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Abstract. In this paper, we prove new results on the validity of the limiting ampli-
tude principle (LAP) for the wave equation with nonconstant coefficients, not neces-
sarily in divergence form. Under suitable assumptions on the coefficients and on the
source term, we establish the LAP for space dimensions 2 and 3. This result is ex-
tended to one space dimension with an appropriate modification. We also quantify the
LAP and thus provide estimates for the convergence of the time-domain solution to
the frequency-domain solution. Our proofs are based on time-decay results of solutions
of some auxiliary problems.
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1. Introduction

An essential ingredient in connecting time- and frequency-domain wave problems is
the limiting amplitude principle (LAP). Originally proposed as one of the tools to select
the unique solution of the Helmholtz equation problem in an infinite domain, it has been
studied in numerous works over the last 70 years.

The LAP can be crudely stated as follows: The solution to the time-dependent wave
equation with time-harmonic source term converges, for large times, to the solution of
the Helmholtz equation with the spatial source term and frequency corresponding to the
original time-harmonic source. Our main motivation for revisiting the LAP comes from
numerical analysis. Helmholtz problems can be challenging to solve in practice for large
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wavenumbers. Numerical methods have been proposed to address a classical Helmholtz
problem efficiently through its reformulations in the time domain. They include the
controllability method introduced in [7, 17], together with its spectral version [22] and
its extensions [21, 20], the WaveHoltz method [1], the time-domain preconditioner of [32],
and the front-tracking adaptive method of [2]. The analysis of these methods requires a
quantification of the modeling error (reformulation of the frequency-domain problem into
a time-domain problem), which will add to the error due to the numerical approximation
of the problem in the time domain. This motivates the study of the LAP under some
new angles, with particular focus on the quantification of large-time convergence.

As opposed to a direct study of the resolvent operator, our analysis is based on decay
estimates for the solutions of some auxiliary PDE problems. Since decay results are still
the subject of intense investigation, an advantage of this approach is that new findings
in that area directly translate into improvements in the quantification of the large-time
convergence in the LAP.

Main results. We consider the following setup. Given an angular frequency ω > 0,
material parameters α, β, which smoothly vary within some bounded domain, and a
compactly supported source term F , we consider the following frequency-domain and
time-domain problems, respectively:

(1.1)




−ω2U (x)− β−1 (x)∇ · (α (x)∇U (x)) = F (x) , x ∈ R

d,

lim
|x|→∞

|x|
d−1

2

[
∂|x|U (x)− iω

√
β0/α0U (x)

]
= 0,

and

(1.2)

{
∂2
t u (x, t)− β−1 (x)∇ · (α (x)∇u (x, t)) = e−iωtF (x) , x ∈ R

d, t > 0,

u (x, 0) = 0, ∂tu (x, 0) = 0, x ∈ R
d.

Our assumptions on α, β, and F are stated as follows.

Assumption 1.1. (smoothness, compactly supported derivatives & positivity
of coefficients) Assume d ≥ 2, and let α, β ∈ C∞ (

R
d
)
be real-valued functions such

that α(x) ≥ αmin, β(x) ≥ βmin for x ∈ R
d, and α(x) ≡ α0, β(x) ≡ β0 for x ∈ R

d\Ωin,
with some bounded domain Ωin ⊂ R

d and constants αmin, βmin, α0, β0 > 0.

Assumption 1.1’. (regularity, compactly supported derivatives & positivity of
coefficients; 1D case) Assume d = 1, and let α, β ∈ W 1,∞ (R) be real-valued functions
such that α(x) ≥ αmin, β(x) ≥ βmin for x ∈ R, and α(x) ≡ α0, β(x) ≡ β0 for x ∈ R\Ωin,
with some open bounded interval Ωin ⊂ R and constants αmin, βmin, α0, β0 > 0.

Assumption 1.2. (nontrapping coefficients) Let α, β be non-trapping, i.e. such
that all rays associated with the metric α/β escape to infinity [5, Sect. 1]. In other

words (see e.g. [18, Def. 7.6 & Cor. 7.10]), defining H (q,p) := α (q) |p|2 − β (q), given
q0, p0 ∈ R

d such that H (q0,p0) = 0, the solution vector of the canonical system of
differential equations with the Hamiltonian H (q,p),

(1.3)





d
dtq (t) = 2α (q)p (t) , t > 0,
d
dtp (t) = −β(q)

α(q)∇qα (q) +∇qβ (q) , t > 0,

q (0) = q0, p (0) = p0,
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must satisfy |q (t)| → ∞ as t → ∞.

Assumption 1.3. (compactly supported source) Let the complex-valued function
F ∈ L2

(
Rd
)
be such that suppF ⊂ Ωin, with Ωin as in Assumption 1.1 or 1.1’.

Under the above assumptions, we prove the following versions of the LAP.

Theorem 1.4. Let d = 2, 3. Suppose that Assumptions 1.1–1.3 are satisfied. Let U (x)
and u (x, t) be solutions to (1.1) and (1.2), respectively. Then, there exists a constant
C > 0 depending on F , α, β, ω, and Ω such that
for d = 2:

∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ C
1 + log

(
1 + t2

)

(1 + t2)1/2
, t ≥ 0;

for d = 3:

∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ C

(1 + t2)1/2
, t ≥ 0,

where Ω ⊂ R
d is an arbitrary bounded domain.

Theorem 1.5. Let d = 1. Suppose that Assumptions 1.1’ and 1.3 are satisfied. Let
U (x) and u (x, t) be solutions to (1.1) and (1.2), respectively. Then, there exist constants
Λ > 0 and C > 0 depending on F , α, β, ω, and Ω such that

∥∥u (·, t) − e−iωtU − U∞
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ Ce−Λt, t ≥ 0,

where

(1.4) U∞ :=
1

2iω
√
α0β0

∫

Ωin

F (x)β (x) dx,

and Ω ⊂ R
d is an arbitrary bounded domain.

Remark 1.6. Note that, in contrast with Theorem 1.4, Theorem 1.5 does not require
Assumption 1.2. This is because in the one-dimensional setting, the rays can only be
associated with left- and right-propagating waves, and the trapping cannot occur for the
regular coefficients.

These results are summarized in Table 1.

Previous results on the LAP. Let us provide a brief overview of previous works on
the LAP. The simplest version of the LAP dealing with the constant-coefficient, three-
dimensional wave equation has been known at least since 1948 [34, 35]. There, it is
proven that this physical principle selects the unique solution of the stationary problem
satisfying the Sommerfeld radiation condition.

Starting from the seminal work by Ladyzhenskaya [24], variable-coefficient equations
of the form ∂2

t u (x, t)− c2 (x)∆u (x, t)+ q (x) u (x, t) = f (x) e−iωt have been considered.
Namely, while [24, 26] treat the case c ≡ 0, paper [27] deals with the case q ≡ 0. When
q, ∇c and f are sufficiently localised, the validity of the LAP is proven in a pointwise
sense but a rate of the convergence is not specified.
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d = 1 d = 2 d = 3
assumptions 1.1’, 1.3 1.1, 1.2, 1.3 1.1, 1.2, 1.3
udiff(x, t) uw(x, t)− uh(x, t)− U∞ uw(x, t)− uh(x, t) uw(x, t)− uh(x, t)
bound of

Ce−Λt C
1+log(1+t2)
(1+t2)1/2

C 1

(1+t2)1/2‖udiff (·, t)‖⋆
statement Thm. 1.5 Thm. 1.4 Thm. 1.4

proof Sect. 3 Sect. 3 Sect. 3
time-decay Prop. 2.5 Prop. 2.1, Prop. 2.2 Prop. 2.1, Prop. 2.2
results used (see [3, Thm 1.4]) Lem. 2.3, Lem. 2.4 Lem. 2.3, Lem. 2.4

(proofs: Sect. 4) (proofs: Sect. 4)

Table 1. Summary of our results. Here, uw(x, t) is the solution to the wave
problem (1.2), uh(x, t) := e−iωtU(x), with U solution to the Helmholtz prob-
lem (1.1), U∞ is the constant in (1.4), and ‖udiff (·, t)‖

⋆
:= ‖udiff (·, t)‖

H1(Ω) +

‖∂tudiff (·, t)‖
L2(Ω).

For the case c ≡ 0 and dimension d = 3, Ramm [29] establishes an algebraic pointwise
convergence and shows that the convergence rate is directly related to the localisation
of q and f .

Eidus’ paper [12] provides an extensive overview of the results available at the time and
treats the problem in great generality. In particular, it deals with the wave equation aris-
ing from a positive second-order differential operator in divergence form

−∑d
k,j=1 ∂xk

(
akj (x) ∂xj

)
+ q (x). It is assumed that q is real-valued and locally Hölder

continuous, each akj ∈ C2
(
R
d
)
is real-valued, akj = ajk, 1 ≤ k, j ≤ d, and for any vector

v ∈ R
d,
∑d

k,j akjvkvj ≥ a0|v|2 with some a0 > 0; moreover, it is assumed that |∇akj|
and q decay fast enough at infinity. The problem is posed in an unbounded domain
of Rd with a finite boundary where the zero Dirichlet boundary condition is imposed.
However, it is mentioned in [12, Ch. 2, p. 21] that the obtained results must also hold if
this unbounded (exterior) domain is taken to be the whole R

d. The time convergence is
proven in H1-norm of the solution and in the L2-norm of its time derivative, with both
norms taken over bounded sets.

As a generalization, Vainberg [36], besides geometrical features, also considers higher-
order constant coefficient hypoelliptic operators in R

d, whereas Iwasaki [23] treats dissi-
pative wave equations with variable dissipation and potential terms.

Ramm [30] considers a general linear operator and formulates necessary and sufficient
conditions for the validity of the LAP in terms of certain properties of the resolvent
operator. A more general form of the LAP is formulated, involving time convergence
in mean, namely, the convergence of the quantity 1

t

∫ t
0 e

iωτu (x, τ) dτ , for t → ∞, to
the stationary solution. This is shown to be equivalent to the validity of the limiting
absorption principle.

More recently, the LAP was established for the wave equation of the form (1.2) by
Tamura [33], but only in dimension d = 3 and without quantification of the convergence.

In this brief literature review, we have almost entirely omitted the geometrical issues,
which are the most commonly discussed aspects in the literature, see the classical works
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of Morawetz, e.g. [25], and her collaborators. More on that can also be found in the
introductory part of [12]. Finally, we mention some very recent works related to the
validity of the LAP for wave propagation in metamaterials [9, 10, 8].

In the present work, we study the LAP for a problem where both material parameters
α and β are allowed to be nonconstant and prove our results in spatial dimensions d = 1, 2
and 3. The main result given in Theorem 1.4 establishes the validity of the LAP and
estimates the convergence rates. Additionally, Theorem 1.5 covers the one-dimensional
case where a classical formulation of the LAP (i.e. when U∞ = 0) is known not to be
valid [11, Sect. 3, Thm. 6]. On a technical side, the novelty of our approach to the proof
of the LAP is that it avoids the direct study of the resolvent operator and relies instead
on several decay/convergence results. The main features of the present work are:

• The LAP is proven for the wave equation with nonconstant coefficients, which
is not necessarily in divergence form. Besides the “classical” case d = 3, we also
consider d = 2.

• The validity of the LAP is extended to the case d = 1 with an appropriate
modification.

• The convergence in the LAP is quantified and is shown to be algebraic in time
for d = 2, 3 and exponential for d = 1.

We believe that the exponential and algebraic convergence behavior for the cases d = 1
and d = 2 are generally sharp (up to a possible logarithmic factor for d = 2), but that
the rate of the decay for the case d = 3 might be improved.

Outline. The paper is organised as follows. In Section 2, we state time-decay es-
timates for the time-domain problem with suitable initial data and source term. In
Section 3, we prove the LAP in the form given in Theorems 1.4 and 1.5. The auxiliary
time-decay estimates of Section 2 are proven in Section 4. Finally, in Section 5, we
summarise the obtained results and give prospects for further work in related directions.

2. Time-decay results

In this section, we state some decay-in-time results for solutions to the wave equation
with sufficiently localised initial data, which are used in our proof of the LAP in Section 3
below. The proofs of these results are deferred to Section 4. More precisely, we are
concerned with the solution of the Cauchy problem

(2.1)

{
∂2
t u (x, t)− β−1 (x)∇ · (α (x)∇u (x, t)) = f (x, t) , x ∈ R

d, t > 0,

u (x, 0) = u0 (x) , ∂tu (x, 0) = u1 (x) , x ∈ R
d,

and its constant-coefficient analog with zero source term:

(2.2)

{
∂2
t v (x, t)− c20∆v (x, t) = 0, x ∈ R

d, t > 0,

v (x, 0) = v0 (x) , ∂tv (x, 0) = v1 (x) , x ∈ R
d,

where c0 :=
√

α0/β0. We start by considering the problem (2.1) in the case of localised
initial data and zero source term.
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Proposition 2.1. Let d ≥ 2, f ≡ 0. Suppose that u0, u1 ∈ H2
(
R
d
)
and α, β sat-

isfy Assumptions 1.1 and 1.2. Additionally, the initial data are assumed to satisfy the
following localisation condition:

(2.3)

∫

Rd

(
1 + |x|2

)d+1+ǫ (
|u0 (x)|2 + |u1 (x)|2 + |∆u0 (x)|2 + |∆u1 (x)|2

)
dx < ∞

with some ǫ > 0. Then, for any bounded Ω ⊂ R
d, the solution of (2.1) obeys the following

decay estimate with some constant C > 0, depending on α, β, ǫ, d, and Ω:

(2.4) ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤
C

(1 + t2)
d−1

2

, t ≥ 0.

For the case of zero initial data and a localised source term, we have the following
result.

Proposition 2.2. Let d ≥ 2, u0 ≡ 0, u1 ≡ 0 and α, β satisfy Assumptions 1.1 and 1.2.
Additionally, suppose that f ∈ C

(
R+, L

2
(
R
d
))

with R+ := [0,∞), ∪
t>0

supp f (·, t) ⊂ Ωf

for some bounded domain Ωf ⊂ R
d, and there exist constants Cf , p > 0 such that

(2.5) ‖f (·, t)‖L2(Rd) + ‖∂tf (·, t)‖L2(Rd) ≤
Cf

(1 + t2)
p
2

, t ≥ 0.

Then, for any bounded domain Ω ⊂ R
d, the solution of (2.1) obeys the following decay

estimates for t ≥ 0 and some constant C > 0 depending on Cf , α, β, p, d, and Ω.
For d = 2:

(2.6) ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖H1(Ω) ≤ C





1 + log
(
1 + t2

)

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
1

2

, p > 1,

For d > 2:

(2.7) ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖H1(Ω) ≤ C





1

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
r
2

, p > 1,

where r := min (d− 1, p).

Next, we consider the wave equation (2.2) with constant coefficients and f ≡ 0.

Lemma 2.3. Let d = 2, 3 and ω, ρ0 > 0, ρ1 > ρ0 be some fixed constants. Let Sd−1 :={
x ∈ R

d : |x| = 1
}
be the (d− 1)-dimensional unit sphere and let Bρ0 :=

{
x ∈ R

d : |x| < ρ0
}

be the ball of radius ρ0, both centered at x = 0. Fix Ω ⋐ Bρ0 meaning that Ω ⊆ Bρ0−ǫ ⊂
Bρ0 for some ǫ > 0. We make the following assumptions on the initial conditions v0 and
v1.

• For d = 2, we assume that

(2.8) v0 (x) = A0 (|x|)Y0

(
x

|x|

)
+ V0 (x) , v1 (x) = A0 (|x|)Y1

(
x

|x|

)
+ V1 (x) ,
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where A0 ∈ C5 (R+), Y0, Y1 ∈ C5
(
S
1
)
, V0, V1 ∈ C5

b

(
R
2
)
(we use Cb to denote

the space of continuous bounded functions) are such that A0 (|x|) = V0 (x) =
V1 (x) ≡ 0 for |x| ≤ ρ0, and that there exists a constant C0 > 0 such that

|x|5/2 (|V0 (x)|+ |V1 (x)|+ |∇V0 (x)|+ |∇V1 (x)|+ |∆V0 (x)|(2.9)

+ |∆V1 (x)|+ |∇∆V0 (x)|+ |∇∆V1 (x)|+
∣∣∆2V0 (x)

∣∣+
∣∣∆2V1 (x)

∣∣) ≤ C0

holds true for all x ∈ R
2. Moreover, A0 (ρ) = e

i ω
c0

ρ
/ρ3/2 for ρ > ρ1.

• For d = 3, we assume that v0 ∈ W 5,∞(R3), v1 ∈ W 4,∞ (
R
3
)
and that there exists

a constant C0 > 0 such that

|x|2 (|v0 (x)|+ |v1 (x)|+ |∇v0 (x)|+ |∇v1 (x)|+ |∆v0 (x)|(2.10)

+ |∆v1 (x)|+ |∇∆v0 (x)|+ |∇∆v1 (x)|+
∣∣∆2v0 (x)

∣∣+
∣∣∆2v1 (x)

∣∣) ≤ C0

holds true for all x ∈ R
3.

Then, there exists a constant C > 0 such that, for all x ∈ Ω and t ≥ 0, the solution
of (2.2) with the initial data as above satisfies

|v (x, t)|+ |∇v (x, t)|+ |∂tv (x, t)|(2.11)

+ |∆v (x, t)|+ |∂t∇v (x, t)|+ |∂t∆v (x, t)| ≤ C

(1 + t2)1/2
.

Note that, in the result of Lemma 2.3, we use smoothness and the presence of the
oscillatory exponential term in the radial factor in the case d = 2 to deduce the O (1/t)

decay instead of the more classical L∞–decay O
(
1/t1/2

)
of the solution under absolute

integrability and some regularity assumptions on the initial data (see e.g. [4]).
In a similar vein, we can obtain the same decay rate as in Lemma 2.3 for initial

data decaying even slower at infinity. To this effect, we require an additional condition,
namely, that v1 is the radial derivative of v0 multiplied by −c0.

Lemma 2.4. Let d = 2, 3 and ω, ρ0 > 0, ρ1 > ρ0 be some fixed constants. Using the
notation introduced in Lemma 2.3, suppose that Ω ⋐ Bρ0. Assume that

(2.12) v0 (x) = A (|x|)Y
(

x

|x|

)
, v1 (x) = −c0∂|x|v0 (x) = −c0A

′ (|x|)Y
(

x

|x|

)
,

where ∂|x| denotes the derivative in the radial direction of the variable x, A ∈ C5 (R+),

Y ∈ C5
(
S
d−1
)
such that A (ρ) ≡ 0 for ρ ∈ [0, ρ0] and A (ρ) = e

i ω
c0

ρ
/ρ

d−1

2 for ρ > ρ1.
Then, there exists a constant C > 0 such that, for all x ∈ Ω and t ≥ 0, the solution of
(2.2) with the initial data (2.12) satisfies

|v (x, t)|+ |∇v (x, t)|+ |∂tv (x, t)|(2.13)

+ |∆v (x, t)|+ |∂t∇v (x, t)|+ |∂t∆v (x, t)| ≤ C

(1 + t2)1/2
.

In the one-dimensional case, we have the following exponential decay result, which is
proven in [3].
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Proposition 2.5 (Theorem 1.4 in [3]). Let d = 1 and f ≡ 0. Suppose that u0 ∈ H1 (R),
u1 ∈ L2 (R), suppu0, suppu1 ⊂ Ω for some bounded Ω ⊂ R and assume α, β, Ωin be as
in Assumption 1.1’. Then, for any bounded Ω ⊂ R, the solution of (2.1) obeys the decay
estimate

(2.14) ‖u (·, t)− u∞‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤ Ce−Λt, t ≥ 0,

for some explicit constants C = C (u0, u1, α, β, |Ω|), Λ = Λ(α, β) > 0 with |Ω| denoting
the Lebesgue measure of the set Ω, and

(2.15) u∞ :=
1

2
√
α0β0

∫

Ω
u1 (x) β (x) dx.

3. Proof of the LAP (Theorems 1.4 and 1.5)

In this section, we prove Theorems 1.4 and 1.5 at once. Without loss of generality, we
can assume that Ω = Ωin, since both domains could be enlarged to their union without
changing the problem. We also suppose that the origin x = 0 is chosen to be inside Ω.

The proof is given in two steps. In Step 1, see Section 3.1, we transform problem (1.2)
into an initial-value problem with zero source term for the difference

(3.1) W (x, t) := u (x, t)− e−iωtU (x) ,

where u (x, t) and U (x) solve problems (1.2) and (1.1), respectively. In Section 3.2,
we observe that the problem introduced in Step 1 has poorly localised initial data, and
we write an integral representation, which will be useful in what follows. In Step 2,
see Section 3.3, we decompose the problem from Step 1 into several subproblems. We
distinguish the cases d = 1 and d ≥ 2. In the former case, the arguments are more
transparent and lead to the quantitative result of Theorem 1.5. The higher-dimensional
case is more involved, as some of the subproblems do not have sufficiently localised
intitial data and thus require the more specific time-decay results given in Section 2.

3.1. Step 1: Transformation into an auxiliary homogeneous problem. By in-
spection, we see that W (x, t) defined by (3.1) satisfies

(3.2)

{
∂2
tW (x, t)− β−1 (x)∇ · (α (x)∇W (x, t)) = 0, x ∈ R

d, t > 0,

W (x, 0) = −U (x) , ∂tW (x, 0) = iωU (x) , x ∈ R
d.

Completing the proofs of Theorems 1.4 and 1.5 is tantamount to showing that there
exists a unique constant U∞ ∈ C explicitly given by (1.4) and constants Λ, C > 0
depending on F , α, β, ω such that
for d = 1:

(3.3) ‖W (·, t)− U∞‖H1(Ω) + ‖∂tW (·, t)‖L2(Ω) ≤ Ce−Λt, t ≥ 0,

for d = 2:

(3.4) ‖W (·, t)‖H1(Ω) + ‖∂tW (·, t)‖L2(Ω) ≤ C
1 + log

(
1 + t2

)

(1 + t2)1/2
, t ≥ 0,

for d = 3:

(3.5) ‖W (·, t)‖H1(Ω) + ‖∂tW (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.
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3.2. Slow decay of the initial data of problem (3.2). One immediate difficulty
when dealing with (3.2) is that the initial data W (·, 0) and ∂tW (·, 0) do not belong to
H1
(
R
d
)
and L2

(
R
d
)
, respectively. The slow decay of the initial conditions in (3.2) can

be seen as follows. Let us rewrite (1.1) as the constant-coefficient problem

−∆U (x)− ω2

c20
U (x) =

1

α0

[
β (x)F (x) + (β (x)− β0)ω

2U (x)+

+∇ · (α (x)∇U (x))− α0∆U (x)](3.6)

=:F1 (x) ,

where we recall that c20 = α0/β0. Assumptions 1.1 (or 1.1’ if d = 1) and 1.3 on the
coefficients and on F imply that F1 (x) = 0 for x ∈ R

d\Ω̄. Moreover, since the coefficients
α and β are smooth (for d ≥ 2) and bounded away from zero, and F ∈ L2

(
R
d
)
, standard

well-posedness results (see e.g. [15, Sec. 6.3.1]) give U ∈ H2(Ω), and hence F1 ∈ L1(Ω).
Therefore, we can write the integral representation of the solution U in R

d\Ω̄

(3.7) U (x) =

∫

Ω
K (x− y)F1 (y) dy, x ∈ R

d\Ω̄.

Here

(3.8) K (x) :=
i

4

(
ω

2πc0

) d−2

2 1

|x|
d−2

2

H
(1)
d−2

2

(
ω

c0
|x|
)

is the Green’s function for the Helmholtz equation (see e.g. [14]) that satisfies the Som-

merfeld radiation condition lim
|x|→∞

|x|
d−1

2

[
∂|x|K (x)− i ωc0K (x)

]
= 0 and −∆K (x) −

ω2

c2
0

K (x) = δ (x), with δ being the d-dimensional Dirac delta function. In (3.8), H
(1)
p

denotes the Hankel function of the first kind of order p. Since y in (3.7) ranges in a
bounded set and F1 ∈ L1 (Ω), we employ Lemma A.1 from Appendix A and deduce that

(3.9) U (x) = O
(
1/ |x|(d−1)/2

)
, ∂|x|U (x)− iω

c0
U (x) = O

(
1/ |x|(d+1)/2

)
, |x| ≫ 1.

This implies that U , and therefore W (·, 0) and ∂tW (·, 0), do not belong to L2
(
R
d
)
.

At the same time, this gives a precise decay rate in the Sommerfeld radiation condition
when the source term F1 in (3.6) is compactly supported.

3.3. Step 2: Time-decay by decomposition into subproblems. In order to deal
with the slowly decaying initial data in (3.2) discussed in Section 3.2, we perform some
auxiliary decompositions. As 0 ∈ Ω, we can fix R large enough and ǫ > 0 such that Ω
is contained in the open ball BR−ǫ ⊂ R

d of radius R− ǫ and center x = 0. Let {η0, η1}
be a smooth, radial partition of unity, i.e. η0 = η0 (|x|), η1 = η1 (|x|) ∈ C∞ (R+), and
η0 (|x|) + η1 (|x|) = 1 for all x ∈ R

d, such that

η0 (|x|) =
{
0, |x| < R− ǫ,

1, |x| > R,
η1 (|x|) =

{
1, |x| < R− ǫ,

0, |x| > R.

We proceed separately with the case d = 1 and the cases d = 2, 3.

• Case d = 1 (Theorem 1.5).
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Note that H
(1)
−1/2

(x) =
(

2
πx

) 1

2 eix, and hence (3.8) yields, for d = 1, K (|x|) =

i
2
c0
ω e

i ω
c0

|x|
. In this case, the Green functionK does not decay at infinity, but the radiation

conditions on K, and thus on U , are exact, i.e. for x /∈ Ω, we have c0∂|x|U (x) = iωU (x),
where ∂|x| ≡ (sgn x) ∂x. Therefore, we can write

(3.10) W (x, t) = W̃0 (x, t) + W̃1 (x, t) ,

where W̃0 (x, t), W̃1 (x, t) solve the following initial-value problems, respectively:
(3.11)




∂2
t W̃0 (x, t)− β−1 (x) ∂x

(
α (x) ∂xW̃0 (x, t)

)
= 0, x ∈ R, t > 0,

W̃0 (x, 0) = −η0 (|x|)U (x) , ∂tW̃0 (x, 0) = c0∂|x|

(
η0 (|x|)U (x)

)
, x ∈ R,

(3.12)



∂2
t W̃1 (x, t)− β−1 (x) ∂x

(
α (x) ∂xW̃1 (x, t)

)
= 0, x ∈ R, t > 0,

W̃1 (x, 0) = −η1 (|x|)U (x) , ∂tW̃1 (x, 0) =

(
c0∂|x|η1 (|x|) + iωη1 (|x|)

)
U (x), x ∈ R.

Observe that problem (3.11), whose initial data are supported outside BR−ǫ, is solved
by a linear combination of two reflection-free outgoing waves

W̃0 (x, t) =−H (x− c0t) η0 (|x− c0t|)U (x− c0t)(3.13)

−H (−x− c0t) η0 (|x+ c0t|)U (x+ c0t) ,

where H is the Heaviside step function. Note that the smoothness of the solution is
not affected by the discontinuity of the Heaviside function due to the vanishing of η0.
Because of the support property of η0, by inspection of (3.13), we have that

(3.14) W̃0 (x, t) = ∂tW̃0 (x, t) ≡ 0, x ∈ Ω, t > 0.

To deal with W̃1 in (3.10), we observe that the initial data of (3.12) have compact
support. Hence, problem (3.12) is amenable to the application of Proposition 2.5, which
yields

(3.15)
∥∥∥W̃1 (·, t)− U∞

∥∥∥
H1(Ω)

+
∥∥∥∂tW̃1 (·, t)

∥∥∥
L2(Ω)

≤ Ce−Λt, t ≥ 0,

U∞ :=
1

2
√
α0β0

∫ R

−R

(
c0∂|x|η1 (|x|) + iωη1 (|x|)

)
U (x) β (x) dx(3.16)

=
iω

2
√
α0β0

∫ R−ǫ

−R+ǫ
U (x)β (x) dx− 1

2
[U (R− ǫ) + U (−R+ ǫ)]

=
1

2iω
√
α0β0

∫ R−ǫ

−R+ǫ
F (x)β (x) dx

for some constants C, Λ > 0. Note that in passing from the first to the second line
in (3.16), η1 disappears upon integration by parts using that ∂|x|U (x) = iω/c0U (x)
and β (x) ≡ β0 for x ∈ [−R,−R+ ǫ] ∪ [R− ǫ,R]. The passage from the second to the
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third line of the equality is justified upon integration of (1.1) in x over the interval
(−R+ ǫ,R− ǫ) and using again the exact radiation conditions at its endpoints.

Together with (3.14) and (3.10), estimate (3.15) implies (3.3) which completes the
proof of Theorem 1.5.

• Cases d = 2, 3 (Theorem 1.4).
We perform a decomposition, which is similar to (3.10) but contains more terms that

have to be treated individually in a more delicate fashion.

Decomposition of W . We write

(3.17) W (x, t) =

4∑

k=1

Wk (x, t) ,

where W1 solves the homogeneous wave equation

∂2
tW1 (x, t)− β−1 (x)∇ · (α (x)∇W1 (x, t)) = 0, x ∈ R

d, t > 0,

subject to the initial conditions on R
d:

W1 (x, 0) = −η1 (|x|)U (x) , ∂tW1 (x, 0) = iωη1 (|x|)U (x)− c0η
′
0 (|x|)U0 (x) .

W2 and W3 solve, respectively, the constant-coefficient problems (3.23), (3.26), and W4

the inhomogeneous wave equation (3.29).
Here we have introduced U0, the leading term in the long-range asymptotic expansion

of (3.7). More precisely, according to representation (3.7) and Lemma A.1, we have

(3.18) U0 (x) =
e
i ω
c0

|x|

4π |x|
d−1

2

(
ω

2πic0

) d−3

2
∫

Ω
e
−i ω

c0

x·y
|x| F1 (y) dy.

Furthermore, for |x| ≫ 1,

U (x)− U0 (x) =
e
i ω
c0

|x|

4π |x|
d+1

2

(
ω

2πic0

) d−3

2
∫

Ω
e
−i ω

c0

x·y
|x|

[
(d− 3) (d− 1)

ic0
8ω

(3.19)

+
d− 1

2

x · y
|x| +

iω

2c0

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy +O
(

1

|x|
d+3

2

)
,

∂|x| [U (x)− U0 (x)] =− e
i ω
c0

|x|

4π |x|
d+1

2

(
ω

2πic0

) d−3

2
∫

Ω
e
−i ω

c0

x·y
|x|

[
(d− 3) (d− 1)

8
(3.20)

−d− 1

2

iω

c0

x · y
|x| +

ω2

2c20

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy

+O
(

1

|x|
d+3

2

)
,
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∂|x|U (x)− iω

c0
U (x) =

e
i ω
c0

|x|

4π |x|
d+1

2

(
ω

2πic0

) d−3

2 1− d

2

∫

Ω
e
−i ω

c0

x·y
|x| F1 (y) dy +O

(
1

|x|
d+3

2

)
.

(3.21)

Decay of W1. In order to apply Proposition 2.1 we need to check the regularity of the

initial conditions ofW1. Since U ∈ H2(Ω), so areW1(., 0) and the first term of ∂tW1(., 0).
Concerning the second term of ∂tW1(., 0), we note that the integral of (3.18) is a Fourier
transform if only evaluated for x on a sphere. Hence, it is C∞, since F1 ∈ L1(Ω) with
compact support. Moreover, this integral is constant in the radial direction. Since
supp [η′0(|x|)] ⊂ BR \ BR−ǫ, ∂tW1(., 0) is also C∞(Ω).

Since all initial data of W1 are compactly supported, the growth estimate (2.3) clearly
holds. Hence, Proposition 2.1 applies to give

(3.22) ‖W1 (·, t)‖H1(Ω) + ‖∂tW1 (·, t)‖L2(Ω) ≤
C

(1 + t2)
d−1

2

, t ≥ 0,

for some constant C > 0 depending on Ω.

Decay of W2. W2 (x, t) is the unique solution to the constant-coefficient problem

(3.23)





∂2
tW2 (x, t)− c20∆W2 (x, t) = 0, x ∈ R

d, t > 0,

W2 (x, 0) = η0 (|x|) (U0 (x)− U (x)) , x ∈ R
d,

∂tW2 (x, 0) = c0η0 (|x|)
(
iω
c0
U (x)− ∂|x|U0 (x)

)
, x ∈ R

d.

The regularity of the initial conditionsW2 (·, 0), ∂tW2 (·, 0) implies that we haveW2 (·, t) ∈
H3 (Ω), ∂tW2 (·, t) ∈ H2 (Ω) for each t ≥ 0.

Moreover, since

iω

c0
U (x)− ∂|x|U0 (x) = ∂|x| [U (x)− U0 (x)]−

(
∂|x|U (x)− iω

c0
U (x)

)
,

we see from (3.19)–(3.21) that the initial conditions of (3.23) satisfy the assumptions of
Lemma 2.3 with

A0 (|x|) := η0 (|x|)
e
i ω
c0

|x|

|x|
d+1

2

,

Y0

(
x

|x|

)
:=− 1

4π

(
ω

2πic0

) d−3

2
∫

Ω
e
−i ω

c0

x·y
|x|

[
(d− 3) (d− 1)

ic0
8ω

+
d− 1

2

x · y
|x| +

iω

2c0

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy,

Y1

(
x

|x|

)
:=− c0

4π

(
ω

2πic0

) d−3

2
∫

Ω
e
−i ω

c0

x·y
|x|

[
(d− 7) (d− 1)

8

−d− 1

2

iω

c0

x · y
|x| +

ω2

2c20

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy,
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and appropriate V0, V1. This entails that the following decay estimates are valid uni-
formly in x ∈ Ω for t ≥ 0:

|W2 (x, t)|+ |∇W2 (x, t)|+ |∂tW2 (x, t)|(3.24)

+ |∆W2 (x, t)|+ |∂t∇W2 (x, t)|+ |∂t∆W2 (x, t)| ≤
C

(1 + t2)1/2

with some constant C > 0. In particular, (3.24) implies

(3.25) ‖W2 (·, t)‖H1(Ω) + ‖∂tW2 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

Decay of W3. W3 (x, t) is the unique solution to the constant-coefficient problem
(3.26){

∂2
tW3 (x, t)− c20∆W3 (x, t) = 0, x ∈ R

d, t > 0,

W3 (x, 0) = −η0 (|x|)U0 (x) , ∂tW3 (x, 0) = c0∂|x|
(
η0 (|x|)U0 (x)

)
, x ∈ R

d.

The regularity of the initial conditionsW3 (·, 0), ∂tW3 (·, 0) implies that we haveW3 (·, t) ∈
H3 (Ω), ∂tW3 (·, t) ∈ H2 (Ω) for each t ≥ 0.

Moreover, by setting

A (|x|) := η0 (|x|)
e
i ω
c0

|x|

|x|
d−1

2

, Y

(
x

|x|

)
:= − 1

4π

(
ω

2πic0

) d−3

2
∫

Ω
e
−i ω

c0

x·y
|x| F1 (y) dy,

it is easy to see that (3.26) satisfies the assumptions of Lemma 2.4. Therefore, the
following decay estimate is valid uniformly in x ∈ Ω for t ≥ 0:

|W3 (x, t)|+ |∇W3 (x, t)|+ |∂tW3 (x, t)|(3.27)

+ |∆W3 (x, t)|+ |∂t∇W3 (x, t)|+ |∂t∆W3 (x, t)| ≤
C

(1 + t2)1/2
,

with some constant C > 0. In particular,

(3.28) ‖W3 (·, t)‖H1(Ω) + ‖∂tW3 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

Decay of W4. W4 solves the inhomogeneous wave problem
(3.29){
∂2
tW4 (x, t)− β−1 (x)∇ · (α (x)∇W4 (x, t)) = F2 (x, t) + F3 (x, t) , x ∈ R

d, t > 0,

W4 (x, 0) = 0, ∂tW4 (x, 0) = 0, x ∈ R
d,

where
(3.30)

Fk (x, t) := β−1 (x)∇α (x) · ∇Wk (x, t) +
(
β−1 (x)α (x)− c20

)
∆Wk (x, t) , k = 2, 3.

Estimates (3.24) and (3.27) entail the decay of all the terms entering (3.30) and of
their time derivative, so that Proposition 2.2 is applicable with p = 1. This gives
for d = 2:

(3.31) ‖W4 (·, t)‖H1(Ω) + ‖∂tW4 (·, t)‖L2(Ω) ≤ C
1 + log

(
1 + t2

)

(1 + t2)1/2
, t ≥ 0,
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for d = 3:

(3.32) ‖W4 (·, t)‖H1(Ω) + ‖∂tW4 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0,

with some constant C > 0.
Consequently, by combining (3.22), (3.25), (3.28), (3.31), and (3.32) with (3.17), the

estimates (3.4) and (3.5) follow. This concludes the proof of Theorem 1.4.

4. Proofs of the auxiliary time decay results

4.1. Proof of Proposition 2.1. This proof is based on an application and an extension
of a decay result from [5].

Because of Assumption 1.1 on α and β (positivity and regularity), the operator P :=
−β−1 (x)∇ · (α (x)∇ ) is formally self-adjoint in L2

β

(
R
d
)
, the L2

(
R
d
)
space endowed

with the β-weighted L2 inner product. Note that the sets L2
β(R

d) and L2(Rd) coincide
since the weight β is bounded and uniformly bounded away from zero. Moreover, P is
positive so that there exists a unique self-adjoint, positive operator B such that B2 = P .
With the notation

√
P := B and 1/

√
P := B−1, we can formally write the solution

of (2.1) with f ≡ 0 as

(4.1) u (x, t) = cos
(
t
√
P
)
u0 (x) +

sin
(
t
√
P
)

√
P

u1 (x) , t ≥ 0.

Under Assumptions 1.1 and 1.2 on α and β (compactly supported derivatives and non-
trapping), the following operator-norm estimates are obtained in [5, Thm. 1.5]. Namely,
there exists a constant C > 0 such that

(4.2)

∥∥∥∥∥∥
q−1
ν

sin
(
t
√
P
)

√
P

q−1
ν

∥∥∥∥∥∥
L2(Rd)→H1(Rd)

≤ C

(1 + t2)
d−1

2

, t ≥ 0,

(4.3)
∥∥∥q−1

ν cos
(
t
√
P
)
q−1
ν

∥∥∥
L2(Rd)→L2(Rd)

≤ C

(1 + t2)
d
2

, t ≥ 0,

where qν :=
(
1 + |x|2

)ν/2
with some ν > d+ 1.

Set µ := d + 1 + ǫ. According to (2.3), we have qµu0 and qµu1 ∈ L2
(
R
d
)
. Then, we

deduce from (4.1)–(4.3) that, for t ≥ 0,

∥∥q−1
µ u (·, t)

∥∥
L2(Rd) ≤C

(
1

(1 + t2)
d
2

‖qµu0‖L2(Rd) +
1

(1 + t2)
d−1

2

‖qµu1‖L2(Rd)

)
(4.4)

≤ C0

(1 + t2)
d−1

2

for some constant C0 > 0.
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To obtain the estimate for the time derivative ∂tu, we note that w := ∂tu solves
∂2
t w + Pw = 0, w (x, 0) = u1 (x), ∂tw (x, 0) = −Pu0 (x). Hence, we have

w (·, t) = cos
(
t
√
P
)
u1 −

sin
(
t
√
P
)

√
P

(Pu0) .

Therefore, using (4.2) and (4.3), and the assumed regularity of u0, u1, we estimate, for
t ≥ 0,

∥∥q−1
µ ∂tu (·, t)

∥∥
L2(Rd) ≤C

(
1

(1 + t2)
d
2

‖qµu1‖L2(Rd) +
1

(1 + t2)
d−1

2

‖qµPu0‖L2(Rd)

)
(4.5)

≤ C1

(1 + t2)
d−1

2

for some constant C1 > 0.
To complete the H1-estimate of u, we estimate the L2-norm of ∇u. First, we observe

that w̃ := ∂2
t u solves ∂2

t w̃+Pw̃ = 0, w̃ (x, 0) = −Pu0 (x), ∂tw̃ (x, 0) = −Pu1 (x). Hence,
as before, we have, for t ≥ 0,

w̃ (·, t) = − cos
(
t
√
P
)
(Pu0)−

sin
(
t
√
P
)

√
P

(Pu1) ,

∥∥q−1
µ ∂2

t u (·, t)
∥∥
L2(Rd)

≤ C

(
1

(1 + t2)
d
2

‖qµPu0‖L2(Rd) +
1

(1 + t2)
d−1

2

‖qµPu1‖L2(Rd)

)
.

Hence, we arrive at

(4.6)
∥∥q−1

µ Pu (·, t)
∥∥
L2(Rd) =

∥∥q−1
µ ∂2

t u (·, t)
∥∥
L2(Rd) ≤

C2

(1 + t2)
d−1

2

for some constant C2 > 0. Employing the notation ( · ) for the complex conjugate, we
consider the following inner product on L2

β

(
R
d
)

〈
q−1
µ Pu, q−1

µ u
〉
L2
β(Rd) = −

∫

Rd

∇ ·
(
α (x)∇u (x, t)

)
u (x, t)q−2

µ (x) dx.(4.7)

Inserting the identities

∇ ·
(
α (x)∇u (x, t)

)
u (x, t)q−2

µ (x) =∇ ·
(
α (x) q−2

µ (x) u (x, t)∇u (x, t)
)

− α (x) |∇u (x, t)|2 q−2
µ (x)

−
(
∇u (x, t) · ∇q−2

µ (x)
)
α (x) u (x, t),

(
∇u (x, t) · ∇q−2

µ (x)
)
= −2µ

|x|
1 + |x|2

q−2
µ (x) ∂|x|u (x, t)
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into (4.8) and integrating by parts, the term with the divergence gives

αmin

∥∥q−1
µ ∇u

∥∥2
L2(Rd) ≤

∫

Rd

α (x) |∇u (x, t)|2 q−2
µ (x) dx

(4.8)

≤
∣∣∣∣
〈
q−1
µ Pu, q−1

µ u
〉
L2
β(Rd)

∣∣∣∣+ µ ‖α‖L∞(Rd)

∣∣∣∣
〈
q−1
µ ∂|x|u, q

−1
µ u

〉
L2(Rd)

∣∣∣∣ .

Furthermore, employing the Cauchy-Schwarz inequality, we can estimate∣∣∣∣
〈
q−1
µ Pu, q−1

µ u
〉
L2
β(Rd)

∣∣∣∣ ≤ ‖β‖L∞(Rd)

∥∥q−1
µ Pu

∥∥
L2(Rd)

∥∥q−1
µ u

∥∥
L2(Rd) ,

∣∣∣∣
〈
q−1
µ ∂|x|u, q

−1
µ u

〉
L2(Rd)

∣∣∣∣ ≤
∥∥q−1

µ ∇u
∥∥
L2(Rd)

∥∥q−1
µ u

∥∥
L2(Rd)

≤ αmin

4µ ‖α‖L∞(Rd)

∥∥q−1
µ ∇u

∥∥2
L2(Rd) +

µ ‖α‖L∞(Rd)

αmin

∥∥q−1
µ u

∥∥2
L2(Rd) .

Here, on the second line, we used the elementary inequality |a| |b| ≤ δ
2 |a|2 + 1

2δ |b|2, valid
for any δ > 0. Therefore, estimate (4.8) entails

3

4
αmin

∥∥q−1
µ ∇u

∥∥2
L2(Rd) ≤‖β‖L∞(Rd)

∥∥q−1
µ Pu

∥∥
L2(Rd)

∥∥q−1
µ u

∥∥
L2(Rd)

+
µ2

αmin
‖α‖2

L∞(Rd)

∥∥q−1
µ u

∥∥2
L2(Rd) .

Recalling (4.4) and (4.6), this leads to

(4.9)
∥∥q−1

µ ∇u
∥∥2
L2(Rd)

≤ 4

3

(
C0C2

αmin
‖β‖L∞(Rd) +

µ2C2
0

α2
min

‖α‖2
L∞(Rd)

)
1

(1 + t2)d−1
.

Finally, denoting with χΩ the characteristic function of the bounded set Ω, we have

‖u‖L2(Ω) = ‖uχΩ‖L2(Rd) ≤ CΩ,µ

∥∥q−1
µ u

∥∥
L2(Rd)

,

and similarly for ∇u and ∂tu. Hence, the estimates (4.4), (4.5), and (4.9) furnish (2.4).
�

4.2. Proof of Proposition 2.2. Without loss of generality, we can take Ω = Ωf (by

enlarging both sets if necessary). Let P ,
√
P , and 1/

√
P be defined as at the beginning

of Section 4.1. The following operator-norm estimate was obtained in [5, Thm. 1.5]:

(4.10)

∥∥∥∥∥∥

sin
(
t
√
P
)

√
P

χΩ

∥∥∥∥∥∥
L2(Rd)→H1(Ω)

≤ C0

(1 + t2)
d−1

2

, t ≥ 0,

for some C0 > 0, where χΩ denotes the characteristic function of the set Ω.
According to the Duhamel principle, the solution to (2.1) with u0 ≡ 0, u1 ≡ 0 can be

written as

(4.11) u (·, t) =
∫ t

0

sin
(
(t− τ)

√
P
)

√
P

f (·, τ) dτ.
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Using a basic Bochner integral estimate in H1 (Ω) and (4.10), we obtain, for t > 0,

‖u (·, t)‖H1(Ω) ≤
∫ t

0

∥∥∥∥∥∥

sin
(
(t− τ)

√
P
)

√
P

f (·, τ)

∥∥∥∥∥∥
H1(Ω)

dτ(4.12)

≤
∫ t

0

C0
(
1 + (t− τ)2

) d−1

2

‖f (·, τ)‖L2(Ω) dτ,

where, in the second line, we also took into account the assumption that the support of
f (·, τ) is contained in Ω for each τ > 0.

Employing the assumed estimate (2.5) on f , namely ‖f (·, τ)‖L2(Ω) ≤ Cf/
(
1 + τ2

)p/2
for some constants Cf , p > 0 and all τ > 0, and denoting C := C0Cf , we proceed to
estimate

‖u (·, t)‖H1(Ω) ≤
∫ t

0

C dτ̃
(
1 + (t− τ̃)2

) d−1

2

(1 + τ̃2)
p
2

(4.13)

=
C

td+p−2



∫ 1/2

0

dτ
(
1/t2 + (1− τ)2

) d−1

2

(1/t2 + τ2)
p
2

+

∫ 1

1/2

dτ
(
1/t2 + (1− τ)2

) d−1

2

(1/t2 + τ2)
p
2




≤2d−1C

tp−1

1

(1 + t2)
d−1

2

∫ 1/2

0

dτ

(1/t2 + τ2)
p
2

+
2pC

td−2

1

(1 + t2)
p
2

∫ 1/2

0

dτ

(1/t2 + τ2)
d−1

2

.

Here we used the change of variable τ̃ 7→ τ := τ̃ /t and employed the estimates

1/td+p−2

(
1/t2 + (1− τ)2

) d−1

2

≤ 1/td+p−2

(1/t2 + 1/4)
d−1

2

=
2d−1

tp−1

1

(4 + t2)
d−1

2

≤ 2d−1

tp−1

1

(1 + t2)
d−1

2

,

0 ≤ τ ≤ 1

2
, t ≥ 0,

1/td+p−2

(1/t2 + τ2)
p
2

≤ 1/td+p−2

(1/t2 + 1/4)
p
2

=
2p

td−2

1

(4 + t2)
p
2

≤ 2p

td−2

1

(1 + t2)
p
2

,

1

2
≤ τ ≤ 1, t ≥ 0,

in the integrals over [0, 1/2] and [1/2, 1], respectively. In the last line of (4.13), we have
also made the change of variable τ 7→ 1 − τ . Using Lemma A.2, we continue estimate
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(4.13):

‖u (·, t)‖H1(Ω) ≤
2qC

(1 + t2)
d−1

2





C1,pt
1−p, 0 < p < 1,

log
(
t+

√
1 + t2

)
, p = 1,

C2,p, p > 1,

(4.14)

+
2qC

(1 + t2)
p
2

{
log
(
t+

√
1 + t2

)
, d = 2,

C2,d−1, d > 2,

where q := max (d− 1, p), C1,s :=
1

1− s
, C2,s :=

∫ ∞

0

dz

(1 + z2)s/2
. We continue by

considering separately the cases d = 2 and d > 2.
Since C1,p > 1, estimate (4.14) for d = 2 reads

‖u (·, t)‖H1(Ω) ≤2qC





C1,p (1 + C3,p)
1 + log(1 + t2)

(1 + t2)
p
2

, 0 < p < 1,

2
log
(
t+

√
1 + t2

)

(1 + t2)
1

2

, p = 1,

(1 + C4,p)max (C2,p, 1)
1

(1 + t2)
1

2

, p > 1,

(4.15)

≤C̃p





1 + log(1 + t2)

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
1

2

, p > 1,

where C3,p := sup
t≥0

t1−p

(1 + t2)
1−p
2 [1 + log(1 + t2)]

, C4,p := sup
t≥0

log
(
t+

√
1 + t2

)

(1 + t2)
p−1

2

. In (4.15)

we also used the elementary estimate

log(t+
√

1 + t2) ≤ log 2 +
1

2
log(1 + t2) < 1 + log(1 + t2), t ≥ 0.

Similarly, when d > 2, we have

‖u (·, t)‖H1(Ω) ≤2qC





(1 + C5,d,p)max (C1,p, C2,d−1)
1

(1 + t2)
p
2

, 0 < p < 1,

(1 + C4,d−1)max (C2,d−1, 1)
1

(1 + t2)
1

2

, p = 1,

2C2,r
1

(1 + t2)
r
2

, p > 1,

(4.16)

≤C̃p,d





1

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
r
2

, p > 1,
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where r := min (d− 1, p), C5,d,p := sup
t≥0

t1−p

(1 + t2)
d−1−p

2

. This completes the estimate of

‖u (·, t)‖H1(Ω).

To finish the proof, it remains to obtain the estimate for the time derivative ∂tu. To
this effect, we note that w := ∂tu solves ∂2

t w + Pw = ∂tf , w (x, 0) = 0, ∂tw (x, 0) =
f (x, 0). Hence, we have

∂tu (·, t) = w (·, t) =
sin
(
t
√
P
)

√
P

f (·, 0) +
∫ t

0

sin
(
(t− τ)

√
P
)

√
P

∂tf (·, τ) dτ,

and consequently we obtain from (4.10), again with C = C0Cf ,

(4.17) ‖∂tu (·, t)‖H1(Ω) ≤
C

(1 + t2)
d−1

2

+

∫ t

0

∥∥∥∥∥∥

sin
(
(t− τ)

√
P
)

√
P

∂tf (·, τ)

∥∥∥∥∥∥
H1(Ω)

dτ.

Therefore, owing to (2.5), the estimate for ∂tu can be obtained from the estimates for u
given in (4.15) and (4.16) by only adding an extra term, which is the first term on the
right-hand side of (4.17). Namely, we have, for d = 2,

‖∂tu (·, t)‖H1(Ω) ≤





max
(
C, C̃p

)[ 1

(1 + t2)
1

2

+
1 + log(1 + t2)

(1 + t2)
p
2

]
, 0 < p ≤ 1,

(
C + C̃p

) 1

(1 + t2)
1

2

, p > 1,

(4.18)

≤2max
(
C, C̃p

)




1 + log
(
1 + t2

)

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
1

2

, p > 1.

Since the first term of the right-hand side of (4.17) decays at least as fast as the second,
we have, for d > 2,

‖∂tu (·, t)‖H1(Ω) ≤Ĉp,d





1

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
r
2

, p > 1.
(4.19)

Altogether, when d = 2, estimates (4.18) and (4.15) imply (2.6). Analogously, for
d > 2, estimates (4.19) and (4.16) furnish (2.7). �

4.3. Proof of Lemma 2.3. Note that, up to the choice of a continuous representative in
the Sobolev equivalence classes, our assumptions entail that v0 ∈ C4(Rd), v1 ∈ C3(Rd).
Therefore, Theorems 2 and 3 in [15, Par. 2.4.1] imply that the solution v to (2.2) satisfies
v ∈ C3(Rd × [0,∞)) and thus ∂tv ∈ C2(Rd × [0,∞)).

In the main body of the proof, we shall prove that the bound

(4.20) |v (x, t)| ≤ C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,
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is valid for some constant C > 0, assuming that v0 ≡ 0.
This first part of the proof actually holds true for weaker regularity assumptions than

made in (2.8)-(2.10). More precisely, for d = 2, we only need A0 ∈ C1(R+), Y1 ∈ C1(S1),

V1 ∈ C(R2) with |x|5/2|V1(x)| ≤ C, x ∈ R
2. And, for d = 3, we only need v1 ∈ C(R3)

with |x|2|v1(x)| ≤ C, x ∈ R
3. In (4.60) below, we shall summarize these reduced

assumptions by saying that v1 ∈ A.
The case v0 6≡ 0 and the estimate of the other terms in (2.11) is discussed in the final

part of this proof. We consider separately the cases d = 2 and d = 3.

• Case d = 2.
The solution of (2.2) with v0 ≡ 0 is given by Poisson’s formula [15, Par. 2.4.1 (c)]

(4.21) v (x, t) =
t

2π

∫ 1

0

r

(1− r2)1/2

∫

|s|=1
v1 (x+ src0t) dσsdr,

where dσs denotes the surface measure of the unit circle S1. Introducing ρ := |x+ src0t|,
φ := x+src0t

|x+src0t| , and using (2.8), we can write

v (x, t) =
t

2π

∫ 1

0

r

(1− r2)1/2

∫

|s|=1
[A0(ρ)Y1 (φ) + V1 (x+ src0t)] dσsdr(4.22)

=:P (x, t) +Q (x, t) .

We shall prove that there exists some t0 > 0 such that the bounds

(4.23) |P (x, t) | ≤ C̃

t
, |Q (x, t) | ≤ C̃0

t

are valid uniformly in x ∈ Ω with some constants C̃, C̃0 > 0 for any t ≥ t0. Since it is
evident from (4.21) that the solution v is bounded for any finite t ≥ 0, (4.22) and the
estimates in (4.23) will imply (4.20).

Estimate of Q for t ≥ t0:
We have

(4.24) Q (x, t) =
t

2π

∫ 1

a1/t

r

(1− r2)1/2

∫

|s|=1
V1 (x+ src0t) dσsdr.

Since V1 (x) ≡ 0 for |x| ≤ ρ0, we reduced here the integration range in the r variable
from (0, 1) to (a1/t, 1) with

(4.25) a1 :=
1

c0
inf

|s|=1,x∈Ω

[√
(x · s)2 + ρ20 − |x|2 − x · s

]
.

Since Ω ⋐ Bρ0 , we have a1 > 0. Here and in the sequel we assume that a1/t ≤ 1, i.e.
that t0 ≥ a1. By rearranging the factors, we can write

(4.26) Q (x, t) =
1

2π

∫ 1

a1/t

(rt)−3/2

(1− r2)1/2

∫

|s|=1

(
rt

ρ

)5/2

ρ5/2V1 (x+ src0t) dσsdr.

For r > a1/t, we have ρ > ρ0. Thus, we can estimate rt/ρ in (4.26) as follows. From the
triangle inequality

(4.27) rc0t = |x+ src0t− x| ≤ ρ+ |x|
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and x ∈ Ω ⋐ Bρ0 , ρ > ρ0, we have

(4.28)
rt

ρ
≤ 1

c0

(
1 +

|x|
ρ

)
≤ 2

c0
.

Moreover, assumption (2.9) implies ρ5/2|V1 (x+ src0t) | ≤ C0. Using this and (4.28),
(4.26) gives

|Q (x, t)| ≤ 25/2C0

c
5/2
0 t3/2

∫ 1

a1/t

dr

(1− r2)1/2 r3/2
.

If we choose t0 := 2a1, we obtain for t ≥ t0:

|Q (x, t)| ≤ 25/2C0

c
5/2
0 t3/2

∫ 1

a1/t

dr

(1− r2)1/2 r3/2
=

25/2C0

c
5/2
0 t3/2

(∫ 1/2

a1/t
. . .+

∫ 1

1/2
. . .

)
(4.29)

≤ 27/2C0√
3c

5/2
0 t3/2

∫ 1/2

a1/t

dr

r3/2
+

25/2C0

c
5/2
0 t3/2

∫ 1

1/2

dr

(1− r2)1/2 r3/2
≤ C̃0

t

for some constant C̃0 > 0. This completes the proof of the estimate of Q in (4.23) with
t0 = 2a1.

Estimate of P for t ≥ t0:
In order to prove the estimate of P in (4.23), let us write

P (x, t)=
t

2π

∫ 1

0

eirωt

(1− r)1/2

∫

|s|=1

[
re−irωt

(1 + r)1/2
A0 (ρ)Y1 (φ)(4.30)

−
(
e−iωt

√
2

− e−iωt

√
2

)
A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)]
dσsdr

=
t

2π

∫ 1

0

eirωt

(1− r)1/2

∫

|s|=1

[
re−irωt

(1 + r)1/2
A0 (ρ)Y1 (φ)

−e−iωt

√
2

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)]
dσsdr

+
t

2
√
2π

∫

|s|=1
A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)
dσs

∫ 1

0

e−i(1−r)ωt

(1− r)1/2
dr

=:P1 (x, t) + P2 (x, t) .

We start with

(4.31) P2 (x, t) =
1

t1/2
F2 (x, t)

∫ 1

0

e−irωt

r1/2
dr,

where we made a change of variable r 7→ (1− r) and introduced

(4.32) F2 (x, t) :=
t3/2

23/2π

∫

|s|=1
A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)
dσs.
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Using (4.27), the assumed form of A0 and (4.28), both for ρ > ρ1, we have uniformly for
x ∈ Ω, s ∈ S

1,

(rt)3/2 |A0 (ρ)| ≤





(
ρ+ρ0
c0

)3/2
‖A0‖L∞(R+) , 0 ≤ ρ ≤ ρ1,

(
rt
ρ

)3/2
≤
(

2
c0

)3/2
, ρ > ρ1,

(4.33)

≤C1, ρ ≥ 0,

for some constant C1 > 0. Thus, using (4.33) with r = 1 and recalling the assumptions
on Y1, we deduce

(4.34) sup
x∈Ω

‖F2 (x, ·)‖L∞(R+) =: C2 < ∞.

Finally, employing Lemma A.3 from Appendix A, we obtain from (4.31) and (4.34), for
x ∈ Ω and t ≥ t0,

|P2 (x, t)| ≤
C̃2

t
(4.35)

with some constant C̃2 > 0 and any t0 > 0.

Decay of P1. To deal with P1, we note that the integrand is a smooth function of r

in [0, 1) and it behaves like (1 − r)1/2 as r → 1. Integrating by parts in the r variable
with eirωtdr as differential, both boundary terms vanish (recall also that A0 (|x|) ≡ 0 for
x ∈ Ω). We thus arrive at

P1 (x, t) =− 1

2πiω

∫ 1

0

∫

|s|=1
eirωt∂r

(
1

(1− r)1/2

[
re−irωt

(1 + r)1/2
A0 (ρ)Y1 (φ)(4.36)

−e−iωt

√
2

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)])
dσsdr

=I1 (x, t) + I2 (x, t) + I3 (x, t) + I4 (x, t) ,

where

(4.37) I1 (x, t) :=
i

2πω

∫ 1

0

∫

|s|=1

r

(1− r2)1/2
Y1 (φ) e

irωt∂r
(
e−irωtA0 (ρ)

)
dσsdr,

(4.38) I2 (x, t) :=
i

2πω

∫ 1

0

∫

|s|=1

r

(1− r2)1/2
A0 (ρ) ∂rY1 (φ) dσsdr,

I3 (x, t) :=
i

4πω

∫ 1

0

∫

|s|=1

2 + r

(1− r)1/2 (1 + r)3/2
A0 (ρ)Y1 (φ) dσsdr,(4.39)

I4 (x, t) :=
i

4πω

∫ 1

0

∫

|s|=1

1

(1− r)3/2

[
r

(1 + r)1/2
A0 (ρ)Y1 (φ)(4.40)

−e−i(1−r)ωt

√
2

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)]
dσsdr.
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Here and in the sequel, we use the following notation to avoid having too many
brackets: ∂rA0(ρ) := ∂r(A0(ρ)), ∂rY1(φ) := ∂r(Y1(φ)), ∇Y1(φ) := (∇Y1)(φ).

For the sake of the proof, we shall extend the function Y1 from the circle S
1 to

a neighbourhood of it, e.g. to the annulus with the inner and outer radii 1
2 and 3

2 ,
respectively. We choose a constant extension in the radial direction, as this will simplify
the proof. In fact, this extension makes ∇Y1 well defined on S

1. Then, ∇Y1(φ) is a
tangent vector to S1 for each (radial vector) φ ∈ S1, and hence

(4.41) φ · ∇Y1(φ) = 0.

Decay of I1. We have

(4.42) ∂rA0 (ρ) = c0tA
′
0 (ρ)

x · s+ rc0t

|x+ src0t|
, ρ > 0.

Moreover, since |x+ src0t| = rc0t
(
1 + 2 x·s

rc0t
+ |x|2

r2c2
0
t2

)1/2
for |s| = 1, the estimate

(4.43) 1− x · s+ rc0t

|x+ src0t|
=

|x|2 − (x · s)2
2r2c20t

2
+O

(
1

r3t3

)
= O

(
1

r2t2

)

is valid for rt ≫ 1. This can be seen from the Taylor expansion of (1 + w)−1/2 around

zero, with w := 2 x·s
rc0t

+ |x|2
r2c2

0
t2
.

Then, we can write

r5/2t3/2

c0
eirωt∂r

(
e−irωtA0 (ρ)

)
=(rt)5/2

(
A′

0 (ρ)−
iω

c0
A0 (ρ)

)

− (rt)5/2 A′
0 (ρ)

(
1− x · s+ rc0t

|x+ src0t|

)
, ρ > 0,

where both terms on the right-hand side are uniformly bounded for rt > a1 (and hence
ρ > ρ0), x ∈ Ω, |s| = 1. This can be deduced from (4.43) using (4.28) and the estimates∣∣∣A′

0 (ρ)− iω
c0
A0 (ρ)

∣∣∣ = 3/(2ρ5/2), |A′
0(ρ)| ≤ C/ρ3/2 for ρ > ρ1 and some constant C > 0.

Therefore, we have for

(4.44) F3 (x, rt) :=
ic0
2πω

∫

|s|=1
Y1 (φ)

r5/2t3/2

c0
eirωt∂r

(
e−irωtA0 (ρ)

)
dσs :

sup
x∈Ω

‖F3 (x, ·)‖L∞(a1,∞) =: C3 < ∞.

Since both A0, A
′
0 vanish on [0, ρ0], the integrals in r in each of (4.37)–(4.39) reduces

to (a1/t, 1) (see the discussion before (4.25)). Hence we can estimate I1 in (4.37) for
t ≥ t0 := 2a1 as

|I1 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r2)1/2
F3 (x, rt) dr

∣∣∣∣∣(4.45)

≤ 2C3

31/2t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C3

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃3

t
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with some constant C̃3 > 0. In a similar but simpler fashion we can estimate the terms
I2 and I3.

Decay of I2. Since

(4.46) ∂rY1 (φ) =
c0ts · ∇Y1 (φ)

|x+ src0t|
,

where we used (4.41), for

F4 (x, rt) :=
ic0 (rt)

5/2

2πω

∫

|s|=1
A0 (ρ)

s · ∇Y1 (φ)

|x+ src0t|
dσs,(4.47)

we have

|F4 (x, rt)| ≤
c0
πω

∫

|s|=1

rt

ρ
(rt)3/2 |A0 (ρ)| |∇Y1 (φ)| dσs.

Hence, using (4.28) and (4.33), we deduce

sup
x∈Ω

‖F4 (x, ·)‖L∞(a1,∞) =: C4 < ∞.

Therefore, we obtain for t ≥ t0 = 2a1

|I2 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r2)1/2
F4 (x, rt) dr

∣∣∣∣∣(4.48)

≤ 2C4

31/2t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C4

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃4

t
.

Decay of I3. Similarly,

(4.49) F5 (x, rt) :=
i (rt)3/2

4πω

∫

|s|=1
A0 (ρ)Y1 (φ) dσs,

satisfies

|F5 (x, rt)| =
1

4πω

∫

|s|=1
(rt)3/2 |A0 (ρ)| |Y1 (φ)| dσs.

Hence, using again (4.33),

(4.50) sup
x∈Ω

‖F5 (x, ·)‖L∞(0,∞) =: C5 < ∞.

Therefore, we obtain for t ≥ t0 = 2a1

|I3 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

2 + r

r3/2 (1− r)1/2 (1 + r)3/2
F5 (x, rt) dr

∣∣∣∣∣(4.51)

≤ 5C5

21/2t3/2

∫ 1/2

a1/t

dr

r3/2
+

8C5

31/2t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃5

t

with some constants C̃4, C̃5 > 0.
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Decay of I4. To treat the term I4, we introduce

F̃6 (x, r, t) :=

∫

|s|=1

[
r

(1 + r)1/2
A0 (ρ)Y1 (φ)(4.52)

−e−i(1−r)ωt

√
2

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)]
dσs,

(4.53) F6 (x, r, t) :=
1

1− r
F̃6 (x, r, t) .

Using F̃6 (x, 1, t) = 0, we rewrite (4.53) as

(4.54) F6 (x, r, t) = − 1

1− r

(
F̃6 (x, 1, t)− F̃6 (x, r, t)

)
= − 1

1− r

∫ 1

r
∂rF̃6 (x, τ, t) dτ.

Then, for r ∈ (1− a1/t, 1), we estimate

|F6 (x, r, t)| ≤
∥∥∥∂rF̃6 (x, ·, t)

∥∥∥
L∞(1−a1/t,1)

(4.55)

≤
∫

|s|=1

[(
1

2 (1 + r)3/2
+

1

(1 + r)1/2

)
|A0 (ρ)| |Y1 (φ)|

+
1

(1 + r)1/2
|∂rA0 (ρ)| |Y1 (φ)|+

1

(1 + r)1/2
|A0 (ρ)| |∂rY1 (φ)|

+
ωt√
2
|A0 (|x+ sc0t|)|

∣∣∣∣Y1

(
x+ sc0t

|x+ sc0t|

)∣∣∣∣
]
dσs.

For the term with ∂rA0 we first use (4.42) and consider the following estimate which
holds uniformly for x ∈ Ω, s ∈ S

1. It is obtained in analogy to (4.33).

(rt)3/2
∣∣A′

0 (ρ)
∣∣ ≤





(
ρ+ρ0
c0

)3/2
‖A′

0‖L∞(R+) , 0 ≤ ρ ≤ ρ1,
(
rt
ρ

)3/2 (
ω
c0

+ 3
2ρ1

)
≤
(

2
c0

)3/2 (
ω
c0

+ 3
2ρ1

)
, ρ > ρ1,

≤C̃1, ρ ≥ 0,

for some constant C̃1 > 0.
For the term with ∂rY1 we employ (4.33), r ≥ 1− a1

t ≥ 1
2 (for t ≥ t0 = 2a1), and

|∂rY1(φ)| ≤
2c0t|∇Y1(φ)|

ρ
≤ 2c0t

ρ0
‖∇Y1‖L∞(S1),

where we used (4.46) and the fact that A0 vanishes on [0, ρ0].
Therefore, employing in (4.55) the estimate (4.33) with r = 1 we deduce that

(4.56) sup
x∈Ω, r∈(1−a1/t, 1), t>2a1

∣∣∣F6 (x, r, t) t
1/2
∣∣∣ =: C6 < ∞.
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Moreover, for r ∈ (1/2, 1 − a1/t) and for ǫ ∈ (0, 1/2], taking into account (4.53), we
have

∣∣∣(1− r)1/2+ǫ t1+ǫF6 (x, r, t)
∣∣∣ =

∣∣∣F̃6 (x, r, t)
∣∣∣ t1+ǫ

(1− r)1/2−ǫ
≤
∣∣∣F̃6 (x, r, t)

∣∣∣ t3/2

a
1/2−ǫ
1

.

Hence, with the constants C2 and C5 introduced in (4.34) and (4.50), respectively, we
obtain from (4.52) that, for any ǫ ∈ (0, 1/2],

sup
x∈Ω, r∈(1/2, 1−a1/t), t>2a1

∣∣∣(1− r)1/2+ǫ t1+ǫF6 (x, r, t)
∣∣∣ ≤ 1

a
1/2−ǫ
1

(
8πω

31/2
C5 + 2πC2

)
(4.57)

=:C7 < ∞.

Bounds (4.57) and (4.56) imply that, for t ≥ t0 = 2a1 and ǫ ∈ (0, 1/2], we get

|I4 (x, t)| ≤
1

4πω

∫ 1

0

1

(1− r)1/2
|F6 (x, r, t)| dr(4.58)

=
1

4πω

(∫ 1/2

0
. . . +

∫ 1−a1/t

1/2
. . .+

∫ 1

1−a1/t
. . .

)

≤23/2

t3/2

(
C5

∫ 1/2

0

dr

r1/2
+

C2

4ω

)
+

C7

4πωt1+ǫ

∫ 1−a1/t

1/2

dr

(1− r)1+ǫ

+
C6

4πωt1/2

∫ 1

1−a1/t

dr

(1− r)1/2
≤ C̃6

t

with some constant C̃6 > 0. For the interval (0, 1/2), we estimated here the integrand
directly from (4.40), using (4.50) and (4.34).

From estimates (4.45), (4.48), (4.51), and (4.58) of the terms I1, I2, I3, and I4,
respectively, in decomposition (4.36), we obtain

|P1(x, t)| ≤
C8

t

with some constant C8 > 0 and t0 = 2a1. Together with (4.35) this gives the estimate
of P in (4.23), again with t0 = 2a1. This concludes the proof of (4.20) in the case d = 2.

• Case d = 3.
The solution is given by Kirchhoff’s formula [15, Par. 2.4.1 (c)]

(4.59) v (x, t) =
1

4π

∫

|s|=1
t v1 (x+ sc0t) dσs,

where dσs denotes the surface measure of the unit sphere S2. In this case, it is immediate
to see that (4.59) implies (4.20), owing to assumption (2.10).

• Conclusion of the proof. So far, we have proved the decay of the solution under
the assumption v0 ≡ 0. We now extend the result to the general case and show that
estimates analogous to (4.20) hold true for the derivatives of the solution.
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To proceed, it is convenient to introduce the following notation. Given a function w
and constants ω, c0, ρ0 > 0, ρ1 > ρ0, we say that

(4.60) w ∈ A ≡ Aω,c0,ρ0,ρ1

if the following conditions are satisfied:

- When d = 2, we can write

w(x) = Aw(|x|)Yw

(
x

|x|

)
+ Vw(x)

for some functions Aw ∈ C1(R+), Yw ∈ C1(S1), Vw ∈ C(R2) such that

Aw(|x|) ≡ 0 ≡ Vw(x), |x| ≤ ρ0, Aw(ρ) =
e
i ω
c0

ρ

ρ3/2
, ρ > ρ1,

and we have

|x|5/2|Vw(x)| ≤ C, x ∈ R
2,

for some constant C > 0.
- When d = 3, we have w ∈ C(R3) and

|x|2|w(x)| ≤ C, x ∈ R
3,

for some constant C > 0.

Let us denote Z [v0, v1] ≡ Z the solution of the wave equation ∂2
t Z (x, t)−c20∆Z (x, t) =

0 for x ∈ R
d, t > 0, subject to the initial conditions Z (x, 0) = v0 (x), ∂tZ (x, 0) = v1 (x).

We recall that, in proving the decay for Z [0, v1] given by (4.20), we have only used
that v1 ∈ A. But, for d = 3, due to assumption (2.10), we also have

v0, ∆v0, ∆
2v0, v1, ∆v1, ∆

2v1 ∈ A,

which will be used to prove the decay of Z with such initial conditions.
For d = 2, we observe that v1 ∈ A entails that ∆v1, ∆

2v1 ∈ A under the regularity
assumptions on v1 made in (2.8), (2.9). Indeed, a short computation in polar coordinates
yields that

∆v1 (x) =




0, |x| ≤ ρ0,

−
(

ω
c0

)2
e
i ω
c0

|x|

|x|3/2
Y1

(
x
|x|

)
+O

(
1

|x|5/2
)
, |x| > ρ1,

so ∆v1 ∈ A with Yw = − (ω/c0)
2 Y1. Iterating, we also obtain ∆2v1 ∈ A (with Yw =

(ω/c0)
4 Y1). Since the assumptions on v0 made in (2.8), (2.9) provide v0 ∈ A, we have

similarly ∆v0, ∆
2v0 ∈ A.

Consequently, we deduce both for d = 2 and d = 3 that

|∆Z [0, v1] (x, t)| = |Z [0,∆v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

and hence, in view of validity of the wave equation, also

∣∣∂2
t Z [0, v1] (x, t)

∣∣ ≤ C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0.
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For fixed x ∈ Ω, we interpolate between the decay estimates of Z[0, v1] and ∂2
t Z[0, v1]

by using Lemma A.4. Then, we have

|∂tZ [0, v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0.

We can write Z [v0, v1] = Z [0, v1] + ∂tZ [0, v0], and hence we have

(4.61) |Z [v0, v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

due to v1, v0, ∆v0 ∈ A.
Also, writing ∆Z [v0, v1] = Z [0,∆v1] + ∂tZ [0,∆v0], we have

(4.62) |∆Z [v0, v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

since ∆v1, ∆v0, ∆
2v0 ∈ A. Using the wave equation we interpolate between the decay

estimates of Z[v0, v1] and ∂2
t Z[v0, v1] by using Lemma A.4. We thus obtain

(4.63) |∂tZ [v0, v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0.

Moreover, since

∂t∆Z [v0, v1] =∂tZ [0,∆v1] + ∂2
t Z [0,∆v0]

=∂tZ [0,∆v1] + c20Z
[
0,∆2v0

]
,

we get

(4.64) |∂t∆Z [v0, v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

as v1, ∆v1, ∆
2v1, ∆

2v0 ∈ A.
To deduce the estimates analogous to (4.62) and (4.64) but involving the gradient of Z

instead of the Laplacian, we use an interpolation argument. In particular, for a function

u ∈ C2
(
Ω̃
)
, with some Ω̃ such that Ω ⋐ Ω̃, using interior elliptic regularity results, we

obtain

‖∇u‖L∞(Ω) ≤ sup
x∈Ω

(
1

dx

)
sup
x∈Ω

(dx |∇u (x)|) ≤ C01 sup
x∈Ω̃

(dx |∇u (x)|)(4.65)

≤ C01C02

[
‖u‖L∞(Ω̃) + sup

x∈Ω̃
d2x ‖∆u‖L∞(Ω̃)

]

≤ C03

[
‖u‖

L∞(Ω̃) + ‖∆u‖
L∞(Ω̃)

]
,

with some constants C01, C02, C03 > 0. Here, we employed the notation dx := dist
(
x, ∂Ω̃

)

and, in the second line, we used the first estimate of [16, Thm 3.9]. Observe now that,
since in the statement of the present lemma the domain Ω was arbitrary, all the pre-
vious steps of this proof remain valid (with different constants) for the larger domain

Ω̃. In particular, estimates (4.61)–(4.64) hold true with Ω replaced by Ω̃. Consequently,
according to (4.65) applied to Z and to ∂tZ (as underlined at the beginning of this
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proof, the smoothness assumptions on v0 and v1 guarantee that both Z and ∂tZ have
C2 regularity), we deduce

|∇Z [v0, v1] (x, t)|+ |∂t∇Z [v0, v1] (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

and the proof is now complete.
�

4.4. A variant of Lemma 2.3. In this subsection, we present a small variation of
Lemma 2.3, which provides a weaker result under weaker assumptions. This lemma will
be used as an auxiliary tool to prove Lemma 2.4.

Lemma 4.1. Let d = 2, 3 and ω, ρ0 > 0, ρ1 > ρ0 be some fixed constants. Using the
notation introduced in Lemma 2.3, suppose that Ω ⋐ Bρ0. When d = 2, we assume that
v0 ∈ C1

(
R2
)
, v1 ∈ C

(
R2
)
are such that

(4.66) |x|5/2
(
|v0 (x)|+ |v1 (x)|+ |∇v0 (x)|

)
≤ C0, x ∈ R

2,

and v0 (x) = v1 (x) ≡ 0 for |x| ≤ ρ0. When d = 3, we assume that v0 ∈ C1
(
R
3
)
,

v1 ∈ C
(
R
3
)
are such that

(4.67) |x|2
(
|v0 (x)|+ |v1 (x)|+ |∇v0 (x)|

)
≤ C0, x ∈ R

3.

Then, there exists a constant C > 0 such that, for all x ∈ Ω and t ≥ 0, the solution of
(2.2) satisfies

(4.68) |v (x, t)| ≤ C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0.

Proof. We treat separately the cases d = 2 and 3.

• Case d = 2.

According to Poisson’s formula [15, Par. 2.4.1 (c)] (see also (4.74) below), we have

v (x, t) =
t

2π

∫ 1

0

r

(1− r2)1/2

∫

|s|=1
v1 (x+ src0t) dσsdr(4.69)

+
1

2π

∫ 1

0

r

(1− r2)1/2

∫

|s|=1
v0 (x+ src0t) dσsdr

+
c0t

2π

∫ 1

0

r2

(1− r2)1/2

∫

|s|=1
s · ∇v0 (x+ src0t) dσsdr

=:Q1 (x, t) +Q2 (x, t) +Q3 (x, t) .

Using the support assumption on v0, we recall the definition of a1 given by (4.25) and
realise that the term Q1 is identical to Q in the proof of Lemma 2.3 (see (4.24)). Hence,
(4.29) furnishes the required estimate of Q1 due to assumption (4.66). The term Q2 only
differs from Q1 by the absence of the t factor and thus obeys an analogous estimate (in
fact it is even O(t−2)). Therefore, we immediately obtain

(4.70) |Q1 (x, t)|+ |Q2 (x, t)| ≤
C

(1 + t2)1/2
, x ∈ Ω, t ≥ t0,
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with some constant C > 0 and t0 = 2a1.
It thus remains to deal with Q3. To this effect, we rewrite

Q3 (x, t) =
c0

2πt3/2

∫ 1

a1/t

1

r1/2 (1− r2)1/2

∫

|s|=1

(
rt

ρ

)5/2

ρ5/2s · ∇v0 (x+ src0t) dσsdr,

where ρ := |x+ src0t|, and we reduced the r-integration range, following the discussion
“around” (4.25). Employing (4.28) and (4.66), we can estimate

|Q3 (x, t)| ≤
25/2C0

(c0t)
3/2

∫ 1

a1/t

dr

r1/2 (1− r2)1/2
≤ 25/2C0

c
3/2
0 a

1/2
1

1

t

∫ 1

0

dr

(1− r2)1/2

for x ∈ Ω and t ≥ t0. Combined with (4.70), this furnishes the bound on Q. Continuity
of v (as follows from (4.69) due to the regularity assumptions on the initial data) implies
that the bound can be extended to t ≥ 0. Therefore, we conclude (4.68).

• Case d = 3.

Kirchhoff’s formula [15, Par. 2.4.1 (c)] (see also (4.111) below) yields

(4.71) v (x, t) =
1

4π

∫

|s|=1
[t v1 (x+ sc0t) + v0 (x+ sc0t) + tc0s · ∇v0 (x+ sc0t)] dσs.

Hence, estimating each term in (4.71) using (4.28) and (4.67) directly implies (4.68). �

4.5. Proof of Lemma 2.4. Similarly to Lemma 2.3, in the main body of the proof, we
shall prove the estimate

(4.72) |v (x, t)| ≤ C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

for some constant C > 0, and the estimate of the other terms in (2.13) is discussed at the
end. Note that the estimate (4.72) can be proven under weaker regularity assumptions
on v0 and v1 than those in the formulation of the present lemma but, on the other
hand, it also holds true for a more general form of the initial conditions (allowing for
the presence of faster decaying extra terms). This class of initial conditions shall be
described in the definition of B given by (4.113).

We extend the function Y from the sphere Sd−1 to the spherical shell (annulus for d =
2) with the inner and outer radii 1

2 and 3
2 , respectively. We choose a constant extension

in the radial direction. This extension makes ∇Y well defined on S
d−1. Moreover, ∇Y (φ)

is a tangent vector to S
d−1 for each (radial vector) φ ∈ S

d−1, and hence

(4.73) φ · ∇Y (φ) = 0.

• Case d = 2.

The solution is given explicitly by Poisson’s formula [15, Par. 2.4.1 (c)]

v (x, t) =
1

2π

[∫ 1

0

rt

(1− r2)1/2

∫

|s|=1
v1 (x+ src0t) dσsdr(4.74)

+∂t

(∫ 1

0

rt

(1− r2)1/2

∫

|s|=1
v0 (x+ src0t) dσsdr

)]
.
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Upon insertion of (2.12) into (4.74), and setting ρ := |x+ src0t|, φ := x+src0t
|x+src0t| , we

rearrange the terms to obtain

v (x, t) =
1

2π

∫

|s|=1

∫ 1

0

rt

(1− r2)1/2
[
∂tA (ρ)− c0A

′ (ρ)
]
Y (φ) drdσs(4.75)

+
1

2π

∫

|s|=1

∫ 1

0

r

(1− r2)1/2
A (ρ) [t∂tY (φ) + Y (φ)] drdσs.

Here and in the sequel, we use the following notation to avoid having too many brackets:
∂tA(ρ) := ∂t(A(ρ)), ∂tY (φ) := ∂t(Y (φ)), ∇Y (φ) := (∇Y )(φ).

Since |s| = 1, we have

(4.76) ∂tA (ρ) = rc0A
′ (ρ)

x · s+ rc0t

|x+ src0t|
, r∂rA (ρ) = t∂tA (ρ) ,

∂tY (φ) =
rc0s · ∇Y (φ)

|x+ src0t|
, r∂rY (φ) = t∂tY (φ),(4.77)

where we have used (4.73). Note that, using (4.76), we can rewrite, for t > 0,

∂tA (ρ)− c0A
′ (ρ) =

1

t
(r − 1) ∂rA (ρ)− 1

t

( |x+ src0t|
x · s+ rc0t

− 1

)
∂rA (ρ)

=
1

t
(r − 1) ∂rA (ρ) + c0

(
x · s+ rc0t

|x+ src0t|
− 1

)
A′ (ρ) .(4.78)

Plugging (4.78) into (4.75), we observe that the term with ∂rA can be integrated by
parts in the variable r, due to the cancellation of the singularity at r = 1. In doing so,
both boundary terms at r = 0 and r = 1, respectively, vanish. With some simplifications
that employ (4.77) and the identity

(
r (1− r)

(1− r2)1/2

)′

+
r

(1− r2)1/2
=

1

(1− r2)1/2 (1 + r)
,

we arrive at

v (x, t) =
1

2π

∫

|s|=1

∫ 1

0

1

(1− r2)1/2

[
1

1 + r
A (ρ)Y (φ)(4.79)

+rc0t

(
x · s+ rc0t

|x+ src0t|
− 1

)
A′ (ρ)Y (φ)

]
drdσs +Q (x, t) .

Here, we have set

Q (x, t) :=
1

2π

∫

|s|=1

∫ 1

0

rc0t

(1− r2)1/2
1

|x+ src0t|
A (ρ) s · ∇Y (φ) drdσs

=− 1

2π

∫

|s|=1

∫ 1

0

A (ρ)

(1− r2)1/2
x · ∇Y (φ)

|x+ src0t|
drdσs,(4.80)

where we used

(4.81) x · ∇Y (φ) = −rc0ts · ∇Y (φ),

which follows from (4.73).
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For later reference, we note that, for rt ≫ 1, uniformly in x ∈ Ω, s ∈ S
1,

(4.82) − x · ∇Y (φ)

|x+ src0t|
= O

(
1

rt

)
,

where we used |x| ≤ ρ0 and

ρ ≥ |src0t| − |x| ≥ rc0t− ρ0 ≥
1

2
rc0t for rt ≥ 2ρ0

c0
.

By setting

(4.83) P1 (x, t) :=
1

2π

∫ 1

0

1

(1− r2)1/2

∫

|s|=1
rc0t

(
x · s+ rc0t

|x+ src0t|
− 1

)
A′ (ρ)Y (φ) dσsdr,

(4.84) P2 (x, t) :=
1

2π

∫ 1

0

1

(1− r2)1/2 (1 + r)

∫

|s|=1
A (ρ)Y (φ) dσsdr,

we can rewrite (4.79) as

(4.85) v (x, t) = P1 (x, t) + P2 (x, t) +Q (x, t) .

As in the proof of Lemma 2.3, we shall prove that there exists t0 > 0 such that the
bounds

(4.86) |P1 (x, t)| ≤
C̃0

t
, |P2 (x, t)| ≤

C̃1

t
, |Q (x, t)| ≤ C̃2

t
,

are valid uniformly in x ∈ Ω with some constants C̃0, C̃1, C̃2 > 0 for any t ≥ t0. Then,
due to the uniform boundedness of the solution v on Ω× [0, t0] (see (4.74)), the bounds
in (4.86) imply (4.72).

The functions A (ρ) and A′ (ρ) may be different from zero only for ρ > ρ0, i.e. for

rc0t >
(
(x · s)2 + ρ20 − |x|2

)1/2
−x·s, obtained from ρ2 = (rc0t+x·s)2−(x·s)2+|x|2 > ρ20.

Thus, the integration range in the r variable in each term of (4.85) effectively reduces
from (0, 1) to (a1/t, 1) with a1 > 0 defined in (4.25). With this argument, we are
implicity assuming that t ≥ a1. We will actually prove (4.86) with t0 := 2a1.

Estimate of P1 for t ≥ t0:
Let us introduce

(4.87) F1 (x, rt) :=
c0
2π

∫

|s|=1
(rt)5/2

(
x · s+ rc0t

|x+ src0t|
− 1

)
A′ (ρ)Y (φ) dσs,

so that we can write

P1 (x, t) =

∫ 1

a1/t

1

(1− r2)1/2 (rt)3/2
F1 (x, rt) dr =

∫ 1/2

a1/t
. . . +

∫ 1

1/2
. . .

=:P1,1 (x, t) + P1,2 (x, t) ,

assuming a1/t ≤ 1/2, i.e. t ≥ 2a1.



LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION 33

Since we consider only ρ = |x+ src0t| > ρ0 > 0 (as the integrand of F1 (x, rt) vanishes
otherwise), the denominators in (4.43) and (4.87) are bounded away from zero. Moreover,
since

(4.88) rc0t = |src0t| ≤ ρ+ |x| ≤ ρ+ ρ0,

we have, uniformly for x ∈ Ω, s ∈ S
1,

(rt)1/2
∣∣A′ (ρ)

∣∣ ≤





(
ρ+ρ0
c0

)1/2
‖A′‖L∞(R+) , 0 ≤ ρ ≤ ρ1,

(
rt
ρ

)1/2 (
ω
c0

+ 1
2ρ1

)
≤
(
ρ+ρ0
c0ρ

)1/2 (
ω
c0

+ 1
2ρ1

)
, ρ > ρ1,

(4.89)

≤C0, ρ > 0,

for some constant C0 > 0. This, together with (4.43), implies that

sup
x∈Ω

‖F1 (x, ·)‖L∞(a1,∞) =: C1 < ∞,

for some constant C1 > 0. Therefore, we can estimate, for t ≥ t0 = 2a1 and x ∈ Ω,

|P1,1 (x, t)| ≤ 21/2
C1

t3/2

∫ 1/2

a1/t

dr

r3/2
< 21/2

C1

t3/2

∫ ∞

a1/t

dr

r3/2
=

23/2C1

a
1/2
1 t

,

|P1,2 (x, t)| ≤ 23/2
C1

t3/2

∫ 1

1/2

dr

(1− r)1/2
=

4C1

t3/2
,

and thus we have the bound for P1 in (4.86) with t0 = 2a1 and some constant C̃0 > 0.

Estimate of Q for t ≥ t0:
As above, we note that all the denominators in (4.80) are bounded away from zero.

Therefore, by setting

F2 (x, rt) :=− (rt)3/2

2π

∫

|s|=1

x · ∇Y (φ)

|x+ src0t|
A (ρ) dσs,(4.90)

and recalling (4.82) and (4.88), we have

(4.91) sup
x∈Ω

‖F2 (x, ·)‖L∞(a1,∞) =: C2 < ∞.

Consequently, we estimate as before, for x ∈ Ω, t ≥ t0 = 2a1,

|Q (x, t)| ≤ 21/2
C2

t3/2

∫ 1/2

a1/t

dr

r3/2
+ 23/2

C2

t3/2

∫ 1

1/2

dr

(1− r)1/2
<

C̃2

t
,

with some constant C̃2 > 0. This proves the bound for Q in (4.86) again with t0 = 2a1.

Estimate of P2 for t ≥ t0:
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For the term P2, we proceed as in the estimate of the term P in Lemma 2.3. Let us
rewrite (4.84) as

P2 (x, t) =
1

2π

∫ 1

0

eirωt

(1− r)1/2

∫

|s|=1

[
e−irωt

(1 + r)3/2
A (ρ)Y (φ)(4.92)

−e−iωt

23/2
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)]
dσsdr

+
1

25/2π

∫

|s|=1
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)
dσs

∫ 1

0

e−i(1−r)ωt

(1− r)1/2
dr

=:P2,1 (x, t) + P2,2 (x, t) .

We start with

P2,2 (x, t) =
1

t1/2
F4 (x, t)

∫ 1

0

e−irωt

r1/2
dr,

where we made a change of variable r 7→ (1− r) and introduced

(4.93) F4 (x, t) :=
t1/2

25/2π

∫

|s|=1
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)
dσs.

Similarly to (4.89), but with setting r = 1, we have t1/2A (|x+ sc0t|) ≤ C00 for some
constant C00 > 0, and thus

(4.94) sup
x∈Ω

‖F4 (x, ·)‖L∞(R+) =: C4 < ∞.

Hence, employing Lemma A.3, we obtain uniformly for x ∈ Ω and sufficiently large
t > 0,

|P2,2 (x, t)| ≤
C̃4

t
.(4.95)

Decay of P2,1. To deal with P2,1, we note that the integrand is a smooth function of

r in [0, 1) and it behaves like (1− r)1/2 as r → 1. Integrating by parts in the r variable
with eirωtdr as differential, both boundary terms vanish (recall also that A (|x|) ≡ 0 for
x ∈ Ω). We thus have

P2,1 (x, t) =− 1

2πiωt

∫ 1

0

∫

|s|=1
eirωt∂r

(
1

(1− r)1/2

[
e−irωt

(1 + r)3/2
A (ρ)Y (φ)(4.96)

−e−iωt

23/2
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)])
dσsdr

=I1 (x, t) + I2 (x, t) + I3 (x, t) + I4 (x, t) ,

where

(4.97) I1 (x, t) :=
i

2πωt

∫ 1

0

∫

|s|=1

1

(1− r)1/2 (1 + r)3/2
Y (φ) eirωt∂r

(
e−irωtA (ρ)

)
dσsdr,

(4.98) I2 (x, t) :=
i

2πωt

∫ 1

0

∫

|s|=1

1

(1− r)1/2 (1 + r)3/2
A (ρ) ∂rY (φ) dσsdr,
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I3 (x, t) :=− 3i

4πωt

∫ 1

0

∫

|s|=1

1

(1− r)1/2 (1 + r)5/2
A (ρ)Y (φ) dσsdr,(4.99)

I4 (x, t) :=
i

4πωt

∫ 1

0

∫

|s|=1

1

(1− r)3/2

[
1

(1 + r)3/2
A (ρ)Y (φ)(4.100)

−e−i(1−r)ωt

23/2
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)]
dσsdr.

Decay of I1. For the term I1 observe that, using (4.76), we have

r3/2t1/2

c0
eirωt∂r

(
e−irωtA (ρ)

)
=(rt)3/2

(
A′ (ρ)− iω

c0
A (ρ)

)

− (rt)3/2 A′ (ρ)

(
1− x · s+ rc0t

|x+ src0t|

)
,

where both terms on the right-hand side are uniformly bounded for rt > 0, x ∈ Ω,
|s| = 1, due to (4.43), (4.88), and the assumption on the form of A. Therefore, for

F5 (x, rt) :=
ic0
2πω

∫

|s|=1
Y (φ)

r3/2t1/2

c0
eirωt∂r

(
e−irωtA (ρ)

)
dσs,

we have

sup
x∈Ω

‖F5 (x, ·)‖L∞(a1,∞) =: C5 < ∞.

Since both A, A′ vanish on [0, ρ0], the interval of integration for the r-integrals in each
of (4.97)–(4.99) reduces to (a1/t, 1) (see the discussion before (4.25)). Hence we can
estimate I1 in (4.97) for t ≥ t0 = 2a1 as

|I1 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r)1/2 (1 + r)3/2
F5 (x, rt) dr

∣∣∣∣∣(4.101)

≤21/2C5

t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C5

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃5

t

with some constant C̃5 > 0.

Decay of I2, I3. In a similar but simpler fashion, we can estimate the terms I2 and
I3. To this end we introduce

F6 (x, rt) := −3i (rt)1/2

4πω

∫

|s|=1
A (ρ)Y (φ) dσs,

which satisfies

|F6 (x, rt)| ≤
3

4πω

∫

|s|=1

(
rt

ρ

)1/2

ρ1/2 |A (ρ)| |Y (φ)| dσs,
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and thus

(4.102) sup
x∈Ω

‖F6 (x, ·)‖L∞(R+) =: C6 < ∞.

Then, using the two inequalities in (4.77) and (4.81), we obtain for t ≥ t0 = 2a1,

|I2 (x, t)| =
1

ωt5/2

∣∣∣∣∣

∫ 1

a1/t

1

r5/2 (1− r)1/2 (1 + r)3/2
F2 (x, rt) dr

∣∣∣∣∣(4.103)

≤21/2C2

ωt5/2

∫ 1/2

a1/t

dr

r5/2
+

25/2C2

ωt5/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̄2

t
,

|I3 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r1/2 (1− r)1/2 (1 + r)5/2
F6 (x, rt) dr

∣∣∣∣∣(4.104)

≤21/2C6

t3/2

(∫ 1/2

a1/t

dr

r1/2
+

∫ 1

1/2

dr

(1− r)1/2

)
≤ C̃6

t3/2

with some constants C̄2, C̃6 > 0.

Decay of I4. To treat the term I4, we introduce

F̃7 (x, r, t) :=

∫

|s|=1

[
1

(1 + r)3/2
A (ρ)Y (φ)(4.105)

−e−i(1−r)ωt

23/2
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)]
dσs,

(4.106) F7 (x, r, t) :=
1

1− r
F̃7 (x, r, t) .

Using F̃7 (x, 1, t) = 0, (4.106) can be rewritten as

(4.107) F7 (x, r, t) = − 1

1− r

(
F̃7 (x, 1, t) − F̃7 (x, r, t)

)
= − 1

1− r

∫ 1

r
∂rF̃7 (x, τ, t) dτ.

From this we estimate for r ∈ (1− a1/t, 1),

|F7 (x, r, t)| ≤
∥∥∥∂rF̃7 (x, ·, t)

∥∥∥
L∞(1−a1/t,1)

≤ sup
r∈(1−a1/t, 1)

∫

|s|=1

[
3

2 (1 + r)5/2
|A (ρ)| |Y (φ)|+ 1

(1 + r)3/2
|∂rA (ρ)| |Y (φ)|

+
1

(1 + r)3/2
|A (ρ)| |∂rY (φ)|+ ωt

23/2
|A (|x+ sc0t|)|

∣∣∣∣Y
(

x+ sc0t

|x+ sc0t|

)∣∣∣∣

]
dσs.

Therefore, employing (4.88), (4.76), and (4.77), taking into account the behaviour of
A(ρ) and A′(ρ) for ρ > ρ1, we deduce that

(4.108) sup
x∈Ω, r∈(1−a1/t, 1), t>2a1

∣∣∣F7 (x, r, t) /t
1/2
∣∣∣ =: C7 < ∞.
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Moreover, for r ∈ (1/2, 1 − a1/t) and ǫ ∈ (0, 1/2], taking into account (4.106), we have
∣∣∣(1− r)1/2+ǫ tǫF7 (x, r, t)

∣∣∣ =
∣∣∣F̃7 (x, r, t)

∣∣∣ tǫ

(1− r)1/2−ǫ
≤
∣∣∣F̃7 (x, r, t)

∣∣∣ t1/2

a
1/2−ǫ
1

.

Hence, with C4 and C6 defined in (4.94) and (4.102), respectively, we obtain from (4.105)
that, for any ǫ ∈ (0, 1/2],

sup
x∈Ω, r∈(1/2, 1−a1/t), t>2a1

∣∣∣(1− r)1/2+ǫ tǫF7 (x, r, t)
∣∣∣ ≤ 1

a
1/2−ǫ
1

(
21/24πω

3
C6 + 2πC4

)(4.109)

=:C8 < ∞.

Altogether (4.109) and (4.108) imply that, for t ≥ t0 = 2a1 and ǫ ∈ (0, 1/2],

|I4 (x, t)| ≤
1

4πωt

∫ 1

0

1

(1− r)1/2
|F7 (x, r, t)| dr(4.110)

=
1

4πωt

(∫ 1/2

0
. . . +

∫ 1−a1/t

1/2
. . .+

∫ 1

1−a1/t
. . .

)

≤23/2

t3/2

(
C6

3

∫ 1/2

0

dr

r1/2
+

C4

4ω

)
+

C8

4πωt1+ǫ

∫ 1−a1/t

1/2

dr

(1− r)1+ǫ

+
C7

4πωt1/2

∫ 1

1−a1/t

dr

(1− r)1/2
≤ C̃7

t

with some constant C̃7 > 0. Here, for the interval (0, 1/2), we have estimated the
integrand of F7 directly, using again (4.102) and (4.94).

From estimates (4.101), (4.103), (4.104), and (4.110), of I1, I2, I3, and I4, respectively,
in decomposition (4.96), we obtain for P2,1 the same estimate as (4.95) for P2,2.

The estimate for P2 in (4.86) with t0 = 2a1 readily follows from (4.92). This completes
the proof of (4.72) in the case d = 2.

• Case d = 3.

In this case, the solution is given by Kirchhoff’s formula [15, Par. 2.4.1 (c)]

(4.111) v (x, t) =
t

4π

∫

|s|=1

[
v1 (x+ sc0t) + ∂tv0 (x+ sc0t) +

1

t
v0 (x+ sc0t)

]
dσs.

The assumed form of the initial conditions yields

v (x, t) =
t

4π

∫

|s|=1

[(
x · s+ c0t

|x+ sc0t|
− 1

)
c0A

′ (|x+ sc0t|)Y
(

x+ sc0t

|x+ sc0t|

)(4.112)

+A (|x+ sc0t|) ∂tY
(

x+ sc0t

|x+ sc0t|

)
+

1

t
A (|x+ sc0t|)Y

(
x+ sc0t

|x+ sc0t|

)]
dσs.

From (4.43), (4.77), and the fact that, for d = 3, both A (|x+ sc0t|) and A′ (|x+ sc0t|)
are O (1/t) for t ≫ 1 uniformly for x ∈ Ω, s ∈ S

2 (due to (4.88) with r = 1), we see that
each term in the integrand of (4.112) is O

(
1/t2

)
. The estimate (4.72) hence follows.
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• Conclusion of the proof.

Given a pair of functions (w0, w1) and constants ω, c0, ρ0 > 0, ρ1 > ρ0, we say that

(4.113) (w0, w1) ∈ B,
if we can write

(4.114) w0(x) = Aw(|x|)Yw

(
x

|x|

)
+ V (1)

w (x),

(4.115) w1(x) = −c0A
′
w(|x|)Yw

(
x

|x|

)
+ V (2)

w (x)

for some functions

(4.116) Aw ∈ C1(R+), Yw ∈ C1(Sd−1), V (1)
w ∈ C1(Rd), V (2)

w ∈ C(Rd)

such that

Aw(|x|) = V (1)
w (x) = V (2)

w (x) ≡ 0, |x| ≤ ρ0, Aw(ρ) =
e
i ω
c0

ρ

ρ
d−1

2

, ρ > ρ1,

and we have

|x| d+1

2

(
|V (1)

w (x)|+ |V (2)
w (x)|+ |∇V (1)

w (x)|
)
≤ C, x ∈ R

d,

for some constant C > 0.
Let us denote Z [w0, w1] ≡ Zw the solution of the wave equation ∂2

tZw (x, t) −
c20∆Zw (x, t) = 0 for x ∈ R

d, t > 0, subject to the initial conditions Zw (x, 0) = w0 (x),
∂tZw (x, 0) = w1 (x). By linearity, we have

(4.117) Zw = ZAY + ZV ,

where the first term corresponds to the solution produced by the AwYw terms whereas

the second one is due to the V
(1)
w , V

(2)
w terms in (4.114), (4.115).

Note that, in the proof of the present lemma, we have already shown the decay

|ZAY (x, t)| ≤ C

(1 + t2)1/2
, t ≥ 0, x ∈ Ω,

since the regularity of A and Y in (4.116) was sufficient for this decay. An analogous
time-decay estimate holds for the ZV term in (4.117), as follows from Lemma 4.1. Con-
sequently, we obtain

|Zw (x, t)| ≤ C

(1 + t2)1/2
, t ≥ 0, x ∈ Ω.

In other words, class (4.113) consists of the initial conditions with somewhat mini-
mal assumptions for which we can deduce the O (1/t) decay of the solution (but not
necessarily of its derivatives).

Now we consider Z [v0, v1] ≡: Z. Clearly, we have (v0, v1) ∈ B with V
(1)
w = V

(2)
w ≡ 0

and thus

(4.118) |Z (x, t)| ≤ C

(1 + t2)1/2
, t ≥ 0, x ∈ Ω.
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We shall deduce similar results for ∆Z and ∆2Z. To this effect, we first compute, for
ρ > ρ1,

A′ (ρ) =

(
iω

c0
− d− 1

2ρ

)
e
i ω
c0

ρ

ρ
d−1

2

,

A′′ (ρ) = −
(
ω2

c20
+ i

ω

c0

d− 1

ρ

)
e
i ω
c0

ρ

ρ
d−1

2

+O
(

1

ρ
d+3

2

)
,

A′′′ (ρ) = −ω2

c20

(
i
ω

c0
− 3 (d− 1)

2ρ

)
e
i ω
c0

ρ

ρ
d−1

2

+O
(

1

ρ
d+3

2

)
.

Therefore, we have for |x| > ρ1 (with a computation in polar/spherical coordinates):

∆v0 (x) = A′′ (|x|)Y
(

x

|x|

)
+

d− 1

|x| A′ (|x|)Y
(

x

|x|

)
+

1

|x|2
A (|x|)∆Sd−1Y

(
x

|x|

)
(4.119)

= −ω2

c20

e
i ω
c0

|x|

|x|
d−1

2

Y

(
x

|x|

)
+O

(
1

|x|
d+3

2

)
,

− 1

c0
∆v1 (x) = A′′′ (|x|)Y

(
x

|x|

)
+

d− 1

|x| A′′ (|x|)Y
(

x

|x|

)
+

1

|x|2
A′ (|x|)∆Sd−1Y

(
x

|x|

)
(4.120)

= −ω2

c20

(
i
ω

c0
− d− 1

2 |x|

)
e
i ω
c0

|x|

|x|
d−1

2

Y

(
x

|x|

)
+O

(
1

|x|
d+3

2

)
,

where ∆Sd−1 is the Laplace-Beltrami operator on the (d− 1)-dimensional unit sphere.

Note that, due to cancellation, we do not have any O
(
1/ |x|

d+1

2

)
terms in (4.119). Also,

observe that we can rewrite these quantities as

∆v0 (x) = −
(
ω

c0

)2

A (|x|)Y
(

x

|x|

)
+O

(
1

|x|
d+3

2

)
,

∆v1 (x) =

(
ω

c0

)2

c0A
′ (|x|)Y

(
x

|x|

)
+O

(
1

|x|
d+3

2

)
,

respectively. This, together with the regularity assumptions of this lemma, yields that

(∆v0,∆v1) ∈ B (with Yw = − (ω/c0)
2 Y and some V

(1)
w , V

(2)
w which are no longer iden-

tically zero). Since ∆Z = Z [∆v0,∆v1], we obtain

(4.121) |∆Z (x, t)| ≤ C

(1 + t2)1/2
, t ≥ 0, x ∈ Ω.
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By iteration, we also deduce that
(
∆2v0,∆

2v1
)
∈ B and since ∆2Z = Z

[
∆2v0,∆

2v1
]
,

we can estimate
(4.122)

∣∣∆2Z (x, t)
∣∣ = 1

c20

∣∣∂2
t∆Z (x, t)

∣∣ = 1

c40

∣∣∂4
t Z (x, t)

∣∣ ≤ C

(1 + t2)1/2
, t ≥ 0, x ∈ Ω.

Employing the interpolation argument as at the final stage of the proof of Lemma 2.3, we
use (4.118), (4.121), and (4.122) to obtain the bounds for all the intermediate derivatives
in space and time, thus deducing (2.13). �

5. Conclusions and outlook

Motivated primarily by the development of time-domain methods for the numerical
solution of the Helmholtz problems with variable coefficients, we have established the
rigorous proof of the LAP under physically reasonable assumptions on the coefficients of
the wave equation and the source term. Under an appropriate modification, the LAP has
been extended to 1D. Moreover, since the speed of stabilisation towards the harmonic
regime is a deciding factor for using time-domain approaches in practice, we have also
provided rigorous estimates for this convergence in time.

Our main focus was on the 1D and 2D cases for which the LAP was generally under-
studied previously. In these cases, exponential (for 1D) and algebraic (for 2D) conver-
gence rates are generally sharp (up to a possible logarithmic factor for 2D). In the 3D
case, previous works on wave equations of similar form and some of our numerical exper-
iments (for radial data, see Appendix B) seem to suggest that our algebraic convergence
result could be improved to the exponential one.

An interesting extension of our results would be to remove the non-trapping assump-
tion on the coefficients. Even though the LAP is still expected to be valid, in this case,
the time convergence rate would be much slower. Namely, [31, Thm. 3] suggests that
the convergence rate 1/ (1 + t) would be replaced by 1/ [log (2 + t)]γ for some γ > 0.

Appendix A.

We collect here some technical estimates needed in the proofs of Sections 3–4.

Lemma A.1. For y ∈ Ω, a bounded domain Ω ⊂ R
d, d ≥ 2, and K defined by (3.8),

the following asymptotic expansions are valid for |x| ≫ 1:

K (x− y) =
1

4π

(
ω

2πic0

) d−3

2 e
i ω
c0

(
|x|−x·y

|x|

)

|x|
d−1

2

[
1 +

1

|x|

(
(d− 3) (d− 1)

ic0
8ω

(A.1)

+
d− 1

2

x · y
|x| +

iω

2c0

|x|2 |y|2 − (x · y)2

|x|2

)]
+O

(
1

|x|
d+3

2

)
,
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∂|x|K (x− y) =
1

4π

(
ω

2πic0

) d−3

2 e
i ω
c0

(
|x|−x·y

|x|

)

|x|
d−1

2

[
i
ω

c0
− 1

|x|

(
ω2

2c20

|x|2 |y|2 − (x · y)2

|x|2

(A.2)

−d− 1

2

iω

c0

x · y
|x| +

d2 − 1

8

)]
+O

(
1

|x|
d+3

2

)
.

Proof. Setting

(A.3) K̃ (x− y) :=
1

|x− y|
d−2

2

H
(1)
d−2

2

(
ω

c0
|x− y|

)
,

we have

∂|x|K̃ (x− y) =
x

|x| · ∇K̃ (x− y) =
|x|2 − x · y

|x|
1

|x− y|
d
2

[
ω

c0

(
H

(1)
d−2

2

)′( ω

c0
|x− y|

)(A.4)

+

(
1− d

2

)
1

|x− y|H
(1)
d−2

2

(
ω

c0
|x− y|

)]
.

Using the asymptotic behavior of H
(1)
p for large arguments [28, Sect. 10.17(i–ii)]

H(1)
p (x) =

(
2

π

) 1

2

ei(x−
2p+1

4
π)

(
1

x1/2
+

i
(
4p2 − 1

)

8x3/2

)
+O

(
1

x5/2

)
,

d

dx
H(1)

p (x) =

(
2

π

)1

2

ei(x−
2p+1

4
π)
(

i

x1/2
− 4p2 + 3

8x3/2

)
+O

(
1

x5/2

)
, x ≫ 1,

we can write (A.3) and (A.4), respectively, as

K̃ (x− y) =

(
2c0
πω

)1/2 e−i(d−1)π/4

|x− y|
d−1

2

e
i ω
c0

|x−y|
[
1 +

ic0
8ω

(d− 3) (d− 1)
1

|x− y|

]
(A.5)

+O
(

1

|x− y|
d+3

2

)
,

∂|x|K̃ (x− y) =

(
2c0
πω

)1/2 |x|2 − x · y
|x|

e−i(d−1)π/4

|x− y|
d+1

2

e
i ω
c0

|x−y|
(A.6)

×
[
i
ω

c0
+

(
1− d

2
− (d− 2)2 + 3

8

)
1

|x− y|

]
+O

(
1

|x− y|
d+5

2

)
.

By using the identity

|x− y| = |x|
(
1− 2

x · y
|x|2

+
|y|2

|x|2

)1/2

,
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and the Taylor expansion of (1 + z)−γ/2 with z := −2 x·y
|x|2 +

|y|2
|x|2 about z = 0, we obtain,

for |x| ≫ 1,
1

|x− y|γ =
1

|x|γ
(
1 + γ

x · y
|x|2

)
+O

(
1

|x|γ+2

)
.

We will use this formula with γ = d−1
2 , d+1

2 , d+3
2 . Moreover, using the Taylor expansions

of (1 + z1)
1/2 and exp (z2) with z1 := −2 x·y

|x|2+
|y|2
|x|2 and z2 := i ωc0 |x|

[(
1− 2x·y

|x|2 + |y|2
|x|2
)1/2

− 1 + x·y
|x|2

]

about z1 = z2 = 0, we obtain

e
i ω
c0

|x−y|
= e

i ω
c0

(
|x|−x·y

|x|

)

e
i ω
c0

|x|
[(

1− 2x·y

|x|2
+ |y|2

|x|2

)1/2

−1+ x·y

|x|2

]

= e
i ω
c0

(
|x|−x·y

|x|

)

1 + i

ω

c0
|x|



(
1− 2x · y

|x|2
+

|y|2

|x|2

)1/2

− 1 +
x · y
|x|2




+O

(
1

|x|2
)

= e
i ω
c0

(
|x|−x·y

|x|

)(
1 + i

ω

2c0

|x|2 |y|2 − (x · y)2

|x|3

)
+O

(
1

|x|2
)
.

Therefore, we get from (A.5) and (A.6)

K̃ (x− y) =

(
2c0
πω

)1/2 e−i(d−1)π/4

|x|
d−1

2

e
i ω
c0

(
|x|−x·y

|x|

) [
1 +

1

|x|

(
i
c0
ω

(d− 3) (d− 1)

8
(A.7)

+
d− 1

2

x · y
|x| + i

ω

2c0

|x|2 |y|2 − (x · y)2

|x|2

)]
+O

(
1

|x|
d+3

2

)
,

∂|x|K̃ (x− y) =

(
2c0
πω

)1/2 e−i(d−1)π/4

|x|
d−1

2

e
i ω
c0

(
|x|−x·y

|x|

) [
i
ω

c0
− 1

|x|

(
ω2

2c20

(
|y|2 − (x · y)2

|x|2

)(A.8)

+i
ω

2c0
(1− d)

x · y
|x| +

d2 − 1

8

)]
+O

(
1

|x|
d+3

2

)
.

Since K (x) = i
4

(
ω

2πc0

) d−2

2

K̃ (x), estimates (A.7) and (A.8) imply (A.1) and (A.2). �

Lemma A.2. Let a, b > 0, and define

(A.9) J :=

∫ 1

0

dx

(x2 + a2)b/2
≥ 0.

Then, we have

(A.10) J ≤





C1,b, b < 1,

log

(
1

a
+

√
1 +

1

a2

)
, b = 1,

C2,b
1

ab−1
, b > 1,
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where C1,b :=
1

1− b
, C2,b :=

∫ ∞

0

dx

(1 + x2)b/2
.

Proof. After the change of variable x 7→ z := x/a, we have

J =
1

ab−1

∫ 1/a

0

dz

(z2 + 1)b/2
.

Using
∫ 1/a

0

dz

(z2 + 1)b/2
≤
∫ 1/a

0

dz

zb
=

ab−1

1− b

when b < 1,
∫ 1/a

0

dz

(z2 + 1)b/2
≤
∫ ∞

0

dz

(z2 + 1)b/2
=: C2,b

when b > 1, and

J =

∫ 1/a

0

dz

(z2 + 1)1/2
= log

(
1

a
+

√
1 +

1

a2

)

when b = 1, the estimate (A.10) follows immediately. �

Lemma A.3. Let a > 0. For t ≫ 1, we have the following estimate

(A.11)

∫ a

0

e−ixt

x1/2
dx =

( π

2t

)1/2
(1− i) +O

(
1

t

)
.

Proof. Making a change of variable x 7→ z (x) :=
√
xt, we have

(A.12) I (t) :=

∫ a

0

e−ixt

x1/2
dx =

2√
t

∫ √
at

0
e−iz2dz.

Since the integrand in (A.12) is analytic in z, we can invoke the Cauchy theorem to
deform the integration contour in the complex plane. In particular, we choose the new
contour Γ1 ∪Γ2 that consists of two parts: the straight line segment Γ1 and the circular
arc Γ2. This contour is traversed counterclockwise with Γ1 and Γ2 defined, respectively,
as

Γ1 :=
{
z ∈ C : z = re−iπ/4, r ∈ (0, R)

}
,

Γ2 :=
{
z ∈ C : z = Reiφ, φ ∈

(
−π

4
, 0
)}

,

where for the sake of brevity, we have set R :=
√
at. In other words, we can write

I (t) =
2√
t

(∫

Γ1

e−iz2dz +

∫

Γ2

e−iz2dz

)
(A.13)

=
2 (1− i)√

2t

∫ R

0
e−r2dr +

2iR√
t

∫ 0

−π/4
exp

(
−iR2e2iφ + iφ

)
dφ.
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Note that, for R =
√
at ≫ 1, we have

∫ R

0
e−r2dr =

∫ ∞

0
e−r2dr −

∫ ∞

R
e−r2dr =

√
π

2
− e−R2

∫ ∞

0
e−r2−2Rrdr(A.14)

=

√
π

2
+O

(
e−at

)
,

∫ 0

−π
4

exp
(
−iR2e2iφ + iφ

)
dφ =

1

2R2

∫ 0

−π
4

[ ∂

∂φ
exp

(
−iR2e2iφ

) ]
e−iφdφ(A.15)

=
1

2R2

(
e−iR2 − 1 + i√

2
e−R2

)

+
i

2R2

∫ 0

−π
4

exp
(
−iR2e2iφ − iφ

)
dφ

=O
(

1

R2

)
= O

(
1

t

)
.

Inserting (A.14) and (A.15) into (A.13) furnishes the claimed estimate (A.11). �

Lemma A.4. Let F ∈ C2(R+) satisfy for some C1 > 0

(A.16) |F (t)|+ |F ′′(t)| ≤ C1

(1 + t2)1/2
, t ≥ 0.

Then

(A.17) |F ′(t)| ≤ C2

(1 + t2)1/2
, t ≥ 0

holds true with some C2 > 0.

Proof. For all N ∈ N0, we have

‖F‖L∞(N,N+1) + ‖F ′′‖L∞(N,N+1) ≤
C1

(1 +N2)1/2
.

By interpolation (see [6, Prop. 2.2]), we deduce the same estimate also for F ′, with some

generic constant C̃1 > 0 independent of N . Hence

|F ′(t)| ≤ C̃1

(1 + ⌊t⌋2)1/2 , t ≥ 0,

where ⌊t⌋ is the floor function. Using

1 + ⌊t⌋2 = 1 + ⌊t⌋2
1 + t2

(
1 + t2

)
≥

1 + (t− 1)2 χ(1,∞) (t)

1 + t2
(
1 + t2

)
≥ C0

(
1 + t2

)
,

with some constant C0 > 0, we deduce (A.17) with C2 = C̃1/C
1/2
0 . �
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Appendix B.

We test our results numerically on an example where the material parameters α, β
and the source term F are radially symmetric. Namely, for r := |x|, x ∈ R

d, we choose

(B.1) α (r) := 2χ[0,2) (r) +
1

2
χ[2,4) (r)

(
3 + cos

(π
2
(r − 2)

))
+ χ[4,∞) (r) ,

(B.2) β (r) := 1 + χ(3,7) (r)
(
1 + cos

(π
2
(r − 5)

))
,

(B.3) F (r) := 10χ(0,8/3) (r)

(
1 + cos

(
π

(
3

4
r − 1

)))
,

where χ denotes the characteristic function. Observe that, for this choice of α and β, the
background medium parameters are α0 = β0 = 1. We illustrate the functions in (B.1),
(B.2), and (B.3) in Figure 1(a).

We fix the dimension d ∈ {1, 2, 3} and the frequency ω = π/4, and let U(x) and u(x, t)
be the solutions to problems (1.1) and (1.2), respectively.

As in Table 1, we define

udiff(x, t) :=

{
u(x, t)− e−iωtU(x) if d = 2, 3,

u(x, t)− e−iωtU(x)− U∞ if d = 1,

where U∞ is the constant in (1.4).
We consider the bounded domain BR0

:= {x ∈ R
d : |x| < R0} with R0 = 5, and set

(B.4) E (t) :=
(
‖udiff(·, t)‖2

L2(BR0)
+ ‖∂tudiff(·, t)‖2L2(BR0)

)1/2
.

Exploiting the radial symmetry, we rewrite problems (1.1) and (1.2) in the (r, t)-
variables and we solve them numerically on the domain (0, R)× (0, T ) with R = 120 and
T = 240. For the time-dependent wave problem, we use finite differences in space on a
uniform grid of size 6 · 10−2, and the Leapfrog method in time on a uniform grid of size
1.33 · 10−2. We solve the Helmholtz problem on the same spatial grid.

The following second-order radiation conditions have been used at r = R:

(B.5) ∂tu (R, t) = −
√

α0

β0

[
∂ru (R, t) +

1

R

1− δd,1
1 + δd,2

u (R, t)

]
, t ≥ 0,

(B.6) U ′ (R) =

[
iω

√
β0
α0

− 1

R

1− δd,1
1 + δd,2

]
U (R) ,

where δ denotes the Kronecker delta symbol (e.g., see [13, eq. (1.27)] and [19, eq. (7.10)]
for d = 2 and d = 3, respectively). Note that these radiation conditions are exact in
case d = 1.

Central finite differences stencils were used to approximate first-order derivatives and
ghost points were added at the boundaries r = 0 and r = R. In doing so, the following
relations were instrumental

∂2
t u (0, t)−

dα (0)

β (0)
∂2
ru (0, t) = e−iωtF (0) ,
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Figure 1. Large-time convergence for the radially symmetric example
with the data as in (B.1)–(B.3).

−ω2U (0)− dα (0)

β (0)
U ′′ (0) = F (0) .

These equations are obtained by passing to the limit r → 0 in the equations in (1.1) and
(1.2), and using the boundary conditions at r = 0: ∂ru (0, t) = 0, U ′ (0) = 0.

The quantity E (t) defined by (B.4) was computed from the numerical solution of (1.1)
and (1.2), and is shown in Figure 1(b)–1(d). In particular, in Figure 1(b), we observe a
much faster decay in time for d = 1 and d = 3 than for d = 2. The semilogarithmic plot
in Figure 1(c) shows this decay to be exponential (up to the saturation due to numerical
errors for small quantities at large times). A linear region for large times is observed in
logarithmic plot in Figure 1(d) for d = 2. As a comparison, we have plotted in black a
line of slope −1. This illustrates an algebraic convergence, corroborating the sharpness
of the decay estimate (up to a possible logarithmic factor) in Theorem 1.4 for this case.
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