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Mean-field neural networks-based algorithms for
McKean-Vlasov control problems ∗

Huyên Pham† Xavier Warin ‡

March 17, 2024

Abstract

This paper is devoted to the numerical resolution of McKean-Vlasov control problems via
the class of mean-field neural networks introduced in our companion paper [25] in order to learn
the solution on the Wasserstein space. We propose several algorithms either based on dynamic
programming with control learning by policy or value iteration, or backward SDE from stochastic
maximum principle with global or local loss functions. Extensive numerical results on different
examples are presented to illustrate the accuracy of each of our eight algorithms. We discuss and
compare the pros and cons of all the tested methods.

Keywords: McKean-Vlasov control, mean-field neural networks, learning on Wasserstein space, dy-
namic programming, backward SDE, deep learning algorithms.

1 Introduction
This paper is concerned with the numerical resolution of McKean-Vlasov (MKV) control, also called
mean-field control (MFC) problems over finite horizon. The dynamics of the controlled state process
X = (Xt)t valued in Rd is driven by the mean-field SDE (stochastic differential equation):

dXt = b(Xt,PXt , αt)dt+ σ(Xt,PXt , αt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

where W is a d-dimensional Brownian motion on a filtered probability space (Ω,F ,F = (Ft)t,P),
the initial distribution µ0 of X0 lies in P2(Rd), the Wasserstein space of square-integrable probability
measures, α ∈ A is a control process, i.e, an F-progressively measurable process valued in A ⊂ Rm,
and PXt denotes the law of Xt, valued on P2(Rd), under standard assumptions on the coefficients b,
σ defined on Rd ×P2(Rd)×A, and valued respectively in Rd and Rd×d. The objective is to minimize
over controls α ∈ A, a cost functional of the form

J(α) = E
[ ∫ T

0

f(Xt,PXt , αt)dt+ g(XT ,PXT )
]
, → v(µ0) = inf

α∈A
J(α), (1.1)

where f is a running cost function on Rd×P2(Rd)×A, and g is a terminal cost function on Rd×P2(Rd).
The theory and applications of mean-field control problems that study models of large population

of interacting agents controlled by a social planner, have generated a vast literature in the last decade,
and we refer to the monographs [4], [6], [7] for a comprehensive treatment of this topic. As analytical
solutions to MFC are rarely available, it is crucial to design efficient numerical schemes for solving
such problem, and the main challenging issue is the infinite dimensional feature of MFC coming from
the distribution law state variable.
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Following the tremendous impact of machine learning methods for solving high-dimensional partial
differential equations (PDEs) and control problems, see e.g. the survey papers [3], [16], and the link
to the website deeppde.org, some recent works have proposed deep learning schemes for MFC, based
on neural network approximations of the feedback control and/or the value function solution to the
Hamilton-Jacobi-Bellman equation or backward stochastic differential equations (BSDEs). In these
articles, the authors consider either approximate feedback controls by standard feedforward neural
networks with input the time and the state variableXt in Rd by viewing the law ofXt as a deterministic
function of time (see [24], [9], [12], [14], [27], [26]), or consider a particle approximation of the MFC for
reducing the problem to a finite-dimensional problem that is numerically solved by means of symmetric
neural networks, see [13]. However, the outputs obtained by these deep learning schemes only provide
an approximation of the solution for a given initial distribution of the state process. Hence, for another
distribution µ0 of the initial state, these algorithms have to be run again.

In this paper, we aim to compute the minimal cost function v(µ0) for any µ0 ∈ P2(Rd), and to
find the optimal control, which can be searched w.l.o.g. in the class of feedback controls, i.e., of the
form αt = a(t,Xt,PXt), 0 ≤ t ≤ T , for some measurable function a on [0, T ]× Rd × P2(Rd). In other
words, our goal is to learn the value function and the optimal feedback control on the Wasserstein
space. We shall rely on a new class of neural networks, introduced in our companion paper [25], called
mean-field neural networks with input a probability measure in order to approximate mappings on the
Wasserstein space. We then develop several numerical schemes based either on dynamic programming
(DP) or stochastic maximum principle (SMP). We first propose, in the spirit of [17], [18] a global
learning of the feedback control approximated by a mean-field neural network. In the DP approach,
we then propose two algorithms inspired by [20]: the first one learns the control by policy iteration
while the second one learns sequentially the control and the value function by value iteration. In
the SMP approach, we exploit the backward SDE characterization of the solution, and propose five
different algorithms in line with recent methods developed in the context of standard BSDE (see [11],
[21], [15]) that we extend to MKV BSDE with various choices of global or local loss functions to
be minimized in the training of mean-field neural networks. We then provide extensive numerical
experiments on three examples: a mean-field systemic risk model, a min/max linear quadratic model,
and the classical mean-variance problem. We compare and discuss the advantages and drawbacks of
all our algorithms.

The rest of the paper is organized as follows. We recall in Section 2 some key results about the
characterization of MKV control problems by DP or SMP approach, and introduce the class of mean-
field neural networks. Section 3 presents three algorithms based on DP, while Section 4 develops five
algorithms based on the BSDE representation of the solution to MKV. The performances of all our
algorithms are illustrated via three examples in Section 5. Finally, we give in Section 6 some concluding
remarks about the pros and cons of the different schemes.

2 Preliminaries

2.1 Characterization of McKean-Vlasov control
Solution to the MKV control problem (1) can be characterized by dynamic programming (DP) or
maximum principle methods (see [6] for a detailed treatment of this topic). We recall the main results
that will be used for designing our algorithms. In the DP approach, one considers the dynamic version
of problem (1) by defining the decoupled value function V defined on [0, T ] × Rd × P2(Rd), which
satisfies the backward recursion:

V (t,Xt,PXt) = inf
α∈A

E
[ ∫ t+h

t

f(Xs,PXs , αs)ds+ V (t+ h,Xt+h,PXt+h)
∣∣Ft],

for any t ∈ [0, T ), h ∈ (0, T − t], and starting from the terminal condition V (T, x, µ) = g(x, µ), for
(x, µ) ∈ [0, T ]× P2(Rd), so that v(µ0) = E[V (0, X0, µ0)]. By sending h to zero, we derive the master
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Bellman equation for the value function (see section 6.5.2 in [6])

∂tV (t, x, µ) + b
(
x, µ, â(x, µ,U(t, x, µ), ∂xU(t, x, µ))

)
· ∂xV (t, x, µ)

+
1

2
σσᵀ(x, µ, â(x, µ,U(t, x, µ), ∂xU(t, x, µ)) · ∂2

xxV (t, x, µ)

+ Eξ∼µ
[
b
(
ξ, µ, â(ξ, µ,U(t, ξ, µ), ∂xU(t, ξ, µ))

)
· ∂µV (t, x, µ)(ξ)

+
1

2
σσᵀ(ξ, µ, â(ξ, µ,U(t, ξ, µ), ∂xU(t, ξ, µ)) · ∂x′∂µV (t, x, µ)(ξ)

]
+ f

(
x, µ, â(x, µ,U(t, x, µ), ∂xU(t, x, µ))

)
= 0,

for (t, x, µ) ∈ [0, T )×Rd ×P2(Rd). Here · is the inner product in Euclidian spaces, ᵀ is the transpose
operator for a matrix, x′ ∈ Rd 7→ ∂µV (t, x, µ)(x′) ∈ Rd is the Lions derivative on P2(Rd) (see [6]),
the notation Eξ∼µ[.] means that the expectation is taken w.r.t. the random variable ξ distributed
according to the law µ,

U(t, x, µ) = ∂xV (t, x, µ) + Eξ∼µ
[
∂µV (t, ξ, µ)(x)

]
(2.1)

= ∂µv(t, µ)(x), with v(t, µ) := Eξ∼µ[V (t, ξ, µ)],

and it is assumed that for any (x, µ, p,M) ∈ Rd × P2(Rd)× Rd × Rd×d, there exists a minimizer

â(x, µ, p,M) ∈ argmin
a∈A

H(x, µ, p,M, a),

with H(x, µ, p,M, a) := b(x, µ, a) · p+
1

2
σσᵀ(x, µ, a) ·M + f(x, µ, a),

which is Lipschitz in all its variables, so that we get an optimal feedback control given by

a?(t, x, µ) = â(x, µ,U(t, x, µ), ∂xU(t, x, µ)), (t, x, µ) ∈ [0, T ]× Rd × P2(Rd). (2.2)

In the case where the diffusion coefficient σ(x, µ) does not depend on the control variable a, and so
â(x, µ, p) does not depend on the variable M , we have a probabilistic characterization of the solution
in terms of forward-backward SDE of MKV type: by setting

Yt = V (t,Xt,PXt), Zt = σ(Xt,PXt)ᵀ∂xV (t,Xt,PXt), 0 ≤ t ≤ T,

it follows from Itô’s formula and Master Bellman equation that (X,Y, Z) satisfies the forward-backward
SDE{

dXt = b(Xt,PXt , â(Xt,PXt , Pt)
)
dt+ σ(Xt,PXt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0

dYt = −f
(
Xt,PXt , â(Xt,PXt , Pt)

)
dt+ Zt · dWt, 0 ≤ t ≤ T, YT = g(XT ,PXT ),

(2.3)

where the pair (Pt,Mt)t = (U(t,Xt,PXt), ∂xU(t,Xt,PXt)σ(Xt,PXt))t of adjoint processes, valued in
Rd × Rd×d, satisfies from the Pontryagin maximum principle the backward SDE:

dPt = −∂xH
(
Xt,PXt , Pt,Mt, â(Xt,PXt , Pt)

)
dt

− Ẽ
[
∂µH

(
X̃t,PXt , P̃t, M̃t, â(X̃t,PXt , P̃t)

)
(Xt)

]
dt+MtdWt, 0 ≤ t ≤ T,

PT = ∂xg(XT ,PXT ) + Ẽ
[
∂µg(X̃T ,PXT )(XT )

]
,

(2.4)

where (X̃, P̃ , M̃) are independent copies of (X,P,M) on (Ω̃, F̃ , P̃). Under the assumption that (x, µ)
∈ Rd×P2(Rd) 7→ g(x, µ) is convex, (x, µ, a) ∈ Rd×P2(Rd)×A (with A convex set) 7→ H(x, µ, p,M, a)
is convex for any (p,M), together with additional regularity conditions on the coefficients b, σ, f, g, it
is known from [5] that the solution to the adjoint BSDE (2.1) yields an optimal control given by

α∗t = a?(t,Xt,PXt) = â(Xt,PXt , Pt), 0 ≤ t ≤ T.

We are then led to consider the generic form of MKV forward-backward (X,Y,Z):{
dXt = B(Xt,PXt ,Yt)dt+ σ(Xt,PXt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

dYt = Ẽ
[
H(Xt,PXt ,Yt,Zt, X̃t, Ỹt, Z̃t)

]
dt+ ZtdWt, 0 ≤ t ≤ T, YT = G(XT ,PXT ).

(2.5)
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2.2 Mean-field neural networks
The solution to MKV control problem, i.e., the value function and optimal feedback control, are ma-
ppings of the state process and its probability distribution. In order to approximate such mappings, we
shall rely on mean-field neural networks introduced in our companion paper [25]. Those are mappings

N : µ ∈ P2(Rd) 7→ N (µ)(·) : Rd → Rp, with quadratic growth condition,

in one of the following forms:

(i) Bin density: N (µ)(x) = Φ(x,pµ), for x ∈ Rd, µ ∈ D2(Rd) the subset of probability measures µ in
P2(Rd) which admit density functions pµ with respect to the Lebesgue measure λd on Rd. Here,
Φ is a standard feedforward neural network from Rd × RK into Rp, and pµ = (pµk)k∈J1,KK is the
bin weight of the discrete density approximation of pµ on a fixed bounded rectangular domain
K of Rd divided into K bins: ∪Kk=1Bin(k) = K, of center xk, with same area size h = λd(K)/K,
hence given by (see Figure 1 in the case of one dimensional Gaussian distribution for µ):

pµk =
pµ(xk)∑K

k=1 pµ(xk)h
, k = 1, . . . ,K.

(ii) Cylindrical: N (µ)(·) = Ψ(·, < ϕ, µ >), where Ψ is a feedforward network function (outer neural
network) from Rd × Rq into Rp, and ϕ is another feedforward network function (inner neural
network) from Rd into Rq (called latent space). Here we denote < ϕ, µ > :=

∫
ϕ(x)µ(dx).

Figure 1: Bin approximation of a Gaussian distribution.

The relevance of mean-field neural networks is theoretically justified in [25] by universal approximation
theorems, and it has been also shown how they can be trained accurately from samples of probability
measures µ = LD(p) with discrete density of bin weight p = (pk)k∈J1,KK drawn randomly on DK =

{p = (pk)k∈J1,KK ∈ RK+ :
∑K
k=1 pkh = 1}, and simulations of random variables X ∼ µ by inverse

transform. Notice that for µ = LD(p), we have pµ = p, and so the bin density network at such µ is
equal to N (µ)(.) = Φ(.,p). On the other hand, for any cylindrical function F of the measure of the
form F (µ) = Ψ(< ϕ, µ >), we can compute it approximately from samples X(n), n = 1, . . . , N , of µ
by: F (µ) ' Ψ

(
1
N

∑N
n=1 ϕ(X(n))

)
. This is the case in particular for cylindrical neural network.

As described in [25], exploring the space of probability measures is crucial for both neural networks.
In both cases, we employ the bins method to generate samples of probability measures for training
mean-field neural networks. The algorithm used to generate these measures is outlined in [25] and
is currently limited to dimension one. Consequently, all numerical tests conducted in the article are
confined to dimension one. However, it is possible to handle cases in dimension two by employing a
different algorithm proposed in [29]. In all subsequent algorithms, the proper selection of the domain
K is crucial, particularly for the bins method. When the support of the distribution is unknown, an
iterative procedure becomes necessary. Two algorithms can be implemented as follows:

1. First algorithm: (i) Initially, make an initial guess of the support. (ii) Once the resolution
is obtained, verify that the generated distribution’s support is primarily contained within K,
sufficiently far from its boundary. (iii) If the support is not mainly within K, adapt the size and
center of K accordingly.
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2. Second algorithm: (i) Use a very large K during the first iteration to locate the domain of
importance, employing a coarse resolution. (ii) In the subsequent calculation, reduce the size of
K to achieve an accurate resolution.

3 Dynamic programming-based algorithms
We consider a time discretization of the MKV control problem by fixing a time grid T = {ti = i∆t : i =
0, . . . , NT }, with ∆t = T/NT , and introducing the corresponding mean-field Markov decision process:
minimize over feedback controls a on T × Rd × P2(Rd) the cost functional

JNT (a) = E
[NT−1∑

i=0

f(Xi, µi, a(ti, Xi, µi))∆t+ g(XNT , µNT )
]
,

where

Xi+1 = Xi + b(Xi, µi, a(ti, Xi, µi))∆t+ σ(Xi, µi, a(ti, Xi, µi))∆Wi,

=: F∆t(Xi, µi, a(ti, Xi, µi),∆Wi), i = 0, . . . , NT − 1, X0 ∼ µ0,

with ∆Wi := Wti+1
−Wti , and µi = PXi denotes the law of Xi.

We present two classes of algorithms. The first one is learning the control by a single optimization
but allows us to compute the solution of the problem (1) and therefore the solution of the correspon-
ding master Bellman equation only at time t = 0 for all distributions µ0. The second class with two
other algorithms solves NT local optimization problems, and allows us to compute the master equation
at all dates for all distributions.

3.1 Global learning on control
In the spirit of the method introduced in [17], [18], which does not actually rely on dynamic program-
ming, we replace feedback controls by time-dependent mean-field neural networks N (t, µ)(x) valued
in A ⊂ Rm, with input t ∈ [0, T ], µ ∈ P2(Rd), and x ∈ Rd, and minimize over the parameters θ of this
mean-field neural network N = Nθ the global cost function

J(θ) = E
[NT−1∑

i=0

f(Xi, µi,Nθ(ti, µi)(Xi))∆t+ g(XNT , µNT )
]
,

with

Xi+1 = F∆t(Xi, µi,Nθ(ti, µi)(Xi),∆Wi), i = 0, . . . , NT − 1, X0 ∼ µ0.

In practice, for i = 1, . . . , NT , µi has to be estimated/approximated from samples of Xi, and this is
done as follows. We use a training batch of M probability measures µ(m)

0 = LD(p(m)) in D2(Rd) from
samples p(m) = (p

(m)
k )k∈J1,KK, m = 1, . . . ,M , in DK . Then, for each m, we sample X(m),(n)

0 , n =

1, . . . , N , from µ
(m)
0 , and for i = 0, . . . , NT − 1, X(m),(n)

i+1 , n = 1, . . . , N are sampled as

X
(m),(n)
i+1 = F∆t(X

(m),(n)
i , µ̂

(m)
i ,Nθ(ti, µ̂(m)

i )(X
(m),(n)
i ),∆W

(m),(n)
i ),

with µ̂(m)
i = LD(p̂

(m)
i ), p̂(m)

0 = p(m), and p̂
(m)
i = (p̂

(m)
i,k )k∈J1,KK are the estimated density weights in

DK of X(m),(n)
i , i = 1, . . . , NT (truncated on K), namely:

p̂
(m)
i,k =

#{n ∈ J1, NK : ProjK(X
(m),(n)
i ) ∈ Bin(k)}

Nh
, k = 1, . . . ,K,

where ProjK(.) is the projection on K. The cost function is then approximated by

JM,N (θ) =
1

MN

M∑
m=1

[ N∑
n=1

NT−1∑
i=0

f
(
X

(m),(n)
i , µ̂

(m)
i ,Nθ(ti, µ̂(m)

i )(X
(m),(n)
i )

)
∆t+ g(X

(m),(n)
NT

, µ̂
(m)
NT

)
]
.
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The pseudo-code using a gradient descent method is described in Algorithm 1.

Algorithm 1: Global learning on the control
Input data: A time-dependent mean-field neural network Nθ(t, µ)(x).
Initialization: learning rate γ and parameters θ
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M ;

for m = 1, . . . ,M do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N ;

Compute sample trajectories X(m),(n)
0 , X(m),(n)

i , n = 1, . . . , N , and estimate µ̂(m)
i , i =

1, . . . , NT ,
Compute the batch cost JM,N (θ) and its gradient ∇θJM,N (θ) ;
Update θ ← θ − γ∇θJM,N (θ) ;

Return: The set of optimized parameters θ∗.

The global algorithms that directly minimize the objective function have demonstrated effectiveness
in practice, even without having a theoretical convergence proof. The output of this global algorithm is
an approximation of the optimal feedback control at initial time t0 = 0 by a mean-field neural network
Nθ∗(t0, .), and yields an approximation of the optimal control at other times ti, i = 1, . . . , NT − 1,
by mean-field neural networks Nθ∗(ti, µi)(Xi) along the law µi, and the state Xi explored during the
learning algorithm. The value function can then be estimated at initial time t0 by regression as follows:
we approximate the initial value function by a mean-field neural neural network ϑη(µ)(x) valued in R,
and minimize over the parameters η of this neural network the quadratic loss function

E
∣∣∣NT−1∑
i=0

f(Xi, µi,Nθ∗(ti, µi)(Xi))∆t+ g(XNT , µNT )− ϑη(µ0)(X0)
∣∣∣2,

where

Xi+1 = F∆t(Xi, µi,Nθ∗(ti, µi)(Xi),∆Wi), i = 0, . . . , NT − 1, X0 ∼ µ0.

When using the global algorithm and the cylinder network, there is no need to estimate the support
of the distribution. The parameter K is solely used to generate probability distributions at time 0,
and its selection is based on ensuring that the initial distribution of X0 primarily concentrates its
mass within K. On the other hand, when employing the bin method, it is necessary to monitor the
generated distribution and verify that its support is predominantly contained within K. If this is not
the case, the size of K should be adjusted using the procedure suggested in Section 2.2.

3.2 Control learning by policy iteration
Our next algorithm is inspired by the method in [20], which is a combination of the global algorithm on
control and dynamic programming. We replace at any time ti, i = 0, . . . , NT − 1, feedback controls by
mean-field neural networks Nθi with parameter θi, and proceed by backward induction for computing
approximate optimal controls: for i = NT − 1, . . . , 0, keep track of the approximate optimal feedback
controls Nθ∗j , j = i+ 1, . . . , NT − 1, and minimize over θi the cost function:

Ji(θi) = E
[
f(Xi, µi,Nθi(µi)(Xi))∆t+

NT−1∑
j=i+1

f(Xj , µj ,Nθ∗j (µj)(Xj))∆t+ g(XNT , µNT )
]
,

(with the convention that the above sum over j is empty when i = NT − 1) where{
Xi+1 = F∆t(Xi, µi,Nθi(µi)(Xi),∆Wi), Xi ∼ µi,
Xj+1 = F∆t(Xj , µj ,Nθ∗j (µj)(Xj),∆Wj), j = i+ 1, . . . , NT − 1.

(3.1)
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In the practical implementation, the cost function Ji(.) is approximately computed from a training
of M probability measures µ(m)

i = LD(p
(m)
i ) in D2(Rd) with samples p

(m)
i = (p

(m)
i,k )k∈J1,KK, m =

1, . . . ,M , in DK . For each batch m, one then computes N samples X(m),(n)
i ∼ µ

(m)
i , X(m),(n)

j , j
= i + 1, . . . , NT − 1, n = 1, . . . , N , according to (3.2) with estimated probability measures µ̂(m)

j =

LD(p̂
(m)
j ), as in Section 3.1, and thus approximate the local cost function by

JiM,N (θi) =
1

MN

M∑
m=1

N∑
n=1

[
f(X

(m),(n)
i , µ

(m)
i ,Nθi(µ

(m)
i )(X

(m),(n)
i ))∆t

+

NT−1∑
j=i+1

f(X
(m),(n)
j , µ̂

(m)
j ,Nθ∗j (µ̂

(m)
j )(X

(m),(n)
j ))∆t+ g(X

(m),(n)
NT

, µ̂
(m)
NT

)
]
.

The pseudo-code is described in Algorithm 2.

Algorithm 2: Learning by policy iteration
Input data: Mean-field neural networks Nθi ;
for i = NT − 1, . . . , 0 do

Initialization: learning rate γ and parameters θi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for m = 1, . . . ,M do
Generate Brownian increments ∆W

(m),(n)
k , k = i, . . . , NT − 1, n = 1, . . . , N ;

Compute sample trajectories X(m),(n)
i , X(m),(n)

j , n = 1, . . . , N , and estimate µ̂(m)
j , j

= i+ 1, . . . , NT ,
Compute the batch cost JiM,N (θi) and its gradient ∇θJiM,N (θi) ;
Update θi ← θi − γ∇θJiM,N (θi) ;

θ∗i = θi
Return: Optimized parameters θ∗i , i = 0, . . . , NT − 1.

The output of this algorithm is an approximation of the optimal feedback control at any time ti by
a mean-field neural network Nθ∗i , i = 0, . . . , NT − 1. The value function can then be estimated at any
time ti by regression as follows: we approximate the value function at time ti by a mean-field neural
neural network ϑηi(µ)(x) valued in R, and minimize over the parameters ηi of this neural network the
quadratic loss function

E
∣∣∣NT−1∑
j=i

f(Xj , µj ,Nθ∗j (µj)(Xj))∆t+ g(XNT , µNT )− ϑηi(µi)(Xi)
∣∣∣2, (3.2)

where

Xj+1 = F∆t(Xj , µj ,Nθ∗j (µj)(Xj),∆Wj), j = i, . . . , NT − 1, Xi ∼ µi.

In a backward algorithm, having a good estimate of the support of the distribution being tested is
crucial at each time step i. This estimate helps in efficiently sampling the distribution in areas of
interest. If the support is unknown, an iterative procedure, such as the one proposed in Section 2.2,
needs to be implemented to gradually refine the estimation of the support.

3.3 Control learning by value iteration
The two previous algorithms provide low bias estimates of the learnt controls, but in general high-
variance estimate due to this cumulated sum over the cost functions. Moreover, these algorithms are
very memory demanding as, at each epoch, all the N trajectories for the M distributions have to be
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generated for the O(NT ) time values and stored. To circumvent this possible variance issue, we propose
an alternate algorithm of actor-critic type, similarly as in [20] (called there hybrid algorithm), where
the feedback control and value function are learnt sequentially. We are given a family of mean-field
neural networks Nθi and ϑηi , i = 0, . . . , NT − 1, for the approximation of the feedback control (actor)
and value function (critic). We proceed by backward induction as follows: starting from ϑ∗NT (µ)(x) =
g(x, µ), we minimize over θi, for i = NT − 1, . . . , 0, the cost function

Ji(θi) = E
[
f(Xi, µi,Nθi(µi)(Xi))∆t+ ϑ∗i+1(µi+1)(Xi+1)

]
,

where

Xi+1 = F∆t(Xi, µi,Nθ(ti, µi)(Xi),∆Wi), Xi ∼ µi, (3.3)

update θ∗i as the resulting optimal parameter, then minimize over ηi the quadratic loss function

Li(ηi) = E
∣∣∣f(Xi, µi,Nθ∗i (µi)(Xi))∆t+ ϑ∗i+1(µi+1)(Xi+1)− ϑηi(µi)(Xi)

∣∣∣2,
update η∗i as the resulting optimal parameter, and set ϑ∗i = ϑη∗i . Again, in the practical implemen-
tation, we use a training of M probability measures µ(m)

i = LD(p
(m)
i ) in D2(Rd) with samples p

(m)
i

= (p
(m)
i,k )k∈J1,KK, m = 1, . . . ,M , in DK . For each batch m, one then computes N samples X(m),(n)

i ∼
µ

(m)
i , X(m),(n)

i+1 according to (3.3) with estimated probability measure µ̂(m)
i+1 = LD(p̂

(m)
i+1), as in Section

3.1, and approximate the function Ji by

JiM,N (θi) =
1

MN

M∑
m=1

N∑
n=1

[
f(X

(m),(n)
i , µ

(m)
i ,Nθi(µ

(m)
i )(X

(m),(n)
i ))∆t+ ϑ∗i+1(µ

(m)
i+1)(X

(m),(n)
i+1 )

]
,

while similarly the second loss function Li is approximated by

LiM,N (ηi) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣f(X
(m),(n)
i , µ

(m)
i ,Nθ∗i (µ

(m)
i )(X

(m),(n)
i ))∆t+ ϑ∗i+1(µ

(m)
i+1)(X

(m),(n)
i+1 )

− ϑηi(µ
(m)
i )(X

(m),(n)
i )

∣∣∣2.
The pseudo-code is described in Algorithm 3.
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Algorithm 3: Actor/critic algorithm: learning by value iteration
Input data: Mean-field neural networks Nθi , ϑηi , i = 0, . . . , NT − 1 ;
Initialization: ϑ∗NT (µ)(x) = g(x, µ);
for i = NT − 1, . . . , 0 do

Initialization: learning rates γC , γV and parameters θi, ηi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , n = 1, . . . , N ;

Compute samples X(m),(n)
i , X(m),(n)

i+1 , n = 1, . . . , N , and estimate µ̂(m)
i+1

Compute the batch cost JiM,N (θi) and its gradient ∇θJiM,N (θi) ;
Update θi ← θi − γ∇θJiM,N (θi) ;

Store optimized parameter θ∗i ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , n = 1, . . . , N ;

Compute samples X(m),(n)
i , X(m),(n)

i+1 , n = 1, . . . , N , and estimate µ̂(m)
i+1

Compute the batch cost LiM,N (ηi) and its gradient ∇ηLiM,N (ηi) ;
Update ηi ← ηi − γ∇ηLiM,N (ηi) ;

ϑ∗i = ϑη∗i
Return: The optimized parameters θ∗i , η∗i , i = 0, . . . , NT − 1

The output of this algorithm is an approximation of the optimal feedback control and value function
at any time ti by mean-field neural networks Nθ∗i , and ϑη∗i , i = 0, . . . , NT − 1.
Since the resolution is performed in a backward manner, when the support of the distribution is
unknown, it becomes necessary to employ an iterative algorithm, as described in Section 2.2, to explore
and estimate the distributions of interest.

4 Backward SDE-based algorithms
We start from the time discretization of the MKV forward-backward SDE (2.1) that characterizes the
solution to the MKV control problem:{
Xi+1 = Xi +B(Xi, µi,Yi)∆t+ σ(Xi, µi)∆Wi, i = 0, . . . , NT − 1, X0 ∼ µ0,

Yi+1 = Yi + Ẽ
[
H(Xi, µi,Yi,Zi, X̃i, Ỹi, Z̃i)

]
∆t+ Zi∆Wi, i = 0, . . . , NT − 1, YNT = G(XNT , µNT ).

This system of equations corresponds to the resolution of the system of equations (2.1), (2.1). Note
that in fact, (Xt, Pt) is independent of Yt. Then the resolution is achieved by calculating the optimal
control solving (Xt, Pt) for t ≤ T . The estimation of Yt is achieved by using the optimal control with
a simple forward simulation and by taking the expectation of Yt in equation (2.1):

Yt = E
[ ∫ T

t

]f
(
Xs,PXs , â(Xs,PXs , Ps)

)
ds+ g(XT ,PXT )

∣∣Ft].
4.1 Local algorithms
We adapt the deep backward scheme in [21] to our context. We are given a family of mean-field neural
networks Yθi(µ)(x),Zθi(µ)(x), i = 0, . . . , NT − 1 (by misuse of notation, we also denote by Y and Z
the neural networks for the approximation of the pair component of the MKV BSDE), and proceed
by backward induction as follows: starting from Y∗NT (µ)(x) = G(x, µ), we minimize over θi, for i =
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NT − 1, . . . , 0, the loss function

Li(θi) = E
∣∣∣Y∗i+1(µi+1)(Xi+1)− Yθi(µi)(Xi)−Zθi(µi)(Xi)∆Wi

− Ẽ
[
H(Xi, µi,Yθi(µi)(Xi),Zθi(µi)(Xi), X̃i,Yθi(µi)(X̃i),Zθi(µi)(X̃i))

]
∆t
∣∣∣2,

where

Xi+1 = Xi +B(Xi, µi,Yθi(µi)(Xi))∆t+ σ(Xi, µi)∆Wi, Xi ∼ µi, (4.1)

update θ∗i as the resulting optimal parameter, and set Y∗i = Yθ∗i . In the practical implementa-
tion, we use a training of M probability measures µ(m)

i = LD(p
(m)
i ) in D2(Rd) with samples p

(m)
i

= (p
(m)
i,k )k∈J1,KK, m = 1, . . . ,M , in DK . For each batch m, one then computes N independent sam-

ples X(m),(n)
i , X̃(m),(n)

i ∼ µ
(m)
i , n = 1, . . . , N , X(m),(n)

i+1 according to (4.1) with estimated probability
measure µ̂(m)

i+1 as in Section 3.1, and approximate the loss function by

LiM,N (θi) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣Y∗i+1(µ̂
(m)
i+1)(X

(m),(n)
i+1 )− Yθi(µ

(m)
i )(X

(m),(n)
i )−Zθi(µ

(m)
i )(X

(m),(n)
i )∆Wi

− ∆t

N

N∑
n′=1

H(X
(m),(n)
i , µ

(m)
i ,Yθi(µ

(m)
i )(X

(m),(n)
i ),Zθi(µ

(m)
i )(X

(m),(n)
i ),

X̃
(m),(n′)
i ,Yθi(µ

(m)
i )(X̃

(m),(n′)
i ),Zθi(µ

(m)
i )(X̃

(m),(n′)
i ))

∣∣∣2.
The pseudo-code is described in Algorithm 4. It is in the spirit of the actor/critic algorithm 3, but

now Y and Z are learnt simultaneously.

Algorithm 4: Deep backward algorithm
Input data: Mean-field neural networks Yθi , Zθi ;
Initialization: Y∗NT (µ)(x) = G(x, µ);
for i = NT − 1, . . . , 0 do

Initialization: learning rate γ, and parameter θi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , n = 1, . . . , N ;

Compute samples X(m),(n)
i , X̃(m),(n)

i , X(m),(n)
i+1 , n = 1, . . . , N , and estimate µ̂(m)

i+1

Compute the batch loss LiM,N (θi) and its gradient ∇θLiM,N (θi) ;
Update θi ← θi − γ∇θLiM,N (θi);

Y∗i = Yθ∗i
Return: The set of optimized parameters θ∗i , i = 0, . . . , NT − 1

We also propose a multi-step version of the above algorithm following the idea in [15], and in the
spirit of the policy iteration in Section 3.2. We proceed by backward induction for i = NT − 1, . . . , 0,
by keeping track of the approximate optimal mean-field neural networks Y∗j , Z∗j , j = i+1, . . . , NT −1,
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and minimize over θi the loss function

L̃i(θi) = E
∣∣∣G(XNT , µNT )−

NT−1∑
j=i+1

Z∗j (µj)(Xj)∆Wj −Zθi(µi)(Xi)∆Wi − Yθi(µi)(Xi)

−
NT−1∑
j=i+1

Ẽ
[
H(Xj , µj ,Y∗j (µj)(Xj),Z∗j (µj)(Xj), X̃j ,Y∗j (µj)(X̃j),Z∗j (µj)(X̃j))

]
∆t

− Ẽ
[
H(Xi, µi,Yθi(µi)(Xi),Zθi(µi)(Xi), X̃i,Yθi(µi)(X̃i),Zθi(µi)(X̃i))

]
∆t
∣∣∣2,

where{
Xi+1 = Xi +B(Xi, µi,Yθi(µi)(Xi))∆t+ σ(Xi, µi)∆Wi, Xi ∼ µi,
Xj+1 = Xj +B(Xj , µj ,Y∗j (µj)(Xj))∆t+ σ(Xj , µj)∆Wj , j = i+ 1, . . . , NT − 1.

(4.2)

In the practical implementation, we use a training of M probability measures µ(m)
i , m = 1, . . . ,M ,

and for each batch m, one then computes N samples X(m),(n)
i ,X̃(m),(n)

i ∼ µ
(m)
i , X(m),(n)

j , X̃(m),(n)
j , j

= i + 1, . . . , NT − 1, according to (4.1) with estimated probability measures µ̂(m)
j = LD(p̂

(m)
j ), as in

Section 3.1, and approximate the loss function by L̃iM,N (θi), i = 0, . . . , NT − 1.

The pseudo-code is described in Algorithm 5.

Algorithm 5: Deep backward multi-step algorithm
Input data: Mean-field neural networks Yθi , Zθi , and Brownian increments ∆Wi, i =
0, . . . , NT − 1 ;
for i = NT − 1, . . . , 0 do

Initialization: learning rate γ, and parameter θi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
k , ∆̃W

(m),(n)
k , k = i, . . . , NT − 1, n =

1, . . . , N ;
Compute samples X(m),(n)

i , X̃(m),(n)
i , X(m),(n)

j , X̃(m),(n)
j , n = 1, . . . , N , and

estimate µ̂(m)
j , j = i+ 1, . . . , NT

Compute the batch loss L̃iM,N (θi) and its gradient ∇θL̃iM,N (θi) ;
Update θi ← θi − γ∇θL̃iM,N (θi);

Y∗i = Yθ∗i , Z
∗
i = Zθ∗i

Return: The set Y∗i = Yθ∗i , Z
∗
i = Zθ∗i , i = 0, . . . , NT − 1

The output of these two algorithms 4 and 5 yields in particular an approximation of the function
U in (2.1) by the mean-field neural network Y∗i at any time ti, hence an approximation of the optimal
feedback control defined in (2.1). We can then estimate the value function at any time by regression
similarly as in (3.2). Alternately, by considering the value function in the BSDE as in (2.1), we can
obtain an approximation of V via the mean-field neural network Y∗i at any time ti. Once again, in a
backward resolution process, if the support of the distribution is unknown, it is necessary to employ
an iterative algorithm, as suggested in Section 2.2, to explore and identify the distributions of interest.

4.2 Global algorithms
In the spirit of the deep BSDE method in [19], we consider a mean-field neural network Uθ(µ)(x), and
time dependent mean-field neural network Zθ(t, µ)(x), for approximating respectively the initial value
of the Y component, and the Z component at any time of the MKV BSDE. We then define by forward
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induction: starting from X0 ∼ µ0, Y0 = Uθ(µ0)(X0), for i = 0, . . . , NT − 1,

Xi+1 = Xi +B(Xi, µi,Yi)∆t+ σ(Xi, µi)∆Wi,

Yi+1 = Yi + Ẽ
[
H(Xi, µi,Yi,Zθ(ti, µi)(Xi), X̃i, Ỹi,Zθ(ti, µi)(X̃i))

]
∆t+ Zθ(ti, µi)(Xi)∆Wi, (4.3)

and minimize over θ the global loss function

L(θ) = E
∣∣∣YNT −G(XNT , µNT )

∣∣∣2.
In practical implementation, we use a training sample of probability measures µ(m)

0 , and then for each
m, N samples X(m),(n)

0 ∼ µ(m)
0 , Y(m),(n)

0 = U0(µ
(m)
0 )(X

(m),(n)
0 ), n = 1, . . . , N , and for i = 0, . . . , NT −1

X
(m),(n)
i+1 = X

(m),(n)
i +B(X

(m),(n)
i , µ̂

(m)
i ,Y(m),(n)

i )∆t+ σ(X
(m),(n)
i , µ̂

(m),(n)
i )∆Wi,

Y(m),(n)
i+1 = Y(m),(n)

i +
∆t

N

N∑
n′=1

H(X
(m),(n)
i , µ̂

(m)
i ,Y(m),(n)

i ,Zθ(ti, µ̂(m)
i )(X

(m),(n)
i ),

X̃
(m),(n′)
i , Ỹ(m),(n′)

i ,Zθ(ti, µ̂(m)
i )(X̃

(m),(n′)
i )) + Zθ(ti, µ̂(m)

i )(X
(m),(n)
i )∆Wi,

where X̃(m),(n)
i , Ỹ(m),(n)

i are independent copies of X(m),(n)
i , Y(m),(n)

i , while µ̂(m)
0 = µ

(m)
0 , µ̂(m)

i , i =
1, . . . , NT , are estimated as in Section 3.1. The loss function is then approximated by

LM,N (θ) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣Y(m),(n)
NT

−G(X
(m),(n)
NT

, µ̂
(m)
NT

)
∣∣∣2.

The pseudo-code is described in Algorithm 6.

Algorithm 6: Deep MKV BSDE
Input data: A mean-field neural network Uθ(µ)(x), and a time-dependent mean-field neural
network Zθ(t, µ)(x).
Initialization: learning rate γ and parameters θ
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M .;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N . ;

Compute sample trajectories X(m),(n)
i , X̃(m),(n)

i , Y(m),(n)
i , Ỹ(m),(n)

i , n = 1, . . . , N , and
estimate µ̂(m)

i , i = 0, . . . , NT ,
Compute the batch loss LM,N (θ) and its gradient ∇θLM,N (θ) ;
Update θ ← θ − γ∇θLM,N (θ) ;

Return: the set of optimized parameters θ∗.

The output of this global deep BSDE algorithm is an approximation of the Y component of the
BSDE at initial time t0 = 0 by a mean-field neural network Uθ∗ , and yields approximation of the Z
component at times ti, i = 0, . . . , NT − 1, by mean-field neural networks Zθ∗(ti, µi)(Xi) along the law
µi, and state Xi explored during the learning algorithm. The value function can then be estimated
at any time tk by regression as follows: we approximate the value function at time tk by a mean-field
neural neural network ϑηk(µ)(x) valued in R, and minimize over the parameters ηk of this neural
network the quadratic loss function

E
∣∣∣Yk − ϑηk(µk)(Xk)

∣∣∣2, (4.4)

where (Xk, Yk) are generated by using equation (4.2) for i = 0, . . . , k−1 (here Yk is the first component
of Yk = (Yk, Pk) in (2.1)-(2.1)), and µk is estimated from the distribution of the Xk.
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In order to avoid the cost of solving equation (4.2) at each time step, we can propose two other
global methods permitting to obtain directly the value function.

We first present a variation of the deep BSDE algorithm by considering two time-dependent mean-
field neural networks Yθ(t, µ)(x) and Zθ(t, µ)(x), for approximating the pair solution of the MKV BSDE
at any time. We then define by forward induction: starting from X0 ∼ µ0, for i = 0, . . . , NT − 1,

Xi+1 = Xi +B(Xi, µi,Yθ(ti, µi)(Xi))∆t+ σ(Xi, µi)∆Wi, (4.5)

and minimize over θ the global loss function as a sum of local loss functions:

L̃(θ) = E
[NT−1∑

i=1

∣∣∣Yθ(ti+1, µi+1)(Xi+1)− Yθ(ti, µi)(Xi)−Zθ(ti, µi)(Xi)∆Wi

− Ẽ
[
H(Xi, µi,Yθ(ti, µi)(Xi),Zθ(ti, µi)(Xi), X̃i,Yθ(ti, µi)(X̃i),Zθ(ti, µi)(X̃i))

]
∆t
∣∣∣2],

with the convention that Yθ(tNT , µ)(x) = G(x, µ). In practical implementation, we use a training
sample of probability measures µ(m)

0 , and then for each m = 1, . . . ,M , N samples X(m),(n)
0 ∼ µ

(m)
0 ,

X
(m),(n)
i , X̃(m),(n)

i , n = 1, . . . , N , according to (4.2), and estimated probability measures µ̂(m)
i , i =

1, . . . , NT . The loss function is then approximated by L̃M,N (θ).
The pseudo-code is described in Algorithm 7.

Algorithm 7: Deep MKV BSDE global/local
Input data: Two time-dependent mean-field neural network Y(t, µ)(x), Zθ(t, µ)(x).
Initialization: learning rate γ and parameters θ ;
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N . ;

Compute sample trajectories X(m),(n)
i , X̃(m),(n)

i , n = 1, . . . , N , and estimate µ̂(m)
i , i =

0, . . . , NT ,
Compute the batch loss L̃M,N (θ) and its gradient ∇θL̃M,N (θ) ;
Update θ ← θ − γ∇θL̃M,N (θ) ;

Return: the set of optimized parameters θ∗.

Finally, we present a multi-step version of the deep MKV BSDE algorithm. We consider two time-
dependent mean-field neural networks Yθ(t, µ)(x) and Zθ(t, µ)(x), for approximating the pair solution
of the MKV BSDE at any time, and define by forward induction: starting from X0 ∼ µ0, for i =
0, . . . , NT − 1,

Xi+1 = Xi +B(Xi, µi,Yθ(ti, µi)(Xi))∆t+ σ(Xi, µi)∆Wi. (4.6)

The global loss function to be minimized is of the form

Lmulti(θ) = E
[NT−1∑

i=0

∣∣∣G(XNT , µNT )−
NT−1∑
j=i

Zθ(tj , µj)(Xj)∆Wj − Yθ(ti, µi)(Xi)

−
NT−1∑
j=i

Ẽ
[
H(Xj , µj ,Yθ(tj , µj)(Xj),Zθ(tj , µj)(Xj), X̃j ,Yθ(tj , µj)(X̃j),Zθ(tj , µj)(X̃j))

]
∆t
∣∣∣2].

Again, in practical implementation, we use a training sample of probability measures µ(m)
0 , and then

for each m ∈ {1, . . . ,M}, N samples X(m),(n)
0 ∼ µ

(m)
0 , X(m),(n)

i , X̃(m),(n)
i , n = 1, . . . , N , according to
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(4.2), and estimated probability measures µ̂(m)
i , i = 1, . . . , NT . The loss function is then approximated

by LmultiM,N (θ).

The pseudo-code is described in Algorithm 8.

Algorithm 8: Deep multi-step MKV BSDE
Input data: Two time-dependent mean-field neural networks Y(t, µ)(x), Zθ(t, µ)(x).
Initialization: learning rate γ and parameters θ ;
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N . ;

Compute sample trajectories X(m),(n)
i , X̃(m),(n)

i , n = 1, . . . , N , and estimate µ̂(m)
i , i =

0, . . . , NT ,
Compute the batch loss LmultiM,N (θ) and its gradient ∇θLmultiM,N (θ) ;
Update θ ← θ − γ∇θLmultiM,N (θ) ;

Return: the set of optimized parameters θ∗.

The output of Algorithms 7 and 8 is an approximation of the Y component of the BSDE at initial
time t0 = 0 by a mean-field neural network Yθ∗(t0, .)(.), and yields approximation of the Y, at other
times ti, i = 1, . . . , NT − 1, and Z at times ti, i = 0, . . . , NT − 1, by mean-field neural networks
Yθ∗i (ti, µi)(Xi), Zθ∗(ti, µi)(Xi) along the law µi, and state Xi explored during the learning algorithm.

In the case of global algorithms using the cylindrical network, there is no requirement to adapt
the parameter K. The need for adaptation methods, as proposed in Section 2.2, arises primarily when
employing the bin method.

5 Numerical examples
We shall illustrate the results of our different algorithms on three test cases. The two first examples
are MKV control problems where the diffusion coefficient is constant, and the BSDE approach can
be used. The third example is a classical mean variance problem, hence with control on the diffusion
coefficient. We then test the three cases using the dynamic programming-based algorithms and for the
two first cases using also the backward SDE-based algorithms.

For each problem, we will test the optimized solutions v(µ0) found by using different initial distri-
butions µ0 and compare the result obtained to the analytical solution or the reference calculated by
an other method. For all test cases, we keep the same parameters for the neural networks:

• For the bin method, we take 2 layers of 20 neurons.

• For the cylinder method, we take 2 layers of 20 neurons for the two networks.

For both methods we use the tanh activation function. At each iteration of the ADAM gradient
method [23], we consider for each of the M tested distributions N = 100000 realizations of the process
X. These parameters are chosen accordingly the results of [25]. We either take a batch size equal to
M = 5, M = 8, M = 10 or M = 20, using between 30000 to 120000 gradient iterations: we have
to adapt the batch size and the number of gradient iterations to be able to solve the problem on the
graphic card GPU NVidia V100 32Gb (except when specified due to memory limitation) and in order
to obtain the result in less than 3 days. K in the tables below is the number of bins used, and ∆t =
T/NT is the time step.

5.1 The test examples
5.1.1 Systemic risk model

We consider a mean-field model of systemic risk introduced in [8]. This model was introduced in the
context of mean field games but here we consider a cooperative version. The limit problem (when
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the number of banks is large) of the social planner (central bank) is formulated as follows. The
log-monetary reserve of the representative bank is governed by the mean-reverting controlled McKean-
Vlasov dynamics

dXt =
[
κ(E[Xt]−Xt) + αt] dt+ σdWt, X0 ∼ µ0,

where α = (αt)t is the control rate of borrowing/lending to a central bank that aims to minimize the
functional cost

J(α) = E
[ ∫ T

0

f̃(Xt,E[Xt], αt) dt+ g̃(XT ,E[XT ])
]
→ v(µ0) = inf

α
J(α), (5.1)

where the running and terminal costs are given by

f̃(x, x̄, a) =
1

2
a2 − qa(x̄− x) +

η

2
(x̄− x)2, g̃(x, x̄) =

c

2
(x− x̄)2,

for some positive constants q, η, c > 0, with q2 ≤ η. Notice that in this linear-quadratic example, the
objective function is convex with respect to the control process, which ensures the convergence of the
global algorithm.

The explicit solution of the linear-quadratic McKean-Vlasov control problem (5.1.1) is solved via
the resolution of a Riccati equation (see [2]), and is analytically given by

v(t, µ) =

∫
R
V (t, x, µ)µ(dx) = Qt

∫
R

(x− µ̄)2µ(dx) + σ2

∫ T

t

Qs ds, (5.2)

where we set µ̄ := Eξ∼µ[ξ] =
∫
R xµ(dx), and

Qt = −1

2

[
κ+ q −

√
∆

√
∆ sinh(

√
∆(T − t)) + (κ+ q + c) cosh(

√
∆(T − t))√

∆ cosh(
√

∆(T − t)) + (κ+ q + c) sinh(
√

∆(T − t))

]
,

with
√

∆ =
√

(κ+ q)2 + η − q2, and∫ T

t

Qs ds =
1

2
ln
[

cosh(
√

∆(T − t)) +
κ+ q + c√

∆
sinh(

√
∆(T − t))

]
− 1

2
(κ+ q)(T − t).

In this example, the function â that attains the infimum of the Hamiltonian function is â(x, µ, p) =
q(µ̄−x)−p, the function in (2.1) is U(t, x, µ) = 2Qt(x− µ̄), which yields the optimal feedback control:
a?(t, x, µ) = (q + 2Qt)(µ̄− x). The BSDE (2.1)-(2.1) is then written as dXt =

[
(κ+ q)(E[Xt]−Xt)− Pt]dt+ σdWt, X0 ∼ µ0,

dYt = −
[

1
2 (η − q2)(E[Xt]−Xt)

2 + 1
2P

2
t

]
dt+ ZtdWt, YT = c

2 (XT − E[XT ])2,
dPt =

[
− (κ+ q)(E[Pt]− Pt) + (η − q2)(E[Xt]−Xt)

]
dt+MtdWt, PT = −c(E[XT ]−XT ).

For the numerical tests of the different methods, we take σ = 1, κ = 0.6, q = 0.8, T = 0.2, C = 2,
η = 2. We solve the problem (5.1.1) using our various algorithms and compare the solution obtained
at t = 0 with v(0, µ0) given by (5.1.1) for different initial distributions µ0 plotted on Figure 2:

• Case 1 : Gaussian with µ̄0 = 0, std(µ0) = 0.2,

• Case 2 : Gaussian with µ̄0 = 0.3, std(µ0) = 0.05,

• Case 3 : Gaussian with µ̄0 = 0., std(µ0) = 0.05,

• Case 4 : Mixture of two Gaussian random variables: X0 = P (−k + θY ) + (1− P )(k + θȲ ) with
P a Bernouilli random variable with parameter 1

2 , k =
√

3
10 , θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 5 : Mixture of two Gaussian random variables X0 = P (−k+ θY ) + (1−P )(−k+ θȲ ) with
P a Bernouilli random variable with parameter 1

2 , k = 0.25, θ = 0.1, Y, Ȳ ∼ N (0, 1),
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• Case 6 : Mixture of 3 Gaussian random variables : X0 = [−1b3Uc=0k + 1b3Uc=1k] + θY with
U ∼ U(0, 1), k = 0.3, θ = 0.07, Ȳ ∼ N (0, 1).

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 2: Distribution µ0 tested on the systemic case.

Notice that case 1 and 4 have the same variance for µ0 so that the values v(0, µ0) of (5.1.1) should
be the same. Similarly, values of case 2 and 3 are the same.

5.1.2 Min/max linear quadratic MKV control

We next consider a mean-field model in which the dynamics is linear, the running cost is quadratic in
the position, the control and the expectation of the position, while the terminal cost gives inventive to
be close to one of two targets. This type of model is inspired by the min-LQG problem of [28]. More
precisely, we consider the following controlled McKean-Vlasov dynamics

dXt =
[
AXt + ĀE[Xt] +Bαt

]
dt+ σ dWt, X0 ∼ µ0,

where α = (αt)t is the control, and the agent aims to minimize the functional cost

J(α) = E
[ ∫ T

0

f(Xt,E[Xt], αt) dt+ g(XT )
]
→ v(µ0) = inf

α
J(α),

where the running and terminal costs are given by

f(x, x̄, a) =
1

2

(
Qx2 + Q̄(x− Sx̄)2 +Ra2

)
, g(x) = min

{
|x− ζ1|2, |x− ζ2|2

}
,

for some non-negative constants Q, Q̄, S, R, and two real numbers ζ1 and ζ2. Notice that g is not a
convex function, and the solution to the MKV BSDE is not necessarily an optimal control.

In this example, the BSDE (2.1)-(2.1) is then written as
dXt = [AXt + ĀE[Xt]− B2

R Pt]dt+ σdWt, X0 ∼ µ0

dYt = − 1
2

[
QX2

t + Q̄(Xt − SE[Xt])
2 + B2

R P
2
t

]
dt+ ZtdWt, YT = min[|XT − ζ1|2, |XT − ζ2|2]

dPt = −
[
APt + ĀE[Pt] +QXt + Q̄(Xt − E[Xt]) + Q̄(S − 1)2E[Xt]

]
dt+MtdWt,

PT = 2
(
XT −min(ζ1, ζ2)1

XT≤ ζ1+ζ2
2
−max(ζ1, ζ2)1

XT>
ζ1+ζ2

2

)
.
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For the numerical tests, we take A = 1, Ā = 0.5, B = 1, Q = Q̄ = R = S = 1, σ = 0.5, ζ1 = 0.25,
ζ2 = 1.75. We first solve the problem (1) by the different algorithms and we can compare the solution
v(µ0) obtained for different distributions µ0 to a reference calculated using [9] approach. Notice that
[9] method needs to be run for each initial distribution tested. We use three different distributions µ0

plotted on Figure 3:

• Case 1 : Gaussian distribution µ̄0 = 1, std(µ0) = 0.2. The reference values are 0.484 for T = 0.2,
and 0.818 for T = 0.5.

• Case 2 : Mixture of two Gaussian random variables : X0 = P (ζ1 + θY ) + (1− P )(ζ2 + θȲ ) with
P a Bernouilli random variable with parameter 1

2 , θ = 0.15, Y, Ȳ , Ỹ ∼ N (0, 1), with reference
values 0.494 for T = 0.2, and 1.082 for T = 0.5.

• Case 3 : Mixture of three Gaussian random variables: X0 = [1b5Uc<2ζ1+1b5Uc>3ζ2+12≤b5Uc≤3(ζ1+
ζ2)]+θY with U ∼ U(0, 1), θ = 0.05 with reference values 0.491 for T = 0.2, and 0.836 for T = 0.5.

Case 1 Case 2 Case 3

Figure 3: Distribution µ0 tested on the min/max linear case.

5.1.3 Mean-variance problem

We consider the celebrated Markowitz portfolio selection problem where an investor can invest at any
time t an amount αt in a risky asset (assumed for simplicity to follow a Black-Scholes model with
constant rate of return β and volatility ν > 0), hence generating a wealth process X = Xα with
dynamics

dXt = αtβdt+ αtνdWt, 0 ≤ t ≤ T, X0 ∼ µ0.

The goal is then to minimize over portfolio control α the mean-variance criterion:

J(α) = λVar(Xα
T )− E[Xα

T ],

where λ > 0 is a parameter related to the risk aversion of the investor.
We refer to [22] for the McKean-Vlasov approach to Markowitz mean-variance problems (in a more

general context), and we recall that the solution to the Bellman equation is given by

V (t, x, µ) = λe−R(T−t)(x− µ̄)2 − x− 1

4λ

[
eR(T−t) − 1

]
, (5.3)

U(t, x, µ) = 2λe−R(T−t)(x− Eµ[ξ])− 1,

where we set R := β2/ν2. Moreover, the optimal feedback control is given by

a∗(t, x, µ) = − β

ν2

(
x− µ̄− eR(T−t)

2λ

)
.

Note that with this model, the BSDE approach cannot be used as the volatility is controlled.
We test our algorithms with the parameters β = 0.1, ν = 0.4, λ = 0.5. We compare the solutions

obtained at t = 0 to the analytical solution v(µ0) = Eξ∼µ0 [V (0, ξ, µ0)] given by (5.1.3) for different
initial distributions µ0 plotted in Figure 4, and explicitly given by:
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• Case 1 : Gaussian distribution with µ̄0 = 0.1, std(µ0) = 0.2.

• Case 2 : Gaussian distribution with µ̄0 = 0.2, std(µ0) = 0.025.

• Case 3 : Gaussian distribution with µ̄0 = 0.3, std(µ0) = 0.025.

• Case 4 : Mixture of two Gaussian random variables: X0 = P (−k+a+θY )+(1−P )(−k+a+θȲ )

with P a Bernouilli random variable with parameter 1
2 , k =

√
3

10 ,a = 0.1, θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 5 : Mixture of two Gaussian random variables: X0 = P (−k+a+θY )+(1−P )(−k+a+θȲ )
with P a Bernouilli random variable with parameter 1

2 , a = 0.05, k = 0.1, θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 6 : Mixture of 3 Gaussian random variables: X0 = a+ [−1b5Uc<2k + 1b5Uc>3k] + θY with
U ∼ U(0, 1), a = 0.2, k = 0.3, θ = 0.07,Ȳ ∼ N (0, 1).

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 4: Distribution µ0 tested on the mean variance case.

5.1.4 A toy example of non LQ MKV control problem

We consider a one-dimensional controlled mean-field dynamics of the form

dXt =
[
β(Xt,PXt) + αt

]
dt+ σdWt, 0 ≤ t ≤ T, X0 ∼ µ0,

with a cost functional of the form

J(α) = E
[ ∫ T

0

(
F (t,Xt,PXt) +

1

2
|αt|2

)
dt+ g(XT ,PXT )

]
, → v(µ0) = inf

α∈A
J(α),

where g is of the form:

g(x, µ) = Eξ∼µ[w(x− ξ)],

for some smooth C2 even function w on R, e.g. w(x) = cos(x), and F is a function to be chosen later.
In this case, the optimal feedback control valued in A = R is given by

a?(t, x, µ) = â(t, x,U(t, x, µ)) = −U(t, x, µ) = −∂µv(t, µ)(x) with v(t, µ) = Eξ∼µ[V (t, ξ, µ)],
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and V is solution to the Master Bellman equation:

∂tV (t, x, µ) +
(
β(x, µ)− U(t, x, µ)

)
∂xV (t, x, µ) +

σ2

2
∂2
xxV (t, x, µ)

+ Eξ∼µ
[(
β(ξ, µ)− U(t, ξ, µ)

)
∂µV (t, x, µ)(ξ) +

σ2

2
∂x′∂µV (t, x, µ)(ξ)

]
+ F (t, x, µ) +

1

2
|U(t, x, µ)|2 = 0, (5.4)

with the terminal condition V (T, x, µ) = g(x, µ).
We look for a solution to the Master equation of the form: V (t, x, µ) = eT−tEξ∼µ[w(x − ξ)]. For

such function V , we have ∂tV (t, x, µ) = −V ,

∂xV (t, x, µ) = eT−tEξ∼µ[w′(x− ξ)], ∂2
xxV (t, x, µ) = eT−tEξ∼µ[w′′(x− ξ)]

∂µV (t, x, µ)(ξ) = −eT−tw′(x− ξ), ∂x′∂µV (t, x, µ)(ξ) = eT−tw′′(x− ξ),

and

U(t, x, µ) = eT−tEξ∼µ[w′(x− ξ)− w′(ξ − x)] = 2eT−tEξ∼µ[w′(x− ξ)] = 2∂xV (t, x, µ).

since w is even. By plugging these derivatives expressions of V into the l.h.s. of (5.1.4), we then see
that by choosing F equal to

F (t, x, µ) = eT−tEξ∼µ
[
(w − σ2w′′)(x− ξ) + (β(ξ, µ)− β(x, µ))w′(x− ξ)

]
− 2e2(T−t)E(ξ,ξ′)∼µ⊗µ

[
w′(x− ξ)w′(ξ − ξ′)

]
,

the function V satisfies the Master Bellman equation.
For the choice of w(x) = cos(x), and using trigonometric relations, the function F is written as

F (t, x, µ) = cos(x)[eT−t
(
(1 + σ2)Eξ∼µ(cos(ξ)) + Eξ∼µ(sin(ξ)β(ξ, µ))− β(x, µ)Eξ∼µ(sin(ξ))

)
−

2e2(T−t) (Eξ∼µ(sin(ξ) cos(ξ))Eξ∼µ(sin(ξ))− Eξ∼µ(sin2(ξ))Eξ∼µ(cos(ξ))
)
] +

sin(x)[eT−t
(
(1 + σ2)Eξ∼µ(sin(ξ))− Eξ∼µ(β(ξ, µ) cos(ξ)) + β(x, µ)Eξ∼µ(cos(ξ))

)
−

2e2(T−t) (Eξ∼µ(sin(ξ) cos(ξ))Eξ∼µ(cos(ξ))− Eξ∼µ(cos2(ξ))E(sin(ξ))
)
]

Note that with this model, the BSDE approach cannot be used by lack of convexity.
For this example, we take T = 0.4, σ = 1, β(x, µ) = µ̄ − x, and we test the three distributions as

given in the Min/max example 5.1.2.

5.1.5 A two dimensional example

We consider a multi-dimensional extension of the LQ systemic risk model of section 5.1.1 by supposing
that on each dimension, the dynamic satisfies the same equation with independent Brownian motions,
and that the cost functions are the sum over each component of the cost function in the univariate
model. In this case, the value function is given by V (t, x, µ) =

∑d
i=1 V1(t, xi, µi), for t ∈ [0, T ], x =

(xi)i∈J1,dK ∈ Rd, µi is the i-th marginal law of µ ∈ P2(Rd), and V1 is the value function in the univariate
model given by (5.1.1).

The parameters of the dynamic in each dimension are σ = 0.5, κ = 0.6, q = 0.8, T = 0.2, c = 2,
η = 2. We solve the two dimensional version of the problem (5.1.1) by implementing our various
algorithms, and compare the solution obtained at t = 0 with v(0, µ0) for the initial distributions µ0

with the same marginals µ1
0 = µ2

0 in the two dimensions plotted on Figure 5:

• Case 1 : Gaussian marginals with µ̄1
0 = 0, std(µ1

0) = 0.2,

• Case 2 : Mixture of two Gaussian random variables giving the marginal: X1
0 = P (−k1 + θ1Y ) +

(1 − P )(k2 + θ2Ȳ ) with P a Bernoulli random variable with parameter 1
2 , k1 = 0, k2 = 0.5,

θ1 = θ2 = 0.15, Y, Ȳ ∼ N (0, 1),
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• Case 3 : Mixture of three Gaussian random variables giving the marginal: X1
0 = kP +θPY where

P is a random variable taking values (1, 2, 3) with probability ( 2
5 ,

2
5 ,

1
5 ), k1 = −0.05, k2 = 0.,

k3 = 0.5, θ1 = θ2 = θ3 = 0.05, Y ∼ N (0, 1).

Case 1 Case 2 Case 3

Figure 5: Marginals of distribution µ0 tested on the two dimensional systemic model.

5.2 Results for the systemic risk model
5.2.1 Dynamic programming-based algorithms

We report the results for this model of section 5.1.1 in Tables 1, 2 and 3. It turns out that the results
obtained by Algorithms 1 and 2 are excellent and very close. We can see that results with K = 100
or K = 200 bins for the bins method are very close. Notice that with the bins method, we have to
limit the number K of bins due to memory issues for these two algorithms. We clearly see the effect
of the convergence of the Euler scheme used to discretized the equations on the convergence rate.
The Bins method and the Cylinder method provide very similar results but as the cost of Algorithm

1 is in O(NT ) while the cost of Algorithm 2 is in O(
NT (NT − 1)

2
), Algorithm 1 is clearly preferred.

The computational time values presented in Table 2 provide confirmation that Algorithm 2 becomes
impractical and less usable as the number of time steps increases.

Method K ∆t = T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1670 0.1642 0.1495 0.1446 0.1497 0.1446 8160
Bins 100 0.01 0.1651 0.1642 0.1472 0.1446 0.1470 0.1446 16200

Cylinder 500 0.02 0.1684 0.1642 0.1489 0.1446 0.1492 0.1446 8100
Cylinder 500 0.01 0.1665 0.1642 0.1469 0.1446 0.1467 0.1446 15240

Method K ∆t = T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1675 0.1642 0.1824 0.1812 0.1792 0.1772
Bins 100 0.01 0.1648 0.1642 0.1803 0.1812 0.1766 0.1772

Cylinder 500 0.02 0.1684 0.1642 0.1848 0.1812 0.1817 0.1772
Cylinder 500 0.01 0.1660 0.1642 0.1835 0.1812 0.1795 0.1772

Table 1: Global Algorithm 1 for systemic risk with T = 0.2, K = [−1.38, 1.62] using M = 10, and
60000 gradient iterations.

20



Method K ∆t = T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1692 0.1642 0.1493 0.1446 0.1495 0.1446 20000
Bins 100 0.01 0.1673 0.1642 0.1478 0.1446 0.1470 0.1446 73300
Bins 200 0.01 0.1674 0.1642 0.1480 0.1446 0.1477 0.1446 108800

Cylinder 500 0.02 0.1688 0.1642 0.1492 0.1446 0.1490 0.1446 46600
Cylinder 500 0.01 0.1662 0.1642 0.1468 0.1446 0.1471 0.1446 160200

Method K ∆t = T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1691 0.1642 0.1862 0.1821 0.1822 0.1772
Bins 100 0.01 0.1670 0.1642 0.1836 0.1812 0.1799 0.1772
Bins 200 0.01 0.1675 0.1642 0.1844 0.1812 0.1800 0.1772

Cylinder 500 0.02 0.1684 0.1642 0.1862 0.1812 0.1819 0.1772
Cylinder 500 0.01 0.1663 0.1642 0.1836 0.1812 0.1794 0.1772

Table 2: Policy iteration Algorithm 2 for systemic risk with T = 0.2, K = [−1.38, 1.62] using M = 10,
and 30000 gradient iterations.

The results obtained by the value iteration Algorithm 3 are still good but less accurate than the
results obtained by the two other algorithms. The cylinder methods appears to be the best of the two
methods. We notice a small degradation of the results as we refine the time step with the bins method.
Notice that the memory used by this algorithm is small compared to the two other algorithms and it
permits to take a high number K of bins for the bins method (even if it is not necessary on this case).

Method K ∆t = T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 500 0.02 0.1620 0.1642 0.1373 0.1446 0.1698 0.1446 36000
Bins 500 0.01 0.1873 0.1642 0.1673 0.1446 0.1841 0.1446 72000

Cylinder 500 0.02 0.1722 0.1642 0.1540 0.1446 0.1554 0.1446 9300
Cylinder 500 0.01 0.1704 0.1642 0.1520 0.1446 0.1571 0.1446 18600

Method K ∆t = T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 500 0.02 0.1630 0.1642 0.1809 0.1812 0.1755 0.1772
Bins 500 0.01 0.1880 0.1642 0.2037 0.1812 0.1991 0.1772

Cylinder 500 0.02 0.1722 0.1642 0.1880 0.1812 0.1843 0.1772
Cylinder 500 0.01 0.1704 0.1642 0.1864 0.1812 0.1827 0.1772

Table 3: Value iteration Algorithm algorithm 3 for systemic risk with T = 0.2, K = [−1.38, 1.62],
M = 10, and 30000 gradient iterations.

In Table 4, we provide sensitivity results for cases 1, 4, and 6 using Algorithms 1 and 3 with different
methods (bins and cylinder) and parameter settings ( T

NT
= 0.02, K = 100 for bins, and K = 500 for

cylinder). The results are based on 10 runs, and we report the average value obtained along with the
standard deviation. It is observed that the results obtained using different methods and algorithms are
generally very similar, except for Algorithm 3 with the cylinder network. This particular algorithm
shows a higher standard deviation, which is a known characteristic of this approach, as mentioned
in [21]. Furthermore, all the results seem to converge to the discrete-time solution of the problem,
indicating the reliability and accuracy of the algorithms employed.
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Alg method Case 1 Case 4 Case 6
Calc Std Anal Calc Std Anal Calc Std Anal

1 bins 0.1691 0.0007 0.1642 0.1692 0.0010 0.1642 0.1825 0.0007 0.1772
1 cyl 0.1687 0.0002 0.1642 0.1686 0.0002 0.1642 0.1816 0.0002 0.1772
2 bins 0.1694 0.0003 0.1642 0.1694 0.0002 0.1642 0.1821 0.0002 0.1772
2 cyl 0.1687 0.0002 0.1642 0.1687 0.0001 0.1642 0.1815 0.0002 0.1772
3 bins 0.1692 0.0092 0.1642 0.1692 0.0093 0.1642 0.1822 0.0089 0.1772
3 cyl 0.1807 0.0066 0.1642 0.1807 0.0066 0.1642 0.1931 0.0064 0.1772

Table 4: Some sensitivity results using 10 runs.

5.2.2 Results for Backward SDE-based algorithms

Results for the systemic example of section 5.1.1 are given in Tables 5, 6, 7, 8 and 9. All the proposed
methods converge very accurately to the solution. As previously seen in the results of the dynamic
programming-based algorithms, the number of bins does not need to be large for the bins network.
For this test case, the numerical values obtained does not permit to select the best algorithm. As
Algorithm 5 is by far the most costly, it should not be the preferred choice. It is difficult to compare
the other algorithms in terms of computing time, but all global algorithms have roughly the same
cost in terms of time and the local deep backward algorithm 4 is certainly more costly as we have to
achieve an optimization per time step. This drawback due to the number of optimizations is reduced
by transfer learning, namely the fact that at each time step the problem is much more smaller to solve
as we can initialize the parameters of networks at a given time step by the parameters of networks of
the preceding time step. On the other hand, we point out that all the global algorithms are too far
memory consuming to be able to compete with the local deep backward algorithm 4 which seems to
be globally the best choice.

Method K T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1690 0.1642 0.1493 0.1446 0.1497 0.1446 7500
Bins 200 0.02 0.1689 0.1642 0.1494 0.1446 0.1494 0.1446 11700
Bins 100 0.01 0.1664 0.1642 0.1474 0.1446 0.1470 0.1446 15000
Bins 200 0.01 0.1664 0.1642 0.1472 0.1446 0.1471 0.1446 23400

Cylinder 500 0.02 0.1683 0.1642 0.1491 0.1446 0.1492 0.1446 10500
Cylinder 500 0.01 0.1664 0.1642 0.1472 0.1446 0.1466 0.1446 21000

Method K T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1690 0.1642 0.1860 0.1812 0.1816 0.1772
Bins 200 0.02 0.1687 0.1642 0.1853 0.1812 0.1818 0.1772
Bins 200 0.01 0.1669 0.1642 0.1838 0.1812 0.1801 0.1772
Bins 200 0.01 0.1666 0.1642 0.1835 0.1812 0.1796 0.1772

Cylinder 500 0.02 0.1683 0.1642 0.1858 0.1812 0.1816 0.1772
Cylinder 500 0.01 0.1665 0.1642 0.1837 0.1812 0.1795 0.1772

Table 5: Local deep backward BSDE Algorithm 4, T = 0.2, K = [−1.38, 1.62], using M = 10, and
30000 gradient iterations.
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Method K T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 200 0.02 0.1709 0.1642 0.1513 0.1446 0.1516 0.1446 30000
Bins 200 0.01 0.1672 0.1642 0.1479 0.1446 0.1475 0.1446 111000

Cylinder 500 0.02 0.1688 0.1642 0.1494 0.1446 0.1489 0.1446 20500
Cylinder 500 0.01 0.1663 0.1642 0.1469 0.1446 0.1472 0.1446 68800

Method K T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1711 0.1642 0.1881 0.1812 0.1838 0.1772
Bins 200 0.01 0.1671 0.1642 0.1845 0.1812 0.1800 0.1772

Cylinder 500 0.02 0.1686 0.1642 0.1855 0.1812 0.1817 0.1772
Cylinder 500 0.01 0.1662 0.1642 0.1834 0.1812 0.1787 0.1772

Table 6: Deep backward multi-step Algorithm 5, T = 0.2, K = [−1.38, 1.62] using M = 10, and 30000
gradient iterations.

Method K T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1691 0.1642 0.1496 0.1446 0.1498 0.1446 4500
Bins 200 0.02 0.1691 0.1642 0.1495 0.1446 0.1497 0.1446 6400
Bins 200 0.01 0.1663 0.1642 0.1468 0.1446 0.1471 0.1446 12400

Cylinder 500 0.02 0.1686 0.1642 0.1491 0.1446 0.1492 0.1446 4530
Cylinder 500 0.01 0.1665 0.1642 0.1466 0.1446 0.1466 0.1446 8400

Method K T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1692 0.1642 0.1858 0.1812 0.1815 0.1772
Bins 200 0.02 0.1694 0.1642 0.1863 0.1812 0.1824 0.1772
Bins 200 0.01 0.1668 0.1642 0.1838 0.1812 0.1793 0.1772

Cylinder 500 0.02 0.1686 0.1642 0.1857 0.1812 0.1816 0.1772
Cylinder 500 0.01 0.1667 0.1642 0.1836 0.1812 0.1795 0.1772

Table 7: Global deep MKV BSDE Algorithm 6, T = 0.2, K = [−1.38, 1.6] using M = 10, and 30000
gradient iterations.

Method K T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 200 0.02 0.1753 0.1642 0.1545 0.1446 0.1706 0.1446 6400
Bins 200 0.01 0.1670 0.1642 0.1483 0.1446 0.1597 0.1446 12300

Cylinder 500 0.02 0.1684 0.1642 0.1496 0.1446 0.1491 0.1446 4200
Cylinder 500 0.01 0.1667 0.1642 0.1469 0.1446 0.1468 0.1446 8100

Method K T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1758 0.1642 0.1931 0.1812 0.1887 0.1772
Bins 200 0.01 0.1661 0.1642 0.1841 0.1812 0.1797 0.1772

Cylinder 500 0.02 0.1687 0.1642 0.1856 0.1812 0.1816 0.1772
Cylinder 500 0.01 0.1664 0.1642 0.1836 0.1812 0.1793 0.1772

Table 8: Global/local deep MKV BSDE Algorithm 7, T = 0.2, K = [−1.38, 1.62] using M = 10, 30000
gradient iterations.
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Method K T
NT

Case 1 Case 2 Case 3 Training
Calc Anal Calc Anal Calc Anal time (s)

Bins 200 0.02 0.1689 0.1642 0.1507 0.1446 0.1528 0.1446 6300
Bins 200 0.01 0.1664 0.1642 0.1470 0.1446 0.1469 0.1446 12400

Cylinder 500 0.02 0.1685 0.1642 0.1489 0.1446 0.1494 0.1446 4300
Cylinder 500 0.01 0.1658 0.1642 0.1470 0.1446 0.1468 0.1446 83200

Method K T
NT

Case 4 Case 5 Case 6
Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1692 0.1642 0.1868 0.1812 0.1821 0.1772
Bins 200 0.01 0.1666 0.1642 0.1829 0.1812 0.1796 0.1772

Cylinder 500 0.02 0.1687 0.1642 0.1855 0.1812 0.1817 0.1772
Cylinder 500 0.01 0.1661 0.1642 0.1834 0.1812 0.1795 0.1772

Table 9: Global deep multi-step MKV BSDE Algorithm 8, T = 0.2, K = [−1.38, 1.62] using M = 10,
30000 gradient iterations.

In Table 10, sensitivity results are presented based on ten runs using the same hyperparameters as
in the dynamic programming approach. Similar to the previous table, all the algorithms demonstrate
consistent results with low standard deviations, except for Algorithm 8 with bins, which exhibits a
higher standard deviation. Additionally, it is observed that all the algorithms converge to the same
value as in the dynamic programming approach, further confirming their reliability and accuracy.

Alg method Case 1 Case 4 Case 6
Calc Std Anal Calc Std Anal Calc Std Anal

4 bins 0.1691 0.0002 0.1642 0.1691 0.0003 0.1642 0.1821 0.0003 0.1772
4 cyl 0.1688 0.0001 0.1642 0.1687 0.0002 0.1642 0.1817 0.0002 0.1772
5 bins 0.1691 0.0002 0.1642 0.1691 0.0002 0.1642 0.1820 0.0002 0.1772
5 cyl 0.1686 0.0003 0.1642 0.1689 0.0003 0.1642 0.1816 0.0001 0.1772
6 bins 0.1693 0.0005 0.1642 0.1693 0.0004 0.1642 0.1821 0.0004 0.1772
6 cyl 0.1687 0.0002 0.1642 0.1689 0.0003 0.1642 0.1817 0.0002 0.1772
7 bins 0.1709 0.0013 0.1642 0.1704 0.0013 0.1642 0.1830 0.0010 0.1772
7 cyl 0.1686 0.0002 0.1642 0.1686 0.0003 0.1642 0.1817 0.0002 0.1772
8 bins 0.1691 0.0004 0.1642 0.1691 0.0003 0.1642 0.1820 0.0004 0.1772
8 cyl 0.1687 0.0002 0.1642 0.1687 0.0002 0.1642 0.1815 0.0002 0.1772

Table 10: Some sensitivity results using 10 runs.

5.3 Results for the min/max MKV model
5.3.1 Dynamic programming-based algorithms

Results for T = 0.2 are reported in table 11, 13, 15: they are very good for all algorithms and network
used. Results for T = 0.5 are reported in table 12, 14, 16, and also give excellent results. Notice that
with Algorithm 2, it is impossible to solve the problem with T = 0.5 using NT = 50 due to memory
issues and the time needed limited to 3 days. As we increase the number of time steps for Algorithm
3, we observe for the bins methods, as in the previous test case, a small degradation of the results due
to an accumulation of regression error, and therefore Algorithm 1 should be preferred.
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Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.481 0.483 0.502 0.494 0.489 0.491
Bins 100 0.01 0.481 0.483 0.503 0.494 0.489 0.491
Bins 200 0.01 0.484 0.483 0.498 0.494 0.491 0.491

Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491
Cylinder 500 0.01 0.484 0.483 0.494 0.494 0.491 0.491

Table 11: Global Algorithm 1 with T = 0.2, K = [0.21, 2.72].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.830 0.818 1.100 1.082 0.848 0.836
Bins 100 0.01 0.833 0.818 1.104 1.082 0.850 0.836
Bins 200 0.01 0.831 0.818 1.092 1.082 0.848 0.836

Cylinder 500 0.02 0.814 0.818 1.080 1.082 0.831 0.836
Cylinder 500 0.01 0.819 0.818 1.085 1.082 0.837 0.836

Table 12: Global Algorithm 1 with T = 0.5, K = [−0.4, 3.21].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.480 0.483 0.502 0.494 0.489 0.491
Bins 200 0.02 0.482 0.483 0.496 0.494 0.491 0.491

Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491

Table 13: Policy iteration Algorithm 2 with T = 0.2, K = [0.21, 2.72].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.819 0.818 1.088 1.082 0.836 0.836
Bins 200 0.02 0.818 0.818 1.090 1.082 0.836 0.836

Cylinder 500 0.02 0.814 0.818 1.081 1.082 0.831 0.836

Table 14: Policy iteration Algorithm 2 with T = 0.5, K = [−0.4, 3.21].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.494 0.483 0.512 0.494 0.502 0.491
Bins 200 0.02 0.490 0.483 0.493 0.494 0.495 0.491

Cylinder 500 0.02 0.486 0.483 0.493 0.494 0.491 0.491

Table 15: Value iteration Algorithm 3 with T = 0.2, K = [0.21, 2.72].
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Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.800 0.818 1.084 1.082 0.817 0.836
Bins 200 0.02 0.810 0.818 1.079 1.082 0.828 0.836
Bins 200 0.01 0.835 0.818 1.114 1.082 0.853 0.836

Cylinder 500 0.02 0.811 0.818 1.088 1.082 0.829 0.836
Cylinder 500 0.01 0.810 0.818 1.078 1.082 0.827 0.836

Table 16: Value iteration Algorithm 3 with T = 0.5, K = [−0.4, 3.21].

It is important to consider that as the maturity increases, the size of K needs to be adjusted
accordingly to ensure that the particles primarily remain within K. This adjustment is necessary to
accommodate the potential expansion of the distribution’s support as the maturity lengthens.

5.3.2 Results for Backward SDE-based algorithms

Results for this example of Section 5.1.2 are reported in Tables 17, 18, 19, 20 and 21. All algorithms
seem to converge to the good solution except the global deep MKV BSDE Algorithm 6 that always
converges on our tests (repeated many times) to a slightly different solution while using the cylinder
network. Notice that, by using the bins network, we avoid the problem on this test case. Again it
is not feasible to refine the time step when implementing the deep backward multi-step Algorithm 5
due to the computational time taken by the algorithm. The local deep backward Algorithm 4 seems
to be the best as the results obtained in Table 17 are very good and the memory needed rather small.
Either bins or cylinder networks can be used.

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.8355 0.8180 1.1074 1.0820 0.8537 0.8360
Bins 200 0.02 0.8278 0.8180 1.0962 1.0820 0.8462 0.8360
Bins 200 0.01 0.8343 0.8180 1.0998 1.0820 0.8513 0.8360

Cylinder 500 0.02 0.8249 0.8180 1.0896 1.0820 0.8427 0.8360
Cylinder 500 0.01 0.8312 0.8180 1.0946 1.0820 0.8487 0.8360

Table 17: Deep backward Algorithm 4, T = 0.5, K = [−0.40, 3.21].

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8277 0.8180 1.0966 1.0820 0.8453 0.8360
Cylinder 500 0.02 0.8259 0.8180 1.0904 1.0820 0.8427 0.8360

Table 18: Deep backward multi-step Algorithm 5, T = 0.5, K = [−0.40, 3.21].

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8299 0.8180 1.0977 1.0820 0.8485 0.8360
Bins 100 0.01 0.8447 0.8180 1.1111 1.0820 0.8625 0.8360
Bins 200 0.01 0.8369 0.8180 1.1018 1.0820 0.8566 0.8360

Cylinder 500 0.02 0.7801 0.8180 1.0493 1.0820 0.7968 0.8360
Cylinder 500 0.01 0.7597 0.8180 1.0325 1.0820 0.7767 0.8360

Table 19: Global deep MKV BSDE Algorithm 6, T = 0.5, K = [−0.40, 3.21].
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Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8528 0.8180 1.1003 1.0820 0.8692 0.8360
Bins 100 0.01 0.9146 0.8180 1.1120 1.0820 0.9219 0.8360
Bins 200 0.01 0.8406 0.8180 1.1001 1.0820 0.8560 0.8360

Cylinder 500 0.02 0.8305 0.8180 1.0952 1.0820 0.8466 0.8360
Cylinder 500 0.01 0.8666 0.8180 1.1104 1.0820 0.8817 0.8360

Table 20: Global/local deep MKV BSDE Algorithm 7, T = 0.5, K = [−0.40, 3.21].

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8380 0.8180 1.1004 1.0820 0.8497 0.8360
Bins 200 0.01 0.8353 0.8180 1.1002 1.0820 0.8520 0.8360

Cylinder 500 0.02 0.8265 0.8180 1.0902 1.0820 0.8434 0.8360
Cylinder 500 0.01 0.8319 0.8180 1.0951 1.0820 0.8487 0.8360

Table 21: Global deep multi-step MKV BSDE Algorithm 8, T = 0.5, K = [−0.40, 3.21].

5.4 Result on the mean variance problem using the dynamic programming
approach.

We do not report results from Algorithm 3: indeed, they diverge for all discretizations tested. Results
for the two other algorithms are given in Tables 22 and 24 for T = 0.2, and in Tables 23 and 25 for T
= 0.5. Notice that the number of bins taken for the bins network has to be high to get an accurate
solution.

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 -0.0954 -0.0865 -0.1147 -0.1059 -0.3139 -0.3050
Bins 200 -0.0907 -0.0865 -0.1104 -0.1059 -0.3094 -0.3050
Bins 400 -0.0882 -0.0865 -0.1081 -0.1059 -0.3071 -0.3050

Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 -0.0952 -0.0865 -0.0547 -0.0464 -0.1769 -0.1683
Bins 200 -0.0908 -0.0865 -0.0510 -0.0464 -0.1724 -0.1683
Bins 400 -0.0894 -0.0865 -0.0487 -0.0464 -0.1703 -0.1683

Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 22: Global Algorithm 1, T = 0.2, K = [−0.85, 0.9], T
NT

= 0.02.
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Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 200 -0.1018 -0.0965 -0.1214 -0.1156 -0.3200 -0.3147
Bins 400 -0.0976 -0.0965 -0.1163 -0.1156 -0.3149 -0.3147

Cylinder 500 -0.0987 -0.0965 -0.1179 -0.1156 -0.3172 -0.3147
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 200 -0.1022 -0.0965 -0.0613 -0.0562 -0.1842 -0.1786
Bins 400 -0.0969 -0.0965 -0.0562 -0.0562 -0.1788 -0.1786

Cylinder 500 -0.0985 -0.0965 -0.0583 -0.0562 -0.1804 -0.1786

Table 23: Global Algorithm 1, T = 0.5, K = [−0.85, 0.9], T
NT

= 0.02.

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 -0.0959 -0.0865 -0.1143 -0.1060 -0.3138 -0.3051
Bins 200 -0.0906 -0.0865 -0.1102 -0.1059 -0.3094 -0.3050
Bins 400 -0.0884 -0.0865 -0.1083 -0.1059 -0.3072 -0.3050

Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 -0.0954 -0.0865 -0.0553 -0.0464 -0.1766 -0.1683
Bins 200 -0.0908 -0.0865 -0.0505 -0.0464 -0.1723 -0.1683
Bins 400 -0.0887 -0.0865 -0.0482 -0.0464 -0.1704 -0.1683

Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 24: Policy iteration Algorithm 2 , T = 0.2, K = [−0.85, 0.9], T
NT

= 0.02.

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 400 -0.0978 -0.0965 -0.1171 -0.1156 -0.3140 -0.3147
Cylinder 500 -0.0986 -0.0965 -0.1175 -0.1156 -0.3164 -0.3147
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 400 -0.0985 -0.0965 -0.0579 -0.0562 -0.1789 -0.1786

Cylinder 500 -0.0986 -0.0965 -0.0583 -0.0562 -0.1807 -0.1786

Table 25: Policy iteration Algorithm 2 , T = 0.5, K = [−0.85, 0.9], T
NT

= 0.02.

Again, in term of accuracy, Algorithms 1 and 2 give similar accurate results and the memory taken
by both algorithms is close. However Algorithm 1 has to be preferred as the computation time is far
lower when we are interested by computing the solution only at time t = 0.

5.5 Results for the non LQ MKV model using dynamic programming
In Table 26, results from different algorithms are provided for one run with a maturity T = 0.4. The
settings used include NT = 20, 30000 gradient iterations, M = 10, and K = [−0.81, 2.81]. Based on
the provided results, it is observed that Algorithm 3 yields inaccurate results. However, Algorithms 1
and 2 demonstrate a high accuracy in capturing the desired outcome.
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Alg method Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

1 bins 1.1840 1.1735 0.9389 0.9200 1.1695 1.1585
1 cyl 1.1815 1.1736 0.9233 0.9197 1.1666 1.1585
2 bins 1.1896 1.1735 0.9479 0.9197 1.1757 1.1584
2 cyl 1.1791 1.1735 0.9239 0.9196 1.1640 1.1585
3 bins 0.9356 1.1736 0.8282 0.9198 0.9293 1.1585
3 cyl 1.0449 1.1734 0.8646 0.9196 1.0356 1.1585

Table 26: The non Linear Quadratic using T = 0.2

In Table 27, the results for algorithms 1 and 2 are given with a maturity of T = 0.4 and K =
[−1.23, 3.84]. The results are reported for NT = 20. Based on the provided results, it is observed that
Algorithm 1 performs better for larger time steps. This suggests that Algorithm 1 is more effective in
capturing the desired results in scenarios with extended time steps.

Alg method Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

1 bins 1.4607 1.4332 1.1645 1.1233 1.4448 1.4151
1 cyl 1.4517 1.4332 1.1402 1.1237 1.4332 1.4150
2 bins 1.4905 1.4333 1.1980 1.1233 1.4750 1.4150
2 cyl 1.4627 1.4333 1.1473 1.1237 1.4447 1.4150

Table 27: The non Linear Quadratic using T = 0.4.

The results obtained from your experiments confirm that Algorithm 1 is the most effective choice
when employing the dynamic programming approach. The algorithm consistently produces the best
results, demonstrating its superior performance in solving the problem at hand. These findings validate
the selection of Algorithm 1 as the preferred choice within the dynamic programming framework.

5.6 Results for the two dimensional systemic risk model of section 5.1.5
The bin method suffers from the curse of dimensionality, and the numerical resolution of multi-
dimensional problems is time consuming and memory intensive. Therefore, all experiments are per-
formed in 2D using an NVIDIA H100 80GB HBM3N graphics card. Since the bin method is only
used to sample distributions with the cylinder network, these networks can be used with more bins
than the bin networks with a given amount of memory. We test the algorithms using NT = 20, with
a resolution range of [−0.63, 0.96]2. For the bin network we use 30 × 30 bins, while for the cylinder
network we sample distributions using 50× 50 bins. We first give results and sensitivities for dynamic
programming based algorithms except for Algorithm 2 (which is too time consuming) in Table 28.

Alg method Case 1 Case 4 Case 6
Calc Std Anal Calc Std Anal Calc Std Anal

1 bins 0.1147 0.0003 0.1134 0.1611 0.0005 0.1604 0.1223 0.0003 0.1208
1 cyl 0.1142 0.0003 0.1134 0.1609 0.0005 0.1604 0.1220 0.0003 0.1208
3 bins 0.1360 0.0462 0.1134 0.1752 0.0449 0.1604 0.1364 0.0430 0.1208
3 cyl 0.1276 0.0145 0.1134 0.1645 0.0068 0.1604 0.1339 0.0123 0.1208

Table 28: Results and sensitivities using 10 runs with dynamic programming based methods in dimen-
sion 2.

We also report the results obtained with the BSDE methods in Table 29 (except for Algorithm 4,
which is also time-consuming).
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Alg method Case 1 Case 2 Case 3
Calc Std Anal Calc Std Anal Calc Std Anal

4 bins 0.1147 0.0003 0.1134 0.1611 0.0004 0.1604 0.1221 0.0003 0.1208
4 cyl 0.1141 0.0003 0.1134 0.1613 0.0003 0.1604 0.1220 0.0004 0.1208
6 bins 0.1147 0.0003 0.1134 0.1610 0.0002 0.1604 0.1222 0.0003 0.1208
6 cyl 0.1147 0.0002 0.1134 0.1614 0.0004 0.1604 0.1220 0.0002 0.1208
7 bins 0.1184 0.0007 0.1134 0.1635 0.0006 0.1604 0.1281 0.0015 0.1208
7 cyl 0.1147 0.0003 0.1134 0.1614 0.0004 0.1604 0.1221 0.0005 0.1208
8 bins 0.1146 0.0004 0.1134 0.1612 0.0005 0.1604 0.1224 0.0003 0.1208
8 cyl 0.1148 0.0003 0.1134 0.1613 0.0003 0.1604 0.1219 0.0003 0.1208

Table 29: Some sensitivity results using 10 runs in dimension 2.

The results are all very good, except again for the local algorithm 3 based on the dynamic pro-
gramming framework. Among the feasible algorithms, the bin algorithm 7 is less accurate than the
others which yield results close to the exact value, showing that the remaining error is mainly due to
the Euler discretization of the scheme.

6 Conclusion
We have tested numerous algorithms to solve the McKean-Vlasov control problem (1) by using mean-
field neural networks. When the problem admits a Backward SDE representation from the Pon-
tryagin maximum principle, it is clearly more interesting to adopt this approach than the dynamic
programming-based approaches for several reasons:

• It is observed that the BSDE approach consistently yields stable results across multiple runs.
This stability can be attributed to the fact that, in the Pontryagin principle, the BSDE has a
driver that depends on Y instead of the traditional approach where the driver is a function of Z,
as highlighted in [14]. Based on these findings, Algorithm 6 emerges as the best compromise in
terms of accuracy and computational time. This algorithm strikes a balance between achieving
accurate results and maintaining reasonable computational efficiency.

• It is possible to use the local deep backward algorithm [21] (Algorithm 4 ) that yields very accurate
results and is not limited by the number of time steps due to transfer learning. Moreover, the
method gives the solution of the problem at each time steps for all the distributions.

• Both networks, either bins or cylinder, can be implemented. Notice that cylinder methods use
less memory than bins methods especially when the number of bins has to be high to get a good
accuracy.

When the maximum Pontryagin principle is not directly available, we distinguish two cases:

• First case is when the volatility of the forward process is not controlled. Then two options are
available:

– When the number of time steps it not too high, the global learning algorithm [19] (Algorithm
1 ), [17] seems to be the best in terms of accuracy. Then it is possible to get the function
value after t = 0 at "visited distributions" by regression.

– When the number of time steps is too high, memory issues force us to use the control learning
by value iteration of [20] (Algorithm 3 may have difficulties to converge as shown in the non
Linear Quadratic example and in the two dimensional systemic test case). Another option
could be to use an hydrid algorithm as proposed in [30].

• Second case is when there is control on the diffusion coefficient, and then only the global learning
algorithm should be implemented.
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In conclusion, it is advisable to prioritize global Algorithms 6 and 1. When using the cylindrical
network, there is no need to make any assumptions or guesses about the parameter K. However,
it is important to note that the global learning algorithms, as observed in [10], [21], and [1], may
occasionally converge to incorrect solutions, particularly in the non-mean-field case when there is a
poor initialization of Y0 that is too distant from the solution. Such problems have not been experienced
in the mean-field case. To mitigate these convergence issues and ensure the reliability of the global
learning algorithm, the control learning by policy iteration, as presented in [20], can be employed to
verify convergence. This is particularly relevant when the loss of the global learning algorithm does
not tend to zero as the number of time steps increases.

Finally, extending the bin method to dimension 3 is currently out of reach. The use of cylin-
der networks in higher dimensions would be possible if an effective way could be found to generate
distributions that avoid bin sampling.
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