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ABSTRACT. In this paper, we prove new results on the validity of the limiting ampli-
tude principle (LAP) for the wave equation with nonconstant coefficients, not neces-
sarily in divergence form. Under suitable assumptions on the coefficients and on the
source term, we establish the LAP for space dimensions 2 and 3. This result is ex-
tended to one space dimension with an appropriate modification. We also quantify the
LAP and thus provide estimates for the convergence of the time-domain solution to
the frequency-domain solution. Our proofs are based on time-decay results of solutions
of some auxiliary problems.
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1. INTRODUCTION

An essential ingredient in connecting time- and frequency-domain wave problems is
the limiting amplitude principle (LAP). Originally proposed as one of the tools to select
the unique solution of the Helmholtz equation problem in an infinite domain, it has been
studied in numerous works over the last 70 years.

The LAP can be crudely stated as follows: The solution to the time-dependent wave
equation with time-harmonic source term converges, for large times, to the solution of
the Helmholtz equation with the spatial source term and frequency corresponding to the
original time-harmonic source. Our main motivation for revisiting the LAP comes from
numerical analysis. Helmholtz problems can be challenging to solve in practice for large

*A. Arnold, S. Geevers, and I. Perugia have been funded by the Austrian Science Fund (FWF)
through the project F 65 “Taming Complexity in Partial Differential Systems”. I. Perugia has also been
funded by the FWF through the project P 33477. A. Arnold and D. Ponomarev were supported by the
bi-national FWF-project 13538-N32.
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2 LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION

wavenumbers. Numerical methods have been proposed to address a classical Helmholtz
problem efficiently through its reformulations in the time domain. They include the

controllability method introduced in [7, 18], together with its spectral version [23] and
its extensions [22, 21], the WaveHoltz method [!], the time-domain preconditioner of [33],
and the front-tracking adaptive method of [2]. Numerical results presented in the latter

paper, for instance, have shown that solving the Helmholtz equation in the time domain
can be advantageous for high frequencies, when computations are essentially reduced to
the neighborhood of a lower-dimensional manifold (wave-front area).

The analysis of these methods requires a quantification of the modeling error (refor-
mulation of the frequency-domain problem into a time-domain problem), which will add
to the error due to the numerical approximation of the problem in the time domain.
This motivates the study of the LAP under some new angles, with particular focus on
the quantification of large-time convergence.

As opposed to a direct study of the resolvent operator, our analysis is based on decay
estimates for the solutions of some auxiliary PDE problems. Since decay results are still
the subject of intense investigation, an advantage of this approach is that new findings
in that area directly translate into improvements in the quantification of the large-time
convergence in the LAP.

Main results. We consider the following setup. Given an angular frequency w > 0,
material parameters «, (3, which smoothly vary within some bounded domain, and a
compactly supported source term F', we consider the following frequency-domain and
time-domain problems, respectively:

—0?U (x) = 871 () V- (a (x) VU (x)) = F (x), x € R,

(1.1) lim x| (00 (%) — isor/Bo/aol ()] =0,

|x|—00
and
(12) OPu(x,t) — B (x) V- (a(x) Vu(x,t) =e @ F(x), xeR¥ t>0,
' u(x,0) =0, OJwu(x,0)=0, x € R%.

Our assumptions on «, [, and F' are stated as follows.

Assumption 1.1. (smoothness, compactly supported derivatives & positivity
of coefficients) Assume d > 2, and let a, B € C™ (]Rd) be real-valued functions such
that (X) > amin, B(X) > Bmin for x € RY, and a(x) = ag, B(x) = By for x € R\Qy,,
with some bounded domain i, C R% and constants amin, Bmin, 0, Bo > 0.

Assumption 1.1°. (regularity, compactly supported derivatives & positivity of
coefficients; 1D case) Assume d =1, and let o, B € WH> (R) be real-valued functions
such that a(z) > omin, B(x) > Pmin for z € R, and a(z) = ap, f(x) = Po for x € R\Qip,
with some open bounded interval 2;,, C R and constants cumin, Bmin, o, Bo > 0.

Assumption 1.2. (nontrapping coefficients) Let «, § be non-trapping, i.e. such
that all rays associated with the metric a/f escape to infinity [5, Sect. 1]. In other
words (see e.g. [19, Def. 7.6 & Cor. 7.10]), defining H (q,p) := a (q) |p|* — 8 (q), given
qo, po € R? such that H (qo,po) = 0, the solution vector of the canonical system of
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differential equations with the Hamiltonian H (q,p),

Lq(t)=2a(q)p (1), t >0,
(1.3) ap (1) = —%an (@) +VgB(q), t>0,

q(O) = qo, p(O) = Po,
must satisfy |q ()] — oo as t — oo.

Assumption 1.3. (compactly supported source) Let the complex-valued function
Fel? (Rd) be such that supp F' C Q;y,, with $;y, as in Assumption 1.1 or 1.1°.

Under the above assumptions, we prove the following versions of the LAP.

Theorem 1.4. Let d = 2,3. Suppose that Assumptions 1.1-1.3 are satisfied. Let U (x)
and u (x,t) be solutions to (1.1) and (1.2), respectively. Then, there exists a constant
C > 0 depending on F', o, B, w, and ) such that

ford=2:

1+ log (1 +t)

Hu(o,t) - e_ithHHl(Q) + H@tu(~,t) + iwe_i“’tUHLg(Q) <C i t2)1/2 t>0;
for d =
—iw s —iw c
Hu(-,t) —e tUHHl(Q) + H(?tu (-, 1) + iwe tU||L2(Q) < m, t>0,

where Q C R? is an arbitrary bounded domain.

Theorem 1.5. Let d = 1. Suppose that Assumptions 1.1° and 1.3 are satisfied. Let
U (x) and u (x,t) be solutions to (1.1) and (1.2), respectively. Then, there exist constants
A > 0 (depending on a, B) and C > 0 (depending on F, a, B, w, and §2) such that

|w(-t) — e — Uy ot |0 (-, ) + iwe*i‘“tU‘ <Ce ™, t>0,

[y 12()

where

1
(1.4) Uy := CTRNGTIER /Qm F(z)B(x

and Q C R is an arbitrary bounded domain.

) dz,

Remark 1.6. Note that, in contrast with Theorem 1./, Theorem 1.5 does not require
Assumption 1.2. This is because in the one-dimensional setting, the rays can only be
associated with left- and right-propagating waves, and the trapping cannot occur for the
regular coefficients.

These results are summarized in Table 1.

Previous results on the LAP. Let us provide a brief overview of previous works on
the LAP. The simplest version of the LAP dealing with the constant-coefficient, three-
dimensional wave equation has been known at least since 1948 [35, 36]. There, it is
proven that this physical principle selects the unique solution of the stationary problem
satisfying the Sommerfeld radiation condition.

Starting from the seminal work by Ladyzhenskaya [25], variable-coefficient equations
of the form 0?u (x,t) — 2 (x) Au (x,t) +q (x) u (x,t) = f (x) e~** have been considered.
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d=1 d=2 d=3
assumptions 1.1, 1.3 1.1, 1.2, 1.3 1.1, 1.2, 1.3
uP(x,t) | uV(x,t) —u(x,t) = Uso | ©V(x,t) —u"(x,t) | uV(x,t) —u"(x,t)
bound of _ 1+log(1+¢2 1
HuDIFF (" t)H* Ce M 4(1ft(2)1/2) ¢ (1+t2)1/2
statement Thm. 1.5 Thm. 1.4 Thm. 1.4
proof Sect. 3 Sect. 3 Sect. 3
time-decay Prop. 2.5 Prop. 2.1, Prop. 2.2 | Prop. 2.1, Prop. 2.2
results used (see [3, Thm 1.4]) Lem. 2.3, Lem. 2.4 | Lem. 2.3, Lem. 2.4
(proofs: Sect. 4) (proofs: Sect. 4)

TABLE 1. Summary of our results. Here, u"(x,t) is the solution to the wave
problem (1.2), u"(x,t) := e~ *“!'U(x), with U solution to the Helmholtz prob-
lem (1.1), Us is the constant in (1.4), and [[u”™" (-, ¢)[l, == [[u”" (- O)[| g1 (q) +

04 (-, )]l 12 () -

Namely, while [25, 27] treat the case ¢ = 0, paper [28] deals with the case ¢ = 0. When
g, Vc and f are sufficiently localised, the validity of the LAP is proven in a pointwise
sense but a rate of the convergence is not specified.

For the case ¢ = 0 and dimension d = 3, Ramm [30] establishes an algebraic pointwise
convergence and shows that the convergence rate is directly related to the localisation
of g and f.

Eidus’ paper [13] provides an extensive overview of the results available at the time and

treats the problem in great generality. In particular, it deals with the wave equation aris-
ing from a positive second-order differential operator in divergence form
_ Zi,jﬂ Oy, (aj (x) 8z;) 4 q (x). It is assumed that ¢ is real-valued and locally Holder
continuous, each ag; € C* (Rd) is real-valued, a; = aji, 1 < k,j < d, and for any vector
v € R, Z(lij g VRV > ao|v|2 with some ag > 0; moreover, it is assumed that |Vay;|
and ¢ decay fast enough at infinity. The problem is posed in an unbounded domain
of R? with a finite boundary where the zero Dirichlet boundary condition is imposed.
However, it is mentioned in [13, Ch. 2, p. 21] that the obtained results must also hold if
this unbounded (exterior) domain is taken to be the whole R?. The time convergence is
proven in H'-norm of the solution and in the L?-norm of its time derivative, with both
norms taken over bounded sets.

As a generalization, Vainberg [37], besides geometrical features, also considers higher-
order constant coefficient hypoelliptic operators in R?, whereas Iwasaki [24] treats dissi-
pative wave equations with variable dissipation and potential terms.

Ramm [31] considers a general linear operator and formulates necessary and sufficient
conditions for the validity of the LAP in terms of certain properties of the resolvent
operator. A more general form of the LAP is formulated, involving time convergence
in mean, namely, the convergence of the quantity % fot e“Tu (x,7)dr, for t — o0, to
the stationary solution. This is shown to be equivalent to the validity of the limiting
absorption principle.
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More recently, the LAP was established for the wave equation of the form (1.2) by
Tamura [34], but only in dimension d = 3 and without quantification of the convergence.

In this brief literature review, we have almost entirely omitted the geometrical issues,
which are the most commonly discussed aspects in the literature, see the classical works
of Morawetz, e.g. [20], and her collaborators. More on that can also be found in the
introductory part of [13]. Finally, we mention some very recent works related to the
validity of the LAP for wave propagation in metamaterials [9, 10, 8].

In the present work, we study the LAP for a problem where both material parameters
« and 3 are allowed to be nonconstant and prove our results in spatial dimensions d = 1,2
and 3. The main result given in Theorem 1.4 establishes the validity of the LAP and
estimates the convergence rates. Additionally, Theorem 1.5 covers the one-dimensional
case where a classical formulation of the LAP (i.e. when Uy = 0) is known not to be
valid [12, Sect. 3, Thm. 6]. On a technical side, the novelty of our approach to the proof
of the LAP is that it avoids the direct study of the resolvent operator and relies instead
on several decay/convergence results. The main features of the present work are:

e The LAP is proven for the wave equation with nonconstant coefficients, which
is not necessarily in divergence form (i.e. the equation may have a nonconstant
coefficient in front of the divergence operator V-). Besides the “classical” case
d = 3, we also consider d = 2.

e The validity of the LAP is extended to the case d = 1 with an appropriate
modification.

e The convergence in the LAP is quantified and is shown to be algebraic in time
for d = 2,3 and exponential for d = 1.

We believe that the exponential and algebraic convergence behavior for the cases d = 1
and d = 2 are generally sharp, but that the rate of the decay for the case d = 3 might
be improved.

Outline. The paper is organised as follows. In Section 2, we state time-decay es-
timates for the time-domain problem with suitable initial data and source term. In
Section 3, we prove the LAP in the form given in Theorems 1.4 and 1.5. The auxiliary
time-decay estimates of Section 2 are proven in Section 4. Finally, in Section 5, we
summarise the obtained results and give prospects for further work in related directions.

2. TIME-DECAY RESULTS

In this section, we state some decay-in-time results for solutions to the wave equation
with sufficiently localised initial data, which are used in our proof of the LAP in Section 3
below. The proofs of these results are deferred to Section 4. More precisely, we are
concerned with the solution of the Cauchy problem

(2.1) Ofu(x,t) = B7H(X) V- (a(x) Vu(x,1) = f(x,1), x€RL >0,
' u(x,0) =ug (x), Ou(x,0)=us(x), x¢eRI

and its constant-coefficient analog with zero source term:

{3?1) (x,t) — BAv (x,t) =0, x€RY ¢>0,

(22) v(x,0) =vg (x), Ow(x,0)=wv1(x), x€cRY
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where ¢y := \/ap/By. We start by considering the problem (2.1) in the case of localised
initial data and zero source term.

Proposition 2.1. Let d > 2, f = 0. Suppose that ug, u; € H? (Rd) and o, B sat-
isfy Assumptions 1.1 and 1.2. Additionally, the initial data are assumed to satisfy the
following localisation condition:

(2.3) /Rd (1 + |x\2)d+1+6 (yuo ) + [ur ()] + |Aup (x)]? + |Auy (x)ﬁ) dx < 00

with some € > 0. Denote Ry := [0,00). Then, for any bounded 2 C R?, the unique
solution u € C? (Ry,L? (RY)) nC! (Ry, H' (RY)) NC (Ry, H? (RY)) of (2.1) obeys the
following decay estimate with some constant C > 0, depending on «, 5, €, d, and €):

C
(2.4) lu (s Ol g ) + 10 ()l p2) € ———=» t=0.

(1+¢2) 2z
For the case of zero initial data and a localised source term, we have the following
result.

Proposition 2.2. Let d > 2, ug =0, u; =0 and «, 8 satisfy Assumptions 1.1 and 1.2.
Additionally, suppose that f € C* (Ry,L? (RY))NC (Ry, H' (RY)), tgosuppf (,t) CQf

for some bounded domain Q; C R?, and there exist constants Cy, p> 0 such that
Cr

. . . < > 0.
(2 5) ||f( at)||L2(]Rd) + ||0tf( at)||L2(]Rd) > (1 +t2)g’ t>0
Then, for any bounded domain Q@ C RY, the unique solution v € C? (R+,L2 (Rd)) N
C!' (Ry, H' (RY)) N C (Ry, H? (RY)) of (2.1) obeys the following decay estimates for
t > 0 and some constant C > 0 depending on Cy, «, B3, p, d, and .
Ford=2:

1+ log (1 +t?%)

> 0<p<1,
26) Il Dl + 10 (Dl < €4 G
Ford > 2:
— %, 0<p=s1,
(2.7) Hu('ut)HHl(Q) 4 Hatu('at)HHl(Q) <C (1 +1t2)2

where r := min (d — 1, p).
Next, we consider the wave equation (2.2) with constant coefficients and f = 0.

Lemma 2.3. Let d = 2,3 and w, py > 0, p1 > po be some fized constants. Let S*1 :=
{x eR?: |x| =1} be the (d — 1)-dimensional unit sphere and let B,, := {x € R?: |x| < pp}
be the ball of radius po, both centered at x = 0. Fiz ) € B,, meaning that Q C B,,_. C
B,, for some e > 0. We make the following assumptions on the initial conditions vy and
V1.
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e Ford =2, we assume that
28) w0 = Ao (b Yo (

where Ag € C®(Ry), Yy € C (Sl), Y, € C° (Sl), Vo € C} (RQ), Vi € Cp (Rz)
(we use Cy, to denote the space of continuous bounded functions) are such that
A (|x]) = Vo (x) = Vi (x) = 0 for |x| < po, and that there exists a constant
Co > 0 such that

(2.9) X2 (Vo ()] + Vi ()] + [ VVo ()] + [V Vi (x)] + [AV) ()|

+]AVL ()] + [VAV, (x)] + [VAV (x)] + [A%V (x)] + [A*V1 (x)]) < Co

X X

) V060, v 0 = Ao () () + i (0.

| |

holds true for all x € R%2. Moreover, Ag(p) = ei%p/p?'/2 for p > p1.
e For d = 3, we assume that vg € CO(R3), v; € C° (R3) and that there exists a
constant Cy > 0 such that

(2.10) %I (Jvo (x)] + [v1 (%)] + [Vo (x)] + [Vor (x)] + |Avg (x)]
+[Av1 (%)] + [VAv (x)| + VA (x)] + A0 (x)] + |[A%01 (x)]) < Co
holds true for all x € R3.
Then, there exists a constant C' > 0 such that, for all x € Q and t > 0, the unique
solution v € C° (R x R.) of (2.2) with the initial data as above satisfies
(2.11) v (x,t)] + |V (x,t)| + |0 (x, )]
_ ¢
(1+12)%

Note that, in the result of Lemma 2.3, we use smoothness and the presence of the
oscillatory exponential term in the radial factor in the case d = 2 to deduce the O (1/t)
decay instead of the more classical L>*—decay O (1 / 1/ 2) of the solution under absolute
integrability and some regularity assumptions on the initial data (see e.g. [1]).

In a similar vein, we can obtain the same decay rate as in Lemma 2.3 for initial
data decaying even slower at infinity. To this effect, we require an additional condition,
namely, that vy is the radial derivative of vg multiplied by —cp.

+|Av (x,t)] + |0V (%, 1) + |0 Av (x,1)] <

Lemma 2.4. Let d = 2,3 and w, pp > 0, p1 > po be some fixed constants. Using the
notation introduced in Lemma 2.3, suppose that 2 € B,,. Assume that

212) w0 =AGDY (). 00 = w0 = —ad (x)v (%)

where Oy denotes the derivative in the radial direction of the variable x, A € C"(Ry),
Yy e C” (Sd_l) such that A(p) = 0 for p € [0,p0] and A(p) = eZ%p/p% for p > p1.
Then, there exists a constant C' > 0 such that, for all x € Q and t > 0, the unique
solution v € C% (R x Ry) of (2.2) with the initial data (2.12) satisfies
(2.13) v (x,t)] + |V (x,t)| + |0 (x, )]

C

+ |Av (x,t)| + |0 Vv (x,1)] + |9 Av (x, )] < m
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In the one-dimensional case, we have the following exponential decay result, which is
proven in [3].

Proposition 2.5 ([3], Prop. 1.1, Thm. 1.4). Let d = 1 and f = 0. Suppose that
ug € H' (R), uy € L?(R), suppug, suppu; C Q for some bounded 2 C R and assume
a, B, Qi be as in Assumption 1.1°. Then, for any bounded €2 C R, the unique solution
ueCt (R, L2 (R)) NC (R, H' (R)) of (2.1) obeys the decay estimate

(2.14) e (1) = ool g1y + 180 ()| 20y < Ce™™, £ >0,

for some explicit constants C = C (ug,u1, o, 3,|92]), A = A(a, 8) > 0 with || denoting
the Lebesgue measure of the set 2, and

(2.15) Uso := 2\/01T60/QUI () B (z) dx.

3. PrROOF OF THE LAP (THEOREMS 1.4 AND 1.5)

In this section, we prove Theorems 1.4 and 1.5 at once. Without loss of generality, we
can assume that ) = ;,, since both domains could be enlarged to their union without
changing the problem. We also suppose that the origin x = 0 is chosen to be inside §2.

The proof is given in two steps. In Step 1, see Section 3.1, we transform problem (1.2)
into an initial-value problem with zero source term for the difference

(3.1) W (x,t) :=u(x,t) — e “'U (x),

where u (x,t) and U (x) solve problems (1.2) and (1.1), respectively. In Section 3.2,
we observe that the problem introduced in Step 1 has poorly localised initial data, and
we write an integral representation, which will be useful in what follows. In Step 2,
see Section 3.3, we decompose the problem from Step 1 into several subproblems. We
distinguish the cases d = 1 and d > 2. In the former case, the arguments are more
transparent and lead to the quantitative result of Theorem 1.5. The higher-dimensional
case is more involved, as some of the subproblems do not have sufficiently localised
intitial data and thus require the more specific time-decay results given in Section 2.

3.1. Step 1: Transformation into an auxiliary homogeneous problem. By in-
spection, we see that W (x,t) defined by (3.1) satisfies

(3.2) RW (x,8) = 871 (x) V- (a(x) VW (x,1)) =0, xR >0,
' W (x,0) = -U (x), oW (x,0)=1iwU (x), xecR%
Completing the proofs of Theorems 1.4 and 1.5 is tantamount to showing that there

exists a unique constant Uy, € C explicitly given by (1.4) and constants A, C' > 0
depending on F, «, 3, w such that

for d =1:
(3.3) IW (1) = Usoll sy + 10 (- 8)[ 20y < Ce™, >0,
for d = 2:
1+ log (1 +t2
(3.4) IW GO ) + 11OW (5 0l o) < € ( ) t >0,

(1+12)!/2
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for d = 3:

C
(3.5) IW GO ) + 10 (0 20 < RENDLE t>0.

3.2. Slow decay of the initial data of problem (3.2). One immediate difficulty
when dealing with (3.2) is that the initial data W(-,0) and 0;W (-,0) do not belong to
H! (Rd) and L? (Rd), respectively. The slow decay of the initial conditions in (3.2) can
be seen as follows. Let us rewrite (1.1) as the constant-coefficient problem

w2
AU 09~ 5 U 00 =, [F00F 00 + (800 — o) U () +
(3.6) +V - (a(x) VU (x)) — apAU (x)]
::Fl (X) s

where we recall that ¢z = «g/By. Assumptions 1.1 (or 1.1’ if d = 1) and 1.3 on the
coefficients and on F imply that F (x) = 0 for x € R%\ (2. Moreover, since the coefficients
a and 3 are smooth (for d > 2) and bounded away from zero, and F € L? (Rd), standard
well-posedness results (see e.g. [16, Sec. 6.3.1]) give U € H?(2), and hence Fy € L*(Q).
Therefore, we can write the integral representation of the solution U in Rd\Q

(3.7) U= [ K(x-y)Fi(y)dy. xeR\Q
Q
Here
. a2
i w 1 [w
. K = H —
(35 =1 (5 L (£
is the Green’s function for the Helmholtz equation (see e.g. [15]) that satisfies the Som-
merfeld radiation condition ‘ 1|irn |x|% [(‘)|X|K(x) —igK (x)} = 0 and —AK (x) —
X|—00

© K (x) = 0 (x), with ¢ being the d-dimensional Dirac delta function. In (3.8), H]()l)
o

denotes the Hankel function of the first kind of order p. Since y in (3.7) ranges in a
bounded set and F; € L' (Q), we employ Lemma A.1 from Appendix A and deduce that

(3.9) U(x) =0 (1/ yx|<d-1>/2) L AU (%) — ZU(X) ~0 (1/ |x\<d+1>/2) x> 1.

This implies that U, and therefore W (-,0) and 9,W (-,0), do not belong necessarily to
L? (Rd). At the same time, this gives a precise decay rate in the Sommerfeld radiation
condition when the source term Fj in (3.6) is compactly supported.

3.3. Step 2: Time-decay by decomposition into subproblems. In order to deal
with the slowly decaying initial data in problem (3.2) discussed in Section 3.2, we perform
some auxiliary decompositions using the linearity of the problem and the uniqueness of
its solution. As 0 € 2, we can fix R large enough and e > 0 such that € is contained in
the open ball Br_. C R? of radius R—e and center x = 0. Let {1, 71} be a smooth, radial
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partition of unity, i.c. o = no (|x]), m = mu (xI) € € (Ry), and 1o (Ix]) + 1 (Ix]) = 1
for all x € R?, such that

0, |x|]<R—g¢, 1, |x|<R-—g¢
(310)  m(x) {1, N m () {0’ T

We proceed separately with the case d = 1 and the cases d = 2, 3.

e Case d =1 (Theorem 1.5).
1
Note that H£11)/2 () = (£)%¢™®, and hence (3.8) yields, for d = 1, K (|z]) =

T

%%’eiam. In this case, the Green function K does not decay at infinity, but the radiation
conditions on K, and thus on U, are exact, i.e. for x ¢ Q, we have cod), U (z) = iwU (z),
where 0| = (sgn x) 9;. Therefore, we can write

(3.11) W (z,t) = Wo (,t) + Wy (2, 1),

where Wy (z,t), Wi (z, t) solve the following initial-value problems, respectively:
(3.12)

2 Wo (1) — 8 (z) 9, (a (x) 9 Wo (:v,t)) —0, zeR, t>0,
Wo (2,0) = —no (J2)) U (z), 8 W (x,0) = codyy (770 (|]) U(l’)>7 z €R,
(3.13)
W (z,1) — B~ (z) Dy (a (x) 8, W (x,t)) —0, z€R, t>0,

W (2,0) = —mi () U (2), ath:c,m:(coaml<\:c|>+z'wm<|x|>)v<x>, reR

Observe that problem (3.12), whose initial data are supported outside Bg_., is solved
by a linear combination of two reflection-free outgoing waves

(3.14) Wo (2,t) = — H (z — cot) no (|2 — cot|) U (& — cot)
— H (—x —cot)no (|z + cot|) U (x + cot) ,
where H is the Heaviside step function. Note that the smoothness of the solution is

not affected by the discontinuity of the Heaviside function due to the vanishing of 7.
Because of the support property of 79, by inspection of (3.14), we have that

(3.15) Wo (z,t) =Wy (2, ) =0, z€Q, t>0.
To deal with W in (3.11), we observe that the initial data of (3.13) have compact

support. Hence, problem (3.13) is amenable to the application of Proposition 2.5, which
yields

(3.16) HWI (1) — UooHHl(Q) + H&W1 (.,t)’ @)
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1

(3.17) Uso SN

/j; (608x|771 (|z]) + iwm (JJ\)) U(x) B (x)dx

w R—e
:m/_R+EU(x)5(x)dx— SU(R-+U(-R+0)]

1 R—e¢
B 2iw+/ o Bo /—R+e (@) (x) de

for some constants C', A > 0. Note that in passing from the first to the second line
in (3.17), m disappears upon integration by parts using that d),)U (z) = iw/coU ()
and B (x) = By for © € [-R,—R + €] U [R — ¢, R]. The passage from the second to the
third line of the equality is justified upon integration of (1.1) in = over the interval
(=R + ¢, R — €) and using again the exact radiation conditions at its endpoints.

Together with (3.15) and (3.11), estimate (3.16) implies (3.3) which completes the
proof of Theorem 1.5.

e Cases d = 2,3 (Theorem 1.4).
We perform a decomposition, which is similar to (3.11) but contains more terms that

have to be treated individually in a more delicate fashion.

Decomposition of W. We write the unique solution of (3.2) as

(3.18) W(x,t) = Wg(x,t),

B
Il -~
—

where Wy solves the homogeneous wave equation
W (x,t) — B (x) V- (a(x) VIV; (x,8)) =0, xeR? ¢>0,
subject to the initial conditions on R%:
Wi (x,0) = —m (X)) U (x),  9W1(x,0) =iwn (Jx]) U (x) = confy (Ix]) Uo (x) -

W5 and W3 solve the constant-coefficient problems (3.24) and (3.27), respectively, and
W, solves the inhomogeneous wave equation (3.30) with non-constant coefficients. For
the initial conditions we use the partition of unity (3.10).  The nonzero right-hand
side in (3.30) is needed to compensate the fact that the equations in problems (3.24)
and (3.27) are different from that in problem (3.2).

Here we have introduced Uy, the leading term in the long-range asymptotic expansion
of (3.7). More precisely, according to representation (3.7) and Lemma A.1, we have

d—3

(3.19) ()= ( ; )/ TR E () d
. X) = g e <o lx .
0 47r|x\% 2micy Q 1y ey
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Furthermore, for |x| > 1,

(3.20)
€i%‘X| w % LW Xy iCO
U(x) = U (x) = oo W (d—3)(d—1) —
d—1x-y w 9 x-y\?
— 0+t — | — F dy + O
12 x| d=3
e o w 2 _jexy [(d—3)(d—1)
3.21 Ox [U (x) —Up (x)] = — g /e Co||:
@2 w069~ Uo (] == (o) | .
d—liwx -y w? 2 x-y\?
— —5 - — F d
2 ¢ |x| 24 (!y] ( x| 1(y)dy
1
O —am |
x| 2
(3.22)

e

. i x| d=3

w <o w 2 1—-d _jw Xy 1

- = = co Xl F° dy+ 0| —= | -
0~ 200 = (3 ) " 5" [ F Ry (|X|d2+3>

Decay of Wi. In order to apply Proposition 2.1, we need to check the regularity of
the initial conditions of Wj. Since U € H? (), we find that Wi(.,0) and the first
term of 9;Wi(.,0) are in H? (]Rd), by recalling that suppn; C Bgr. The second term
of 9;W1(.,0) is in C*°(R?), as the integral in (3.19) is the Fourier transform (more
precisely, its restriction to the unit sphere) of a compactly supported function; see the
text below definition (3.6). Moreover, this integral is constant in the radial direction.
In addition to being smooth, the second term of 9;W7(.,0) has compact support since
supp [16(|x])] € Br \ Br—.. We thus conclude that 8;Wi(.,0) is also H* (R%).

Since all initial data of W are compactly supported, the growth estimate (2.3) clearly
holds. Hence, Proposition 2.1 applies to give

C
(3.23) W GO gy + 10:W G D)l 2y € ————=» 20,
(1+12) 2
for some constant C' > 0 depending on (2.

Decay of Ws. W5 (x,t) is the unique solution to the constant-coefficient problem
OPWs (x,t) — AAW; (x,t) = 0, x €RY >0,
(3.24) W (x,0) = no (Ix]) (Uo (x) = U (%)),  x€R
02 (x,0) = como (1x]) (22U (x) = 9qUo (x) ), x € RY,

Note that even though U € H? (), it follows from the smoothness of the kernel function
in (3.7) that U is arbitrarily smooth in R%\{). Hence, recalling that 7o is zero in ©, and
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that Uy is also smooth away from x = 0, we deduce that W5 (-,0), 9, W5 (-,0) € C* (R?).
Moreover, since

w w

gU(X) — OxUo (x) = x| [U (x) = Up (x)] — <3|x|U(X) - aU (X)> ;

we see from (3.20)—(3.22) that the initial conditions of (3.24) satisfy the assumptions of
Lemma 2.3 with

i x|

d—
X 1 w 2 _jexy 1o
Yol =) i=—— co X | (d—=3)(d—1) =
0 <|X|> 4dr (2772'60) /Qe ’ [( 3)( ) 8w
d—1x-y 1w 9 Xy 2

3 wr+2%<w’ (%)

n(E)m- ()" [ens |UEnlED
x| 4 \ 2micy Q 8
d—liwx-y w? X-y 2
1 [ =
2 ¢ |%] 2¢§ x|

and Vp, Vi € CP(RY) for d = 2, 3. Moreover, the assumptions (2.9) and (2.10) on the
initial conditions can be verified using (3.20)—(3.22). Thus Lemma 2.3 entails that the
solution Wy € C (Rd X R+) obeys the following decay estimates uniformly in x € Q for
t>0:

(3.25) [Wa (x,8)| + [VW2 (x,8)| + [0 W2 (x, 1)
C
+ AWy (x,t)| + |0 VWa (x, )] + |0: AWs (x, )] < —7
(1+412)
with some constant C' > 0. In particular, (3.25) implies
C
(3:26) [Wa (D) g ) + 10:W2 (5 )l 120y < TS, t>0.

Decay of W3. W3 (x,t) is the unique solution to the constant-coefficient problem
(3.27)
OFWs3 (x,t) — AAWs (x,t) = 0, xeRY t>0,
Ws (x,0) = —no (Ix]) Up (x), 0 W3 (x,0) = codix(no (|x]) Up (%)), x€ R<,

As for Wy, the initial conditions satisfy W3 (-,0), 9, W3 (-,0) € C>®°(R%). Moreover, by
setting

i x| -3
€ <o X 1 w 2 _jwxy
A = _— Y[(— )i =— co IxI F} d
(= () (2) =5 (=) " [5®Rma

x|z
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it is easy to see that (3.27) satisfies the assumptions of Lemma 2.4. Therefore, the
solution W3 € C° (Rd X R+) obeys the following decay estimate, valid uniformly in
x€Nfort>0:

(3.28) W5 (x,t)| + |[VWs5 (x,t)] + |0: W3 (x,1)|
C
+ ‘AWg (X,t)’ + |8tVW3 (X, t)‘ + ‘615AW3 (X,t)’ < a2
(1+412)
with some constant C' > 0. In particular,
C
(3:29) IWs (- )l 1) + 10:W3 ()l 120 < RO t>0.

Decay of Wy. Wy solves the inhomogeneous wave problem
(3.30)

O2Wy (x,t) — 7L (x) V- (a(x) VW4 (x,1) = Fa (x,t) + F3 (x,1), x €RY >0,
W4 (Xa 0) = Oa atW4 (Xa 0) = Oa X € Rda

where
(3.31)
Fy (x,t) := B (x) Var (x) - VW (x, 1) + (87 (x) o (x) — ) AW (x,1), k = 2,3.

As already pointed out, the nonzero right-hand side compensates the fact that the
equations in problems (3.24) and (3.27) are different from the equation in problem (3.2).

Estimates (3.25) and (3.28) entail the decay of all the terms entering (3.31) and of
their time derivative. Hence, recalling the regularity of W5 and W3, we see that Proposi-
tion 2.2 is applicable with p = 1. This gives the unique solution W, € C? (R+, L? (Q)) N
C! (Ry, H' (2)) N C (R4, H* (2)) which satisties

for d = 2:
1+ log (1 +t%)
(3.32) I 0l + 10003 (D)) < O 420,
for d = 3:
0 < ¢ >
(3.33) Wa (0 ) + 10Wa (5 ) 120 < e t >0,

with some constant C' > 0.
Consequently, by combining (3.23), (3.26), (3.29), (3.32), and (3.33) with (3.18), the
estimates (3.4) and (3.5) follow. This concludes the proof of Theorem 1.4.

4. PROOFS OF THE AUXILIARY TIME DECAY RESULTS

4.1. Proof of Proposition 2.1. This proof is based on an application and an extension
of a result from [5]. We shall focus here only on the decay of the solution of (2.1) with
f = 0. The existence, uniqueness and regularity results are standard. Indeed, whenever
ug € HoH1 (Rd) and u; € H? (Rd) for s > 1, a direct application of the result from [11,
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Ch. 6, Thm. 4.9] with f = 0, together with a bootstrap argument for 9?u, implies that
we C? Ry, HL (RY)) N C (Ry, H* (RY) N C (Ry, B+ (RY)) and
(4.1)

Hu('7t)||?qs+1(Rd)+H8tu(’7t)H]2qS(Rd)+Hat2u ('7t>Hi[sfl(Rd) <C <HU0H§13+1(R¢) + HUIHis(RdD

for any ¢ > 0 and some constant C' > 0 that is uniform on any time interval [0,7],
T > 0. In the present case, since ug, u; € H? (Rd), we have (4.1) with s = 1. However,
as our argument below to prove the decay requires a higher regularity of the solution, we
shall combine the above well-posedness result with an approximation argument based
on density results. Namely, denoting by S (Rd) the Schwartz space of smooth, rapidly
decreasing functions on R?, we have the following dense inclusions: S (Rd) C H* (Rd) C
H*2 (R?) for any s; > s2> 0 (since C5°(RY) is dense in Hi(RY) = H*(RY), s > 0).
Consequently, we can approximate the initial datum wy € H? (]Rd) by a more regular
one yet preserving its localisation. That is, given any § > 0, there exists ug c H? (Rd)
such that

(4.2) Huo - ug‘ <6,

H?(R4)

and
/Rd (1 + |X|2>d+1Jre (‘ué (X)‘2 + ‘Aug (x)r) dx < oo.

By choosing ¢ arbitrarily small, the solution u® € C? (R+, H! (Rd)) nct (R+, H? (Rd)) N
C (]R+, H? (Rd)) corresponding to the initial data ug and u1 can be made arbitrarily close
to u due to (4.1), namely

e (-,t)H2

H(

2

e | t) — O® (-,t)HHl(Rd)

+ Ha,?u(-,t) — 02u° (-,t)’ ’ < C6?

C oI
< Up — U
L2(R4) H 0 0

HH2 (Rd)
for any ¢t > 0 and some constant C' > 0 that is uniform on any time interval [0, T], T > 0.
Taking this into account, we shall proceed working with u®. With abuse of notation, we
still denote u® simply as u and u as ug.

Because of Assumption 1.1 on « and § (positivity and regularity), the operator P :=
—B71(x) V- (a(x) V) with the domain Dom P = H? (R?) is self-adjoint in L% (R?)
(the L? (Rd) space endowed with the S-weighted L? inner product). Note that the sets
L%(Rd) and L?(R?) coincide since the weight 3 is bounded and uniformly bounded away
from zero. Moreover, P is positive so that there exists a unique self-adjoint, positive
operator B with Dom B = H' (Rd) such that B2 = P. We refer to, e.g. [3, Proof of
Prop. 1.1] for a more detailed discussion for the case d = 1. With the notation /P := B
and 1/v/P := B~!, we can formally write the solution of (2.1) with f =0 as

sin (tﬁ)
T

Under Assumptions 1.1 and 1.2 on a and 8 (compactly supported derivatives and non-
trapping), the following operator-norm estimates are obtained in [5, Thm. 1.5]. Namely,

ui (x), t>0.

(4.3) u (x,t) = cos (t\/ﬁ) ug (x) +
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there exists a constant C' > 0 such that

sin (tﬁ) C
(4.4) QJITQJI S ——— 120
=
L2(R4)—H!(R?) (1+¢%) =
(4.5) g, ! cos <t\/]3> q ! < L, t>0,
v vl T (1 4 2)8 -

9 v/2
where ¢, := (1 + |x| ) with some v > d + 1.

Set p1:=d + 1+ €. According to (2.3), we have g,uo and guu; € L? (R?). Then, we
deduce from (4.3)—(4.5) that, for ¢t > 0,

1 1
4.6 “Lo (¢ <C|— 2 S E—— 2
( ) Hqu u(7 )HL2<R4) = ((14-752)3 Hq,uUOHL (Rd) + (1+t2)% HQMUIHL (]]W))
< Co
T+

for some constant Cy > 0. Due to the approximation of ug by ug, the constant Cj
actually depends on §. But, due to (4.2), Cy is uniformly bounded for 0 < § < 1. This
applies equally to the constants Cy and Cs below.

To obtain the estimate for the time derivative O;u, we note that w := Osu solves
02w + Pw = 0, w (x,0) = uy (x), dw (x,0) = —Pug (x). Hence, we have

sin (t\/ﬁ)

w(,t) = COS (t\/ P) uyp — T(PUO)
Therefore, using (4.4) and (4.5), we estimate, for ¢ > 0,
1
4.7) gt o (-t <C + ——|lq.P
( ) HQu tu( )HL2(]Rd) = ((1+t2)g ||QMU1||L2(Rd) (1—|—t2>% Hqu u0||L2(IRd)>
Gy
S —— 1
(1+¢2) 2

for some constant Cq > 0.

To complete the H!-estimate of u, we estimate the L?-norm of Vu. First, we observe
that w := 02u solves 02w+ Pw = 0, w (x,0) = —Pug (x), 0;w (x,0) = —Puy (x). Hence,
as before, we have, for ¢ > 0,

sin <t\/]3)

T(PUI)’

w (-, t) = — cos (t@) (Pug) —

1

1
—192
0 -t <C|—— P _ P .
Hqu tu( )HLQ(RCL) > <(1+t2>g ||Qu UOHL?(Rd) + (1+t2)% Hqu ulHL?(]Rd))



LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION 17

We thus arrive at

(4'8) H%jlpu ("t)HLZ(Rd) = HQ,flafu('at)HLz(Rd) S C2

(1+t2)%

for some constant Cy > 0. Employing the notation (-) for the complex conjugate, we
consider the following inner product on L% (Rd)

(4.9) <q;1Pu, q;1u>L%(Rd) = — /Rd V- (a (x) Vu (x,t) )u (x, 75)(];2 (x) dx.
We insert the identities
V- (a (x) Vu (x,t) )u (x, t)q;2 (x) =V - (a (x) q;z (x) u(x,t)Vu (x, t))

x| -2
1+ |X|2 q.u‘
into (4.9) and integrate in R?. The term [p, V - (v (x) g% (x)u (x,t)Vu (x,t) )dx van-
ishes, due to the decay of qlf at infinity and the fact that, for each ¢t > 0, Vu (-, t) €
H? (RY) C Cy (R?) (the space of continuous bounded functions on R?), by the Sobolev
embedding. We integrate by parts the other terms and obtain

(4.10)

_ 2 _
O e T /R () |V (1) g ()

(Vu (x,t) - Vq;2 (x)) = —2p

(X) a|x\u (X’ t)

+u HaHLoo(Rd) <q;18|x|u7 QQIU>L2(Rd) .

< ]<qﬁPua G 13 (ma)

Furthermore, employing the Cauchy-Schwarz inequality, we can estimate

<q;1Pu’q;1u>L%(Rd) < 1Bl oo (may HquPUHLz(Rd) quluHLz(Rd)v

'<qN18x|u7qulu>L2(Rd) < Hq;lquL2(Rd) quluH[g(Rd)
plo] o s

M o -

— 2
) g Vel ey +

< - -
= dpeflo e n i

Here, on the second line, we used the elementary inequality |al| |b] < %O\a|2 + ﬁ\bp, valid
for any 69 > 0. Therefore, estimate (4.10) entails

7 Cmin HQMIVUHQLQ(W) < ||,8||L00(Rd) Hq,:lPuHLg(Rd) HCJEIUHLQ(Rd)
2
w 12
Li— o7 () g el 2 () -
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Recalling (4.6) and (4.8), this leads to

4 COC2 /PCg 2 1
(G Wl + S W) s

@1 gVl < 5

Finally, denoting with xq the characteristic function of the bounded set €2, we have
||u||L2(Q) = HUXQHLQ(Rd) < CQ,/.L qujluulﬁ(Rd) )

and similarly for Vu and d;u. Hence, the estimates (4.6), (4.7), and (4.11) furnish (2.4).
O

4.2. Proof of Proposition 2.2. The existence, uniqueness, and regularity results are
standard. Indeed, since f € C (R+, H? (Rd)), the result from [I1, Ch. 6, Thm.
4.9] implies (directly, and by estimating d?u from the wave equation (2.1)) that u €
C? (R+, L? (Rd)) nct (R+, H! (Rd)) ncC (R+, H? (Rd)). We shall focus here only on
the decay of the solution. Without loss of generality, we can take 2 = Q (by enlarg-

ing both sets if necessary). Let P, v/P, and 1/v/P be defined as at the beginning of
Section 4.1. The following operator-norm estimate was obtained in [5, Thm. 1.5]:

sin (tﬁ) C
— =X < 7(”_1, t>0,
VP e

(4.12) <
(141¢2)

L2(R4)—H(Q)

for some Cy > 0, where yq denotes the characteristic function of the set €.
According to the Duhamel principle, the solution to (2.1) with ug = 0, u; = 0 can be
written as

t sin ((t —7) \/13)
(4.13) w(t) = / f () dr.
0
Using a basic Bochner integral estimate in H' () and (4.12), we obtain, for ¢ > 0,

t || sin ((t —7) \/]3>
(4.14) Ol < | A6

H(Q)

t CO
< i I ()l z2(q) dmy
</0 (1+(t_T)2>? TNl L2 at

where, in the second line, we also took into account the assumption that the support of
f (-, 7) is contained in Q for each 7 > 0.

Employing the assumed estimate (2.5) on f, namely [|f (-, 7)[| 2(q) < Cf/ (1+ 72)p/2
for some constants C'y, p > 0 and all 7 > 0, and denoting C := CoC, we proceed to
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estimate

(4.15) ||u("t)”Hl(Q)§/o (1 ( )f>d21(1 2)
(-7 + 7

e /1/2 dr
T a2 ESS]
To(yera-n?) e )

1 dr
+ d_1
1 ;

Pluye+a-m2) " e+

p
2

207100 1 V2o dr
- -l ‘“/ 2 2\%5
(14¢2) 2 Jo  (1/t*2+712)2

L¥C 1 /1/2 dr
214 2) o (1242
Here we used the change of variable 7 — 7 := 7/t and employed the estimates
1/td+p72 1/td+p72 2d71 1 2d71 1
d—1 < a1 p—1 d—1 < p—1 a=1"
T (/414 P A+ T 1+

<l/t2 +(1- 7)2) :

0<7< 4,120,

N =

l/td+p*2
(1/t2 4 72)

1/¢p=2 P 1 2p 1
(1/2+1/4)8  t772 (44 ¢2)5

<

r
2

in the integrals over [0,1/2] and [1/2, 1], respectively. In the last line of (4.15), we have
also made the change of variable 7 — 1 — 7. Using Lemma A.2, we continue estimate
(4.15):

CLptl_p, 0<p<l,
21C
(4.16) [l () g Sﬁ log (t+\/1+t2>, p=1,
2
( + t ) CQ,pv p > 17
L 20 [log <t+\/1+t2>, d=2,
(1 + tz)g Cg7d,1, d> 2,
1 & dz
h = d—1 Cis i = ——, Oy := —. W ti b
where ¢ max ( ,p), Cis T O /0 T 22)3/2 e continue by

considering separately the cases d = 2 and d > 2.
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Since C1p, > 1, estimate (4.16) for d = 2 reads

1+ log(1 + ¢
(1+1¢2)2
log (t +vV1+ t2>
(4.17) [ (D) ) <27C 4 2 - p=1,
(1+1t2)2
1
(1 + 04717) max (027171 1) iy P > 17
(141t2)2
1+ log(1+¢2
L;;)’ 0<p<l,
~ 14t4)2
<C, (1+ )
T 1o p > 17
(1+1t2)2
D log (t +vV1+ t2>
where C,, := sup = , C1p = sup ——. In (4.17)
20 (14¢2)72 [1+log(1+ t?)] 20 (14¢2) =

we also used the elementary estimate

1
log(t + V1+1t2) <log2+ 3 log(1 +t?) < 1+log(1+t%), t>0.

Similarly, when d > 2, we have

(

1
(1 + C57d7p) max (Cva Cg}dfl) ——> 0O<p<l,
(1+1¢2)2
1
(4.18)  Ju (- t)ll g1 gy <27C ¢ (1 + Cag—1) max (Cya-1,1) m: p=1
1
200, ———, p>1,
T (1+¢%)2
1
o U<p=sl
~ 1+1¢4)2
<Cpy ( ) )
DN p > 17
(1+1¢2)2

-
where r := min (d — 1,p), Cs 4y := sup ——————. This completes the estimate of
20 (14¢2) 2
Hu (’7 t)HHl(Q)
To finish the proof, it remains to obtain the estimate for the time derivative dyu. To
this effect, we note that w := dyu solves 02w + Pw = 9, f, w(x,0) = 0, dyw (x,0) =

f (x,0). Hence, we have

sin \/> t sin -7 \/>
&sU(',t):w(',t):Eﬁ]—gp)f(-aO)Jr/o ((t\/ﬁ) P)atf('vT)dT,
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and consequently we obtain from (4.12), again with C' = CyCY,

c t sin((t—T)ﬁ)
(4.19) 0w (D) gy < m +/0 VP

of (-,7) dr.
H(Q)

Therefore, owing to (2.5), the estimate for d;u can be obtained from the estimates for u
given in (4.17) and (4.18) by only adding an extra term, which is the first term on the
right-hand side of (4.19). Namely, we have, for d = 2,

~ 1 1+ log(1+¢t?
maX(C,Cp> 21—1— +0g(2—|—£ ) , 0<p<l,
(4:20) (195 (V) 1y < e A
(c+6)— b1,
(1+1¢2)2
1+log (1 +¢2
Og(zp ), 0<p<l,
<2max <C’, Cp> (% +1%)2
, p> 1.

(1+¢2)2
Since the first term of the right-hand side of (4.19) decays at least as fast as the second,
we have, for d > 2,

o 0<psl
= 1+1?)2
(421) 190 () 1y <Cpa § )
—F, p>1.
(1+¢2)2
Altogether, when d = 2, estimates (4.20) and (4.17) imply (2.6). Analogously, for
d > 2, estimates (4.21) and (4.18) furnish (2.7). O

4.3. Proof of Lemma 2.3. Since vy € C5(R?), v; € C°(RY), Theorems 2 and 3 in [16,
Par. 2.4.1] applied to u and its derivatives (see also (4.77) and (4.114)) imply that the
regularity of the solution v to (2.2) is v € C® (R x Ry) and v € C* (R x R,).

In the main body of the proof, we shall prove that the bound

.
(14 ¢2)M%

is valid for some constant C' > 0, assuming that vg = 0.

This first part of the proof actually holds true for weaker regularity assumptions than
made in (2.8)-(2.10). More precisely, for d = 2, we only need 4y € C*(R,), Y; € C*(S),
Vi € C(R?) with |x[>/2|V;(x)| < C, x € R%. And, for d = 3, we only need v; € C(R?)
with |x?|jv1(x)] < C, x € R3. 1In (4.62) below, we shall summarize these reduced
assumptions by saying that vy € A.

The case vy # 0 and the estimate of the other terms in (2.11) is discussed in the final
part of this proof. We consider now separately the cases d =2 and d = 3.

e Case d = 2.

(4.22) v (x,t)] <

xeN, t>0,
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The solution of (2.2) with vg = 0 is given by Poisson’s formula [16, Par. 2.4.1 (c¢)]

t [t r
(4.23) v(x,t) = / / v1 (x + srept) dogdr,
27 Jo (1 —12)"% Jjs=1 °
where dog denotes the surface measure of the unit circle St. Introducing p := |x + sreot],

¢ — X+srcot

rroreyys and using (2.8), we can write

t [t r
(4.24) v(x,t) = /0 a

ot _ 7,2)1/2

=P (x,t) + Q (x,1).

[ Vo) (9) + 2 st

As Ay (p) = 0 for p < pp, then ¢ is well-defined whenever it appears in the above integral.
In fact, p = |x + srept| > po whenever the coefficient Ag (p) in front of Y; (¢) in (4.24)
is different from zero.

We shall prove that there exists some tg > 0 such that the bounds
Co

C
(4.25) PanI<S Q<
are valid uniformly in x € 2 with some constants 5, 50 > 0 for any t > ty. Since it is
evident from (4.23) that the solution v is bounded for any finite ¢ > 0, (4.24) and the
estimates in (4.25) will imply (4.22).

Estimate of @ for ¢t > ty:
We have

t ! T
4.26 Q(x,t) = / / V1 (x + srept) dosdr.
( ) ( ) 27T al/t (1 N 742)1/2 ‘S|:1 1 ( 0 )

Since Vi (x) = 0 for |x| < pg, we reduced here the integration range in the r variable
from (0,1) to (a1/t,1) with

1 . 2 2
4.27 == imf |y x 2 _1x?—x-s|
(4.27) a cmszlgxeﬂ[ (-8 +p3—IxP —x-s

which is positive, due to €2 € B,,. To justify this reduction of the integration range,
we need to prove the implication r < a1/t = p < pg, from which V; = 0 follows. The
condition r < a1/t means that for x € Q, s € S!, we have

reot +x-8 < \/(x~s)2+pg— x|%.
For rcot + x - s > 0, this is equivalent to

p? = |x|* 4 2x - sregt + (rept)? < p2,
and rcot + x - s < 0 yields directly

p? = |x|* + 2x - srept + (reot)? < |x|? — (reot)? < |x)? < p2.
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Here and in the sequel we assume that a1/t < 1, i.e. that ¢ty > a;. By rearranging the
factors, we can write

1 1 rt)—3/2 Tt 5/2
(4.28) Q (x,t) = o /al/t (1(_)72)1/2 /s—l (p) p°?Vi (x + srept) dosdr.

We can assume p = |x + srcg| > pp since the integrand vanishes otherwise due to the
support of Vi. Thus, we can estimate rt/p in (4.28) as follows. From the triangle
inequality

(4.29) reot = |x + srept — x| < p + x|
and x € Q2 € B,,, p > po, we have

t 1 2
(4.30) Tz <1 + |X’) <z,
p o p

co
Moreover, assumption (2.9) implies p®/2|V; (x 4 srept)| < Cp. Using this and (4.30),
(4.28) gives

25/2Cy /1 dr
2312 Jay e (1 — r2)1 /24372

Q(x,1)] <

If we choose tg := 2a1, we obtain for ¢ > ty:

T e ( [T )
g 132 Jar/i (1 —1r?) /2 y3/2 08/2753/2 a1/t 1/2
_ 2720, /1/2 dr 25/20, /1 dr <@
T332 Sy T2 B2 S (1 02) 282 T 0

for some constant Cy > 0. This completes the proof of the estimate of Q in (4.25) with
to = 2&1.

Estimate of P for ¢t > ¢g:
In order to prove the estimate of P in (4.25), let us write

irwt

t 1 e T.efirwt
(4.32) P(x,t):%/o (1—7‘)1/2/S|1 [WAO (p) Y1 (o)

—iwt —iwt t
_ ( ¢ )AO (I + scot]) Vi (+)] dorodr

V2 V2 |x + scot|
t 1 eirwt / ,re—irwt
=— | —» ——— 7540 (p) V1 (¢
2m Jo (1= )% Jisi=1 | (1 +1)? () 1()
et X + scot
— A th) Y1 | ————— | | dosd
7o seo) v (oo )| deer

t X + scot /1 e—i(1=r)wt
A X + SC t Y —_— do’s 76174
2V/2m /|s|1 ol o) 11 <|X + scot\> 0 (1—r)'/?

=P (X, t) + P (X, t) .

+
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We start with

1 1 —irwt
(433) P2 (X, t) = WFQ (X, t) /0 Wd?“,
where we made a change of variable r — (1 — r) and introduced
$3/2 X + scot
4.34 F: t) = —— A Y1 | ————
(1.3) 2600 = g [ Aot s Vi (o)

Using (4.29), the assumed form of Ay and (4.30), both for p > p;, we have uniformly for
xeQ, seSh

Aol ’ =P =FP1
<Ci, /120,

for some constant C; > 0. Thus, using (4.35) with » = 1 and recalling the assumptions
on Y7, we deduce

(4.36) su?2 1F2 (%, )| poo(r ) =t C2 < 0.
x€

Finally, employing Lemma A.3 from Appendix A, we obtain from (4.33) and (4.36), for
x € Q and t > o,

(4.37) 1Py (x,t)] < 72

with some constant 5’2 > 0 and any tg > 0.

Decay of P;. To deal with P;, we note that the integrand is a smooth function of r
in [0,1) and it behaves like (1 — r)'/? as r — 1. Integrating by parts in the r variable

with e"“dr as differential, both boundary terms vanish (recall also that Ag (|x|) = 0 for
x € ). We thus arrive at

—irwt

. 7240 (p) Y1(9)

1
zrwt
27'('1&)/ ‘/|S| 1 ( 1_7,,)1/2 (1+7“)

e iwt X + scot
A thyy | ——— dosd
\[ o (|x + scot|) 1<|x+scot\)]> osdr

=1 (x,t) + I (x,t) + I3 (x,£) + I1 (x,1) ,

(4.38) Py (x,1)

where

S|=

(4.40) b ()= g / /| e /2A 0 (p) 0,Y1 (6) dosdr,
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247
4.41 I ( : / / A Y1 (¢) dogdr,
(1.41) o e R
r
4.42 I ( : A Y
(1.2 0= | J o [ e @@
e~ i(l-rwt X + scot
_T 0 (|x + scot|) Y1 <|X+scgt\> dogdr.

Here and in the sequel, we use the following notation to avoid having too many
brackets: 9, Ag(p) := 0y (Ao(p)), 0:Y1(¢) := 0,-(Y1(0)), VY1(d) := (VY7)(9).

For the sake of the proof, we shall extend the function Y7 from the circle S! to
a neighbourhood of it, e.g. to the annulus with the inner and outer radii % and %,
respectively. We choose a constant extension in the radial direction, as this will simplify
the proof. In fact, this extension makes VY7 well defined on S!. Then, VYi(¢) is a
tangent vector to S! for each (radial vector) ¢ € S!, and hence

(4.43) 6 VYi() = 0.

Decay of I;. We have

X-s+reot
(4.44) 0 Ay (p) = cotAl (p) ———2 p>0.

|x + sreot|”

2 \1/2
Moreover, since |x + srcpt| = rept (1 +2X8 4+ %) for |s| = 1, the estimate
0

rcot
(4.45) joxstrel o (eos o0 LYo (]
' Ix +srept] 2722 33 ) r2t?
is valid for rt > 1. This can be seen from the Taylor expansion of (1 + w)~/? around
2
zero, with w := 2;—; + T‘Qc%tQ.
Then, we can write
5/243/2 . ;
r €thar (efwthO (p)) — (Tt)5/2 <A6 (p) o EAO (P))
Co €o
5/2 ’ x-S+ TCOt
—(rt)”’7 A 11— — > 0,
07y ) (12

where both terms on the right-hand side are uniformly bounded for rt > a; (and hence
p>po), x €8, |s| =1. This can be deduced from (4.45) using (4.30) and the estimates

‘A{) (p) — i—‘;AO (p)’ = 3/(2p°/%), |AL(p)| < C/p3/? for p > p; and some constant C' > 0.
Therefore, we have for
icq r5/2¢3/2

4.46 F3;(x,rt) := — Y — ety (el A dosg :
(4.46) 5 (x,71) 270 Jjr 1(9) % ( 0 (p))

Sug HFS (X7 ')HL‘X’(al,oo) =: (3 < 00.
Xe
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Since both Ay, A{, vanish on [0, po], the integrals in 7 in each of (4.39)—(4.41) reduces to
(a1/t,1) (see the discussion before and after (4.27)). Hence we can estimate I in (4.39)
for t > tg := 2aq as

1 1 1
n el = e
203 1/2 dr 23/203 1 dr < @
_‘31/2753/2 a1/t r3/2 +3/2 12 (1— r)1/2 = ¢

with some constant 63 > (0. In a similar but simpler fashion we can estimate the terms
I2 and 13.

Decay of I5. Since
cots - VYl ((b)

4.48 Y1 () = ;
(4.48) 1(9) |x + sreot]
where we used (4.43), for

ico (rt)5/2 s- VY1 (¢)
4.49 F, t) =————— A T 5 40s,
(4.49) 4 (x,7) om Jyr (p) e—"

we have

c rt
|Fy (x,7r1)] < 0/ —(rt)** | Ao (p)| [VY1 (9)] do.
mw Jigj=1 P
Hence, using (4.30) and (4.35), we deduce

P 14 (%, )| o o 0y = Ci < .

x€0

Therefore, we obtain for ¢ > ty = 2aq

1 ! 1
40 el =g || gt e
__2C /1/2 dr PPC, /1 dr _ G
—31/243/2 ar i r3/2 $3/2 1/2 (1—T)1/2 =
Decay of I3. Similarly,
i (rt)3/? /
4.51 F5(x,71t) := Ao (p) Y1 (¢) dos,
(151) ort) = "G [ Ao @)
satisfies
1 3/2
|Fs (x,7t)| = — (rt)”= Ao ()| [Y1 (¢)| dos.
Tw [s|=1

Hence, using again (4.35),

(4.52) Sug |5 (x, ')HL‘X’(O,OO) =: (5 < o0.
XE
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Therefore, we obtain for ¢ >ty = 2a;

1 /1 2+
F5(x,rt)dr
ar Jt r3/2 (1—7")1/2 (1+7")3/2 5( )

t3/2
5Cs /1/2 dr 8Cs /1 dr Cs
< + <5

91/243/2 a1/t r3/2 1 31/243/2 12 (1— r)1/2 t

(4.53) I3 (x,1)] =

with some constants 5’4, 5’5 > 0.

Decay of I4. To treat the term 14, we introduce

o r
454)  Fy(ant) = /| g
e i(1=r)wt X + scot
——— Vi | | dos,
7 Ap (Jx + scot]) 1<]x+scot|> do
(4.55) Fg (x,7,t) := Fs (x,7,t) .

Using F (x,1,t) = 0, we rewrite (4.55) as

~ ~ 1 L
(4.56) Fp(x,r,t)=— <F6 (x,1,t) — Fg (x, 7, t)) = _1—7°/ OpFg (x,7,t) drT.

1—r

Then, for r € (1 —ay/t,1), we estimate

(4.57)  |Fs(x,m1)

sy t) H
L>(1—ay/t,1)

1 1
S/|S|=1 [(2(1 +r)%? * (1 jL7a)1/2> [ 4o ()] Y1 (¢)]

1 1
775 [0: 40 (D) Y1 (D) + ———75 |40 (0)] 10, Y1 (9)]
1+ 1+
wt X + scot
"‘E [ Ao (|x + scot)| |1 <X+SCot|> H dos.

For the term with 0,Ay we first use (4.44) and consider the following estimate which
holds uniformly for x € €2, s € S'. It is obtained in analogy to (4.35).

3/2
() Al ey O <0 <1,

3/2 3/2
t 3 2 3
(5) (o) = (@) (5+a). o

<Ci, p>0,

(rt)*? |45 (p)| <

for some constant 61 > 0.
For the term with 0,Y1; we employ (4.35), 7 > 1 — % > % (for t >ty = 2ay), and

2c0t]VY1( )’ QCOt
P

0, Y1(0)] < IVl s,
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where we used (4.48) and the fact that Ay vanishes on [0, po].
Therefore, employing in (4.57) the estimate (4.35) with r = 1 we deduce that

(4.58) sup
x€Q, re(l—ai/t, 1), t>2a1

Fs (x,7,1) t1/2‘ =: Cg < 00.

Moreover, for r € (1/2,1 —a;/t) and for € € (0,1/2], taking into account (4.55), we
have
t1+6

(1 _ 7")1/2_6

Hence, with the constants Cy and Cj5 introduced in (4.36) and (4.52), respectively, we
obtain from (4.54) that, for any € € (0,1/2],

t3/2

(1 - 7,.)1/2+6 t1+eF6 (X,T, t)‘ = ’Fﬁ (Xa T, t)’ W
1

< ’ﬁﬁ (X7T>t)’

(4.59) sup
x€Q, re(1/2,1—aq /t), t>2a1

€ ¢ 1 8w
(1 — T)1/2+ it Fs (X, T, t)’ SF <31/205 + 2’/TCQ>
1

=:C7 < .

Bounds (4.59) and (4.58) imply that, for t > to = 2a; and € € (0,1/2], we get

1 1 1
. <
(4.60) |14 (x, )] _4W/0 TR |Fs (x,7,t)| dr

1 1/2 l—al/t 1
—o ([ [ [
4w /o 1/2 1—ay/t
23/2 12 gy C C 1-ay/t dr
<pn 05/ TET L +71+/ T
t3/ o 1Y 4w Amwt T 10 (1—7)

LG G
Amwt/? Ji oy (1= r)Y2 7

with some constant Cg > 0. For the interval (0,1/2), we estimated here the integrand
directly from (4.42), using (4.52) and (4.36).

From estimates (4.47), (4.50), (4.53), and (4.60) of the terms Iy, I, I3, and Iy,
respectively, in decomposition (4.38), we obtain

P 1)) < 8

with some constant Cg > 0 and ¢ty = 2a;. Together with (4.37) this gives the estimate
of P in (4.25), again with tg = 2a;. This concludes the proof of (4.22) in the case d = 2.

e Case d = 3.
The solution is given by Kirchhoff’s formula [16, Par. 2.4.1 (c¢)]
1
(4.61) v(x,t) = — / tvy (x + scot) dos,
Am Jis|=1

where dog denotes the surface measure of the unit sphere S2. In this case, it is immediate
to see that (4.61) implies (4.22), owing to assumption (2.10).



LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION 29

e Conclusion of the proof. So far, we have proved the decay of the solution under
the assumption vg = 0. We now extend the result to the general case and show that
estimates analogous to (4.22) hold true for the derivatives of the solution.

To proceed, it is convenient to introduce the following notation. Given a function w
and constants w, cg, po > 0, p1 > po, we say that

(4.62) w e A= Aucopo.m

if the following conditions are satisfied:
- When d = 2, we can write

) = Au (Yo (%) 4 Vol

for some functions 4, € C'(Ry), Y, € C(S!), V,, € C(R?) such that
Aw(|X’) EOEVU}(X)a |X‘ < po, Aw(p) = Wa P> p1,

X

|

and we have
x[”2|V,(x)| < C, x € R,

for some constant C' > 0.
- When d = 3, we have w € C(R?) and

x[*lw(x)| < O, x €R?,
for some constant C' > 0.
Let us denote Z [vg, v1] = Z the solution of the wave equation 827 (x,t)—c3AZ (x,t) =

0 for x € R?, ¢ > 0, subject to the initial conditions Z (x,0) = vg (x), 3:Z (x,0) = vy (x).
The assumptions vy € C© (Rd) and v, € C° (Rd) entail

(4.63) ZeC® (R1xRy), aZeC* (R xRy);

recall Theorems 2 and 3 in [16, Par. 2.4.1] (applied to Z and its derivatives), see also
(4.77) and (4.114).

We recall that, in proving the decay for Z [0,v;] given by (4.22), we have only used
that v; € A. But, for d = 3, due to assumption (2.10), we also have

vo, Avg, Avg, v1, Avy, A?v; € A,

which will be used to prove the decay of Z with such initial conditions.

For d = 2, we observe that v; € A entails that Avy, A?v; € A under the regularity
assumptions on v; made in (2.8), (2.9). Indeed, a short computation in polar coordinates
yields that

A ( ) 0, |X| < po;
v1(x) = 2 igglxl 1
- (%) 8‘X|3/2 )/1 (ﬁ) + O <|X|5/2) 9 |X| > pl?
so Av; € A with Yy, = — (w/co)? V1. Tterating, we also obtain A2v; € A (with Yy, =

(w/co)* Y1). Since the assumptions on vy made in (2.8), (2.9) provide vy € A, we have
similarly Avg, A%y € A.
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Consequently, we deduce both for d = 2 and d = 3 that

C
AZ[0,01] (x,8)] = 1210, Avn] (x,5)] € ——— x€Q, >0,
(1+2)Y
where the first equality is implied by 02AZ [0, v1] (x,t) = AJ?Z [0, v1] (x,t) which is due
tovi€ C° (]Rd) cct (Rd). Therefore, in view of validity of the wave equation, we deduce

C
2 v
07 Z[0,v1] (x,1)] < e xeQ, t>0.

For fixed x € €2, we interpolate between the decay estimates of Z[0,v;] and 0?Z][0,v]
by using Lemma A.4. Then, we have

C
10:Z [0,v1] (x,1)| < ma xeQ, t=>0.

We can write Z [vg, v1] = Z [0, v1] + 0:Z [0, vp], and hence we have

C
(464) ’Z [UO,’Ul] (X, t)| S m, X € Q, t Z 07

due to vy, vg, Ayg € A.
Also, writing AZ [vg,v1] = Z [0, Avi] + 0:Z [0, Avg], we have

C
(4.65) |AZ [vo, n] (x,8)| € ————7%, x€Q, >0,
(1+2)Y
since Avy, Avy, A?vg € A and voe C6 (Rd) cC? (Rd), v € C? (Rd) cct (Rd). Using
the wave equation, we interpolate between the decay estimates of Z[vg, v1] and 82 Z vy, v1]
by employing Lemma A.4. We thus obtain

C
(466) |8tZ [7)0,1}1] (X, t)’ S PR X € Q, t Z 0.
(1+2)Y
Moreover, since AZ (0, Avg) = Z (0, AQU()) due to vy € C6 (Rd), we can write

NAZ [vg,v1] =0 Z [0, Avy] + 02 Z [0, Aw]
=0,Z [0, Av1] + 4 Z [0, A%wy] .

Consequently,

C
(467) |8tAZ [UO,U]_] (X,t)’ S m, X € Q, t 2 O,

as v1, Avr, A%vy, A2vg € A and vg € CF (Rd), vy € CP (Rd).
To deduce the estimates analogous to (4.65) and (4.67) but involving the gradient of Z

instead of the Laplacian, we use an interpolation argument. In particular, for a function
u € C? (Q), with some € such that Q € €, using interior elliptic regularity results, we
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obtain

1
(4.68) IVl oo () < sup <d> sup (d |V (2)]) < Corsup (di [Vu (2)])
z€) z /) e 2eQ)

< Co1Cn2

Jull e ) + sup ||Aurrm<@)]
S

< Cos [HUHLoo(ﬁ) + HAUHLOO(Q)] ’

with some constants Cy1, Cpo, Coz > 0. Here, we employed the notation d, := dist (:z, 8?2)
and, in the second line, we used the first estimate of [I7, Thm 3.9]. Observe now that,
since in the statement of the present lemma, the domain 2 was arbitrary, all the pre-
vious steps of this proof remain valid (with different constants) for the larger domain
Q. In particular, estimates (4.64)—(4.67) are valid with € replaced by Q. Consequently,
according to (4.68) applied to Z and to 0;Z (permitted by the regularity (4.63)), we
deduce

C

|V Z [vo, v1] (x,1)] +0:VZ [vg, v1] (%, )] < ma

xeN, t>0,

and the proof is complete.
O

4.4. A variant of Lemma 2.3. In this subsection, we present a small variation of
Lemma 2.3, which provides a weaker result under weaker assumptions. This lemma will
be used as an auxiliary tool to prove Lemma 2.4.

Lemma 4.1. Let d = 2,3 and w, pp > 0, p1 > po be some fixed constants. Using the
notation introduced in Lemma 2.3, suppose that 2 @ B,,. When d = 2, we assume that
vy € C! (RQ), v € C (Rz) are such that

(4.69) 1x[>% (fvo (%)| + o1 (x)] + [V (x)]) < Co, x € R,

and vy (x) = v1 (x) = 0 for x| < po. When d = 3, we assume that vy € C' (R?),
v € C (R?’) are such that

(4.70) x| (Jvo (%) + |1 (%) + [V (x)]) < Co, x € R3.

Then, there exists a constant C' > 0 such that, for all x € Q and t > 0, the solution of
(2.2) satisfies
C

(4.71) lv(x,t)] < m,

xe, t>0.

Proof. We treat separately the cases d = 2 and 3.
e Case d = 2.
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According to Poisson’s formula [16, Par. 2.4.1 (c)] (see also (4.77) below), we have
(4.72) v (x,1t) _ L /1 7n/ v1 (x + srept) dosdr
2 Jo (1 —12)V2 Jis=1
1 1 T

— _ vo (X + srept) dosdr
2r Jo (1—-r2)!? /s|=1 ( )

cot 1 2
27 Jo (1—r2)!/2
::Ql (Xv t) + QQ (Xv t) + Q3 (X> t) .

Using the support assumption on vy, we recall the definition of a; given by (4.27) and
realise that the term Q) is identical to @ in the proof of Lemma 2.3 (see (4.26)). Hence,
(4.31) furnishes the required estimate of )1 due to assumption (4.69). The term Q3 only
differs from @; by the absence of the ¢ factor and thus obeys an analogous estimate (in
fact it is even O(t~2)). Therefore, we immediately obtain
(4.73) Qe + 1 (et € —S o xeQ i,

(141¢2)

/ s - Vg (x + sreopt) dogdr
Is|=1

with some constant C' > 0 and ty = 2a;.
It thus remains to deal with (J3. To this effect, we rewrite

Qs (1) = 27rt3/2 ar/t 71/2 (1 — 7"2)1/2 /|S1 (P) p7s Vo (x + sreot) dosdr,
where p := |x 4 srcpt|, and we reduced the r-integration range, following the discussion
“around” (4.27). Employing (4.30) and (4.69), we can estimate

25/2Cy [ dr 220y 1 (1 dr
@3 (x,1)] < 3/02/ 1/2 < 3/2 1;)2/ 1/2
(cot) ar/t 712 (1 —12) cy/“a)* tJo (1—12)

for x € Q and ¢t > typ. Combined with (4.73), this furnishes the bound on (. Continuity
of v (as follows from (4.72) due to the regularity assumptions on the initial data) implies
that the bound can be extended to ¢ > 0. Therefore, we conclude (4.71).

e Case d = 3.
Kirchhoff’s formula [16, Par. 2.4.1 (c)] (see also (4.114) below) yields

1

(4.74) v (x,t) = yp

/ [t v (x + scot) + vo (X + scot) + teps - Vg (x + scot)] dos.
|s|=1

Hence, estimating each term in (4.74) using (4.30) and (4.70) directly implies (4.71). O

4.5. Proof of Lemma 2.4. Since by our assumptions vg € C”7(R%) and v; € C%(R?),
Theorems 2 and 3 in [16, Par. 2.4.1] (applied to v and its derivatives) imply that the
solution v to (2.2) satisfies v € CS(R% x Ry) and thus ;v € C°(RY x R,).

Similarly to Lemma 2.3, in the main body of the proof, we shall prove the estimate

C

(4.75) v (x,t)] < m,

xeN, t>0,
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for some constant C' > 0, and the estimate of the other terms in (2.13) is discussed at the
end. Note that the estimate (4.75) can be proven under weaker regularity assumptions
on vy and vy than those in the formulation of the present lemma but, on the other
hand, it also holds true for a more general form of the initial conditions (allowing for
the presence of faster decaying extra terms). This class of initial conditions shall be
described in the definition of B given by (4.116).

We extend the function Y from the sphere S?~! to the spherical shell (annulus for d =
2) with the inner and outer radii % and %, respectively. We choose a constant extension
in the radial direction. This extension makes VY well defined on S¢~!. Moreover, VY (¢)
is a tangent vector to S~ for each (radial vector) ¢ € S¥~!, and hence

(4.76) ¢»-VY(¢)=0.
e Case d = 2.
The solution is given explicitly by Poisson’s formula [16, Par. 2.4.1 (c)]
(4.77) v (x,t) ! /1 rt / (x + sreot) dosdr
. 1) =— — vy ot) do,
2r [ Jo (1=r2)1/2 Jig=1 °

1 rt
+0 / / v (X + sregt) dosdr | | .
t( 0 (172" Jisi=1 0! " )]

Upon insertion of (2.12) into (4.77), and setting p = |[x + srcot|, ¢ = 2l e

|x+srcot]|

rearrange the terms to obtain

(4.78) x,t /|| 1/ 1/2 [0:A (p) — coA’ ()] Y (¢) drdos

/ - / TP @)+ (@) drdos

As A(p) = 0 for p < pg, then ¢ is well-defined whenever it appears in the above
integrands (i.e. p = |x + srept| > po whenever A (p) # 0).

Here and in the sequel, we use the following notation to avoid having too many
brackets: 9;A(p) := 0;(A(p)), Y () := (Y (9)), VY (¢) := (VY)(9).

Since [s| = 1, we have

(4.79) 04(p) = 1ol () 2TINL 10 A(p) = 19,4 ().
-VY
(4.50) oy (0) =T oy (o) =0y ),

where we have used (4.76). Note that, using (4.79), we can rewrite, for ¢t > 0,

9 ()~ cod (p) =1 (r— 1), A(p) — + ( - 1) 2.4 (p)

1 X s+ rcot ,
4.81 =—(r—1)0,A — 1] A .
(4.81) Hr-D oA e (S 1) arg

|x + sreot|
x- s+ ret
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Note that x-s+7cot cannot be zero on supp A if x € Q and s € S'. Indeed, x-s+rcot= 0
would imply

= |x|? + 2reptx - s + r2cit? = |x|? — r2c3t? < |x)? < P2,
and hence A(p) = 0. Plugging (4.81) into (4.78), we observe that the term with 9, A
can be integrated by parts in the variable r, due to the cancellation of the singularity at
r = 1. In doing so, both boundary terms at » = 0 and r = 1, respectively, vanish. With

some simplifications that employ (4.80) and the identity

(I1—r) n r _ 1
A—r)2 ) a=mr)2 =21 40)

we arrive at

1
(4.82) x,1) =o— /|S| 1/ i [HTA(/))Y(@
X - s+rcot ,

Here, we have set

rcot 1
: A vy S
’ 271' /|; =1 / 7,2 1/2 |X + S'I"C()t| (10) S V (gb) d?"d(f

X VY (9)
(4.83) T o /S| 1/ 1/2 ]x-l—scht]deas’
where we used
(4.84) x - VY (¢) = —repts - VY (),

which follows from (4.76).
For later reference, we note that, for r¢ > 1, uniformly in x € Q, s € S*,

-VY 1
|x + sreot| rt
where we used |x| < po and

2p0.

1
p > |sreot| — |x| > regt — po > 57“0015 for rt > —
co

By setting

1 .
(4.86) Py (x,t) = 217T / (1_12)1/2 /| |:1rcot (XSJFWL1> A (p)Y (¢) dosdr,

1
(4.87) Py (x,4) = ;ﬂ/o = 7«2)11/2 T /S|1 A(p)Y (¢) dosdr,

we can rewrite (4.82) as

(4.88) v(x,t) =P (x,t)+ P (x,t) + Q (x,1).



LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION 35

As in the proof of Lemma 2.3, we shall prove that there exists ¢y > 0 such that the
bounds

C C C
(4.89) PLietl < =70 [Pt < QD) <

are valid uniformly in x € Q with some constants 5’0, 51, Cy > 0 for any t > tg. Then,
due to the uniform boundedness of the solution v on §2 x [0, #g] (see (4.77)), the bounds
in (4.89) imply (4.75).

The functions A (p) and A’ (p) may be different from zero only for p > pg, i.e. for

1/2

reot > <(x -8) + p} — |X|2) —x-s, obtained from p? = (rept+x-8)2—(x-8)2+[x[2 > p2.
Thus, the integration range in the r variable in each term of (4.88) effectively reduces
from (0,1) to (a1/t,1) with a; > 0 defined in (4.27). With this argument, we are
implicity assuming that ¢ > a;. We will actually prove (4.89) with ¢y := 2a;.

Estimate of P, for ¢t > tg:
Let us introduce

(4.90) Fi (x,rt) == ;ijr /

Is|=1

" 5/2 X - S+TCOt
|x + sreot]

1) 4 (Y () don

so that we can write

1 1 1/2 1
Py (x,t —/ F(x,rt dr—/ +/
et =) (1— r2)1/2 ()2 1 () ar/t 12
:ZP171 (X, t) + P172 (X, t) ,

assuming a1/t < 1/2, i.e. t > 2ay.

Since we consider only p = |x + srcot| > pg > 0 (as the integrand of Fy (x,rt) vanishes
otherwise), the denominators in (4.45) and (4.90) are bounded away from zero. Moreover,
since

(4.91) reot = [srept] < p+ x| < p+ po,

we have, uniformly for x € Q, s € S!,
(222) " | g, O

() (2 ) = (222"

S
SC(M p> 07
for some constant Cy > 0. This, together with (4.45), implies that

(492)  (r)Y2 |4 (p)] <

Q‘E

%)a P> pi1,

D (11 (3%, ) oy 0y = 1 < 00,
xEN

for some constant C; > 0. Therefore, we can estimate, for ¢ > tg = 2a; and x € ),

Y2 dr C dr 2%%C
12 &1 12 &1 s
1

C dr 4C
3/2 L1 4Gy
Piatx 0] <225L / it
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and thus we have the bound for P; in (4.89) with ¢y = 2a; and some constant 60 > 0.

Estimate of @ for t > tg:
As above, we note that all the denominators in (4.83) are bounded away from zero.
Therefore, by setting

_ )P x- VY (9)
(4.93) Py (ert) o= = / P oL

and recalling (4.85) and (4.91), we have

(4.94) sug [ F2 (%, )| oo (ay ,00) =2 C2 < 00.
xXE

Consequently, we estimate as before, for x € Q, t > tg = 2ay,

Cy (Y2 dr Cy (' dr Cy
¢ <21/2/ — 23/2/ — <=
’Q (X7 )‘ — t3/2 ar /t 7»3/2 + t3/2 1/2 (1 —7’)1/2 t
with some constant Cy > 0. This proves the bound for Q in (4.89) again with ¢y = 2a;.
Estimate of Py for ¢ > ty:

For the term Py, we proceed as in the estimate of the term P in Lemma 2.3. Let us
rewrite (4.87) as

—irwt

1 1 eirwt e
4.95 P (x,t :/ / — A Y (¢
( ) 2( ) 27 Jo (1—7“)1/2 s|=1 (1+T)3/2 (p) ()
et X + scot
A y (TP
5372 (|x + scot]) (|x+scot|>] dogsdr

1 x + scot /1 e~ i(1=r)wt
+ = A(lx+sct)) Y | ————— | d —d
25/27 /|s|:1 (e + scotl) (!X—i—scotl) 7 o (1-— r)1/2 '
::PQ’l (X, t) + PQ’Q (X, t) .
We start with

—irwt

1 Le
P272 (X, t) = szl (X, t) /0 Wd?",
where we made a change of variable r — (1 — r) and introduced

t1/2 X + scot
4.96 F, t) i = —7— A thY | ——— ) dos.
(4.96) vt = g [ Albersa) Y () de

Similarly to (4.92), but with setting 7 = 1, we have t'/2A4 (|x + scot|) < Coo for some
constant Cyg > 0, and thus

(4.97) su?2 1 F (%, )| poor ) =t Ca < 0.
X€e

Hence, employing Lemma A.3, we obtain uniformly for x € € and sufficiently large
t >0,

(4.98) Poa (e, 1)] < 1.
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Decay of P> 1. To deal with P51, we note that the integrand is a smooth function of

7 in [0, 1) and it behaves like (1 — 7)'/2 as 7 — 1. Integrating by parts in the r variable
with e”“!dr as differential, both boundary terms vanish (recall also that A (|x]) =0 for

x € Q). We thus have
/ / zrwt 1 €
2mwt Is|=1 (1— MY+ 7“)3/2
—iwt

e X + scot
£ 4 y (X8l .
5372 (|x + scot)) <\x+scot>]> dogdr

=0 (X, t) + I (X, t) + I3 (X,t) + 1y (X,t) ,

—irwt

(4.99) P2 1 (X t

A(p)Y (9)

where
(4.100)
irwt —irwt
I (x,1) 27th o | 1/2 T r)3/2Y (¢) €™ 0, (e A(p)) dosdr,
(4.101) I (x,1) 27th o | 1/2 T 7')3/2A (p) 0yY (¢) dosdr,
4.102 I =— AlpY sdr,
( 0 ) 3 (Xa t 47th = 1 1/2 1 i 7”)5/2 (p) (¢) dosdr
1
4.1 I ( AlpY
(4.103) (x,t) 4m |s\ A T (P)Y (9)
X + scot
_W (‘X—i—SCOtD <|){—+—SCOZ‘;|)] dUsdT.

Decay of I;. For the term I; observe that, using (4.79), we have
3/241/2

€o

elrwt e irwt —(r 3/2 / _ g
0, (1A () =) (4 () - ()
~ ) (1 T,

where both terms on the right-hand side are uniformly bounded for rt > 0, x € €0,
Is| = 1, due to (4.45), (4.91), and the assumption on the form of A. Therefore, for
3/241/2 ,

F5 (x,7t) := Y (o) Lem"t&n (e7"“" A (p)) dos,

2mw Is|=1 Co
we have

Su8HF5( )HL°°(a1 o00) 1 C5 < o0
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Since both A, A’ vanish on [0, pg], the interval of integration for the r-integrals in each
of (4.100)—(4.102) reduces to (a1/t,1) (see the discussion before (4.27)). Hence we can
estimate [; in (4.100) for t >ty = 2a; as

1
(4.104) 11 (x,1)] =5

1
1
F5(x,rt)dr
/al/tr3/2(1—r)1/2(1—|—1")3/2 b )

<21/2C5 /1/2 dr  23/205 /1 dr <@
= $3/2 a1t r3/2 +3/2 1/2 (1 —T)1/2 - ¢

with some constant C~’5 > 0.

Decay of Is, I3. In a similar but simpler fashion, we can estimate the terms I and
I5. To this end we introduce

3i(rt)'?

Fs (x,rt) := y— o
s|=

A(p)Y (¢)dos,

which satisfies

1/2
o (x,rt)] < (t) D2 LAY (6)] do,
T T Amw Jig= \ p

and thus
(4.105) su?2 1Fs (%, )| oor ) =t C6 < 0.
xe

Then, using (4.94) and (4.105), we obtain for t > tg = 2ay,

1
1

4.106 L (x,t)] =——— By (x,rt)d
( ) 122 (x, 1)l wtb/2 /a1/t /2 (1= )2 (14 7)%? Gort)dr

_2'%Cy /1/2 dr  2°2Cy /1 dr _C

= wid/2 a1/t r5/2 wtd/2 1/2 (1 —T)1/2 = ¢
(4.107) Iy (x,1)] = /1 ! Fs (x,7t)d

: X =37 x,rt)dr
3 ) t3/2 ar/t 7“1/2 (1—7")1/2 (1+T)5/2 6

B Y LN R P
= 43/2 o/t ri/2 12 (1— T)1/2 = 43/2

with some constants Co, C~’6 > 0.

Decay of I4. To treat the term I4, we introduce

~ 1
4108 By (x, 7t ::/ L __A(p)Y (¢
(4.108) 7(%,7,1) st | (L) (L)Y (¢)
6—7j(1—7”)wt X + scot
_WAOX_{’SCOtDY <‘){—|—SCO‘[;’> dO'S,
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(4.109) Fr (x,r,t) :=

1 ~
F t).
— 7(X,7", )

Using Fy (x,1,t) =0, (4.109) can be rewritten as

4.11 F = —
( 0) 7(X,’f’,t) 1—r

(ﬁ7(x,1,t) F7(X'rt / 8F7 (x,7,t)dr.
—r
From this we estimate for r € (1 — a;/t, 1),

[Fr (x,11) (. 1)

L>(1—ay/t,1)

3 1
— A Y 737”14 Y
§%£E%UA:12u+mwﬂ OIY @)+ o BA@IY (@)
1

_|_ -
(14 7)%2

Therefore, employing (4.91), (4.79) and (4.80), taking into account the behaviour of A(p)
and A’(p) for p > p1, we deduce that

X + scot
A0 ()] + ﬁm“““+“mﬂ‘<m+amﬁud%~

(4.111) sup
x€Q, re(l—a1/t, 1), t>2a1

Moreover, for r € (1/2,1 — a1 /t) and € € (0,1/2], taking into account (4.109), we have
/2

F; (x,r,t) /t1/2‘ =: 7 < 0.

tE

_ 1/2+€ € —_ -
(1 T) t F7 (erat)‘ ‘F7 (X,T,t)‘ (1—1‘)1/276

< )j5§ (><3T7t)‘ e
aq

Hence, with Cy and Cg defined in (4.97) and (4.105), respectively, we obtain from (4.108)
that, for any € € (0,1/2],

(4.112)
1 21/24
sup (1- r)1/2+€ t°F7 (x, 7, t)‘ < o ( 3 iad Ce + 27rC’4)
x€Q, re(1/2,1—a1 /t), t>2a1 aq
=:Cg < 0.

Altogether (4.112) and (4.111) imply that, for ¢ > tg = 2a; and € € (0,1/2],

@113)  |L(x.1)] _4mt/ el

1/2 1 ap/t 1
47Wt /2 1—ay/t
232 (Cg (Y2 dr Oy Cs I—ai/t gy
<0 | = / et = |+ — / _—
td/Z 3 0 7"1/2 4w 47th1+6 1/2 (1 — 7")1+E

C7 /1 dr C~'7
+ — —— < —
ATwtt/? Jy_q e (1 — )2 t
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with some constant C; > 0. Here, for the interval (0,1/2), we have estimated the
integrand of F; directly, using again (4.105) and (4.97).

From estimates (4.104), (4.106), (4.107), and (4.113), of I, I2, I3, and I, respectively,
in decomposition (4.99), we obtain for P5; the same estimate as (4.98) for Py .

The estimate for P, in (4.89) with tg = 2a; readily follows from (4.95). This completes
the proof of (4.75) in the case d = 2.

e Case d = 3.
In this case, the solution is given by Kirchhoff’s formula [16, Par. 2.4.1 (c)]

t 1

(4114) v (X, t) = Z / |:1)1 (X + SCOt) + 8tU0 (X + SCot) + E’UO (X + SCot):| dO’S.
T J|s|=1

The assumed form of the initial conditions yields

(4.115)

t XS+ cot , X + scot
) =— — =1 A thyY | —————
o) =g [ [t ~1) ot G s (F 5500

X + scot 1 X + scot
A thoYy | ————— —-A thY | —————— | | dos.
+A (|x + scot|) O <\x+scot]> + " (|x + scot)) <lx+scot]>} Os

For d = 3, both A (|x + scot|) and A’ (|x + scpt|) are O (1/t) for ¢ > 1 uniformly for
x € Q, s € §? (due to (4.91) with r = 1). Hence, the last term in the integrand is
O (1/t*) and employing (4.45) and (4.80) (both for r = 1), we observe that the first and
the second terms are O (1 / t3) and O (1 / tz), respectively. Therefore, the whole integrand
is O (1/t%). The estimate (4.75) hence follows.

e Conclusion of the proof.

Given a pair of functions (wp,w;) and constants w, ¢y, po > 0, p1 > po, we say that
(4.116) (wo,wl) e B,

if we can write

(4.117) wo(x) = Aw(|x|)Ye (;,) + V(D (x),

(4.118) w(x) = —cpA! (|x]) Ve (;\) + VP (x)

for some functions

(4.119) Ay € CHRY), Yy, eCW s, vibec(rRY), v® eo®?)

such that
i=p
e €0

Au(x) =V (x) = VP (x) =0, |x|<po,  Auwlp) =—, »>p1,

p 2

and we have
x4 (V) + VO )+ WV ]) <€, xeRY,

for some constant C' > 0.
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Let Z[wo,wi] = Z, denote the solution of the wave equation 0?7, (x,t) —
cAAZ, (x,t) = 0 for x € R ¢ > 0, subject to the initial conditions Z, (x,0) = wp (x),
0t Zyw (%,0) = wy (x). By linearity, we have

(4120) Zw - ZAY + ZV7

where the first term corresponds to the solution produced by the A, Y, terms whereas

the second one is due to the V(l) Vii? terms in (4.117), (4.118).
Note that, in the proof of the present lemma, we have already shown the decay

< ¢
(14 2)/%
since the regularity of A and Y in (4.119) was sufficient for this decay. An analogous

time-decay estimate holds for the Zy term in (4.120), as follows from Lemma 4.1. Con-
sequently, we obtain

‘ZAY (X t)| tZOa XGQ,

NS
(14 )%
In other words, class (4.116) consists of the initial conditions with somewhat mini-
mal assumptions for which we can deduce the O (1/t) decay of the solution (but not
necessarily of its derivatives).
Now we consider Z [vg,v1] =: Z. Clearly, we have (vg,v1) € B with viV =v® =0
and thus

| Zw (x,1)] < >0, xe.

P S
(14 2)1/%
We shall deduce similar results for AZ and A%Z. To this effect, we first compute, for
P> p1,

(4.121) Z (x,1)| < >0, xe.

d—1"

€o 2p pz
P

W wd-1 ei% 1
A/’(P)=—<2+Z>d—1+0 3 |
€ co p p 2 p 2

w? [ w 3(d—-1 ei%p 1
A" (p) = —= (Z_ (2 )> o TO | === |-
C (&) P p 2 p 2

Therefore, we have for |x| > p; (with a computation in polar/spherical coordinates):

iw d— 1> ¢'eo”

oN

(4.122)

Ao = 47 ()Y () + S A Y () + A ) sy ()

2 i x|
w* e <o X 1
S e <) +0 =N
x|z \[x] x|
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(4.123)

—Clommo=A'”<\xr>Y<| |>+dHA”<\ DY<| |>+||A'<‘X’>Agd 1Y<r |>

2 i x|
w w  d—1\ ec<o X 1
:—72 <’L—2) d—1Y<> +(9 W y
@\ 2 ) g7 \X x| 2

where Aga-1 is the Laplace-Beltrami operator on the (d — 1)-dimensional unit sphere.
dt1 .

Note that, due to cancellation, we do not have any O (1/ |x| 2 ) terms in (4.122). Also,

observe that we can rewrite these quantities as

Auo (x) = (;)2A<\x\>y (Z)+o <r|1> 7
st (2 e (2) ()

respectively. This, together with the regularity assumptions of this lemma, yields that
(Avg, Avy) € B (with Yy, = — (w/cp)* Y and some Vu(,l), V¥ which are no longer iden-
tically zero). Since AZ [v,v1] = Z [Avg, Avy] (implied by Z € C% (R? x R;) due to
vp € C7 (Rd) and v; € C° (Rd), as discussed in an analogous setting in the Conclusion
of the proof of Lemma 2.3), we obtain

C
4.124 AZ (x,8)| < ————
(4.124) AZ(x OIS

By iteration we also deduce that (A2U0,A2U1) € B and, using again the regularity

Ze(Ch (Rd X R+), that A2Z = Z [A2v0, szl]. Consequently,
(4.125)

‘AZZ(Xt} 2‘8tAth’ 4|3t x,t)| <

>0, xe.

¢
(1+2)*
Employing the interpolation argument as at the final stage of the proof of Lemma 2.3, we

use (4.121), (4.124), and (4.125) to obtain the bounds for all the intermediate derivatives
in space and time, thus deducing (2.13). O

>0, xe.

5. CONCLUSIONS AND OUTLOOK

Motivated by the development of time-domain methods for the numerical solution
of Helmholtz problems with variable coefficients, we have established a rigorous proof
of the LAP under physically reasonable assumptions on the coefficients of the wave
equation and the source term. Under an appropriate modification, the LAP has been
extended to 1D. Moreover, since the speed of stabilisation towards the harmonic regime
is a deciding factor for using time-domain approaches in practice, we have also provided
rigorous estimates for this convergence in time.

Our main focus was on the 1D and 2D cases for which the LAP was generally un-
derstudied previously. In these cases, exponential (for 1D) and algebraic (for 2D) con-
vergence rates are generally sharp. In the 3D case, previous works on wave equations
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of similar form and some of our numerical experiments (for radial data, see Appen-
dix B) seem to suggest that our algebraic convergence result could be improved to the
exponential one.

An interesting extension of our results would be to remove the non-trapping assump-
tion on the coefficients. Even though the LAP is still expected to be valid, in this case,
the time convergence rate would be much slower. Namely, [32, Thm. 3] suggests that
the convergence rate 1/ (1 + t) would be replaced by 1/ [log (2 + ¢)]” for some v > 0.

APPENDIX A.
We collect here some technical estimates needed in the proofs of Sections 3—4.

Lemma A.l. Fory € Q, a bounded domain Q C R%, d > 2, and K defined by (3.8),
the following asymptotic expansions are valid for |x| > 1:

1 w \T ei%(lx‘_%) 1 ico
Al Kx-y)=— 1+—((d—-3)(d—1)—
(A-1) (x =) 4T (2772'0()) |x|% [ * x| (( ) )Sw
d—1x-y iw xPlyP -y’ |, 1
2 x| ' 2¢ x| x| )
(A.2)
L w TR Lo 1 o Py xy)?
8|X|K(X_y) :E omic =t e x|\ 2e2 2
0 x| 2 co [x] \ 2¢5 x|
d—livwx-y d*>—1 1
W ol——].
2w x| 8 >]+ <|X\d§3>
Proof. Setting
~ 1 w
(A3) R(x-y)im ol (2= v1).
x-ylz 7 \9
we have
(A.4)
~ X ~ x*-x-y 1 w W\ [ w
O (x—y) =% VE (x—y) = o2 (1) (L)
|X‘ ’X| ‘x—y‘2 €o 2 €o

d 1
#(1-5) iy (S )]
2) |x—y| %\«

Using the asymptotic behavior of Hz()l) for large arguments [29, Sect. 10.17(iii)]

1
1 _ 22 i(z—22tLy 1 7;(4])2 B 1) 1
1ar1<)>(ac)_(7r eile=3) R i R O B

1
d 2\2 ./ 2pt1 ) 4p? 4+ 3 1
Loy = (2 e (L EP T -
T HJ (x)—<7r> ei(z—4 )<x1/2 8:63/2)“9(965/2), > 1,
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we can write (A.3) and (A.4), respectively, as

e :

(A.5) K(X—y)—<ﬂ_w p— g (@3- D

1
+O 70!-%3 y
Ix —y| 2

~ U2 1412 _ x.ye-ild-Dn/4
(A6) 8|X‘K(X — y) = <260) |X| |X|X ye e %|x—y|

W

o1
Ix —yl| 2

w ({_d_@=2?+3) 1
i— + _
Co 2 8 |X_y|

\x—y\=x1(1—2+ )
+y\

/2 With 2 : 2ﬁ 2 about z = 0, we obtain,

1 1 Xy 1
= 1 —_— Oo—— ).
x—yl” [ ( o x[? > i <\X\”+2>

We will use this formula with v = %, atl

X

1
o1 )
x—yl| >

By using the identity

and the Taylor expansion of (1 + z)
for |x| > 1,

, ﬁ Moreover, using the Taylor expansions

2y ) -1y

2
of (1+ 21)1/2 and exp (z2) with z; := 2ﬂ+ﬂ and zg 1= 12 [x]| [(

x| I

about z; = zo = 0, we obtain

vl 1/2
W iy _axy Iy XY
i%P‘—Y‘ — ei%(‘x‘—%>e%0| |[< ‘ +‘ ) H_lx‘z
(\ x|— ) w 2x-y |y? v Xy 1
_660 ‘xl 1+’L*|X| 1-— 5 +72 *14’72 +O<2>
&) ‘X’ |X‘
N N 2112 (o )2
_ ez%(\x\—‘?)o 1+ li |X’ ‘Y‘ 3(X Y) +0 <12> .
2¢o x| x|

Therefore, we get from (A.5) and (A.6)
_ 1/2 —i(d-1)m/4 ., x: _ _
A7) Rx-y)= (2) Y () [1 s (w<d3><d1>

d—1

e
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(A.8)
~ 2¢ 1/2 e~ id=Dr/4 o (0 xy) | w 1 w? Xy 2
Ix K (x —y) = <0> —T ¢ SR |2 L — Iy - ( 2)
W x| 2 co [x|\ 25 ]|
L w x-y d*— 1)] 1
+i— (1 —d) — + +0|—= 1.
200( ) x| 8 |x|¥
Since K (x) = (2;500) ? K (x), estimates (A.7) and (A.8) imply (A.1) and (A.2). O
Lemma A.2. Let a, b > 0, and define
1
d
0 (22+a?) /
Then, we have
Cl,b? b < 1,
1 1
(A.10) J < {log a—i— 1—|—¥ , b=1,
1
CQJ,W, b > 17

1 > dzx
here Cip = ——, Cop := _—
wnere 1,b 1 b; 2,b /0' (1 x2)b/2

Proof. After the change of variable z — z := x/a, we have

7o 1 /1/“ dz
- ab—l 0 (22 + 1)b/2'
1/a dz Va q, ab~t
" < oz
/0 (22+1)b/2_/0 2 1-b
1/a dz > dz
— < ——— =: Oy
/0 (22 + 1)"2 /0 (22 4 1)%2 >

1/a dz 1 1
— — g | = +4/14+ =
/ /0 (22 +1)1/2 o8 (a Tyt

when b = 1, the estimate (A.10) follows immediately. O

Using
when b < 1,

when b > 1, and

Lemma A.3. Let a > 0. Fort> 1, we have the following estimate

a efixt T 1/2 ) 1
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Proof. Making a change of variable = + z (z) := v/zt, we have

(A.12) I(#) = /0 ' _1/”: -2 / ey

Since the integrand in (A.12) is analytic in z, we can invoke the Cauchy theorem to
deform the integration contour in the complex plane. In particular, we choose the new
contour I'1 UT' that consists of two parts: the straight line segment 'y and the circular
arc I's. This contour is traversed counterclockwise with I'; and I's defined, respectively,
as

I := {z €C: z=re ™4 e (O,R)},
Iy = {z €eC:z=Re?, ¢e (—%,0)},
where for the sake of brevity, we have set R := v/at. In other words, we can write

(A.13) I(t) :\2 ( /F 1 e dz + /F 2 e_iZZdz>

2(1-@)/3_2 2R [ 9 % .
= e " dr+ — exp (—ZR e 4 Z¢) do.
V2t 0 \/{E —m/4

Note that, for R = v/at > 1, we have

R o) 0 o)
(A.14) / e dr = / e dr — / ey = VT _ R / e 2R gy
0 0 R 2 0

Inserting (A.14) and (A.15) into (A.13) furnishes the claimed estimate (A.11). O

Lemma A.4. Let F € C%(R.) satisfy for some Cy > 0

Cq
1

Then

(A.17) < —2 >0

1+e)?
holds true with some Cy > 0.
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Proof. For all N € Ny, we have
Cy
[e @) " oo < T o e a T e
|l oo (v, v1) + 1F (| oo (v, vg1) < 1N

By interpolation (see [0, Prop. 2.2]), we deduce the same estimate also for F’, with some

generic constant C; > 0 independent of N. Hence
Ch

Ft) < —M————,
PO G

where [t] is the floor function. Using

14+ |t)2 o 1 (= 1) X(100) (1) 2 2
1+ [t]* = 1+12) > ’ 1+1%) > Co (141
L] 1+t2(+ )2 1+ 12 (1+#) > Co (1+£9),
with some constant Cy > 0, we deduce (A.17) with Cy = C~’1/C’é/2. O

APPENDIX B.

We test our results numerically on an example where the material parameters «, 8
and the source term F are radially symmetric. Namely, for 7 := |x|, x € R?, we choose

s

(B1) @) =2x0 () + 5xa () (34 cos (5 (r—2))) + xiam (1),

(B.2) B(r) =1+ xam (r) (1 + cos (g (r — 5))) :

(B.3) F(r) = 10x 083 (r) (1 + cos <7r <ir _ 1))) ,

where y denotes the characteristic function. Observe that, for this choice of o and 3, the
background medium parameters are ag = Sy = 1. We illustrate the functions in (B.1),
(B.2), and (B.3) in Figure 1(a).

We fix the dimension d € {1, 2,3} and the frequency w = 7/4, and let U(x) and u(x, t)
be the solutions to problems (1.1) and (1.2), respectively.

As in Table 1, we define

U (x, 1) = {U(X’t) - e_ith(X) if d=2,3,

w(x,t) — e WU (x) — Uy ifd=1,

where Uy is the constant in (1.4).
We consider the bounded domain Bp, := {x € R?: |x| < Ro} with Ry = 5, and set

DIFF DIFF 1/2
(B.4) E(t):= (HU (D72 () + 100 (.,t)Hiz(BRO)> .

Exploiting the radial symmetry, we rewrite problems (1.1) and (1.2) in the (r,t)-
variables and we solve them numerically on the domain (0, R) x (0,7") with R = 120 and
T = 240. For the time-dependent wave problem, we use finite differences in space on a
uniform grid of size 6 - 1072, and the Leapfrog method in time on a uniform grid of size
1.33 - 1072. We solve the Helmholtz problem on the same spatial grid.
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The following second-order radiation conditions have been used at r = R:

11—
(B.5) Oru (R,t) = —\/% [aru (R,t) + ET&U(RJ) , t>0,
o [Bo 11—daa
B. / = -
(B.6) U (R) iw 0o B+ 00z U(R),

where ¢ denotes the Kronecker delta symbol (e.g., see [14, eq. (1.27)] and [20, eq. (7.10)]
for d = 2 and d = 3, respectively). Note that these radiation conditions are exact in
case d = 1.

Central finite differences stencils were used to approximate first-order derivatives and
ghost points were added at the boundaries » = 0 and r = R. In doing so, the following
relations were instrumental

2 . da (0) 2., — it
2 da (0) " _
—U(0) = oy U" 0) = F(0).

These equations are obtained by passing to the limit » — 0 in the equations in (1.1) and
(1.2), and using the boundary conditions at » = 0: 9,u (0,¢t) =0, U’ (0) = 0.

The quantity & (t) defined by (B.4) was computed from the numerical solution of (1.1)
and (1.2), and is shown in Figure 1(b)—1(d). In particular, in Figure 1(b), we observe a
much faster decay in time for d = 1 and d = 3 than for d = 2. The semilogarithmic plot
in Figure 1(c) shows this decay to be exponential (up to the saturation due to numerical
errors for small quantities at large times). A linear region for large times is observed in
logarithmic plot in Figure 1(d) for d = 2. As a comparison, we have plotted in black
a line of slope —1. This clearly illustrates an algebraic convergence, corroborating the
sharpness of the decay estimate in Theorem 1.4 for this case.
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