(x) + pT0 M(x0, x0)p0 − 2pT0 M(x, x0)p(x),

= −pT0 M(x, x0)p(x) + pT0 M(x0, x0)p0,

So, computing the gradient of IΠ, we get for all x ∈ R3
−:

∇IΠ(x) = −∇
(
pT0 M(x, x0)p(x)

)
= −∇

(
pT0 M(x, x0)M(x, x)−1M(x, x0)

T p0
)
,

in view of (6). Therefore, upon defining the matrix:

K = K(x, x0) = M(x, x0)M(x, x)−1M(x, x0)
T ,

we obtain that (xc,p(xc)) ∈ R3
−×R3 is a critical point of JΠ if and only if, for

all i ∈ {1, 2, 3}:

pT0

(
∂K

∂xi
(x, x0)

∣∣∣∣
x=xc

)
p0 = 0. (18)

3.3.2 First step: use of homogeneity

One can see that for all x ∈ R3
−, K(x, x0) is symmetric positive definite as:

K =
((

M(x, x)−1
)1/2

M(x, x0)
T
)T ((

M(x, x)−1
)1/2

M(x, x0)
T
)
.

Furthermore, since M(x, x0) is homogeneous of degree −2 (see Remark 2),
K(x, x0) is also homogeneous of degree −2 in its six variables (x1, x2, x3, x01,
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x02 and x03). We can therefore apply Euler’s homogeneous function theorem
[7, Vol. 2, App. Eq. (3.75)] and get:

x1
∂K

∂x1
+ x01

∂K

∂x01
+ x2

∂K

∂x2
+ x02

∂K

∂x02
+ x3

∂K

∂x3
+ x03

∂K

∂x03
= −2K.

But, since the following relations hold true:

∂K

∂x01
= − ∂K

∂x1
,

∂K

∂x02
= − ∂K

∂x2
,

∂K

∂x03
=

∂K

∂x3
− 2

x3
K,

we obtain the following equation:

−x3xa1
∂K

∂x1
− x3xa2

∂K

∂x2
+ x3xa3

∂K

∂x3
= 2(x03 − x3)K.

Thus, for xc ∈ R3
− a critical point of IΠ and because of (18), pT0 (x03 −

xc3)K(xc, x0)p0 = 0. But, for x03 ̸= xc3, (x03−xc3)K(xc, x0) is definite which
means that p0 = 0R3 contradicting hypothesis (8). Thus, xc ∈ R3

− is a critical
point of IΠ only if xc3 = x03.

3.3.3 Second step: use of strict positivity

Let x ∈ R3
−. Let us use polar coordinates in the plane: xa1 = r cos(θ) and

xa2 = r sin(θ) with r ≥ 0 and θ ∈ [0, 2π[. Let Kr be the matrix:

Kr = Kr(x, x0) = − ∂

∂r
K

x01 − r cos(θ)
x02 − r sin(θ)

x3

 , x0

 .

Let us prove that unless (x1, x2) = (x01, x02) (i.e. r = 0), Kr(x, x0) is
positive definite. In what follows, we assume that r ̸= 0. AsKr is symmetric, we
have to check that its eigenvalues λ1, λ2 and λ3 are positive. First, using (14),
(15) and (17), one can see that the vector (sin(θ),− cos(θ), 0)T is an eigenvector
of M(x, x0), thus of K(x, x0) and thus of Kr(x, x0) with the eigenvalue:

λ1 =
32x2

3π

r|xa|3

(
xa3

|xa|
+ 1

)
4r2 + 3x2

a3

2|xa|3 − xa3r2 − 2xa3|xa|2
> 0.

Furthermore, one can check that:

λ2 + λ3 = Tr(Kr(x, x0))− λ1 =
32x2

3π

r5|xa|6
A2

t − B2
t

At + Bt
> 0,

where we define the positive quantities:

A2
t − B2

t = r6
(
25r6 + 35r2x4

a3 + 50r4x2
a3 + 9x6

a3

)
> 0,

At = 13r2x4
a3 + 15r4x2

a3 + 5r6 + 4x6
a3 > 0,
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Bt = −xa3|xa|
(
4x4

a3 + 10r4 + 11r2x2
a3

)
> 0.

Similarly, we have:

λ2λ3 =
det(Kr(x, x0))

λ1
=

64x4
3π

2

r4|xa|12
A2

d − B2
d

Ad + Bd
> 0,

where we define the positive quantities:

A2
d − B2

d = r6
(
1024r6 + 1457r2x4

a3 + 240x6
a3 + 2240r4x2

a3

)
> 0,

Ad = 128r2x4
a3 + 135r4x2

a3 + 32r6 + 24x6
a3 > 0,

Bd = −xa3|xa|
(
24x4

a3 + 80r4 + 116r2x2
a3

)
> 0.

This shows that λ1, λ2 and λ3 are positive for r > 0. The matrix Kr(x, x0)
is thus positive definite if (xa1, xa2) ̸= (0, 0). Hence, as p0 ̸= 0R3 , and because
pT0 Kr(xc, x0)p0 = 0 for any critical point xc ∈ R3

− of IΠ, x ∈ R3
− is a critical

point of IΠ only if x1 = x01 and x2 = x02.

3.4 Reciprocal

From Section 3.3, the only remaining possibility is xc = x0. We first remark
from (6) that p(x0) = M(x0, x0)

−1M(x0, x0)
T p0 = p0. Furthermore, (x0, p0) is

obviously a critical point of JΠ as it is its global minimizer (see e.g. Proposition
1). We can thus conclude that JΠ has a unique critical point: (x0, p0). This
ends the proof of Theorem 2.

4 Numerical illustration

To illustrate the uniqueness of the critical point of IΠ, we consider x0 =
(0, 0,−1) and p0 = (1,−5, 0.1) and study IΠ(x) for x = (x1, x2,−1) in the
same horizontal plane as x0 with (x1, x2) ∈ [−4, 4]2. The quantities IΠ and
∇IΠ were computed using their expression in Section 3.3.1 together with the
formulas (13), (14), (15), (16) and (17) using a Matlab code. Figure 2 repre-
sents the criterion IΠ and its variation on the horizontal plane while Figure 3
illustrates its vertical variation. Figure 4 shows the squared norm of the gradi-
ent of IΠ while Figure 5 shows the 2D gradient (∂x1

IΠ, ∂x2
IΠ) and a contour

plot of IΠ. The behavior of JΠ with p is not represented as it is quadratic
hence strictly convex.

Figures 2 and 3 illustrate the non-convexity of the criterion hence the need
of this study for the convergence of optimization schemes. These two figures
also illustrate the convergence of the criterion IΠ to ∥u0∥L2(Π) as |x| → ∞ or
x3 → 0 and show that there is a unique global minimizer of IΠ on respectively
the plane of height x03 and the vertical line passing through x0. Figure 4 shows
the uniqueness of the critical point of IΠ in the plane of height x03. Figure 5 is
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an illustration of the positivity of the radial derivative of the criterion on any
horizontal plane as shown in Section 3.3.3.

Fig. 2 Criterion IΠ on the horizontal square [−4, 4]2 × {−1}

5 Conclusion

In this work, we proved the uniqueness of the critical point of the least-squares
criterion JΠ in the Euclidean geometry (∂Ω = Π). We plan to study the same
problem in the spherical setting (Ω = B the unit ball in R3 centered at 0R3 and
∂Ω = S) and more general geometries. This setting leads to complications in
the absence of homogeneity of the functions considered. Yet, we managed to
establish the uniqueness in the particular case where x0 = 0R3 is at the center
of the sphere. Unlike in the two-dimensional case, the result does not directly
generalize to other surfaces.

In other works, we showed similar results for another form of Poisson
equation linked to a charge localization problem with data corresponding to
the induced electric field:{

∆E0 = 4π∇(q0δx0
) inR3,

lim
|z|→∞

|E0(z)| = 0,
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Fig. 3 Criterion IΠ on the vertical line {0} × {0} × [−5, 0]

Fig. 4 Squared norm of ∇IΠ on the horizontal square [−4, 4]2 × {−1}

which is associated with the least-square criterion:

j∂Ω : Ω× R3 −→ R+

(x, q) 7−→
∫
∂Ω

∣∣∣∣q x− z

|x− z|3
− q0

x0 − z

|x0 − z|3

∣∣∣∣2 dσ(z), (19)
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Fig. 5 2D gradient of IΠ (black arrows) and contour plots of IΠ (gray curves) on the
horizontal square [−4, 4]2 × {−1}

The study of (19) was done for two different geometries (the sphere S and
the horizontal plane Π) and we showed the uniqueness of the critical point in
both cases. Further generalizations are still expected for the criteria J∂Ω given
by (3) and j∂Ω given by (19) for multiple dipolar sources and for incomplete
or noisy data.

Acknowledgments. The authors would like to thank Laurent Baratchart
for his contribution to this work.

Appendix A Use of Cauchy formula on the
plane

This appendix aims at proving Lemma 1. Let r > |x|, Dr ⊂ Π the disk of radius
r and center 0R3 and S−r ⊂ R3

− the lower half-sphere of radius r and center
0R3 . By applying the Cauchy formula (10) to f in the half-ball of boundary
S−r ∪ Dr, we get for r > |x|:

∫
Dr∪S−r

x− z

|x− z|3
⊙ ν(z)⊙ f(z)dσ(z) =

{
f(x) x ∈ R3

−,

0 x ∈ R3
+.
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Let Λ : z 7→ x−z
|x−z|3 ⊙ ν(z)⊙ f(z). Clearly:

lim
r→∞

∫
Dr

Λ(z)dσ(z) =

∫
Π

Λ(z)dσ(z)

=

∫
Π

x− z

|x− z|3
⊙ e3 ⊙ f(z)dσ(z).

Furthermore, by change of variable and for r > |x|:∣∣∣∣∫
S−r

Λ(z)dσ(z)

∣∣∣∣ =
∣∣∣∣∣
∫
S−1

x0

r − y∣∣x0

r − y
∣∣3 ⊙ y ⊙ f(ry)dσ(y)

∣∣∣∣∣
≤
∫
S−1

∣∣∣∣∣ x0

r − y∣∣x0

r − y
∣∣3 ⊙ y ⊙ f(ry)

∣∣∣∣∣ dσ(y)
≤
∫
S−1

∣∣∣∣∣ x0

r − y∣∣x0

r − y
∣∣3
∣∣∣∣∣ |f(ry)|dσ(y)

≤ φ(r)

∫
S−1

1∣∣x0

r − y
∣∣2 dσ(y), (A1)

using the property [8, Thm 5.16] that for all x ∈ Cℓ0,3(R) and y ∈ R3 identified
with its corresponding vector in Cℓ0,3(R):

|x⊙ y| = |x||y|.
As the integral on the right-hand side of (A1) is bounded, we see that:

lim
r→∞

∫
S−r

Λ(z)dσ(z) = 0.

This establishes Lemma 1.
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