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Abstract. In this paper, we prove new results on the validity of the limiting
ampitude principle (LAP) for the wave equation with nonconstant coefficients,
not necessarily in divergence form. Under suitable assumptions on the coeffi-
cients and on the source term, we establish the LAP for space dimensions 2 and
3. This result is extended to one space dimension with an appropriate modifica-
tion. We also quantify the LAP and thus provide estimates for the convergence
of the time-domain solution to the frequency-domain solution. Our proofs are
based on time-decay results of solutions of some auxiliary problems.
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asymptotics
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1. Introduction

One of the possibilities of obtaining solutions to the Helmholtz equation is by
solving a corresponding time-domain wave equation. An essential ingredient in
connecting time- and frequency-domain wave problems is the limiting amplitude
principle (LAP). Originally proposed as one of the tools to select the unique solu-
tion of the Helmholtz equation problem in an infinite domain it has been studied
in numerous works over the last 70 years.

The LAP can be crudely stated as follows: the solution to the time-dependent
wave equation with time-harmonic source term converges, for large times, to the
solution of the Helmholtz equation with the spatial source term and frequency
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2 LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION

corresponding to the original time-harmonic source term. Our main motivation
for revisiting the LAP comes from numerical analysis. Helmholtz problems can be
challenging to solve in practice in some situations such as when the wavenumber
(frequency) parameter is large. Numerical methods have been proposed to address
a classical Helmholtz problem efficiently through its reformulations in the time
domain. They include the controllability method introduced in [7, 13], together
with its spectral version [17] and its extensions [16, 15], the WaveHoltz method [1],
the time-domain preconditioner of [26], and the front-tracking adaptive method
of [2]. The numerical analysis of these methods requires a quantification of the
modeling error (reformulation of the frequency-domain problem into a time-domain
problem), which will add to the error due to the numerical approximation of the
problem in the time domain. This motivates the study of the LAP under some
new angles, with particular focus on the quantification of large-time convergence.
As opposed to a direct study of the resolvent operator, our analysis is based on
decay estimates for the solutions of some auxiliary problems. Since decay results
are still the subject of intense investigation, an advantage of this approach is that
new findings in that area directly translate into improvements in the quantification
of the large-time convergence in the LAP.

Main results. In this paper, we will be concerned with the following setup.
Given an angular frequency ω > 0, material parameters α, β, which smoothly
vary within some bounded domain, and a compactly supported source term F , we
consider the following frequency-domain and time-domain problems, respectively:
we consider

(1.1)




−ω2U (x)− β−1 (x)∇ · (α (x)∇U (x)) = F (x) , x ∈ R

d,

lim
|x|→∞

|x|
d−1

2

[
∂|x|U (x)− iω

√
β0/α0U (x)

]
= 0,

and

(1.2)

{
∂2
t u (x, t)− β−1 (x)∇ · (α (x)∇u (x, t)) = e−iωtF (x) , x ∈ Rd, t > 0,

u (x, 0) = 0, ∂tu (x, 0) = 0, x ∈ Rd.

Our assumptions on α, β, and F are stated as follows.

Assumption 1.1. (smoothness, compactly supported derivatives & pos-
itivity of coefficients) Let α, β ∈ C∞ (Rd

)
, be real-valued functions such that

α(x) ≥ αmin, β(x) ≥ βmin for x ∈ Rd, and α(x) ≡ α0, β(x) ≡ β0 for x ∈ Rd\Ωin,
with some bounded domain Ωin ⊂ R

d and constants αmin, βmin, α0, β0 > 0.

Assumption 1.2. (nontrapping coefficients) Let α, β be non-trapping, i.e.
such that all rays associated with the metric α/β escape to infinity [6, Sect. 1]. In

other words (see e.g. [14, Def. 7.6 & Cor. 7.10]), defining H (q,p) := α (q) |p|2 −
β (q), given q0, p0 ∈ Rd such that H (q0,p0) = 0, the solution vector of the
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canonical system of differential equations with the Hamiltonian H (q,p),

(1.3)





d
dt
q (t) = 2α (q)p (t) , t > 0,

d
dt
p (t) = −β(q)

α(q)
∇qα (q) +∇qβ (q) , t > 0,

q (0) = q0, p (0) = p0,

must satisfy |q (t)| → ∞ as t → ∞.

Assumption 1.3. (compactly supported source) Let F ∈ L2
(
Rd
)
such that

suppF ⊂ Ωin, with Ωin as in Assumption 1.1.

Under Assumptions 1.1–1.3, we prove the following versions of the LAP.

Theorem 1.4. Let d = 2, 3. Suppose that Assumptions 1.1–1.3 are satisfied. Let
U (x) and u (x, t) be the solutions to (1.1) and (1.2), respectively. Then, there
exists a constant C > 0 depending on F , α, β, and ω such that
for d = 2:

∥∥u (·, t)− e−iωtU
∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ C
1 + log (1 + t2)

(1 + t2)1/2
, t ≥ 0,

for d = 3:
∥∥u (·, t)− e−iωtU

∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ C

(1 + t2)1/2
, t ≥ 0,

where Ω is an arbitrary bounded domain.

Theorem 1.5. Let d = 1. Suppose that Assumptions 1.1 and 1.3 are satisfied.
Let U (x) and u (x, t) be the solutions to (1.1) and (1.2), respectively. Then, there
exist constants Λ > 0 and C > 0 depending on F , α, β, and ω such that
∥∥u (·, t)− e−iωtU − U∞

∥∥
H1(Ω)

+
∥∥∂tu (·, t) + iωe−iωtU

∥∥
L2(Ω)

≤ Ce−Λt, t ≥ 0,

where

(1.4) U∞ :=
1

2iω
√
α0β0

∫

Ωin

F (x) β (x) dx,

and Ω is an arbitrary bounded domain.

Previous results on the LAP. Let us provide a brief overview of previous
works on the LAP. The simplest version of the LAP dealing with the constant
coefficient, three-dimensional wave equation has been known at least since 1948
[28, 29]. There, it is proven that this physical principle selects the unique solution
of the stationary problem satisfying the Sommerfeld radiation condition.

In the seminal work [20], these results are extended to the wave equation con-
taining a compactly supported potential term. Namely, the equation ∂2

t u (x, t)−
∆u (x, t)+ c̃ (x)u (x, t) = q (x) e−iωt is considered and it is assumed that the poten-
tial c̃ (x) is a continuous, compactly supported function with bounded derivative
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and such that the operator −∆+ c̃ (x) does not have discrete spectrum on L2 (R3).
The source term q (x) is taken to be a bounded function with compact support.
The convergence in time to the solution of a stationary problem (up to the factor
eiωt) is not explicitly quantified, but the proof shows that the convergence occurs
with an exponential rate.

The pair of papers [22, 23] contains further important results. First of all, the
conditions on c̃ (x) are weakened: Hölder continuity is sufficient (allowing also a
finite number of square integrable singularities) and the support does not have
to be compact. Moreover, paper [23] deals with the LAP for the variable speed
wave equation ∂2

t u (x, t) − c2 (x)∆u (x, t) = q (x) e−iωt. This also demonstrates
that, while results for an equation with a potential term (i.e. Schrödinger / Klein-
Gordon equation) do not automatically transplant to those for the variable speed
wave equation, both problems are amenable to a very similar treatment involving
resolvent analysis. For the case of the wave equation, it is important that the
spatially varying speed tends to a constant value at infinity sufficiently fast. The
source term is assumed to decay at infinity as well. In both cases of wave equa-
tions, pointwise convergence results are obtained and the convergence rate is not
specified.

The paper [25] considers the wave equation with a potential and a source term
both having algebraic localisation (meaning that they decay algebraically in space).
An algebraic rate of pointwise convergence is established and shown to be related
to the localisation of the potential and the forcing term: better localisation entails
faster convergence. As in most of the works, results are presented only for the
three-dimensional case.

In [19], following the work of [8] and considering also non-zero initial data, it
is claimed that the assumptions of [20] were incomplete and, in addition to the
absence of eigenvalues, the absence of some special solutions also needs to be
assumed. More precisey, such solutions (known as zero-resonances) satisfy the
homogeneous stationary wave equation with zero wavenumber, they have some
weak decay and they satisfy a non-oscillation condition at infinity, but they are
not in L2 (R3). Zero-resonances are generally known to exist and would be an
obstacle for the validity of the LAP. However, they can be ruled out by assuming
that c̃ ∈ C1 (R3), c̃ ≥ 0 and, for |x| ≫ 1, c̃ (x) = O (1/ |x|γ) with γ > 3.

Eidus’ paper [10] provides an extensive overview of the results available at that
time and treats the problem in great generality. In particular, it deals with the
wave equation arising from a positive second-order differential operator in diver-
gence form −∑d

k,j=1 ∂xk

(
akj (x) ∂xj

)
+c̃ (x). It is assumed that c̃ is real-valued and

locally Hölder continuous, akj ∈ C2
(
Rd
)
is real-valued, symmetric and coercive

(i.e. satisfying, for any vector v ∈ Rd,
∑d

k,j akjvkvj ≥ a0|v|2 with some a0 > 0),

and |∇akj (x)|, c̃ (x) decay fast enough at infinity. The problem is posed in an
unbounded domain of Rd with a finite boundary where the zero Dirichlet bound-
ary condition is imposed. However, it is mentioned in [10, Ch. 2, p. 21] that the
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obtained results must also hold if this unbounded (exterior) domain is taken to be
the whole Rd. The time convergence is shown for the H1-norm of the solution and
the L2-norm of its time derivative, with both norms taken over bounded sets.

As a generalization, Vainberg [30], besides geometrical features, also considers
higher-order constant coefficient hypoelliptic operators in Rd, whereas [18] treats
dissipative wave equations with variable dissipation and potential terms.

Ramm [25] considers a general linear operator and formulates necessary and
sufficient conditions for the validity of the LAP in terms of certain properties of the
resolvent operator. A more general form of the LAP is formulated, involving time
convergence in mean, namely, the convergence of the quantity 1

t

∫ t

0
eiωτu (x, τ) dτ ,

for t → ∞, to the stationary solution. This is shown to be equivalent to the
validity of the limiting absorption principle.

Bloom [5] deals with the symmetric system of second order wave equations in
R3 written in the form similar to ours (i.e. having variable coefficients outside and
inside the divergence operator, as in (1.2)). The LAP is shown to hold and the rate
of pointwise convergence is found to be algebraic, namely, under the assumptions
there, it is slower than t−1/2. It is not specified whether these results are still valid
if the exterior domain is replaced by the entire space R3.

The single wave equation of the form (1.2) is considered in [27] and the problem
is posed in the whole space R

3. Similarly to [19], the necessity to rule out zero-
resonances is discussed and it prompts an investigation of the resolvent in the
low-frequency limit.

In this brief literature overview, we have focussed on problems posed in the whole
space Rd, while almost entirely omitting the geometrical issues, which are the most
commonly discussed aspects in the literature, see the classical works of Morawetz
(e.g. [21]) and her collaborators. More on that can be found in the introduc-
tory part of [10]. In general, geometry (finite/infinite boundary, convexity/star-
shapeness of the scatterer), space dimension, coefficients and order of the differ-
ential operator all play important roles in the validity of the LAP. For example,
the principle is violated if the geometry of the problem allows for the existence
of trapped modes, or the differential operator (typically, of a higher order) has
eigenvalues embedded into its continuous spectrum.

In the present work, we study the LAP for a problem where both material pa-
rameters α and β are allowed to be nonconstant and prove our results in spatial
dimensions d = 1, 2 and 3. The main result given in Theorem 1.4 does not only
prove the validity of the LAP but also estimates the convergence rates. Addi-
tionally, we provide Theorem 1.5, which covers the one-dimensional case where a
classical formulation of the LAP (i.e. when U∞ = 0) is known not to be valid [9,
Sect. 3, Thm. 6]. On a technical side, a novelty of our approach to the proof of the
LAP is that it avoids the direct study of the resolvent operator and relies instead
on several decay/convergence results. The main features of the present work are:
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• The LAP is proven for the wave equation with nonconstant coefficients,
which is not necessarily in divergence form. Besides the “classical” case
d = 3, we also consider d = 2.

• The validity of the LAP is extended to the case d = 1 with an appropriate
modification.

• The convergence in the LAP is quantified and is shown to be algebraic in
time for d = 2, 3 and exponential for d = 1.

We believe that exponential and algebraic rates of the convergence for the cases
d = 1 and d = 2 are generally sharp, but the rate of the decay for the case d = 3
can be improved.

Outline. The paper is organised as follows. In Section 2, we present time-decay
estimates for the time-domain problem with suitable initial data and source term.
In Section 3, we establish the LAP in the form given in Theorems 1.4 and 1.5.
Time-decay estimates, which are instrumental for that, are proven in Section 4.
Finally, in Section 5, we summarise the obtained results and give prospects for
further work in related directions. Some technical estimates used in the proofs are
deferred to the appendix.

2. Time-decay results

In this section, we establish some decay-in-time results for solutions to the wave
equation with sufficiently localised initial data, which are used in our proof of the
LAP in Section 3 below. The proofs of these results are deferred to Section 4.
More precisely, we are concerned with the solution of the Cauchy problem

(2.1)

{
∂2
t u (x, t)− β−1 (x)∇ · (α (x)∇u (x, t)) = f (x, t) , x ∈ Rd, t > 0,

u (x, 0) = u0 (x) , ∂tu (x, 0) = u1 (x) , x ∈ Rd,

and its constant-coefficient analog with zero source term:

(2.2)

{
∂2
t v (x, t)− c20∆v (x, t) = 0, x ∈ Rd, t > 0,

v (x, 0) = v0 (x) , ∂tv (x, 0) = v1 (x) , x ∈ R
d,

where c0 :=
√

α0/β0. We start by considering problem (2.1) in the case of localised
data and zero source term.

Proposition 2.1. Let d ≥ 2, f ≡ 0. Suppose that u0 ∈ H3
(
R

d
)
, u1 ∈ H2

(
R

d
)

and α, β satisfy Assumptions 1.1 and 1.2. Additionally, the initial data are as-
sumed to satisfy the following localisation condition:

(2.3)

∫

Rd

(
1 + |x|2

)d+1+ǫ (|u0 (x)|2 + |u1 (x)|2
)
dx < ∞
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with some ǫ > 0. Then, for any bounded Ω ⊂ Rd, the solution of (2.1) obeys the
following decay estimate for some constant C > 0:

(2.4) ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤
C

(1 + t2)
d−1

2

, t ≥ 0.

For the case of zero initial data and a localised source term, we have the following
result.

Proposition 2.2. Let d ≥ 2, u0 ≡ 0, u1 ≡ 0 and α, β satisfy Assumptions 1.1
and 1.2. Additionally, suppose that f ∈ C

(
R+, L

2
(
Rd
))

with R+ := [0,∞),

∪
t>0

supp f (·, t) ⊂ Ωf for some bounded domain Ωf ⊂ Rd, and there exist constants

Cf , p > 0 such that

(2.5) ‖f (·, t)‖L2(Rd) + ‖∂tf (·, t)‖L2(Rd) ≤
Cf

(1 + t2)
p
2

, t ≥ 0.

Then, for any bounded domain Ω ⊂ Rd, the solution of (2.1) obeys the following
decay estimates for t ≥ 0 and some constant C > 0 depending on p and d.
For d = 2:

(2.6) ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖H1(Ω) ≤ C





1 + log (1 + t2)

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
1

2

, p > 1,

For d > 2:

(2.7) ‖u (·, t)‖H1(Ω) + ‖∂tu (·, t)‖H1(Ω) ≤ C





1

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
r
2

, p > 1,

where r := min (d− 1, p).

Next, we consider the wave equation (2.2) with constant coefficients and f ≡ 0.

Lemma 2.3. Let d = 2, 3. Let ω > 0, ρ0 > 0, ρ1 > ρ0 be some fixed constants. Let
Sd−1 :=

{
x ∈ Rd : |x| = 1

}
be the (d− 1)-dimensional unit sphere and let Bρ0 :={

x ∈ Rd : |x| < ρ0
}
be the ball of radius ρ0, both centered at x = 0. Fix Ω ⋐ Bρ0

meaning that Ω ⊆ Bρ0−ǫ ⊂ Bρ0 for some ǫ > 0. We make the following assumptions
on the initial conditions v0 and v1.

• For d = 2, we assume that

(2.8) v0 (x) = A0 (|x|)Y0

(
x

|x|

)
+ V0 (x) , v1 (x) = A0 (|x|)Y1

(
x

|x|

)
+ V1 (x) ,
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where V0 ∈ W 4,∞ (R2), V1 ∈ W 3,∞ (R2), A0 ∈ C4 (R+), Y0 ∈ C4 (S1),
Y1 ∈ C3 (S1) are such that A0 (|x|) = V0 (x) = V1 (x) ≡ 0 for |x| ≤ ρ0, and
that there exist a constant C0 > 0 such that

(2.9) |x|5/2 (|V0 (x)|+ |V1 (x)|) ≤ C0

holds true for all x ∈ R2. Moreover, A0 (ρ) = e
i ω
c0

ρ
/ρ3/2 for ρ > ρ1.

• For d = 3, we assume that v0 ∈ W 4,∞ (R3), v1 ∈ W 3,∞ (R3) and that there
exists a constant C0 > 0 such that

(2.10) |x|2 (|v0 (x)|+ |v1 (x)|) ≤ C0

holds true for all x ∈ R3.

Then, there exists a constant C > 0 such that, for all x ∈ Ω and t ≥ 0, the
solution of (2.2) with the initial data as above satisfies

|v (x, t)|+ |∇v (x, t)|+ |∂tv (x, t)|(2.11)

+ |∆v (x, t)|+ |∂t∇v (x, t)|+ |∂t∆v (x, t)| ≤ C

(1 + t2)1/2
.

Note that, in this result, we use smoothness and the presence of the oscillatory
exponential term in the radial factor in the case d = 2 to deduce the O (1/t) decay
instead of the more classical L∞–decay O

(
1/t1/2

)
(see e.g. [4]).

In a similar vein, we will also need an analogous result for problem (2.2) with
even less standard initial conditions (namely, such that the decay at infinity of
v0, v1 entails only that v0 ∈ W 1,p

(
Rd
)
, v1 ∈ Lp

(
Rd
)
with p > 4). If such initial

conditions have some additional structure, the solution can be shown to decay in
time with the same decay rate as in Lemma 2.3.

Lemma 2.4. Let d = 2, 3. Let ω > 0, ρ0 > 0, ρ1 > ρ0 be some fixed constants.
Using the notation introduced in Lemma 2.3, suppose that Ω ⋐ Bρ0. Assume that
(2.12)

v0 (x) = A (|x|)Y
(

x

|x|

)
, v1 (x) = −c0∂|x|v0 (x) = −c0A

′ (|x|) Y
(

x

|x|

)
,

where ∂|x| denotes the derivative in the radial direction of the variable x, A ∈
C4 (R+), Y ∈ C4

(
Sd−1

)
such that A (ρ) ≡ 0 for ρ ∈ [0, ρ0] and A (ρ) = e

i ω
c0

ρ
/ρ

d−1

2

for ρ > ρ1. Then, there exists a constant C > 0 such that, for all x ∈ Ω and t ≥ 0,
the solution of (2.2) with the initial data (2.12) satisfies

|v (x, t)|+ |∇v (x, t)|+ |∂tv (x, t)|(2.13)

+ |∆v (x, t)|+ |∂t∇v (x, t)|+ |∂t∆v (x, t)| ≤ C

(1 + t2)1/2
.

In the one-dimensional case, we have the following exponential decay result,
which is proven in [3].
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Proposition 2.5 (see [3]). Let d = 1 and f ≡ 0. Suppose that u0 ∈ H1 (R),
u1 ∈ L2 (R), supp u0, supp u1 ⊂ Ω0 for some bounded Ω0 ⊂ R and assume α, β,
Ωin be as in Assumption 1.1. Then, for any bounded Ω ⊂ R, the solution of (2.1)
obeys the decay estimate

(2.14) ‖u (·, t)− u∞‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤ Ce−Λt, t ≥ 0,

for some explicit constants C = C (u0, u1, α, β, |Ω0| , |Ωin|), Λ = Λ (α, β, |Ωin|) > 0
with |Ω0|, |Ωin| denoting the Lebesgue measure of the sets Ω0, Ωin, respectively,
and

(2.15) u∞ :=
1

2
√
α0β0

∫

Ω0

u1 (x) β (x) dx.

3. Proof of the LAP (Theorems 1.4 and 1.5)

In this section, we prove Theorems 1.4 and 1.5 at once. Without loss of gener-
ality, we can assume that Ω = Ωin, since both domains could be enlarged to their
union without changing the problem. We also suppose that the origin x = 0 is
chosen to be inside Ω.

The proof is given in two steps. In Step 1, see Section 3.1, we transform prob-
lem (1.2) into an initial-value problem with zero source term for the difference

(3.1) W (x, t) := u (x, t)− e−iωtU (x) ,

where u (x, t) and U (x) solve problems (1.2) and (1.1), respectively. In Section 3.2,
we observe that the problem introduced in Step 1 has poorly localised initial
data, and we write some asymptotic representation, which will be useful in what
follows. In Step 2, see Section 3.3, we decompose the problem in Step 1 into several
subproblems. We distinguish the cases d = 1 and d ≥ 2. In the former case, the
arguments are more transparent and lead to the quantitative result of Theorem 1.5.
The higher-dimensional case is more involved, as some of the subproblems do not
have sufficiently localised intitial data and thus require the more specific time-
decay results given in Section 2.

3.1. Step 1: Transformation into an auxiliary homogeneous problem. By
inspection, we see that W (x, t) defined by (3.1) satisfies

(3.2)

{
∂2
tW (x, t)− β−1 (x)∇ · (α (x)∇W (x, t)) = 0, x ∈ Rd, t > 0,

W (x, 0) = −U (x) , ∂tW (x, 0) = iωU (x) , x ∈ Rd.

Completing the proofs of Theorems 1.4 and 1.5 is tantamount to showing that
there exists a unique constant U∞ ∈ C explicitly given by (1.4) and constants Λ,
C > 0 depending on F , α, β, ω such that
for d = 1:

(3.3) ‖W (·, t)− U∞‖H1(Ω) + ‖∂tW (·, t)‖L2(Ω) ≤ Ce−Λt, t ≥ 0,
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for d = 2:

(3.4) ‖W (·, t)‖H1(Ω) + ‖∂tW (·, t)‖L2(Ω) ≤ C
1 + log (1 + t2)

(1 + t2)1/2
, t ≥ 0,

for d = 3:

(3.5) ‖W (·, t)‖H1(Ω) + ‖∂tW (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

3.2. Slow decay of the initial data of problem (3.2). One immediate difficulty
when dealing with (3.2) is that the initial data W (·, 0) and ∂tW (·, 0) do not belong
to H1

(
Rd
)
and L2

(
Rd
)
, respectively. The slow decay of the initial conditions

in (3.2) can be seen as follows. Let us rewrite (1.1) as the constant-coefficient
problem

−∆U (x)− ω2

c20
U (x) =

1

α0

[
β (x)F (x) + (β (x)− β0)ω

2U (x) +

+∇ · (α (x)∇U (x))− α0∆U (x)](3.6)

=:F1 (x) ,

where we recall that c20 = α0/β0. Assumptions 1.1 and 1.3 on the coefficients and
on F imply that F1 (x) = 0 for x ∈ Rd\Ω̄. Moreover, since the coefficients α
and β are smooth and bounded away from zero, and F ∈ L2

(
R

d
)
, standard well-

posedness results (see e.g. [12, Sec. 6.3.1]) give U ∈ H2(Ω), and hence F1 ∈ L1(Ω).
Therefore, we can write the integral representation of the solution U in Rd\Ω̄

(3.7) U (x) =

∫

Ω

K (x− y)F1 (y) dy, x ∈ R
d\Ω̄.

Here

(3.8) K (x) :=
i

4

(
ω

2πc0

) d−2

2 1

|x|
d−2

2

H
(1)
d−2

2

(
ω

c0
|x|
)

is the Green’s function (see e.g. [11]) that satisfies the Sommerfeld radiation condi-

tion lim
|x|→∞

|x|
d−1

2

[
∂|x|K (x)− i ω

c0
K (x)

]
= 0 and −∆K (x)− ω2

c2
0

K (x) = δ (x), with

δ being the d-dimensional Dirac delta function. In (3.8), H
(1)
p denotes the Hankel

function of the first kind of order p. Since y in (3.7) ranges in a bounded set and
F1 ∈ L1 (Ω), we employ Lemma A.1 in the appendix and deduce that
(3.9)

U (x) = O
(
1/ |x|(d−1)/2

)
, ∂|x|U (x)− iω

c0
U (x) = O

(
1/ |x|(d+1)/2

)
, |x| ≫ 1.
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This implies that U , and thereforeW (·, 0) and ∂tW (·, 0), do not belong to L2
(
R

d
)
.

At the same time, this gives a precise decay rate in the Sommerfeld radiation
condition when the source term F1 in (3.6) is compactly supported.

3.3. Step 2. Time-decay by decomposition into subproblems. In order
to deal with the slowly decaying initial data in (3.2) discussed in Section 3.2, we
perform some auxiliary decompositions. As 0 ∈ Ω, we can fix R large enough and
ǫ > 0 such that Ω is contained in the open ball BR−ǫ ⊂ Rd of radius R−ǫ and center
x = 0. Let {η0, η1} be a smooth, radial partition of unity, i.e. η0 (x) = η0 (|x|),
η1 (x) = η1 (|x|), and η0 (|x|) + η1 (|x|) = 1 for all x ∈ Rd, such that

η0 (|x|) =
{
0, |x| < R− ǫ,

1, |x| > R,
η1 (|x|) =

{
1, |x| < R− ǫ,

0, |x| > R.

We proceed separately with the case d = 1 and the cases d = 2, 3.

• Case d = 1 (Theorem 1.5).

Note that we have H
(1)
−1/2 (x) =

(
2
πx

) 1

2 eix, and hence (3.8) yields, for d = 1,

K (|x|) = i
2
c0
ω
e
i ω
c0

|x|
. In this case, the Green function K does not decay at infinity,

but the radiation conditions on K, and thus on U , are exact, i.e. for x /∈ Ω, we
have c0∂|x|U (x) = iωU (x), where ∂|x| ≡ (sgn x) ∂x. Therefore, we can write

(3.10) W (x, t) = W̃0 (x, t) + W̃1 (x, t) ,

where W̃0 (x, t), W̃1 (x, t) solve the following initial-value problems, respectively:
(3.11)



∂2
t W̃0 (x, t)− β−1 (x) ∂x

(
α (x) ∂xW̃0 (x, t)

)
= 0, x ∈ R, t > 0,

W̃0 (x, 0) = −η0 (|x|)U (x) , ∂tW̃0 (x, 0) = c0∂|x|

(
η0 (|x|)U (x)

)
, x ∈ R,

(3.12)



∂2
t W̃1 (x, t)− β−1 (x) ∂x

(
α (x) ∂xW̃1 (x, t)

)
= 0, x ∈ R, t > 0,

W̃1 (x, 0) = −η1 (|x|)U (x) , ∂tW̃1 (x, 0) =

(
c0∂|x|η1 (|x|) + iωη1 (|x|)

)
U (x), x ∈ R.

Observe that problem (3.11), whose initial data are supported outside BR−ǫ, is
solved by a linear combination of two reflection-free outgoing waves

W̃0 (x, t) =−H (x− c0t) η0 (x− c0t)U (x− c0t)(3.13)

−H (−x− c0t) η0 (−x− c0t)U (x+ c0t) ,

where H is the Heaviside step function. Note that the smoothness of the solution
is not affected by the discontinuity of the Heaviside function due to the vanishing
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of η0. Because of the support property of η0, by inspection of (3.13), we have that

(3.14) W̃0 (x, t) = ∂tW̃0 (x, t) ≡ 0, x ∈ Ω, t > 0.

To deal with W̃1 in (3.10), we observe that the initial data of (3.12) have compact
support. Hence, problem (3.12) is amenable to the application of Proposition 2.5,
which yields

(3.15)
∥∥∥W̃1 (·, t)− U∞

∥∥∥
H1(Ω)

+
∥∥∥∂tW̃1 (·, t)

∥∥∥
L2(Ω)

≤ Ce−Λt, t ≥ 0,

U∞ :=
1

2
√
α0β0

∫ R

−R

(
c0∂|x|η1 (|x|) + iωη1 (|x|)

)
U (x) β (x) dx(3.16)

=
iω

2
√
α0β0

∫ R−ǫ

−R+ǫ

U (x) β (x) dx− 1

2
[U (R − ǫ) + U (−R + ǫ)]

=
1

2iω
√
α0β0

∫ R−ǫ

−R+ǫ

F (x) β (x) dx

for some constants C, Λ > 0. Note that in passing from the first to the second line
in (3.16), η1 disappears upon integration by parts using that ∂|x|U (x) = iω/c0U (x)
and β (x) ≡ β0 for x ∈ [−R,−R + ǫ] ∪ [R − ǫ, R]. The passage from the second
to the third line of the equality is justified upon integration of (1.1) in x over
the interval (−R + ǫ, R− ǫ) and using again the exact radiation conditions at its
endpoints.

Together with (3.14) and (3.10), estimate (3.15) implies (3.3) which completes
the proof of Theorem 1.5.

• Cases d = 2, 3 (Theorem 1.4).
We perform a decomposition, which is similar to (3.10) but contains more terms

that have to be treated in a more delicate fashion. Namely, we write

(3.17) W (x, t) =

4∑

k=0

Wk (x, t) ,

where each Wk, k = 0, . . . , 4, solves the homogeneous wave equation

∂2
tWk (x, t)− β−1 (x)∇ · (α (x)∇Wk (x, t)) = 0, x ∈ R

d, t > 0,
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subject to the following initial conditions on Rd, respectively:

W0 (x, 0) = −η0 (|x|)U0 (|x|) , ∂tW0 (x, 0) = c0∂|x|

(
η0 (|x|)U0 (x)

)
,

(3.18)

W1 (x, 0) = η0 (|x|) (U0 (x)− U (x)) , ∂tW1 (x, 0) = −c0η0 (|x|) ∂|x|
(
U0 (x)− U (x)

)
,

W2 (x, 0) = 0, ∂tW2 (x, 0) = −c0η0 (|x|)
(
∂|x|U (x)− iω

c0
U (x)

)
,

W3 (x, 0) = 0, ∂tW3 (x, 0) = −c0η
′
0 (|x|)U0 (x) ,

W4 (x, 0) = −η1 (|x|)U (x) , ∂tW4 (x, 0) = iωη1 (|x|)U (x) .

Here, we have introduced U0, the leading term in the long-range asymptotic expan-
sion of (3.7). More precisely, according to representation (3.7) and Lemma A.1,
we have

(3.19) U0 (x) =
e
i ω
c0

|x|

4π |x|
d−1

2

(
ω

2πic0

) d−3

2
∫

Ω

e
−i ω

c0

x·y
|x| F1 (y) dy.

Furthermore, for |x| ≫ 1,

U (x)− U0 (x) =
e
i ω
c0

|x|

4π |x|
d+1

2

(
ω

2πic0

) d−3

2
∫

Ω

e
−i ω

c0

x·y
|x|

[
(d− 3) (d− 1)

ic0
8ω

(3.20)

+
d− 1

2

x · y
|x| +

iω

2c0

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy +O
(

1

|x|
d+3

2

)
,

∂|x| [U (x)− U0 (x)] =− e
i ω
c0

|x|

4π |x|
d+1

2

(
ω

2πic0

) d−3

2
∫

Ω

e
−i ω

c0

x·y
|x|

[
(d− 3) (d− 1)

8

(3.21)

−d − 1

2

iω

c0

x · y
|x| +

ω2

2c20

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy

+O
(

1

|x|
d+3

2

)
,

∂|x|U (x)− iω

c0
U (x) =

e
i ω
c0

|x|

4π |x|
d+1

2

(
ω

2πic0

) d−3

2 1− d

2

∫

Ω

e
−i ω

c0

x·y
|x| F1 (y) dy +O

(
1

|x|
d+3

2

)
.

(3.22)
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Observe that the problems for W3 and W4 have compactly supported smooth
initial data. Hence, Proposition 2.1 applies to give

(3.23) ‖Wk (·, t)‖H1(Ω) + ‖∂tWk (·, t)‖L2(Ω) ≤
C

(1 + t2)
d−1

2

, t ≥ 0, k = 3, 4,

for some constant C > 0.
In order to obtain similar decay estimates for W1 and W2, let us introduce

(3.24) Z12 (x, t) := W12 (x, t)− V12 (x, t) ,

where W12 (x, t) := W1 (x, t) +W2 (x, t) and V12 (x, t) is the unique solution to the
constant-coefficient problem

(3.25)





∂2
t V12 (x, t)− c20∆V12 (x, t) = 0, x ∈ Rd, t > 0,

V12 (x, 0) = −η0 (|x|) (U0 (x)− U (x)) , x ∈ Rd,

∂tV12 (x, 0) = c0η0 (|x|)
(

iω
c0
U (x)− ∂|x|U0 (x)

)
, x ∈ R

d.

We are going to deduce the decay of W12 (x, t) from the decay of Z12 (x, t) and
V12 (x, t). First of all, since

iω

c0
U (x)− ∂|x|U0 (x) = ∂|x| [U (x)− U0 (x)]−

(
∂|x|U (x)− iω

c0
U (x)

)
,

we see from (3.20)–(3.22) that the initial conditions of (3.25) satisfy the assump-
tions of Lemma 2.3 with

A0 (|x|) := η0 (|x|)
e
i ω
c0

|x|

|x|
d+1

2

,

Y0

(
x

|x|

)
:=

1

4π

(
ω

2πic0

) d−3

2
∫

Ω

e
−i ω

c0

x·y
|x|

[
(d− 3) (d− 1)

ic0
8ω

+
d− 1

2

x · y
|x| +

iω

2c0

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy,

Y1

(
x

|x|

)
:=− c0

4π

(
ω

2πic0

) d−3

2
∫

Ω

e
−i ω

c0

x·y
|x|

[
(d− 7) (d− 1)

8

−d− 1

2

iω

c0

x · y
|x| +

ω2

2c20

(
|y|2 −

(
x · y
|x|

)2
)]

F1 (y) dy.
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This entails that the following decay estimate are valid uniformly in x ∈ Ω for
t ≥ 0:

|V12 (x, t)|+ |∇V12 (x, t)|+ |∂tV12 (x, t)|(3.26)

+ |∆V12 (x, t)|+ |∂t∇V12 (x, t)|+ |∂t∆V12 (x, t)| ≤
C

(1 + t2)1/2
.

with some constant C > 0. In particular, (3.26) implies

(3.27) ‖V12 (·, t)‖H1(Ω) + ‖∂tV12 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

In order to deal with Z12 (x, t), we note that it satisfies
(3.28){

∂2
tZ12 (x, t)− β−1 (x)∇ · (α (x)∇Z12 (x, t)) = F12 (x, t) , x ∈ R

d, t > 0,

Z12 (x, 0) = 0, ∂tZ12 (x, 0) = 0, x ∈ Rd,

where

(3.29) F12 (x, t) := β−1 (x)∇α (x) · ∇V12 (x, t) +
(
β−1 (x)α (x)− c20

)
∆V12 (x, t) .

Estimate (3.26) entails the decay of all the terms entering (3.29) and of their time
derivative, so that Proposition 2.2 is applicable with p = 1. This gives
for d = 2:

(3.30) ‖Z12 (·, t)‖H1(Ω) + ‖∂tZ12 (·, t)‖L2(Ω) ≤ C
1 + log (1 + t2)

(1 + t2)1/2
, t ≥ 0,

for d = 3:

(3.31) ‖Z12 (·, t)‖H1(Ω) + ‖∂tZ12 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0,

with some constant C > 0. Together with (3.27), estimates (3.30) and (3.31) thus
imply
for d = 2:

(3.32) ‖W12 (·, t)‖H1(Ω) + ‖∂tW12 (·, t)‖L2(Ω) ≤ C
1 + log (1 + t2)

(1 + t2)1/2
, t ≥ 0,

for d = 3:

(3.33) ‖W12 (·, t)‖H1(Ω) + ‖∂tW12 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

Finally, we shall deal with W0 (x, t). Similarly to (3.24), let us consider the
quantity

(3.34) Z0 (x, t) := W0 (x, t)− V0 (x, t) ,
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where V0 (x, t) is the unique solution to the constant-coefficient problem
(3.35){

∂2
t V0 (x, t)− c20∆V0 (x, t) = 0, x ∈ Rd, t > 0,

V0 (x, 0) = −η0 (|x|)U0 (x) , ∂tV0 (x, 0) = c0∂|x| (η0 (|x|)U0 (x)) , x ∈ Rd.

By setting

A (|x|) := η0 (|x|)
e
i ω
c0

|x|

|x|
d−1

2

, Y

(
x

|x|

)
:= − 1

4π

(
ω

2πic0

) d−3

2
∫

Ω

e
−i ω

c0
( x

|x|
·y)F1 (y) dy,

it is easy to see that (3.35) satisfies the assumptions of Lemma 2.4. Therefore, we
obtain that the following decay estimate are valid uniformly in x ∈ Ω for t ≥ 0:

|V0 (x, t)|+ |∇V0 (x, t)|+ |∂tV0 (x, t)|(3.36)

+ |∆V0 (x, t)|+ |∂t∇V0 (x, t)|+ |∂t∆V0 (x, t)| ≤
C

(1 + t2)1/2
,

with some constant C > 0. In particular,

(3.37) ‖V0 (·, t)‖H1(Ω) + ‖∂tV0 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

Repeating the same reasoning as before, we now deduce the decay of W0 (x, t) from
that of Z0 (x, t). To do so, we observe that Z0 (x, t) satisfies
(3.38){

∂2
tZ0 (x, t)− β−1 (x)∇ · (α (x)∇Z0 (x, t)) = F0 (x, t) , x ∈ Rd, t > 0,

Z0 (x, 0) = 0, ∂tZ0 (x, 0) = 0, x ∈ R
d,

where

(3.39) F0 (x, t) := β−1 (x)∇α (x) · ∇V0 (x, t) +
(
β−1 (x)α (x)− c20

)
∆V0 (x, t) .

Estimate (3.36) makes Proposition 2.2 applicable to yield
for d = 2:

(3.40) ‖Z0 (·, t)‖H1(Ω) + ‖∂tZ0 (·, t)‖L2(Ω) ≤ C
1 + log (1 + t2)

(1 + t2)1/2
, t ≥ 0,

for d = 3:

(3.41) ‖Z0 (·, t)‖H1(Ω) + ‖∂tZ0 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0,

with some constant C > 0. Therefore, recalling (3.37), we have
for d = 2:

(3.42) ‖W0 (·, t)‖H1(Ω) + ‖∂tW0 (·, t)‖L2(Ω) ≤ C
1 + log (1 + t2)

(1 + t2)1/2
, t ≥ 0,
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for d = 3:

(3.43) ‖W0 (·, t)‖H1(Ω) + ‖∂tW0 (·, t)‖L2(Ω) ≤
C

(1 + t2)1/2
, t ≥ 0.

Consequently, by combining (3.42), (3.43), (3.23), (3.32), and (3.33) with (3.17),
we obtain estimates (3.4) and (3.5) hold true. This concludes the proof of Theo-
rem 1.4.

4. Proofs of the auxiliary time decay results

4.1. Proof of Proposition 2.1. This proof is based on an application and an
extension of a decay result from [6].

Because of Assumption 1.1 on α and β (positivity and regularity), the operator
P := −β−1 (x)∇ · (α (x)∇ ) is formally self-adjoint in L2

β

(
Rd
)
, the L2

(
Rd
)
space

endowed with the β-weighted L2 inner product. Note that the sets L2
β(R

d) and

L2(Rd) coincide since the weight β is bounded and uniformly bounded away from
zero. Moreover, P is positive so that there exists a unique self-adjoint, positive
operator B such that B2 = P . With the notation

√
P := B and 1/

√
P := B−1,

we can formally write the solution of (2.1) with f ≡ 0 as

(4.1) u (x, t) = cos
(
t
√
P
)
u0 (x) +

sin
(
t
√
P
)

√
P

u1 (x) , t ≥ 0.

Under Assumptions 1.1 and 1.2 on α and β (compactly supported derivatives and
nontrapping), the following operator-norm estimates are obtained in [6, Thm. 1.5].
Namely, there exists a constant C > 0 such that

(4.2)

∥∥∥∥∥∥
q−1
ν

sin
(
t
√
P
)

√
P

q−1
ν

∥∥∥∥∥∥
L2(Rd)→H1(Rd)

≤ C

(1 + t2)
d−1

2

, t ≥ 0,

(4.3)
∥∥∥q−1

ν cos
(
t
√
P
)
q−1
ν

∥∥∥
L2(Rd)→L2(Rd)

≤ C

(1 + t2)
d
2

, t ≥ 0,

where qν :=
(
1 + |x|2

)ν/2
with some ν > d+ 1.

Set µ := d + 1 + ǫ. According to (2.3), we have qµu0 ∈ H1
(
Rd
)
and qµu1 ∈

L2
(
R

d
)
. Then, we deduce from (4.1)–(4.3) that, for t ≥ 0,

∥∥q−1
µ u (·, t)

∥∥
L2(Rd)

≤C

(
1

(1 + t2)
d
2

‖qµu0‖H1(Rd) +
1

(1 + t2)
d−1

2

‖qµu1‖L2(Rd)

)(4.4)

≤ C0

(1 + t2)
d−1

2
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for some constant C0 > 0.
To obtain the estimate for the time derivative ∂tu, we note that w := ∂tu solves

∂2
tw + Pw = 0, w (x, 0) = u1 (x), ∂tw (x, 0) = −Pu0 (x). Hence, we have

w (·, t) = cos
(
t
√
P
)
u1 −

sin
(
t
√
P
)

√
P

(Pu0) .

Therefore, using (4.2) and (4.3), and the assumed regularity of u0, u1, we estimate,
for t ≥ 0,

∥∥q−1
µ ∂tu (·, t)

∥∥
L2(Rd) ≤C

(
1

(1 + t2)
d
2

‖qµu1‖H1(Rd) +
1

(1 + t2)
d−1

2

‖qµPu0‖L2(Rd)

)(4.5)

≤ C1

(1 + t2)
d−1

2

for some constant C1 > 0.
To complete the H1-estimate of u, we estimate the L2-norm of ∇u. First, we

observe that w̃ := ∂2
t u solves ∂2

t w̃ + Pw̃ = 0, w̃ (x, 0) = −Pu0 (x), ∂tw̃ (x, 0) =
−Pu1 (x). Hence, as before, we have, for t ≥ 0,

w̃ (·, t) = − cos
(
t
√
P
)
(Pu0)−

sin
(
t
√
P
)

√
P

(Pu1) ,

∥∥q−1
µ ∂2

t u (·, t)
∥∥
L2(Rd)

≤ C

(
1

(1 + t2)
d
2

‖qµPu0‖H1(Rd) +
1

(1 + t2)
d−1

2

‖qµPu1‖L2(Rd)

)
.

Hence, we arrive at

(4.6)
∥∥q−1

µ Pu (·, t)
∥∥
L2(Rd)

=
∥∥q−1

µ ∂2
t u (·, t)

∥∥
L2(Rd)

≤ C2

(1 + t2)
d−1

2

for some constant C2 > 0. Employing the notation ( · ) for the complex conjugate,
we consider the following inner product on L2

β

(
R

d
)

〈
q−1
µ Pu, q−1

µ u
〉
L2
β(Rd)

= −
∫

Rd

∇ ·
(
α (x)∇u (x, t)

)
u (x, t)q−2

µ (x) dx.(4.7)

Inserting the identities

∇ ·
(
α (x)∇u (x, t)

)
u (x, t)q−2

µ (x) =∇ ·
(
α (x) q−2

µ (x)u (x, t)∇u (x, t)
)

− α (x) |∇u (x, t)|2 q−2
µ (x)

−
(
∇u (x, t) · ∇q−2

µ (x)
)
α (x) u (x, t),
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(
∇u (x, t) · ∇q−2

µ (x)
)
= −2µ

|x|
1 + |x|2

q−2
µ (x) ∂|x|u (x, t)

into (4.8) and integrating by parts the term with the divergence give

αmin

∥∥q−1
µ ∇u

∥∥2
L2(Rd) ≤

∫

Rd

α (x) |∇u (x, t)|2 q−2
µ (x) dx

(4.8)

≤
∣∣∣∣
〈
q−1
µ Pu, q−1

µ u
〉
L2
β(Rd)

∣∣∣∣+ µ ‖α‖L∞(Rd)

∣∣∣∣
〈
q−1
µ ∂|x|u, q

−1
µ u
〉
L2(Rd)

∣∣∣∣ .

Furthermore, employing the Cauchy-Schwarz inequality, we can estimate
∣∣∣∣
〈
q−1
µ Pu, q−1

µ u
〉
L2
β(Rd)

∣∣∣∣ ≤ ‖β‖L∞(Rd)

∥∥q−1
µ Pu

∥∥
L2(Rd)

∥∥q−1
µ u
∥∥
L2(Rd) ,

∣∣∣∣
〈
q−1
µ ∂|x|u, q

−1
µ u
〉
L2(Rd)

∣∣∣∣ ≤
∥∥q−1

µ ∇u
∥∥
L2(Rd)

∥∥q−1
µ u
∥∥
L2(Rd)

≤ αmin

4µ ‖α‖L∞(Rd)

∥∥q−1
µ ∇u

∥∥2
L2(Rd)

+
µ ‖α‖L∞(Rd)

αmin

∥∥q−1
µ u
∥∥2
L2(Rd)

Here, on the second line, we used the elementary inequality |a| |b| ≤ δ
2
|a|2 + 1

2δ
|b|2

valid for any δ > 0. Therefore, estimate (4.8) entails

3

4
αmin

∥∥q−1
µ ∇u

∥∥2
L2(Rd)

≤‖β‖L∞(Rd)

∥∥q−1
µ Pu

∥∥
L2(Rd)

∥∥q−1
µ u
∥∥
L2(Rd)

+
µ2

αmin
‖α‖2

L∞(Rd)

∥∥q−1
µ u
∥∥2
L2(Rd)

.

Recalling (4.4) and (4.6), this leads to

(4.9)
∥∥q−1

µ ∇u
∥∥2
L2(Rd)

≤ 4

3

(
C0C2

αmin
‖β‖L∞(Rd) +

µ2C2
0

α2
min

‖α‖2
L∞(Rd)

)
1

(1 + t2)d−1
.

Finally, denoting χΩ the characteristic function of the set Ω, we have

‖u‖L2(Ω) = ‖uχΩ‖L2(Rd) ≤ CΩ,µ

∥∥q−1
µ u
∥∥
L2(Rd)

,

and similarly for ∇u and ∂tu. Hence, the estimates (4.4), (4.5), and (4.9) fur-
nish (2.4). �

4.2. Proof of Proposition 2.2. Without loss of generality, we can take Ω = Ωf

(by enlarging both sets if necessary). Let P ,
√
P , and 1/

√
P be defined as at
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the beginning of Section 2.1. The following operator-norm estimate was obtained
in [6, Thm. 1.5]:

(4.10)

∥∥∥∥∥∥

sin
(
t
√
P
)

√
P

χΩ

∥∥∥∥∥∥
L2(Rd)→H1(Ω)

≤ C0

(1 + t2)
d−1

2

, t ≥ 0,

for some C0 > 0, where χΩ denotes the characteristic function of the set Ω.
According to the Duhamel principle, the solution to (2.1) with u0 ≡ 0, u1 ≡ 0

can be written as

(4.11) u (·, t) =
∫ t

0

sin
(
(t− τ)

√
P
)

√
P

f (·, τ) dτ.

Using a basic Bochner integral estimate in H1 (Ω) and (4.10), we obtain, for t > 0,

‖u (·, t)‖H1(Ω) ≤
∫ t

0

∥∥∥∥∥∥

sin
(
(t− τ)

√
P
)

√
P

f (·, τ)

∥∥∥∥∥∥
H1(Ω)

dτ(4.12)

≤
∫ t

0

C0

(
1 + (t− τ)2

) d−1

2

‖f (·, τ)‖L2(Ω) dτ,

where in the second line we also took into account the assumption that the support
of f (·, τ) is contained in Ω for each τ > 0.

Employing the assumed estimate (2.5) on f , namely ‖f (·, τ)‖L2(Ω) ≤ Cf/ (1 + τ 2)
p/2

for some constants Cf , p > 0 and all τ > 0, and denoting C := C0Cf , we proceed
to estimate

‖u (·, t)‖H1(Ω) ≤
∫ t

0

C dτ̃
(
1 + (t− τ̃)2

)d−1

2 (1 + τ̃ 2)
p
2

(4.13)

=
C

td+p−2



∫ 1/2

0

dτ
(
1/t2 + (1− τ)2

)d−1

2 (1/t2 + τ 2)
p
2

+

∫ 1

1/2

dτ
(
1/t2 + (1− τ)2

) d−1

2 (1/t2 + τ 2)
p
2




≤2d−1C

tp−1

1

(1 + t2)
d−1

2

∫ 1/2

0

dτ

(1/t2 + τ 2)
p
2

+
2pC

td−2

1

(1 + t2)
p
2

∫ 1/2

0

dτ

(1/t2 + τ 2)
d−1

2

.
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Here we used the change of variable τ̃ 7→ τ := τ̃ /t and employed the estimates

1/td+p−2

(
1/t2 + (1− τ)2

) d−1

2

≤ 1/td+p−2

(1/t2 + 1/4)
d−1

2

=
2d−1

tp−1

1

(4 + t2)
d−1

2

≤ 2d−1

tp−1

1

(1 + t2)
d−1

2

,

0 ≤ τ ≤ 1

2
, t ≥ 0,

1/td+p−2

(1/t2 + τ 2)
p
2

≤ 1/td+p−2

(1/t2 + 1/4)
p
2

=
2p

td−2

1

(4 + t2)
p
2

≤ 2p

td−2

1

(1 + t2)
p
2

,

1

2
≤ τ ≤ 1, t ≥ 0,

in the integrals over [0, 1/2] and [1/2, 1], respectively. In the last line of (4.13), we
have also made the change of variable τ 7→ 1− τ . Using Lemma A.2, we continue
estimate (4.13):

‖u (·, t)‖H1(Ω) ≤
2qC

(1 + t2)
d−1

2





C1,pt
1−p, 0 < p < 1,

log
(
t+

√
1 + t2

)
, p = 1,

C2,p, p > 1,

(4.14)

+
2qC

(1 + t2)
p
2

{
log
(
t +

√
1 + t2

)
, d = 2,

C2,d−1, d > 2,

where q := max (d− 1, p), C1,s :=
1

1− s
, C2,s :=

∫ ∞

0

dz

(1 + z2)s/2
. We continue by

considering separately the cases d = 2 and d > 2.
Since C1,p > 1, estimate (4.14) for d = 2 reads

‖u (·, t)‖H1(Ω) ≤2qC





C1,p (1 + C3,p)
log
(
t +

√
1 + t2

)

(1 + t2)
p
2

, 0 < p < 1,

2
log
(
t +

√
1 + t2

)

(1 + t2)
1

2

, p = 1,

(1 + C4,p)max (C2,p, 1)
1

(1 + t2)
1

2

, p > 1,

(4.15)

≤C̃p





log
(
t +

√
1 + t2

)

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
1

2

, p > 1,

where C3,p := sup
t≥0

t1−p

(1 + t2)
1−p
2 log(t+

√
1 + t2)

, C4,p := sup
t≥0

log
(
t+

√
1 + t2

)

(1 + t2)
p−1

2

.
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Similarly, when d > 2, we have

‖u (·, t)‖H1(Ω) ≤2qC





(1 + C5,d,p)max (C1,p, C2,d−1)
1

(1 + t2)
p
2

, 0 < p < 1,

(1 + C4,d−1)max (C2,d−1, 1)
1

(1 + t2)
1

2

, p = 1,

2C2,r
1

(1 + t2)
r
2

, p > 1,

(4.16)

≤C̃p,d





1

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
r
2

, p > 1,

where r := min (d− 1, p), C5,d,p := sup
t≥0

t1−p

(1 + t2)
d−1−p

2

.

To finish the proof, it remains to obtain the estimate for the time derivative
∂tu. To this effect, we note that w := ∂tu solves ∂2

tw + Pw = ∂tf , w (x, 0) = 0,
∂tw (x, 0) = f (x, 0). Hence, we have

∂tu (·, t) = w (·, t) =
sin
(
t
√
P
)

√
P

f (·, 0) +
∫ t

0

sin
(
(t− τ)

√
P
)

√
P

∂tf (·, τ) dτ,

and consequently, from (4.10) and (2.5), we obtain, again with C = C0Cf ,

‖∂tu (·, t)‖H1(Ω) ≤
C

(1 + t2)
d−1

2

+

∫ t

0

∥∥∥∥∥∥

sin
(
(t− τ)

√
P
)

√
P

∂tf (·, τ)

∥∥∥∥∥∥
H1(Ω)

dτ.

Therefore, owing to (2.5), the estimate for ∂tu can be obtained from the estimates
for u given in (4.15) and (4.16) by only adding an extra term, which is the first
term on the right-hand side of (4.2). Namely, we have, for d = 2,

‖∂tu (·, t)‖H1(Ω) ≤





max
(
C, C̃p

)[ 1

(1 + t2)
1

2

+
log
(
t+

√
1 + t2

)

(1 + t2)
p
2

]
, 0 < p ≤ 1,

(
C + C̃p

) 1

(1 + t2)
1

2

, p > 1,

(4.17)

≤2max
(
C, C̃p

)




1 + log (t2 + 1)

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
1

2

, p > 1.
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Here we used the inequalities

(4.18) log
(
t+

√
1 + t2

)
≤ log 2 +

1

2
log
(
t2 + 1

)
≤ 1 + log

(
t2 + 1

)
, t ≥ 0,

1 +
1

1 + log (t2 + 1)

1

(1 + t2)
1−p
2

≤ 2, t ≥ 0, 0 < p ≤ 1.

Similarly, using the inequalities

1 +
1

(1 + t2)
d−1−p

2

≤ 2, t ≥ 0, d > 2, 0 < p ≤ 1,

1 +
1

(1 + t2)
d−1−r

2

≤ 2, t ≥ 0, r ≤ d− 1,

we have, for d > 2,

‖∂tu (·, t)‖H1(Ω) ≤2max
(
C, C̃p,d

)




1

(1 + t2)
p
2

, 0 < p ≤ 1,

1

(1 + t2)
r
2

, p > 1.
(4.19)

Altogether, when d = 2, estimates (4.17) and (4.15) together with the simpli-
fying inequality (4.18) imply (2.6). Analogously, for d > 2, estimates (4.19) and
(4.16) furnish (2.7). �

4.3. Proof of Lemma 2.3. In the main body of the proof, we prove that the
bound

(4.20) |v (x, t)| ≤ C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

is valid for some constant C > 0, assuming that v0 ≡ 0. The case v0 6≡ 0 and the
estimate of the other terms in (2.11) is discussed in the final part of this proof.
We consider separately the cases d = 2 and d = 3.

• Case d = 2.

The solution is given by the Poisson’s formula [12, Par. 2.4.1 (c)]

(4.21) v (x, t) =
t

2π

∫ 1

0

r

(1− r2)1/2

∫

|s|=1

v1 (x+ src0t) dσsdr,

where dσs denotes the surface measure of the unit circle S1. Introducing ρ :=
|x+ src0t|, φ := x+src0t

|x+src0t| , and using (2.8), we can write

v (x, t) =
t

2π

∫ 1

0

r

(1− r2)1/2

∫

|s|=1

[A0(ρ)Y1 (φ) + V1 (x + src0t)] dσsdr(4.22)

=:P (x, t) +Q (x, t) .



24 LAP FOR VARIABLE-COEFFICIENT WAVE EQUATION

We shall prove that there exists t0 > 0 such that the bounds

(4.23) |P (x, t) | ≤ C̃

t
, |Q (x, t) | ≤ C̃0

t

are valid uniformly in x ∈ Ω with some constants C̃, C̃0 > 0 for any t ≥ t0. Since
it is evident from (4.21) that the solution v is bounded for any finite t ≥ 0, (4.22)
and the estimates in (4.23) imply (4.20).

Estimate of Q for t ≥ t0:
Let us first deal with the second term in the decomposition (4.22). We have

Q (x, t) =
t

2π

∫ 1

a1/t

r

(1− r2)1/2

∫

|s|=1

V1 (x+ src0t) dσsdr.

Here, we observed that, since V1 (x) ≡ 0 for |x| ≤ ρ0, the integration range in the
r variable could be reduced from (0, 1) to (a1/t, 1) with

(4.24) a1 :=
1

c0
inf

|s|=1,x∈Ω

[√
(x · s)2 + ρ20 − |x|2 − x · s

]
.

Since Ω ⋐ Bρ0 , we have a1 > 0. We are implicitly assuming that a1/t ≤ 1, i.e.
t ≥ a1. By rearranging the factors, we can write

(4.25) Q (x, t) =
1

2π

∫ 1

a1/t

(rt)−3/2

(1− r2)

∫

|s|=1

(
rt

ρ

)5/2

ρ5/2V1 (x+ src0t) dσsdr.

For r > a1/t, we have ρ > ρ0. Thus, we can estimate rt/ρ in (4.25) as follows.
From the triangle inequality and x ∈ Ω, ρ > ρ0, we have

(4.26) rc0t = |x+ src0t− x| ≤ ρ+ |x| =⇒ rt

ρ
=

1

c0

(
1 +

|x|
ρ

)
≤ 2

c0
.

Moreover, assumption (2.9) with d = 2 implies that ρ5/2V1 (x+ src0t) ≤ C0. In-
serting this and (4.26) into (4.25) gives

|Q (x, t)| ≤ 25/2C0

c
5/2
0 t3/2

∫ 1

a1/t

dr

(1− r2) r3/2

If we assume that t ≥ t0 = 2a1, we obtain

|Q (x, t)| ≤ 25/2C0

c
5/2
0 t3/2

∫ 1

a1/t

dr

(1− r2)1/2 r3/2
=

25/2C0

c
5/2
0 t3/2

(∫ 1/2

a1/t

. . .+

∫ 1

1/2

. . .

)
(4.27)

≤ 27/2C0√
3c

5/2
0 t3/2

∫ 1/2

a1/t

dr

r3/2
+

25/2C0

c
5/2
0 t3/2

∫ 1

1/2

dr

(1− r2)1/2 r3/2
≤ C̃0

t

for some constant C̃0 > 0. This completes the proof of the estimate of Q in (4.23)
with t0 = 2a1.
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Estimate of P for t ≥ t0:
In order to prove the estimate of P in (4.23), let us write

P (x, t) =
t

2π

∫ 1

0

eirωt

(1− r)1/2

∫

|s|=1

[
re−irωt

(1 + r)1/2
A0 (ρ) Y1 (φ)

(4.28)

−
(
e−iωt

√
2

− e−iωt

√
2

)
A0 (|x + sc0t|) Y1

(
x + sc0t

|x + sc0t|

)]
dσsdr

=
t

2π

∫ 1

0

eirωt

(1− r)1/2

∫

|s|=1

[
re−irωt

(1 + r)1/2
A0 (ρ) Y1 (φ)

−e−iωt

√
2
A0 (|x + sc0t|) Y1

(
x + sc0t

|x + sc0t|

)]
dσsdr

+
t

2
√
2π

∫

|s|=1

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)
dσs

∫ 1

0

e−i(1−r)ωt

(1− r)1/2
dr

=:P1 (x, t) + P2 (x, t) .

We start with

(4.29) P2 (x, t) =
1

t1/2
F2 (x, t)

∫ 1

0

e−irωt

r1/2
dr,

where we made a change of variable r 7→ (1− r) and introduced

(4.30) F2 (x, t) :=
t3/2

23/2π

∫

|s|=1

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)
dσs.

Using the assumed form of A0 and (4.26), we have, uniformly for x ∈ Ω, s ∈ S1,

(rt)3/2 |A0 (ρ)| ≤





(
ρ+ρ0
c0

)3/2
‖A0‖L∞(R+) , 0 ≤ ρ ≤ ρ1,

(
rt
ρ

)3/2
≤
(

2
c0

)3/2
, ρ > ρ1,

(4.31)

≤C1, ρ ≥ 0,

for some constant C1 > 0. Thus, using (4.31) with r = 1 and recalling the
assumptions on Y1, we deduce

(4.32) sup
x∈Ω

‖F2 (x, ·)‖L∞(R+) =: C2 < ∞.

Finally, employing Lemma A.3 in the appendix, we obtain from (4.29) and (4.32),
for x ∈ Ω and t ≥ t0,

|P2 (x, t)| ≤
C̃2

t
(4.33)

with some constant C̃2 > 0 and any t0 > 0.
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To deal with P1, we note that the integrand is a smooth function of r in [0, 1)
and it behaves like (1− r)1/2 as r → 1. Integrating by parts in the r variable with
eirωtdr as differential, both boundary terms vanish (recall also that A0 (|x|) ≡ 0
for x ∈ Ω). We thus arrive at

P1 (x, t) =− 1

2πiω

∫ 1

0

∫

|s|=1

eirωt∂r

(
1

(1− r)1/2

[
re−irωt

(1 + r)1/2
A0 (ρ) Y1 (φ)(4.34)

−e−iωt

√
2
A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)])
dσsdr

=I1 (x, t) + I2 (x, t) + I3 (x, t) + I4 (x, t) ,

where

(4.35) I1 (x, t) :=
i

2πω

∫ 1

0

∫

|s|=1

r

(1− r2)1/2
Y1 (φ) e

irωt∂r
(
e−irωtA0 (ρ)

)
dσsdr,

(4.36) I2 (x, t) :=
i

2πω

∫ 1

0

∫

|s|=1

r

(1− r2)1/2
A0 (ρ) ∂rY1 (φ) dσsdr,

I3 (x, t) :=
i

4πω

∫ 1

0

∫

|s|=1

2 + r

(1− r)1/2 (1 + r)3/2
A0 (ρ) Y1 (φ) dσsdr,(4.37)

I4 (x, t) :=
i

4πω

∫ 1

0

∫

|s|=1

1

(1− r)3/2

[
r

(1 + r)1/2
A0 (ρ) Y1 (φ)(4.38)

−e−i(1−r)ωt

√
2

A0 (|x+ sc0t|) Y1

(
x+ sc0t

|x+ sc0t|

)]
dσsdr.

We start by estimating the term I1. We have

(4.39) ∂rA0 (ρ) = c0tA
′
0 (ρ)

x · s+ rc0t

|x + src0t|
.

Moreover, since |x+ src0t| = rc0t
(
1 + 2 x·s

rc0t
+ |x|2

r2c2
0
t2

)1/2
for |s| = 1, we have that,

for rt ≫ 1, the estimate

(4.40) 1− x · s+ rc0t

|x+ src0t|
=

|x|2 − (x · s)2
2r2c20t

2
+O

(
1

r3t3

)
= O

(
1

r2t2

)

is valid. This can be seen from the Taylor expansion of (1 + w)−1/2 around zero,

with w := 2 x·s
rc0t

+ |x|2
r2c2

0
t2
.
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Then, we can write

r5/2t3/2

c0
eirωt∂r

(
e−irωtA0 (ρ)

)
= (rt)5/2

(
A′

0 (ρ)−
iω

c0
A0 (ρ)

)

− (rt)5/2A′
0 (ρ)

(
1− x · s+ rc0t

|x+ src0t|

)
,

where both terms on the right-hand side are uniformly bounded for rt > 0, x ∈
Ω, |s| = 1. This can be deduced from (4.40) using (4.26) and the estimates∣∣∣A′

0 (ρ)− iω
c0
A0 (ρ)

∣∣∣ = 3/(2ρ5/2), |A′
0(ρ)| ≤ C/ρ3/2 for ρ > ρ1 and some constant

C > 0. Therefore, we have

(4.41) F3 (x, rt) :=
ic0
2πω

∫

|s|=1

Y1 (φ)
r5/2t3/2

c0
eirωt∂r

(
e−irωtA0 (ρ)

)
dσs,

sup
x∈Ω

‖F3 (x, ·)‖L∞(a1,∞) =: C3 < ∞.

Since both A0, A′
0 vanish on [0, ρ0], the integrals in r in each of (4.35)–(4.37)

reduces to (a1/t, 1) (see the discussion before (4.24)). Hence we can estimate I1
in (4.35) for t ≥ t0 := 2a1 as

|I1 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r2)1/2
F3 (x, rt) dr

∣∣∣∣∣(4.42)

≤ 2C3

31/2t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C3

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃3

t

with some constant C̃3 > 0.
In a similar but simpler fashion, we can estimate the terms I2 and I3. Since

(4.43) ∂rY1 (φ) =
c0ts · ∇Y1 (φ)

|x + src0t|
− c0t (x · s+ rc0t)

|x + src0t|3
(x+ src0t) · ∇Y1 (φ) ,

we have

F4 (x, rt) :=
ic0 (rt)

5/2

2πω

∫

|s|=1

A0 (ρ)

[
s · ∇Y1 (φ)

|x + src0t|
(4.44)

− x · s+ rc0t

|x+ src0t|3
(x + src0t) · ∇Y1 (φ)

]
dσs,

|F4 (x, rt)| ≤
c0
πω

∫

|s|=1

rt

ρ
(rt)3/2 |A0 (ρ)| |∇Y1 (φ)| dσs,

and hence, using (4.26) and (4.31), we deduce that

sup
x∈Ω

‖F4 (x, ·)‖L∞(a1,∞) =: C4 < ∞.
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Similarly,

(4.45) F5 (x, rt) :=
i (rt)3/2

4πω

∫

|s|=1

A0 (ρ) Y1 (φ) dσs,

|F5 (x, rt)| =
1

4πω

∫

|s|=1

(rt)3/2 |A0 (ρ)| |Y1 (φ)| dσs,

and hence, using again (4.31),

(4.46) sup
x∈Ω

‖F5 (x, ·)‖L∞(a1,∞) =: C5 < ∞.

Therefore, we obtain, for t ≥ t0 = 2a1,

|I2 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r2)1/2
F4 (x, rt) dr

∣∣∣∣∣(4.47)

≤ 2C4

31/2t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C4

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃4

t
,

|I3 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

2 + r

r3/2 (1− r)1/2 (1 + r)3/2
F5 (x, rt) dr

∣∣∣∣∣(4.48)

≤ 5C5

21/2t3/2

∫ 1/2

a1/t

dr

r3/2
+

8C5

31/2t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃5

t

with some constants C̃4, C̃5 > 0.
To treat the term I4, we introduce

F̃6 (x, r, t) :=

∫

|s|=1

[
r

(1 + r)1/2
A0 (ρ) Y1 (φ)(4.49)

−e−i(1−r)ωt

√
2

A0 (|x+ sc0t|)Y1

(
x+ sc0t

|x+ sc0t|

)]
dσs,

(4.50) F6 (x, r, t) :=
1

1− r
F̃6 (x, r, t) .

Using F̃6 (x, 1, t) = 0, we rewrite (4.50) as
(4.51)

F6 (x, r, t) = − 1

1 − r

(
F̃6 (x, 1, t)− F̃6 (x, r, t)

)
= − 1

1 − r

∫ 1

r

∂rF̃6 (x, τ, t) dτ.
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Then, for r ∈ (1− a1/t, 1), we can estimate

|F6 (x, r, t)| ≤
∥∥∥∂rF̃6 (x, ·, t)

∥∥∥
L∞(1−a1/t,1)

≤
∫

|s|=1

[(
1

2 (1 + r)3/2
+

1

(1 + r)1/2

)
|A0 (ρ)| |Y1 (φ)|

+
1

(1 + r)1/2
|∂rA0 (ρ)| |Y1 (φ)|+

1

(1 + r)1/2
|A0 (ρ)| |∂rY1 (φ)|

+
ωt√
2
|A0 (|x + sc0t|)|

∣∣∣∣Y1

(
x + sc0t

|x + sc0t|

)∣∣∣∣
]
dσs.

Therefore, employing (4.31) with r = 1, (4.39) and (4.43), taking into account
again the behaviour of A0(ρ) and A′

0(ρ) for ρ > ρ1, we deduce that

(4.52) sup
x∈Ω, r∈(1−a1/t, 1), t>2a1

∣∣F6 (x, r, t) t
1/2
∣∣ =: C6 < ∞.

Moreover, for r ∈ (1/2, 1− a1/t) and for ǫ ∈ (0, 1/2], taking into account (4.50),
we have

∣∣∣(1− r)1/2+ǫ tǫF6 (x, r, t)
∣∣∣ =

∣∣∣F̃6 (x, r, t)
∣∣∣ tǫ

(1− r)1/2−ǫ
≤
∣∣∣F̃6 (x, r, t)

∣∣∣ t1/2

a
1/2−ǫ
1

.

Hence, with the constants C2 and C5 introduced in (4.32) and (4.46), respectively,
we can obtain from (4.49) that, for any ǫ ∈ (0, 1/2],

sup
x∈Ω, r∈(1/2, 1−a1/t), t>2a1

∣∣∣(1− r)1/2+ǫ t1+ǫF6 (x, r, t)
∣∣∣ ≤ 1

a
1/2−ǫ
1

(
8πω

31/2
C5 + 2πC2

)(4.53)

=:C7 < ∞.

Bounds (4.52) and (4.53) imply that, for t ≥ t0 = 2a1 and ǫ ∈ (0, 1/2], we get

|I4 (x, t)| ≤
1

4πω

∫ 1

0

1

(1− r)1/2
|F6 (x, r, t)| dr(4.54)

=
1

4πω

(∫ 1/2

0

. . .+

∫ 1−a1/t

1/2

. . .+

∫ 1

1−a1/t

. . .

)

≤23/2

t3/2

(
C5

∫ 1/2

0

dr

r1/2
+

C2

4ω

)
+

C7

4πωt1+ǫ

∫ 1−a1/t

1/2

dr

(1− r)1+ǫ

+
C6

4πωt1/2

∫ 1

1−a1/t

dr

(1− r)1/2
≤ C̃6

t

with some constant C̃6 > 0. Here, for the interval (0, 1/2), we estimated the
integrand directly from (4.38) using again (4.32) and (4.46).
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From estimates (4.42), (4.47), (4.48), and (4.54) of the terms I1, I2, I3, and I4,
respectively, in decomposition (4.34), we obtain for P1 the same estimate as (4.33)
for P2, which altogether give the estimate of P in (4.23), again with t0 = 2a1. This
concludes the proof of (4.20) in the case d = 2.

• Case d = 3.

The solution is given by the Kirchhoff’s formula [12, Par. 2.4.1 (c)]

(4.55) v (x, t) =
1

4π

∫

|s|=1

t v1 (x+ sc0t) dσs,

where dσs denotes the surface measure of the unit sphere S2. In this case, it is
immediate to see that (4.55) implies (4.20), owing to assumption (2.10).

• Conclusion of the proof.

The estimates for the solution derivatives appearing in (2.11), under the assump-
tion made at the beginning that v0 ≡ 0, follow by observation that the differ-
entiation under the integral sign in (4.22) and (4.55) is permitted and does not
yield any singular or time growing multipliers, as long as the initial datum v1 is
sufficiently smooth.

The same argument also justifies our restriction to the case v0 ≡ 0. In fact, in
order to extend the result to the case v0 6≡ 0, it is enough to note that we can
write v = w̃+∂tw with w̃ and w solving the problems ∂2

t w̃− c20∆w̃ = 0, w̃ (x, 0) =
0, ∂tw̃ (x, 0) = v1 (x) and ∂2

tw − c20∆w = 0, w (x, 0) = 0, ∂tw (x, 0) = v0 (x),
respectively. �

4.4. Proof of Lemma 2.4. Similarly to Lemma 2.3, in the main body of the
proof, we shall derive the estimate

(4.56) |v (x, t)| ≤ C

(1 + t2)1/2
, x ∈ Ω, t ≥ 0,

for some constant C > 0, and the estimate of the other terms in (2.13) is discussed
at the end.

• Case d = 2.

The solution is given explicitly by the Poisson’s formula [12, Par. 2.4.1 (c)]

v (x, t) =
1

2π

[∫ 1

0

rt

(1− r2)1/2

∫

|s|=1

v1 (x+ src0t) dσsdr(4.57)

+∂t

(∫ 1

0

rt

(1− r2)1/2

∫

|s|=1

v0 (x+ src0t) dσsdr

)]
.
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Upon insertion of (2.12) into (4.57), and setting ρ := |x+ src0t|, φ := x+src0t
|x+src0t| , we

rearrange the terms to obtain

v (x, t) =
1

2π

∫

|s|=1

∫ 1

0

rt

(1− r2)1/2
[∂tA (ρ)− c0A

′ (ρ)]Y (φ) drdσs(4.58)

+
1

2π

∫

|s|=1

∫ 1

0

r

(1− r2)1/2
A (ρ) [t∂tY (φ) + Y (φ)] drdσs.

Since |s| = 1, we have

(4.59) ∂tA (ρ) = rc0A
′ (ρ)

x · s + rc0t

|x+ src0t|
, r∂rA (ρ) = t∂tA (ρ) ,

∂tY (φ) =
rc0s · ∇Y (φ)

|x + src0t|
− rc0 (x · s+ rc0t)

|x+ src0t|3
(x + src0t) · ∇Y (φ) ,

r∂rY (φ) = t∂tY (φ).

(4.60)

Note that, using (4.59), we can rewrite, for t > 0,

∂tA (ρ)− c0A
′ (ρ) =

1

t
(r − 1) ∂rA (ρ)− 1

t

( |x+ src0t|
x · s + rc0t

− 1

)
∂rA (ρ)

=
1

t
(r − 1) ∂rA (ρ) + c0

(
x · s + rc0t

|x+ src0t|
− 1

)
A′ (ρ) .(4.61)

Plugging (4.61) into (4.58), we observe that the term with ∂rA can be integrated
by parts in the variable r, due to the cancellation of the singularity at r = 1. In
doing so, both boundary terms at r = 0 and r = 1, respectively, vanish. With
some simplifications that employ (4.60) and the identity

(
r (1− r)

(1− r2)1/2

)′

+
r

(1− r2)1/2
=

1

(1− r2)1/2 (1 + r)
,

we arrive at

v (x, t) =
1

2π

∫

|s|=1

∫ 1

0

1

(1− r2)1/2

[
1

1 + r
A (ρ) Y (φ)(4.62)

+rc0t

(
x · s + rc0t

|x + src0t|
− 1

)
A′ (ρ)Y (φ)

]
drdσs +Q (x, t) ,

where we have set

Q (x, t) :=
1

2π

∫

|s|=1

∫ 1

0

rc0t

(1− r2)1/2

[
1

|x+ src0t|
A (ρ) s · ∇Y (φ)

− x · s+ rc0t

|x+ src0t|3
A (ρ) (x+ src0t) · ∇Y (φ)

]
drdσs.
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Let us split Q (x, t) = Q1 (x, t) +Q2 (x, t), with

Q1 (x, t) :=
1

2π

∫

|s|=1

∫ 1

0

A (ρ)

(1− r2)1/2

(4.63)

×
[
(x · s) (x · s + rc0t) (x + src0t) · ∇Y (φ)

|x+ src0t|3
− x · ∇Y (φ)

|x + src0t|

]
drdσs,

Q2 (x, t) :=
1

2π

∫

|s|=1

∫ 1

0

A (ρ)

(1− r2)1/2

(4.64)

×
(
1− x · s+ rc0t

|x+ src0t|

)(
1 +

x · s+ rc0t

|x+ src0t|

)
(x+ src0t) · ∇Y (φ)

|x+ src0t|
drdσs.

By setting
(4.65)

P1 (x, t) :=
1

2π

∫ 1

0

1

(1− r2)1/2

∫

|s|=1

rc0t

(
x · s+ rc0t

|x+ src0t|
− 1

)
A′ (ρ) Y (φ) dσsdr,

(4.66) P2 (x, t) :=
1

2π

∫ 1

0

1

(1− r2)1/2 (1 + r)

∫

|s|=1

A (ρ) Y (φ) dσsdr,

we can rewrite (4.62) as

(4.67) v (x, t) = P1 (x, t) + P2 (x, t) +Q1 (x, t) +Q2 (x, t) .

We remark that the decomposition of Q into Q1 and Q2 is beneficial in the
estimate for large rt. Namely, we have, for rt ≫ 1, uniformly in x ∈ Ω, s ∈ S1,

(4.68)
(x · s) (x · s+ rc0t) (x+ src0t) · ∇Y (φ)

|x + src0t|3
− x · ∇Y (φ)

|x+ src0t|
= O

(
1

rt

)
,

(4.69)

(
1− x · s+ rc0t

|x+ src0t|

)(
1 +

x · s+ rc0t

|x+ src0t|

)
(x+ src0t) · ∇Y (φ)

|x+ src0t|
= O

(
1

r2t2

)
.

Note that (4.69) follows from estimate (4.40).
As in the proof of Lemma 2.3, we shall prove that there exists t0 > 0 such that

the bounds
(4.70)

|P1 (x, t)| ≤
C̃0

t
, |P2 (x, t)| ≤

C̃1

t
, |Q1 (x, t)| ≤

C̃2

t
, |Q2 (x, t)| ≤

C̃3

t
,

are valid uniformly in x ∈ Ω with some constants C̃0, C̃1, C̃2, C̃3 > 0 for any t ≥ t0.
Then, due to the boundedness of the solution v for any finite t ≥ 0 (see (4.57)),
the bounds in (4.70) imply (4.56).
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Since A (ρ), A′ (ρ) are different from zero only for ρ > ρ0, i.e. for rc0t >(
(x · s)2 + ρ20 − |x|2

)1/2−x · s, the integration range in the r variable in each term
of (4.67) effectively reduces from (0, 1) to (a1/t, 1) with a1 > 0 defined in (4.24).
With this argument, we are implicity assuming that t ≥ a1. We will actually
prove (4.70) with t0 := 2a1.

Estimate of P1 for t ≥ t0:
Let us introduce

(4.71) F1 (x, rt) :=
c0
2π

∫

|s|=1

(rt)5/2
(
x · s + rc0t

|x+ src0t|
− 1

)
A′ (ρ) Y (φ) dσs,

so that we can write

P1 (x, t) =

∫ 1

a1/t

1

(1− r2)1/2 (rt)3/2
F1 (x, rt) dr =

∫ 1/2

a1/t

. . . +

∫ 1

1/2

. . .

=:P1,1 (x, t) + P1,2 (x, t) ,

assuming a1/t ≤ 1/2, i.e. t ≥ 2a1.
Since we consider only ρ = |x+ src0t| > ρ0 > 0 (as the integrand of F1 (x, rt)

vanishes otherwise), the denominators in (4.40) and (4.71) are bounded away from
zero. Moreover, since rc0t = |src0t| ≤ ρ + |x| ≤ ρ + ρ0, we have, uniformly for
x ∈ Ω, s ∈ S1,

(rt)1/2 |A′ (ρ)| ≤





(
ρ+ρ0
c0

)1/2
‖A′‖L∞(R+) , 0 ≤ ρ ≤ ρ1,

(
rt
ρ

)1/2 (
ω
c0
+ 1

2ρ1

)
≤
(

ρ+ρ0
c0ρ

)1/2 (
ω
c0
+ 1

2ρ1

)
, ρ > ρ1,

(4.72)

≤C0, ρ > 0,

for some constant C0 > 0. This, together with (4.40), implies that

sup
x∈Ω

‖F1 (x, ·)‖L∞(a1,∞) =: C1 < ∞

for some constant C1 > 0. Therefore, we can estimate, for t ≥ t0 = 2a1 and x ∈ Ω,

|P1,1 (x, t)| ≤ 21/2
C1

t3/2

∫ 1/2

a1/t

dr

r3/2
<

23/2C1

a
1/2
1 t

,

|P1,2 (x, t)| ≤ 23/2
C1

t3/2

∫ 1

1/2

dr

(1− r)1/2
=

4C1

t3/2
,

and thus we have the bound for P1 in (4.70) with t0 = 2a1 and some constant

C̃0 > 0.

Estimate of Q1, Q2 for t ≥ t0:
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We proceed to estimate the terms Q1, Q2 in a similar fashion. As before, we
note that all the denominators in (4.63) and (4.64) are bounded away from zero.
Therefore, by setting

F2 (x, rt) :=
(rt)3/2

2π

∫

|s|=1

[
(x · s) (x · s + rc0t) (x+ src0t) · ∇Y (φ)

|x+ src0t|3
(4.73)

−x · ∇Y (φ)

|x+ src0t|

]
A (ρ) dσs,

(4.74)

F3 (x, rt) :=
(rt)5/2

2π

∫

|s|=1

(
1− (x · s+ rc0t)

2

|x+ src0t|2

)
(x + src0t) · ∇Y (φ)

|x+ src0t|
A (ρ) dσs,

and recalling (4.68) and (4.69), we have

(4.75) sup
x∈Ω

‖F2 (x, ·)‖L∞(a1,∞) =: C2 < ∞, sup
x∈Ω

‖F3 (x, ·)‖L∞(a1,∞) =: C3 < ∞.

Consequently, we estimate as before, for x ∈ Ω, t ≥ t0 = 2a1,

|Q1 (x, t)| ≤ 21/2
C2

t3/2

∫ 1/2

a1/t

dr

r3/2
+ 23/2

C2

t3/2

∫ 1

1/2

dr

(1− r)1/2
<

C̃2

t
,

|Q2 (x, t)| ≤ 21/2
C3

t5/2

∫ 1/2

a1/t

dr

r5/2
+ 25/2

C3

t5/2

∫ 1

1/2

dr

(1− r)1/2
<

C̃3

t

with some constants C̃2, C̃3 > 0. This proves the bounds for Q1 and Q2 in (4.70)
again with t0 = 2a1.

Estimate of P2 for t ≥ t0:
For the term P2, we proceed as in the estimate of the term P in Lemma 2.3.

Let us rewrite (4.66) as

P2 (x, t) =
1

2π

∫ 1

0

eirωt

(1− r)1/2

∫

|s|=1

[
e−irωt

(1 + r)3/2
A (ρ) Y (φ)

(4.76)

−e−iωt

23/2
A (|x+ sc0t|) Y

(
x+ sc0t

|x+ sc0t|

)]
dσsdr

+
1

25/2π

∫

|s|=1

A (|x + sc0t|) Y
(

x+ sc0t

|x+ sc0t|

)
dσs

∫ 1

0

e−i(1−r)ωt

(1− r)1/2
dr

=:P2,1 (x, t) + P2,2 (x, t) .

We start with

P2,2 (x, t) =
1

t1/2
F4 (x, t)

∫ 1

0

e−irωt

r1/2
dr,
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where we made a change of variable r 7→ (1− r) and introduced

(4.77) F4 (x, t) :=
t1/2

25/2π

∫

|s|=1

A (|x+ sc0t|)Y
(

x + sc0t

|x + sc0t|

)
dσs.

Similarly to (4.72), we have t1/2A (|x+ sc0t|) ≤ C00 for some constant C00 > 0,
and thus

(4.78) sup
x∈Ω

‖F4 (x, ·)‖L∞(R+) =: C4 < ∞.

Hence, employing Lemma A.3, we obtain, for x ∈ Ω and sufficiently large t > 0,

|P2,2 (x, t)| ≤
C̃4

t
.(4.79)

To deal with P2,1, we note that the integrand is a smooth function of r in [0, 1)
and it behaves like (1− r)1/2 as r → 1. Integrating by parts in the r variable with
eirωtdr as differential, both boundary terms vanish (recall also that A (|x|) ≡ 0 for
x ∈ Ω). We thus have

P2,1 (x, t) =− 1

2πiωt

∫ 1

0

∫

|s|=1

eirωt∂r

(
1

(1− r)1/2

[
e−irωt

(1 + r)3/2
A (ρ)Y (φ)(4.80)

−e−iωt

23/2
A (|x+ sc0t|)Y

(
x + sc0t

|x + sc0t|

)])
dσsdr

=I1 (x, t) + I2 (x, t) + I3 (x, t) + I4 (x, t) ,

where
(4.81)

I1 (x, t) :=
i

2πωt

∫ 1

0

∫

|s|=1

1

(1− r)1/2 (1 + r)3/2
Y (φ) eirωt∂r

(
e−irωtA (ρ)

)
dσsdr,

(4.82) I2 (x, t) :=
i

2πωt

∫ 1

0

∫

|s|=1

1

(1− r)1/2 (1 + r)3/2
A (ρ) ∂rY (φ) dσsdr,

I3 (x, t) :=− 3i

4πωt

∫ 1

0

∫

|s|=1

1

(1− r)1/2 (1 + r)5/2
A (ρ) Y (φ) dσsdr,(4.83)

I4 (x, t) :=
i

4πωt

∫ 1

0

∫

|s|=1

1

(1− r)3/2

[
1

(1 + r)3/2
A (ρ) Y (φ)(4.84)

−e−i(1−r)ωt

23/2
A (|x+ sc0t|)Y

(
x + sc0t

|x + sc0t|

)]
dσsdr.
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For the term I1, observe that, using (4.59), we have

r3/2t1/2

c0
eirωt∂r

(
e−irωtA (ρ)

)
= (rt)3/2

(
A′ (ρ)− iω

c0
A (ρ)

)

− (rt)3/2A′ (ρ)

(
1− x · s+ rc0t

|x+ src0t|

)
,

where both terms on the right-hand side are uniformly bounded for rt > 0, x ∈ Ω,
|s| = 1, due to (4.40) and the assumption on the form of A. Therefore, for

F5 (x, rt) :=
ic0
2πω

∫

|s|=1

Y (φ)
r3/2t1/2

c0
eirωt∂r

(
e−irωtA (ρ)

)
dσs,

we have

sup
x∈Ω

‖F5 (x, ·)‖L∞(a1,∞) =: C5 < ∞.

Since both A, A′ vanish on [0, ρ0], the integrals in r in each of (4.81)–(4.83) reduces
to (a1/t, 1) (see the discussion before (4.24)). Hence we can estimate I1 in (4.81)
for t ≥ t0 = 2a1 as

|I1 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r)1/2 (1 + r)3/2
F5 (x, rt) dr

∣∣∣∣∣(4.85)

≤21/2C5

t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C5

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃5

t

with some constant C̃5 > 0.
In a similar but simpler fashion we can estimate the terms I2 and I3. Namely,

recalling (4.60), we have

F6 (x, rt) :=
ic0 (rt)

3/2

2πω

∫

|s|=1

A (ρ)

[
s · ∇Y (φ)

|x+ src0t|

− x · s + rc0t

|x+ src0t|3
(x+ src0t) · ∇Y (φ)

]
dσs,

|F6 (x, rt)| ≤
c0
πω

∫

|s|=1

(
rt

ρ

)3/2

ρ1/2 |A (ρ)| |∇Y (φ)| dσs,

and hence we deduce that

(4.86) sup
x∈Ω

‖F6 (x, ·)‖L∞(a1,∞) =: C6 < ∞.

Moreover,

F7 (x, rt) := −3i (rt)1/2

4πω

∫

|s|=1

A (ρ) Y (φ) dσs,
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|F7 (x, rt)| ≤
3

4πω

∫

|s|=1

(
rt

ρ

)1/2

ρ1/2 |A (ρ)| |Y (φ)| dσs,

and thus

(4.87) sup
x∈Ω

‖F7 (x, ·)‖L∞(a1,∞) =: C7 < ∞.

Therefore, we obtain, for t ≥ t0 = 2a1,

|I2 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r3/2 (1− r)1/2 (1 + r)3/2
F6 (x, rt) dr

∣∣∣∣∣(4.88)

≤21/2C6

t3/2

∫ 1/2

a1/t

dr

r3/2
+

23/2C6

t3/2

∫ 1

1/2

dr

(1− r)1/2
≤ C̃6

t
,

|I3 (x, t)| =
1

t3/2

∣∣∣∣∣

∫ 1

a1/t

1

r1/2 (1− r)1/2 (1 + r)5/2
F7 (x, rt) dr

∣∣∣∣∣(4.89)

≤21/2C7

t3/2

(∫ 1/2

a1/t

dr

r1/2
+

∫ 1

1/2

dr

(1− r)1/2

)
≤ C̃7

t3/2

with some constants C̃6, C̃7 > 0.
To treat the term I4, we introduce

F̃8 (x, r, t) :=

∫

|s|=1

[
1

(1 + r)3/2
A (ρ) Y (φ)(4.90)

−e−i(1−r)ωt

23/2
A (|x+ sc0t|) Y

(
x+ sc0t

|x+ sc0t|

)]
dσs,

(4.91) F8 (x, r, t) :=
1

1− r
F̃8 (x, r, t) .

Using F̃8 (x, 1, t) = 0, (4.91) can be rewritten as
(4.92)

F8 (x, r, t) =
1

1− r

(
F̃8 (x, 1, t)− F̃8 (x, r, t)

)
= − 1

1− r

∫ 1

r

∂rF̃8 (x, τ, t) dτ.
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From this, we estimate, for r ∈ (1− a1/t, 1),

|F8 (x, r, t)| ≤
∥∥∥∂rF̃8 (x, ·, t)

∥∥∥
L∞(1−a1/t,1)

≤
∫

|s|=1

[
3

2 (1 + r)5/2
|A (ρ)| |Y (φ)|+ 1

(1 + r)3/2
|∂rA (ρ)| |Y (φ)|

+
1

(1 + r)3/2
|A (ρ)| |∂rY (φ)|+ ωt

23/2
|A (|x + sc0t|)|

∣∣∣∣Y
(

x + sc0t

|x + sc0t|

)∣∣∣∣

]
dσs.

Therefore, employing (4.59) and (4.60), taking into account the behaviour of A(ρ)
and A′(ρ) for ρ > ρ1, we deduce that

(4.93) sup
x∈Ω, r∈(1−a1/t, 1), t>2a1

∣∣F8 (x, r, t) /t
1/2
∣∣ =: C8 < ∞.

Moreover, for r ∈ (1/2, 1− a1/t) and ǫ ∈ (0, 1/2], taking into account (4.91), we
have

∣∣∣(1− r)1/2+ǫ tǫF8 (x, r, t)
∣∣∣ =

∣∣∣F̃8 (x, r, t)
∣∣∣ tǫ

(1− r)1/2−ǫ
≤
∣∣∣F̃8 (x, r, t)

∣∣∣ t1/2

a
1/2−ǫ
1

.

Hence, with C4 and C7 defined in (4.78) and (4.87), respectively, we can obtain
from (4.90) that, for any ǫ ∈ (0, 1/2],

sup
x∈Ω, r∈(1/2, 1−a1/t), t>2a1

∣∣∣(1− r)1/2+ǫ tǫF8 (x, r, t)
∣∣∣ ≤ 1

a
1/2−ǫ
1

(
21/24πω

3
C7 + 2πC4

)(4.94)

=:C9 < ∞.

Altogether (4.93) and (4.94) imply that, for t ≥ t0 = 2a1 and ǫ ∈ (0, 1/2],

|I4 (x, t)| ≤
1

4πωt

∫ 1

0

1

(1− r)1/2
|F8 (x, r, t)| dr(4.95)

=
1

4πωt

(∫ 1/2

0

. . .+

∫ 1−a1/t

1/2

. . .+

∫ 1

1−a1/t

. . .

)

≤23/2

t3/2

(
C7

3

∫ 1/2

0

dr

r1/2
+

C4

4ω

)
+

C9

4πωt1+ǫ

∫ 1−a1/t

1/2

dr

(1− r)1+ǫ

+
C8

4πωt1/2

∫ 1

1−a1/t

dr

(1− r)1/2
≤ C̃8

t

with some constant C̃8 > 0. Here, for the interval (0, 1/2), we estimated the
integrand directly from (4.84) using again (4.78) and (4.87).

From estimates (4.85), (4.88), (4.89), and (4.95), of I1, I2, I3, and I4, respec-
tively, in decomposition (4.80), we obtain for P2,1 the same estimate as (4.79) for
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P2,2. The estimate for P2 in (4.70) with t0 = 2a1 readily follows from (4.76). This
completes the proof of (4.56) in the case d = 2.

• Case d = 3.

In this case, the solution is given by the Kirchhoff’s formula [12, Par. 2.4.1 (c)]

(4.96) v (x, t) =
t

4π

∫

|s|=1

[
v1 (x + sc0t) + ∂tv0 (x+ sc0t) +

2

t
v0 (x+ sc0t)

]
dσs.

The assumed form of the initial conditions yields

v (x, t) =
t

4π

∫

|s|=1

[(
x · s+ c0t

|x+ sc0t|
− 1

)
c0A

′ (x+ sc0t)Y

(
x+ sc0t

|x+ sc0t|

)(4.97)

+A (x+ sc0t) ∂tY

(
x+ sc0t

|x+ sc0t|

)
+

2

t
A (x + sc0t) Y

(
x+ sc0t

|x+ sc0t|

)]
dσs.

From (4.40), (4.60), and the fact that, for d = 3, bothA (x+ sc0t) and A′ (x+ sc0t)
are O (1/t) for t ≫ 1 uniformly for x ∈ Ω, s ∈ S2, we see that each term in the
integrand of (4.97) is O (1/t2). The estimate (4.56) hence follows.

• Conclusion of the proof.

As in the proof of Lemma 2.3, the estimates of the solution derivatives in (2.13)
follow from that of the solution since differentiation under the integral sign in (4.62)
and (4.97) is permitted and no singular nor time growing multiplier arise. �

5. Conclusions and outlook

Motivated primarily by the development of time-domain methods for solving
the Helmholtz equation with variable coefficients, we have established the rigor-
ous proof of the LAP under physically reasonable assumptions on the coefficients
of the wave equation and the source term. Under an appropriate modification,
the LAP was extended to 1D. Moreover, since the speed of stabilisation towards
the harmonic regime is a deciding factor for utilising time-domain approaches on
practice, we have also provided rigorous estimates for this time convergence.

Our main focus was on the 1D and 2D cases for which the LAP was generally
understudied previously. In these cases, exponential (for 1D) and algebraic (for
2D) convergence rates are generally sharp. In the 3D case, the works on wave
equations of similar form and some of our numerical experiments (for radial data)
suggest that our algebraic convergence result could be improved to the exponential
one.

Another possibility to extend our results is to remove the non-trapping assump-
tion on the coefficients. Even though the LAP is still expected to be valid, in this
case, the time convergence rate would be much slower: the algebraic rate would
be replaced with inversely logarithmical with some exponent.
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Appendix .

We collect here some technical estimates needed in the proofs of Sections 3–4.

Lemma A.1. For y ∈ Ω, Ω ∈ Rd bounded domain, and K defined by (3.8), we
have the following asymptotic expansions valid for |x| ≫ 1:

K (x− y) =
1

4π

(
ω

2πic0

) d−3

2 e
i ω
c0
(|x|−x·y

|x| )

|x|
d−1

2

[
1 +

1

|x|

(
(d− 3) (d− 1)

ic0
8ω

(A.1)

+
d− 1

2

x · y
|x| +

iω

2c0

(
|y|2 −

(
x · y
|x|

)2
))]

+O
(

1

|x|
d+3

2

)
,

∂|x|K (x− y) =
1

4π

(
ω

2πic0

) d−3

2 e
i ω
c0
(|x|−x·y

|x| )

|x|
d−1

2

[
i
ω

c0
− 1

|x|

(
ω2

2c20

(
|y|2 −

(
x · y
|x|

)2
)(A.2)

−d − 1

2

iω

c0

x · y
|x| +

d2 − 1

8

)]
+O

(
1

|x|
d+3

2

)
.

Proof. Setting

(A.3) K̃ (x− y) :=
1

|x− y|
d−2

2

H
(1)
d−2

2

(
ω

c0
|x− y|

)
,

we have

∂|x|K̃ (x− y) =
x

|x| · ∇K̃ (x− y) =
|x|2 − x · y

|x|
1

|x− y|
d
2

[
ω

c0

(
H

(1)
d−2

2

)′( ω

c0
|x− y|

)(A.4)

+

(
1− d

2

)
1

|x− y|H
(1)
d−2

2

(
ω

c0
|x− y|

)]
.

Using the asymptotic behavior of H
(1)
p for large arguments [24, Sect. 10.17(i–ii)]

H(1)
p (x) =

(
2

π

) 1

2

ei(x−
2p+1

4
π)
(

1

x1/2
+

i (4p2 − 1)

8x3/2

)
+O

(
1

x5/2

)
,

d

dx
H(1)

p (x) =

(
2

π

) 1

2

ei(x−
2p+1

4
π)
(

i

x1/2
− 4p2 + 3

8x3/2

)
+O

(
1

x5/2

)
, x ≫ 1,
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we can write (A.3) and (A.4), respectively, as

K̃ (x− y) =

(
2c0
πω

)1/2
e−i(d−1)π/4

|x− y|
d−1

2

e
i ω
c0

|x−y|
[
1 +

ic0
8ω

(d− 3) (d− 1)
1

|x− y|

]
(A.5)

+O
(

1

|x− y|
d+3

2

)
,

∂|x|K̃ (x− y) =

(
2c0
πω

)1/2 |x|2 − x · y
|x|

e−i(d−1)π/4

|x− y|
d+1

2

e
i ω
c0

|x−y|
[
i
ω

c0
(A.6)

+

(
1− d

2
− (d− 2)2 + 3

8

)
1

|x− y|

]
+O

(
1

|x− y|
d+5

2

)
.

By using the identity

|x− y| = |x|
(
1− 2

x · y
|x|2

+
|y|2

|x|2

)1/2

,

and the Taylor expansion of (1 + z)−γ/2 with z := −2 x·y
|x|2 + |y|2

|x|2 about z = 0, we

obtain, for |x| ≫ 1,

1

|x− y|γ =
1

|x|γ
(
1 + γ

x · y
|x|2

)
+O

(
1

|x|γ+2

)
.

We will use this formula with γ = d−1
2
, d+1

2
, d+3

2
. Moreover, using the Tay-

lor expansions of (1 + z1)
1/2 and exp (z2) with z1 := −2 x·y

|x|2 + |y|2
|x|2 and z2 :=

i ω
c0
|x|
[(

1− 2x·y
|x|2 + |y|2

|x|2
)1/2

− 1 + x·y
|x|2

]
about z1 = z2 = 0, we obtain

e
i ω
c0

|x−y|
= e

i ω
c0
(|x|−x·y

|x| )e
i ω
c0

|x|
[

(

1− 2x·y

|x|2
+ |y|2

|x|2

)1/2

−1+ x·y

|x|2

]

= e
i ω
c0
(|x|−x·y

|x| )


1 + i

ω

c0
|x|



(
1− 2x · y

|x|2
+

|y|2

|x|2

)1/2

− 1 +
x · y
|x|2




 +O

(
1

|x|2
)

= e
i ω
c0
(|x|−x·y

|x| )

(
1 + i

ω

2c0

|x|2 |y|2 − (x · y)2

|x|3

)
+O

(
1

|x|2
)
.
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Therefore, we get from (A.5) and (A.6)

K̃ (x− y) =

(
2c0
πω

)1/2
e−i(d−1)π/4

|x|
d−1

2

e
i ω
c0
(|x|−x·y

|x| )
[
1 +

1

|x|

(
i
c0
ω

(d− 3) (d− 1)

8
(A.7)

+
d− 1

2

x · y
|x| + i

ω

2c0

|x|2 |y|2 − (x · y)2

|x|2

)]
+O

(
1

|x|
d+3

2

)
,

∂|x|K̃ (x− y) =

(
2c0
πω

)1/2
e−i(d−1)π/4

|x|
d−1

2

e
i ω
c0
(|x|−x·y

|x| )

[
i
ω

c0
− 1

|x|

(
ω2

2c20

(
|y|2 −

(
x

|x| · y
)2
)(A.8)

+i
ω

2c0
(1− d)

x · y
|x| +

d2 − 1

8

)]
+O

(
1

|x|
d+3

2

)
.

Since K (x) = i
4

(
ω

2πc0

) d−2

2

K̃ (x), estimates (A.7) and (A.8) imply (A.1) and (A.2).

�

The next result is elementary but it is convenient to present it separately.

Lemma A.2. Let a, b > 0, and define

(A.9) J :=

∫ 1

0

dx

(x2 + a2)b/2
≥ 0.

Then, we have

(A.10) J ≤





C1,b, b < 1,

log

(
1

a
+

√
1 +

1

a2

)
, b = 1,

C2,b
1

ab−1
, b > 1,

where C1,b :=
1

1− b
, C2,b :=

∫ ∞

0

dx

(1 + x2)b/2
.

Proof. After the change of variable x 7→ z := x/a, we have

J =
1

ab−1

∫ 1/a

0

dz

(z2 + 1)b/2
.

Using ∫ 1/a

0

dz

(z2 + 1)b/2
≤
∫ 1/a

0

dz

zb
=

ab−1

1− b
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when b < 1, ∫ 1/a

0

dz

(z2 + 1)b/2
≤
∫ ∞

0

dz

(z2 + 1)b/2
=: C2,b

when b > 1, and

J =

∫ 1/a

0

dz

(z2 + 1)1/2
= log

(
1

a
+

√
1 +

1

a2

)

when b = 1, the estimate (A.10) follows immediately. �

The following estimate for a simple singular oscillatory integral is certainly not
new. However, since it is not easy to find a precise reference for it, we provide it
here for the sake of completeness.

Lemma A.3. Let a > 0. For t ≫ 1, we have the following estimate

(A.11)

∫ a

0

e−ixt

x1/2
dx =

( π

2t

)1/2
(1− i) +O

(
1

t

)
.

Proof. Making a change of variable x 7→ z (x) :=
√
xt, we have

(A.12) I (t) :=

∫ a

0

e−ixt

x1/2
dx =

2√
t

∫ √
at

0

e−iz2dz.

Since the integrand in (A.12) is analytic, we can invoke the Cauchy theorem to
deform the integration contour in the complex plane. In particular, we choose the
new contour Γ1 ∪ Γ2 that consists of two parts: the straight line segment Γ1 and
the circular arc Γ2. This contour is traversed counterclockwise with Γ1 and Γ2

defined, respectively, as

Γ1 :=
{
z ∈ C : z = re−iπ/4, r ∈ (0, R)

}
,

Γ2 :=
{
z ∈ C : z = Reiφ, φ ∈

(
−π

4
, 0
)}

,

where for the sake of brevity, we have set R :=
√
at. In other words, we can write

I (t) =
2√
t

(∫

Γ1

e−iz2dz +

∫

Γ2

e−iz2dz

)
(A.13)

=
2 (1− i)√

2t

∫ R

0

e−r2dr +
2iR√

t

∫ 0

−π/4

exp
(
−iR2e2iφ + iφ

)
dφ.

Note that, for R =
√
at ≫ 1, we have

∫ R

0

e−r2dr =

∫ ∞

0

e−r2dr −
∫ ∞

R

e−r2dr =

√
π

2
− e−R2

∫ ∞

0

e−r2−2Rrdr(A.14)

=

√
π

2
+O

(
e−at

)
,
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∫ 0

−π
4

exp
(
−iR2e2iφ + iφ

)
dφ =

1

2i

∫ φ=0

φ=−π
4

(
1

e2iφ

)1/2

exp
(
−iR2e2iφ

)
d
(
e2iφ
)

(A.15)

=
1

2R2

(
e−iR2 − 1 + i√

2
e−R2

)

+
1

4R2

∫ φ=0

φ=−π
4

(
1

e2iφ

)3/2

exp
(
−iR2e2iφ

)
d
(
e2iφ
)

=
1

2R2

(
e−iR2 − 1 + i√

2
e−R2

)

+
i

2R2

∫ 0

−π
4

exp
(
−iR2e2iφ − iφ

)
dφ

=O
(

1

R2

)
= O

(
1

t

)

Inserting (A.14) and (A.15) into (A.13) furnishes the claimed estimate (A.11).
�
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